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Q1

We just learned that Ars Mathematica Contemporanea has been ranked 60th among
the 312 mathematical journals in the ISI’s Journal Citation Report for the year 2015. This
makes it the first ever scientific journal published in Slovenia that has been placed in the
upper quartile: Q1.

We understand very well that a high score is only a necessary condition for excellence.
We are sure that a new player in the elite company of Q1 journals will be met by skepticism
from many mathematicians who value tradition and prestige. And since AMC is a 21st
century journal less than 10 years old, and published in a small country of only two million
people, it may never be able to compete with established journals having a long tradition
dating a century or more. Nevertheless, we will do our best to continue to publish high
quality mathematics while keeping the journal free of charge for both authors and readers.

We would like to thank our authors, who believe in our journal and entrust their best
work to the AMC! Sincere thanks also to the referees and editors who ensure the quality of
published papers!

Dragan Marušič and Tomaž Pisanski
Editors In Chief
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GEMS 2013

This issue of Ars Mathematica Contemporanea offers a collection of papers presented
at the Sixth Workshop ‘Graph Embeddings and Maps on Surfaces’ (GEMS), which took
place in Smolenice, Slovakia, the week 14–19 July 2013.

The GEMS workshop series began with the idea of a small conference in Slovakia that
would bring together researchers interested in various aspects of graphs embedded in sur-
faces. The first GEMS workshop was held in Donovaly the week 21–26 August 1994,
and was attended by 33 participants from 14 countries. The topics covered by the work-
shop included combinatorial and topological properties of embedded graphs, construction
of graph embeddings in surfaces, symmetries of embedded graphs, regular maps and hy-
permaps, group actions on graphs and surfaces, and convex polytopes.

The Donovaly workshop was followed by similar workshops in Banská Bystrica (1997),
Bratislava (2001), Stará Lesná (2005), Tále (2009) and Smolenice (2013). The GEMS
workshop is now held regularly every four years, organised by the leaders of the Slovak
topological graph theory school: Roman Nedela, Jozef Širáň, and Martin Škoviera. These
workshops have become very well known for their informal atmosphere, allowing time
for discussion of research problems and exchange of information between both individual
researchers and international research teams.

The venue for the most recent GEMS workshop was Smolenice Castle, the very same
place where an event considered the world’s first truly international graph theory meeting
was held fifty years earlier. Together with the the Seventh Czech-Slovak International Sym-
posium on Graph Theory, Combinatorics, Algorithms and Applications (held in Košice a
week before the GEMS 2013 workshop), it constituted one of the highlights of celebrations
to commemorate the 50th anniversary of this unique scientific event.

We believe that readers will find the selected papers from GEMS 2013 both interesting
and inspirational for further research. We also hope that after a similar special issue devoted
to GEMS 2009, this issue will be followed by subsequent collections of papers, based on
lectures delivered at GEMS workshops in 2017 and beyond.

Jozef Širáň and Martin Škoviera
Guest Editors
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Algorithmic enumeration of regular maps∗
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Abstract

Given a finite group G, we describe an algorithm that enumerates the regular maps
having G as rotational subgroup, using the knowledge of its table of ordinary characters
and its subgroup lattice. To show the efficiency of our algorithm, we use it to compute
that, up to isomorphism, there are 796,772 regular maps whose rotational subgroup is the
sporadic simple group of O’Nan and Sims.

Keywords: Regular map, O’Nan sporadic simple group, subgroup lattice, character table.

Math. Subj. Class.: 05E18, 52B10, 20D08

1 Introduction
According to Coxeter (see [9], Chapter 8), systematic enumeration of orientable regular
maps began in the 1920s by fixing a genus g and enumerating all maps embeddable on sur-
faces of genus g. Genus 2 was the first case considered by Errera and finished by Threlfall.
Since then, a lot of work has been done on the subject, culminating in the enumeration
of all orientable maps on surfaces of genus up to 301 by Conder (see [5, 4] and Conder’s
website for the latest results1).

