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Abstract. Weapply a coupled channel formalism incorporating quasi-bound quark-model

states to calculate the D13, D33 and D15 scattering and electro-production amplitudes. The

meson-baryon vertices for πN, π∆ (s- and d-waves), ρN, πN(1440), πN(1535), π∆(1600)

and σ∆(1600) channels are determined in the Cloudy Bag Model. We use the same values

for the model parameters as in the case of the P11, P33 and S11 partial waves except for

the strength of the coupling of the d-wave mesons to quarks which has to be increased in

order to reproduce the width of the observedD-wave resonances. The electro-production

amplitudes exhibit a consistent behavior in all channels but are too weak in the resonance

region.

1 Introduction

This work is a continuation of a joint project on the description of baryon res-
onances performed by the Coimbra group (Manuel Fiolhais and Pedro Alberto)
and the Ljubljana group (Simon Širca and B. G.) [1–9]. In our previous works [5–7]
we have successfully applied our method which incorporates excited baryons
represented as quasi-bound quark-model states into a coupled channel formal-
ism using the K-matrix approach [5] to calculate the scattering and the electro-
production amplitudes in the P11, P33 and S11 partial waves. In the present work
we extend of the approach to low lying negative parityD-wave resonances.

In the next section we give a short review of the method and in the following
sections we discuss in more detail scattering and electro-production in the D13
and D33 and D15 partial waves.

2 The method

We limit ourselves to a class of chiral quark models in which mesons couple lin-
early to the quark core. In such cases the elements of the K matrix in the basis
with good total angular momentum J and isospin T can be cast in the form [5]:

KJTM ′B ′MB = −πNM ′B ′〈ΨMBJT ||VM ′(k)||Ψ̃B ′〉 , NMB =

√
ωMEB

kMW
. (1)



Meson electro-production . . . 67

Here ωM and kM are the energy and momentum of the incoming (outgoing)

meson, |Ψ̃B〉 is properly normalized baryon state and EB is its energy, W is the
invariant energy of the meson-baryon system, and |ΨMB〉 is the principal value
state

|ΨMBJT 〉 = NMB
{
[a†(kM)|Ψ̃B〉]JT +

∑

R
cMBR |ΦR〉

+
∑

M ′B ′

∫
dk χM

′B ′MB(k, kM)

ωk + EB ′(k) −W
[a†(k)|Ψ̃B ′〉]JT

}
. (2)

The first term represents the free meson (π, η, ρ, K, . . . ) and the baryon (N, ∆,
Λ, . . .) and defines the channel, the next term is the sum over bare tree-quark states
ΦR involving different excitation of the quark core, the third term introduces me-
son clouds around different isobars, E(k) is the energy of the recoiled baryon. We
assume that the two pion decay proceeds either through an unstable meson (ρ-
meson, σ-meson, . . . ) or through a baryon resonance (∆(1232), N∗(1440) . . . ). The
meson amplitudes χM

′B ′MB(k, kM) are proportional to the (half) off-shell matrix
elements of the K-matrix and are determine by solving a Lippmann-Schwinger
type of equation. The resulting matrix elements of the K-matrix take the form

KM ′B ′MB(k, kM) = −
∑

R

VMBR(kM)VM ′

B ′R(k)

ZR(W)(W −WR)
+ K

bkg
M ′B ′MB(k, kM) , (3)

where the first term represents the contribution of various resonances while

K
bkg
M ′B ′MB(k, kM) originates in the non-resonant background processes. HereVMBR

is the dressed matrix element of the quark-meson interaction between the reso-
nant state and the baryon state in the channelMB, and ZR is the wave-function
normalization. The physical resonant state R is a superposition of the dressed
states built around the bare 3-quark states ΦR ′ . The T matrix is finally obtained
by solving the Heitler’s equation

TMBM ′B ′ = KMBM ′B ′ + i
∑

M ′′B ′′

TMBM ′′B ′′KM ′′B ′′M ′B ′ . (4)

Considering meson electro-production, the T matrix for γN→MB satisfies

TMBγN = KMBγN + i
∑

M ′B ′

TMBM ′B ′KM ′B ′ γN . (5)

In the vicinity of a chosen resonance (R) we write (see (3)):

KMBγN = −
VMBRVγNR

ZR(W)(W −WR)
−

∑

R ′ 6=R

VMBR ′VγNR ′

ZR ′(W)(W −WR ′)
+ B

bkg
MBγN . (6)

We manipulate the first term:

VMBRVγNR
ZR(W)(W −WR)

=
VMBR

2

ZR(W)(W −WR)

VγNR
VMBR

=
(
KMBMB − K

bkg
MBMB

) VγNR
VMBR
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so that (5) takes the form

