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Abstract. We explore the role of the 〈A2〉 gluon condensate in matching Regge models to
the operator product expansion of meson correlators.

This talk is based on Ref. [1], where the details may be found. The idea of im-
plementing the principle of parton-hadron duality in Regge models has been dis-
cussed in Refs. [2–8]. Here we carry out this analysis with the dimension-2 gluon
condensate present. The dimension-two gluon condensate, 〈A2〉, was originally
proposed by Celenza and Shakin [9] more than twenty years ago. Chetyrkin, Nar-
ison and Zakharov [10] pointed out its sound phenomenological as well as the-
oretical [11–15] consequences. Its value can be estimated by matching to results
of lattice calculations in the Landau gauge [16,17], and their significance for non-
perturbative signatures above the deconfinement phase transition was analyzed
in [18]. Chiral quark-model calculations were made in [19] where 〈A2〉 seems
related to constituent quark masses. In spite of all this flagrant need for these un-
conventional condensates the dynamical origin of 〈A2〉 remains still somewhat
unclear; for recent reviews see, e.g., [20,21].

For large Q2 and fixed Nc the modified OPE (with the 1/Q2 term present)
for the chiral combinations of the transverse parts of the vector and axial currents
is
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On the other hand, at large-Nc and any Q2 these correlators may be saturated by
infinitely many mesonic states,
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The basic idea of parton-hadron duality is to match Eq. (1) and (2) for both large
Q2 andNc (assuming that both limits commute). We use the radial Regge spectra,
which are well supported experimentally [22]

M2
V,n = M2

V + aVn, M2
A,n =M2

A + aAn, n = 0, 1, . . . (3)

The vector part, ΠT
V , satisfies the once-subtracted dispersion relation
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We need to reproduce the logQ2 in OPE, for which only the asymptotic part of the
meson spectrum matters. This leads to the condition that at large n the residues
become independent of n, FV,n ≃ FV and FA,n ≃ FA. Thus all the highly-excited
radial states are coupled to the current with equal strength! Or: asymptotic de-
pendence of FV,n or FA,n on n would damage OPE. Next, we carry out the sum
explicitly (the dilog function is ψ(z) = Γ ′(z)/Γ(z))
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where i = V,A. ΠV−A satisfies the unsubtracted dispersion relation (no logQ
2

term), hence

F2
V/aV = F2

A/aA. (6)

This complies to the chiral symmetry restoration in the high-lying spectra [23,24].
Further, we assume aV = aA = a, or FV = FA = F, which is well-founded
experimentally, as

√
σA = 464MeV,

√
σV = 470MeV [22].

The simplest model we consider has strictly linear trajectories all the way
down,
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Matching to OPE yields the two Weinberg sum rules:
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The V + A channel needs regularization. We proceed as follows: carry d/dQ2,
compute the convergent sum, and integrate back overQ2. The result is
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Matching of the coefficient of logQ2 to OPE gives the relation

a = 2πσ =
24π2F2

Nc

, (7)

where σ denotes the (long-distance) string tension. From the ρ → 2π decay one
extracts F = 154MeV [25] which gives

√
σ = 546 MeV, compatible to the value

obtained in lattice simulations:
√
σ = 420MeV [26]. Moreover, from theWeinberg

sum rules

M2
A = M2

V +
24π2

Nc

f2, a = M2
A +M2

V = 2M2
V +

24π2

Nc

f2. (8)

Matching higher twists fixes the dimension-2 and 4 gluon condensates:

−
αSλ

2

4π3
= f2,

αS〈G2〉
12π

=
M4

A − 4M2
VM

2
A +M4

V

48π2
. (9)

Numerically, it gives −αSλ2

π
= 0.3 GeV2 as compared to 0.12GeV2 from

Ref. [10,20]. The short-distance string tension is σ0 = −2αsλ
2/Nc = 782 MeV,

which is twice as much as σ. The major problem of the strictly linear model is
that the dimension-4 gluon condensate is negative forMV ≥ 0.46 GeV. Actually,
it never reaches the QCD sum-rules value. Thus, the strictly linear radial Regge
model is too restrictive!

We therefore consider a modified Regge model where for low-lying states
both their residues and positions may depart from the linear trajectories. The
OPE condensates are expressed in terms of the parameters of the spectra. A very
simple modification moves only the position of the lowest vector state, the ρme-
son.
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For the Weinberg sum rules (we use Nc = 3 from now on)
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Fig. 1. Dimension-2 (solid line, in GeV2) and -4 (dashed line, in GeV4) gluon condensates

plotted as functions of the square root of the string tension. The straight lines indicate

phenomenological estimates. The fiducial region in
√
σ for which both condensates are

positive is in the acceptable range compared to the values of Ref. [22] and other studies.

We fixmρ = 0.77 GeV, and σ is the only free parameter of the model. Then
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The window for which both condensates are positive yields very acceptable val-
ues of σ. The consistency check of near equality of the long- and short-distance
string tensions, σ ≃ σ0, holds for

√
σ ≃ 500MeV. The magnitude of the conden-

sates is in the ball park of the “physical” values. The value ofMV in the “fiducial”
range is around 820MeV. The experimental spectrum in the ρ channel is has states
at 770, 1450, 1700, 1900∗, and 2150∗ MeV, while the model gives 770, 1355, 1795,
2147 MeV (for σ = (0.47 GeV2). In the a1 channel the experimental states are at
1260 and 1640 MeV, whereas the model yields 1015 and 1555 MeV.

We note that the V − A channel well reproduced with radial Regge mod-
els. The Das-Mathur-Okubo sum rule gives the Gasser-Leutwyler constant L10,
while the Das-Guralnik-Mathur-Low-Yuong sum rule yields the pion electromag-
netic mass splitting. In the strictly linear model with M2

A = 2M2
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24π2/Ncf = 764 MeV we have
√
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exp. In our second model with σ = (0.48 GeV)2
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To conclude, let us summarize our results and list some further related stud-
ies.

• Matching OPE to the radial Reggemodels produces in a natural way the 1/Q2

correction to the V and A correlators. Appropriate conditions are satisfied by
the asymptotic spectra, while the parameters of the low-lying states are tuned
to reproduce the values of the condensates.

• In principle, these parameters of the spectra are measurable, hence the infor-
mation encoded in the low-lying states is the same as the information in the
condensates.

• Yet, sensitivity of the values of the condensates to the parameters of the spec-
tra, as seen by comparing the two explicit models considered in this paper,
makes such a study difficult or impossible at a more precise level.

• Regge models work very well in the V − A channel. In [28] it is shown how
the spectral (in fact chiral) asymmetry between vector and axial channel is
generated via the use of ζ-function regularization for each channel separately.

• We comment that effective low-energy chiral models produce 1/Q2 correc-
tions (i.e. provide a scale of dimension 2), e.g., the instanton-based chiral quark
model gives [19]

−
αS

π
λ2 = −2Nc

∫
du

u

u+M(u)2
M (u)M′ (u) ≃ 0.2 GeV2

. (13)

• In the presented Regge approach the pion distribution amplitude is constant,
φ(x) = 1, at the low-energy hadronic scale, similarly as in chiral quarkmodels
[27].
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