∗Research is supported by Marsden Grant UOA1218 of the Royal Society of New Zealand.
†Boursier FRIA.
‡Corresponding author.
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Another way to enumerate orientable maps is to fix a group G (or a family of groups)
and count how many regular maps have G acting as rotational subgroup of the full auto-
morphism group. In other words, we want to determine, for a given group G, the number
of pairs of elements [R,S] ∈ G2 such that

o(RS) = 2, o(R) = p, o(S) = q and 〈R,S〉 = G (1.1)

where p and q are arbitrary orders of elements in G. The second type of enumeration can
be done using a formula due to Frobenius [12] (see Section 2.2) based on character theory.
Frobenius’ formula has been used by Sah (see [20], Section 2) to obtain some enumeration
results for the first group of Janko and the small Ree groups 2G2(q) with q = 32e+1, among
other things. Conder et al. [6] extracted an enumeration result for all regular hypermaps of
a given type with automorphism group isomorphic to PSL(2, q) and PGL(2, q) from the
latter reference. Their result does not make use of character theory.

Jones and Singerman [16] set up the theoretical framework that links the study of maps
to that of Riemann surfaces, showing among others that every map M is isomorphic to
some canonical mapM on a Riemann surface. In [11], Downs and Jones set up the the-
oretical framework to determine the number of orientable maps of type {3, p} with auto-
morphism group a group PSL(2, q) or PGL(2, q). Jones and Silver showed in [15] that the
Suzuki groups Sz(q) are automorphism groups of regular maps of type {4, 5}. They also
enumerated these maps: they used character theory and techniques developed by Philip
Hall in [13] using Möbius inversion to show that there is at least one pair [R,S] as above
in each Sz(q). Then they used the fact that each element of order 4 is not conjugate to its
inverse in Aut(Sz(q)) to conclude that every such map has to be chiral. For more results
of that kind, we refer to [15, 14]. Mazurov and Timofeenko also used similar techniques
to find those sporadic groups that can be generated by triples of involutions, two of which
commute (see [18, 21]), therefore determining which sporadic groups are full automor-
phism groups of non-orientable regular maps.

Given a pair [R,S] ∈ G2 satisfying (1.1), we can construct a regular mapM of type
{p, q} from it with G being the orientation-preserving subgroup of the full automorphism
group ofM. Frobenius’ formula therefore gives us the number of regular maps that haveG
as such subgroup. The idea of the present paper is to use this formula in a systematic way
to determine for a given group G what are the possible types for a mapM with G being
either the orientation-preserving subgroup of Aut(M) or G being the full automorphism
group ofM in the non-orientable case.

In this paper, we design an algorithm to compute up to isomorphism the number of reg-
ular maps (reflexible or chiral) having a given group G as group of orientation-preserving
automorphisms, based on the character tables of G and its subgroups and on the subgroup
lattice of G. To show the efficiency of our algorithm, we implemented it in MAGMA [2]
and used it on the O’Nan sporadic simple group O′N. The choice of O′N is motivated by
the fact that this is one of the most mysterious sporadic groups. Its smallest permutation
representation is on 122,760 points and its subgroup lattice is relatively small.

The motivation of the paper first came from abstract regular polytopes. A recent paper
by the authors and Mark Mixer [8] classifies all abstract regular polytopes of rank at least
four for the O’Nan group. Hence rank three remains open. For a simple group G, a non-
orientable regular mapM whose full automorphism group is G is also an abstract regular
polyhedron while a chiral map is a chiral polyhedron. Hence, getting to know which types
are possible forG is also interesting in the study of abstract polyhedra whose automorphism



T. Connor and D. Leemans: Algorithmic enumeration of regular maps 213

group is G.
There is most likely a very large number of pairwise non-isomorphic abstract polyhe-

dra having the O’Nan group as automorphism group. For instance, as shown in [17], the
third Conway group, whose order is comparable, has 21, 118 abstract regular polyhedra
up to isomorphism. Here, we derive the possible types {p, q} for maps having O′N as
automorphism group. Our results for the O’Nan group may be summarized as follows.

Theorem 1.1. Let G be the O’Nan sporadic simple group and let

P := {3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 19, 20, 28, 31}.

1. There exist two elements R,S ∈ G such

o(R) = p, o(S) = q, o(RS) = 2, 〈R,S〉 = G

for every p ≤ q ∈ P except for {p, q} = {3, 3}, {3, 4}, {3, 5}, {3, 6}, {3, 7}, {3, 12}
and {4, 4}.