TMBγN =

(
KMBMB + i

∑

M ′B ′

TMBM ′B ′KM ′B ′MB

)
VγNR
VMBR

+K
bkg
MBγN + i

∑

M ′B ′

TMBM ′B ′K
bkg
M ′B ′ γN

=
VγNR
VMBR

TMBMB + T
bkg
MBMB ≡ T resMBγN + T

bkg
MBγN , (7)

which means that the T matrix for elektro-production can be split into the reso-
nant part and the background part; the latter is the solution of the Heitler equa-
tion with the ”background” K-matrix defined as

K
bkg
MBγN = −K

bkg
MBMB

VγNR
VMBR

−
∑

R ′ 6=R

VMBR ′VγNR ′

ZR ′(W)(W −WR ′)
+ B

bkg
MBγN .

Note that VγNR(kγ) is proportional to the helicity amplitudes while the strong
amplitude VMBR(kM) to

√
ΓMB and to ζ, the sign of the phase of the meson decay.

3 The D-wave resonances in the Cloudy Bag Model

In the quark model, the negative parity D-wave resonances are described by a
single quark l = 1 orbital excitation. The two D13 (flavor octet, J = 3

2
) resonances

are the superposition of the S = 1
2
and S = 3

2
configurations, the D33 resonance

(flavour decouplet) has S = 1
2
, while the D15 resonance (octet, J = 5

2
) has S = 3

2
.

We use the j–j coupling scheme in which the resonances take the following forms:

N(1520)D13 = − sinϑd|
483/2〉+ cos ϑd|

283/2〉
= c1S|(1s)

21p3/2〉MS + c1A|(1s)21p3/2〉MA + c1P |(1s)
21p1/2〉 , (8)

N(1700)D13 = cos ϑd|
483/2〉+ sinϑd|

283/2〉
= c2S|(1s)

21p3/2〉MS + c2A|(1s)21p3/2〉MA + c2P |(1s)
21p1/2〉 , (9)

∆(1700)D33 = |2103/2〉 =
√
5

3
|(1s)21p3/2〉−

2

3
|(1s)21p1/2〉 , (10)

N(1675)D15 = |485/2〉 = |(1s)21p3/2〉 . (11)

Here MS and MA denote the mixed symmetric and the mixed antisymmetric
representation, and

c1S =
2

3
sinϑd+

√
5

18
cos ϑd, c1A = −

√
2

2
cos ϑd, c1P = −

√
5

3
sinϑd+

√
2

3
cos ϑd .

(12)

The l = 2 pions couple only to j = 3/2 quarks; the corresponding interaction
in the Cloudy Bag Model takes the form

Vπ2mt(k) =
1

2fπ

√
ωp3/2

ωs

(ωp3/2
− 2)(ωs − 1)

√
2

2π

k2√
ωk

j2(kR)

kR

3∑

i=1

τt(i)Σ
[1
2

3
2
]

2m (i) , (13)
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where

Σ
[1
2

3
2
]

1m =
∑

msmj

C
1
2
ms

3
2
mj1m

|sms〉〈p3/2mj| , ωs = 2.043 , ωp3/2
= 3.204 .

In the case of P11, P33 and S11 waves we have used the bag radius R =

0.83 fm which determines the range of quark-pion interaction corresponding to
the cut-off Λ ∼ 550 MeV/c, and the value for fπ = 76 MeV which reproduces
the experimental value of the πNN coupling constant. For the d-wave pions it
turns out that the range predicted by (13) is too large while the resulting coupling
strength is too weak. We have therefore modified the interaction in such a way as
to correspond to Λ ∼ 550MeV/c, while the coupling strength has been increased
by a factor 1.7 – 2.75 (depending on the considered resonance).

4 Scattering amplitudes

The effect of the form factor and the strength of quark-meson coupling discussed
in the previous section is most clearly seen in the case of the D15 where the back-
ground effects as well as the influence of other resonances are almost negligible.
Using our standard value for the cut-off parameter we have to increase the quark
model coupling constant by a factor of 2.75 in order to obtain an almost perfect
fit to the data in the region of the resonance.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

k [GeV/c]

D-wave form factor

model
modified

P-wave ff

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9

W [GeV]

ReT

ImTD15

Im T
exp

Re T
exp

Fig. 1. The form factor for the D-wave pions (left panel), and the real and the imaginary

part of the D15 scattering amplitude (right). The data points are from [10].

The data for elastic scattering in the D13 partial wave show almost no sign of
the second resonance N(1700). Since the l = 2 pions most strongly couple to the
|(1s)21p3/2〉MA configuration, the absence of the second resonance can be most

easily explained by the vanishing of the c2A coefficient in (9), c2A = − sinθd/
√
2.