2. There are 796,772 orbits of such pairs {R,S} under the action of Aut(O′N) =
O′N : C2.

3. Orientably-regular but chiral mapsM with Aut(M) = G exist for all pairs {p, q}
of (1) except {3, 15} (that is 128 possible types).

4. Non-orientable regular mapsM with Aut(M) = G exist for all pairs {p, q} of (1)
except {20, q}, {31, q} (with q ∈ P ), {3, 10}, {4, 5} and {4, 6} (that is 95 possible
types).

5. Reflexible mapsM with Aut(M) = Aut(G) exist for all pairs {p, q} of (1) except
{8, q}, {16, q} (with q ∈ P ) (that is 98 possible types).

The paper is organized as follows. In Section 2, we introduce the theoretical back-
ground needed to understand this paper. In Section 3, we describe our algorithm. In Sec-
tion 4, we summarize the results obtained on the O’Nan sporadic simple group and obtain
(1) and (2) of Theorem 1.1. In Section 5, we determine the types of maps that exist for
the O’Nan group, deriving (3), (4) and (5) of Theorem 1.1. In Section 6, we give an algo-
rithm to generate efficiently all maps of type {p, q} for a fixed p. Finally, in Section 7, we
conclude our paper with some remarks.

2 Theoretical background
2.1 Regular maps

In this paper, a map is a 2-cell embedding of a connected graph into a closed surface without
boundary. Such a mapM has a vertex-set V := V (M), an edge-set E := E(M) and a set
of faces F := F (M). We call V ∪E∪F the set of elements ofM. A triple T := {v, e, f}
where v ∈ V , e ∈ E and f ∈ F is called a flag if each element of T is incident with
the other elements of T . The map is called orientable if the underlying surface on which
the graph is embedded is orientable. Otherwise, it is called non-orientable. Faces of M
are simply-connected components of the space obtained by removing the embedded graph
from the surface. An automorphism of a map is a permutation of its elements preserving
the sets V , E and F and incidence between the elements. Automorphisms form a group
under composition called the automorphism group of the map and denoted by Aut(M).
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If there exist a face f and two automorphisms R and S such that R cyclically permutes
the consecutive edges of f and S cyclically permutes the consecutive edges incident to
some vertex v of f , thenM is called a regular map in the sense of Brahana [3]. In this case,
the group Aut(M) acts transitively on the vertices, on the edges and on the faces. All faces
are thus bordered by the same number of edges, say p and all the vertices have same degree,
say q. The pair {p, q} is known as the type ofM. Observe that the topological dual ofM,
denoted by M∗ is obtained by switching vertices and faces (that is V (M∗) := F (M),
E(M∗) := E(M), F (M∗) := V (M)). It is also regular and its type is {q, p}.

Note that R and S may be assumed to be such that RS interchanges v with one of its
neighbors along an edge e on the border of f , interchanging f with the other face containing
e. The three automorphisms R, S and RS then satisfy the following relations.

Rp = Sq = (RS)2 = 1 (2.1)

If a regular mapM also has an automorphism awhich flips the edge e but preserves f , then
we say thatM is reflexible. In that case, Aut(M) has a unique orbit on the set of flags.
Moreover, Aut(M) is generated by the three automorphisms a, b := aR and c := bS that
satisfy the following relations: a2 = b2 = c2 = (ab)p = (ac)2 = (bc)q .

If the map M is orientable, then the elements R = ab and S = bc generate a nor-
mal subgroup of Aut(M) of index 2, consisting of all elements expressible as words of
even length in {a, b, c}. This subgroup is called the rotational subgroup and denoted by
Aut+(M). All elements of Aut+(M) are precisely those preserving the orientation of
the underlying surface while all other elements of Aut(M) reverse the orientation. In the
non-orientable case, each of a, b and c can be expressed as a word in {R,S} and hence,
Aut(M) = 〈R,S〉.

If there is no automorphism a which flips the edge e but preserves f , then we say that
the map M is chiral. Its automorphism group can be generated by the rotations R and
S and M is necessarily orientable. Moreover, chiral maps occur in opposite pairs, each
member of which is obtainable from the other by reflection.