This suggests θd = 0. In our model the resonances are mixed through the pion
interaction which changes slightly the above conclusion leading to the choice
θd ≈ 10◦ for the optimal mixing. At this energy range the effect of the cut-off
is less pronounced; the quark-model prediction for the πNR coupling constant
has to be increased by a factor of 1.7, while that to the ∆ decreased by a factor of
one half.
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Fig. 2. The real and the imaginary part of the D13 wave scattering amplitude (left), and for

the D33 wave (right). The data points are from [10].

In the vicinity of the D33 resonance the elastic amplitude is dominated by
the coupling of the elastic channel to the π∆(1232) channel. The d-wave pion cou-
pling to the nucleon is increased by a factor of 2.5 with respect to the quark model
value, while the model value for s-wave coupling to the ∆(1232) is not modified.
Increasing the latter coupling brings the real part of the amplitude closer to the
data, however the behavior of the photo-production amplitudes, presented in the
next section, is deteriorated.

5 Electro-production

The electro-production amplitudes are obtained by evaluating the EM current
consisting of the quark and the pion part between the nucleon ground state and
the resonant state. The corresponding helicity amplitude VγNR in (7) reads

VγNR(kγ) =
e√
2ωγ

〈R|jEM(kγ)|N〉,

where the resonant state stemming from the second and the third term in (2)
consists of the bare-quark part and the meson cloud

|R〉 = 1√
ZR

{
|ΦR〉−

∑

MB

∫
dk VMBR(k)

ωk + EB −W
[a†(k)|Ψ̃B〉]JT

}
. (14)

The background term entering (7) is dominated by the pion-pole term and the
u-channel process which originate from the first term in (2).

In Figs. 3 – 6 the transverse photo-production amplitudes for the partial D13,
D33 and D15 partial waves calculated in our model are compared to the data as
well as to the analysis of the MAID group [11]. While our calculation correctly
reproduce the behavior of the amplitudes at the energies close to the threshold
where they are dominated by the pion-pole term, their strength in the resonance
region is typically a factor 0.5 to 0.7 weaker compared to the value of the elec-
tric transverse amplitude as deduced from the experiment, and even weaker in
the case of the magnetic amplitude. The pertinent multipoles are sensitive to the
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nucleon’s periphery which is apparently not adequately reproduced in the bag
model, as we have already noticed when analyzing the coupling of the resonance
to the d-wave pions. Here the pion cloud effect are relatively weak as a conse-
quence of cancellations of different terms, and contribute at the level of 10 % to
20 % to the amplitudes.
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Fig. 3. The real and the imaginary part of the proton and neutron multipoles E2− for the

D13 wave in units 10−3/mπ (preliminary). The data points are from [10], ”maid” corre-

sponds to the partial wave analysis from [11].

Nonetheless, we should stress that the amplitudes exhibit a consistent be-
havior in all considered partial waves. In particular, our model correctly predicts

that in the D13 partial wave the nE
1/2
2− multipole amplitude is weaker than the

corresponding nE
1/2
2− amplitude, and that the nM

1/2
2− amplitude almost vanishes.

Similarly, for the D15 partial wave the quark model predicts that the quark con-

tribution to the pM
1/2
2− multipole vanishes and only the pion cloud contributes to

the resonant part of the amplitude. The non-zero quark contribution in the case
of the neutron multipole is however too weak to reproduce the data.

6 Discussion

Comparing the present results with the results for other partial waves obtained
in chiral quark models we notice a general trend that the quark core alone does
not provide sufficient strength to reproduced the observed resonance excitation
amplitudes. The best known example is the P33 partial wave in which case the
quark contribution to the electric dipole excitation of the ∆(1232) is estimated
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Fig. 4. TheM2− multipole, notation as in Fig. 3.
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Fig. 5. E2− andM2− amplitudes for the D33 wave, notation as in Fig. 3.

by only 60 % while the rest is attributed to the pion cloud [1]. In the present
calculation the pion cloud effects turn out not to be that important. In fact, we
have noticed a considerable cancellation of different contributions of the meson
cloud, e.g. the vertex correction due to pion loops and the genuine contribution
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Fig. 6. TheM2+ amplitudes for the D15 wave, notation as in Fig. 3.

of the pion cloud to the EM current. It is therefore possible that a calculation in
a more elaborate chiral quark model could provide a better agreement with the
data. To conclude, the overall qualitative agreement with the multipole analysis
in the D13, D33 and D15 partial waves prove that the quark-model explanation of
the D-wave resonance as the p-wave excitation of the quark core supplemented
by the meson cloud is sensible and that no further degrees of freedom are needed.
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Most of hadrons are hadronic resonances - they decay quickly via the strong
interactions. Among all the resonances, only the ρmeson has been properly simu-
lated as a resonance within lattice QCD up to know. This involved the simulation
of the ππ scattering in p-wave, extraction of the scattering phase shift and deter-
mination ofmR and Γ via the Breit-Wigner like fit of the phase shift.