2.2 Frobenius’ formula

The search for maps having G := 〈R,S〉 as an automorphism group is equivalent to the
search for triples of elements x, y, z ∈ G satisfying (1.1) by posing x = (RS)−1 = RS,
y = R and z = S. Let G be a finite group and let

ΠG({p, q}) := {[x, y, z] ∈ G3|o(x) = 2, o(y) = p, o(z) = q, o(xyz) = 1}.

In order to determine the cardinality πG({p, q}) of ΠG({p, q}), we use the following result,
due to Frobenius (see [12], section 4, equation 2).

Theorem 2.1. If Ci, Cj and Ck denote conjugacy classes of elements in a finite group G,
the number of solutions of gigjgk = 1 in G, with each gx ∈ Cx is

λi,j,k =
|Ci| · |Cj | · |Ck|

|G|
∑

χ∈Irr(G)

χ(gi)χ(gj)χ(gk)

χ(1)
(2.2)

where Irr(G) is the set of irreducible characters of G.

This theorem gives us an easy way to compute πG({p, q}).
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Corollary 2.2. Let G be a group. Let C1, . . . , Cr be the conjugacy classes of elements of
G. Let Kn := {i ∈ {1, . . . , r} | o(x) = n for some x ∈ Ci}. Then

πG({p, q}) =
∑
i∈Kp

∑
j∈Kq

∑
k∈K2

|Ci| · |Cj | · |Ck|
|G|

∑
χ∈Irr(G)

χ(gi)χ(gj)χ(gk)

χ(1)
. (2.3)

Proof. Straightforward.

Let ΓG({p, q}) := {[x, y, z] ∈ ΠG({p, q}) | 〈x, y, z〉 = G} and let γG({p, q}) :=
|ΓG({p, q})|. The following lemma is the basis of our algorithm.

Lemma 2.3. For a given group G and two integers p, q > 1, we have

γG({p, q}) = πG({p, q})−
∑
H<G

γH({p, q})

or equivalently

γG({p, q}) = πG({p, q})−
∑
H∈C

γH({p, q})× [G : NG(H)]

where C is a set containing one representative of each conjugacy class of nontrivial proper
subgroups of G.

Proof. Straightforward.

As observed by Hall in [13], page 135, the number nG({p, q}) of pairwise non-iso-
morphic triples satisfying (1.1) is then obtained by dividing γG({p, q}) by the order of the
automorphism group of G. In other words,

nG({p, q}) =
γG({p, q})
|Aut(G)|

. (2.4)

Following Lemma 2.3, we readily see that, in order to compute γG({p, q}), it suffices
to get one representative H of each conjugacy class of subgroups of G, and for each such
H , to compute its normalizer and γH({p, q}).

3 An algorithm to compute γG({p, q})
Let G be a finite group. We detail an algorithm that determines πG({p, q}) and γG({p, q})
for given values of p and q. In view of the developments of Section 2.2, πG({p, q}) can
be computed using only the table of ordinary characters of G. Assuming that the character
table ofG is available (as it is the case for many simple groups in MAGMA [2] for instance)
or easily computable, this is straightforward. Trickier is the computation of γG({p, q}).
Since

γG({p, q}) = πG({p, q})−
∑
H<G

γH({p, q})

we observe that there is a natural recursive way to compute γG({p, q}). It only requires the
knowledge of the subgroup lattice of G.
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Input : G a permutation group
p, q two positive integers

Output : γG := γG({p, q})

Compute the subgroup lattice Λ(G) of G.
The subgroup lattice Λ(G) can be seen as an ordered list
with least element G and greatest element the trivial
group. If a subgroup of class i contains a subgroup of
class j, then i < j.

For each conjugacy class C of subgroups of G,
Take a representative H of C.
If the order of H is divisible by pq

GCD(p,q)

Compute δ : H → H̃ an isomorphism that reduces
the permutation degree of H.

Compute the subgroup lattice Λ(H̃) of H̃ and
compute πH̃({p, q}) using equation (2.3).

Now, read through Λ(G) starting from the trivial subgroup.
At each step i, let H be a subgroup of the ith conjugacy
class that is considered and compute γH̃({p, q}).