In the past year, we performed first exploratory simulations of Dπ,D∗π and
Kπ scattering in the resonant scattering channels [1, 2]. Our simulations are done
in lattice QCDwith two-dynamical light quarks at a mass corresponding tomπ ≃
266MeV and the lattice spacing a = 0.124 fm.
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Fig. 1. Energy differences∆E = E− 1
4
(MD+3MD∗) forDmeson states in our simulation [1]

and in experiment; the reference spin-averaged mass is 1
4
(MD + 3MD∗) ≈ 1971 MeV

in experiment. Magenta diamonds give resonance masses for states treated properly as

resonances, while those extracted naively assumingmn = En are displayed as blue crosses

[1].
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The masses and widths of the broad scalar D∗
0(2400) and the axial D1(2430)

charmed-light resonances are extracted by simulating the corresponding Dπ and
D∗π scattering on the lattice [1]. The resonance parameters are obtained using a
Breit-Wigner fit of the elastic phase shifts. The resulting D∗

0(2400) mass is 351 ±
21 MeV above the spin-average 1

4
(mD + 3mD∗), in agreement with the experi-

mental value of 347 ± 29 MeV above. The resulting D∗
0 → Dπ coupling glat =

2.55 ± 0.21 GeV is close to the experimental value gexp = 1.92± 0.14 GeV, where
g parametrizes the width Γ ≡ g2p⋆/s. The resonance parameters for the broad
D1(2430) are also found close to the experimental values; these are obtained by
appealing to the heavy quark limit, where the neighboring resonance D1(2420)
is narrow. The simulation of the scattering in these channels incorporates quark-
antiquark as well as D(∗)π interpolators, and we use distillation method for con-
tractions. The resulting D-meson spectrum is compared to the experimental one
in Fig. 1.

In addition, the ground and several excited charm-light and charmonium
states with various JP are calculated using standard quark-antiquark interpola-
tors. The lattice results for the charmonium are compared to the experimental
levels in Fig. 2.
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Fig. 2. Energy differences ∆E = E− 1
4
(Mηc + 3MJψ) for charmonium states in our simula-

tion [1] and in experiment; reference spin-averaged mass is 1
4
(Mηc + 3MJψ) ≈ 3068MeV

in experiment. The magenta lines on the right denote relevant lattice and continuum

D̄(∗)D(∗) thresholds.

We also simulated Kπ scattering in s-wave and p-wave for both isospins I =
1/2, 3/2 using quark-antiquark and meson-meson interpolating fields [2]. Fig. 3
shows the resulting energy levels of Kπ in a box. In all four channels we observe
the expectedK(n)π(−n) scattering states, which are shifted due to the interaction.
In both attractive I = 1/2 channels we observe additional states that are related
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Fig. 3. The energy levels E(t)a of the Kπ in the box for all four channels (multiply by

a−1 = 1.59 GeV to get the result in GeV). The horizontal broken lines show the ener-

gies E = EK + Eπ of the non-interacting scattering states K(n)π(−n) as measured on our

lattice; K(n)π(−n) corresponds to the scattering state with p∗ =
√
n 2π
L
. Note that there is

no K(0)π(0) scattering state for p-wave. Black and green circles correspond to the shifted

scattering states, while the red stars and pink crosses correspond to additional states re-

lated with resonances.

to resonances; we attribute them to K∗
0(1430) in s-wave and K∗(892), K∗(1410)

and K∗(1680) in p-wave. We extract the elastic phase shifts δ at several values of
the Kπ relativemomenta. The resulting phases exhibit qualitative agreementwith
the experimental phases in all four channels, as shown in Fig. 4. In addition to the
values of the phase shifts shown in Fig. 4, we also extract the values of the phase
shift close to the threshold, which are expressed in terms of the scattering lengths
in [2].
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Fig. 4. The extracted Kπ scattering phase shifts δIℓ in all four channels l = 0, 1 and I =

1/2, 3/2. The phase shifts are shown as a function of the Kπ invariant mass
√
s = MKπ =

√

(pπ + pK)2. Our results (red circles) apply for mπ ≃ 266 MeV and mK ≃ 552 MeV in

our lattice simulation. In addition to the phases provided in four plots, we also extract the

values of δ
1/2, 3/2

0 near threshold
√
s =mπ+mK, but these are provided in the form of the

scattering length in the main text (as they are particularly sensitive to mπ,K). Our lattice

results are compared to the experimental elastic phase shifts (both are determined up to

multiples of 180 degrees).

We believe that these simulations of the Dπ, D∗π and Kπ scattering in the
resonant channels represent encouraging step to simulate resonances properly
from first principle QCD. There are many other exciting resonances waiting to be
simulated along the similar lines.
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