This computation requires the knowledge of ΛH̃ and
γĨ({p, q}) for all I < H. Note however that it is
guaranteed that γĨ({p, q}) has been already computed at
this stage since the lattice Λ(G) is endowed
with a suitable ordering as mentioned earlier.

When all steps above have been done, γG has been computed.
Return γG

Figure 1: An algorithm to compute γG({p, q})

The algorithm given in Figure 1 makes use of the obvious recursive way of computing
γG({p, q}) but it is not a recursive algorithm. Indeed, it carefully avoids multiple com-
putations, for instance by computing only once the subgroup lattice and character table of
one representative of each conjugacy class of subgroups of G. It also tries to reduce the
permutation degree of each subgroup before dealing with it which speeds up computations
of the subgroup lattice and the character table of the subgroups.

Indeed, our algorithm computes (or at least yields) the Möbius function ofG; this could
be useful in many other contexts, e.g. in enumerating quotients isomorphic to G in other
finitely generated groups.
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4 An application: the O’Nan sporadic simple group
In order to illustrate the efficiency of our algorithm, we implemented it in MAGMA [2]
and we ran it on O′N, the sporadic simple group of O’Nan, of order 460, 815, 505, 920
and smallest permutation representation degree 122, 760. Observe that |Out(O′N)| = 2.
In MAGMA, the function SubgroupLattice computes the subgroup lattice of a given
finite group. In the case of O′N however, SubgroupLattice is not able to compute this
lattice2. Fortunately, an algorithm to compute subgroup lattices of groups like O′N is made
available in [7].

We computed the numbers πO′N({p, q}), γO′N{p, q}) and nO′N({p, q}) for all possible
values of p and q. Recall that, by Formula (2.4), nO′N({p, q}) is obtained by dividing
γO′N({p, q}) by the order of Aut(O′N) which is 2 · |O′N|. There are 17 distinct orders
of elements in O′N. One of them is 2 and if p or q is 2, then γG({p, q}) is null as O′N
is a simple group. Hence, in total, there are 16*15/2 + 16 = 136 possible unordered pairs
{p, q}. Out of these, five give obviously 0, namely those pairs that give groups which are
solvable or isomorphic to A5, that is {3, 3}, {3, 4}, {3, 5}, {3, 6} and {4, 4}. Therefore,
there remain 131 of them to compute. We give in Table 1 the values nG({p, q}) for O′N.
The 131 cases have been spread on several processors. Each case took on average 5 days
to finish. Point (1) of Theorem 1.1 is then obtained by collecting the nonzero entries of
Table 1. The sum of all the numbers appearing in that table gives point (2) of Theorem 1.1.

Note that Woldar had already shown in [22] that O′N is not a Hurwitz group, mean-
ing that γ{3,7} = 0. He also showed that γ{3,11} 6= 0. Moreover, in [10], Darafsheh,
Ashrafi and Moghani showed that γ{p,q} 6= 0 for the following twelve pairs: {3, 19},
{3, 31}, {5, 7}, {5, 11}, {5, 19}, {5, 31}, {7, 11}, {7, 19}, {7, 31}, {11, 19}, {11, 31}
and {19, 31}. Very recently, Al-Khadi [1] showed that γ{3,12} = 0 and γ{3,q} 6= 0 for
q ∈ {8, 10, 12, 14, 16, 20, 28}.

5 Regular maps for O′N

By Table 1, we know exactly how many pairs of generating elements {R,S} satisfy-
ing (2.1) exist up to isomorphism for any given pair {o(R), o(S)}. For instance, there
are 7 such pairs {R,S} with {o(R), o(S)} = {3, 10}.

If there is no automorphism of G := 〈R,S〉 that inverts R and S, G is the full auto-
morphism group of an orientably-regular but chiral map of type {p, q} (and its dual of type
{q, p}). The pair {R,S} is then called chiral.

On the other hand, if there exists an automorphism θ ∈ Aut(G) such that θ([R,S]) =
[R−1, S−1], then θ is an involution and the pair {R,S} is called reflexible. In this case,
the group generated by R, S and θ is the full automorphism group of a reflexible mapM
of type {p, q}, with G ∼= Aut+(M), the orientation-preserving subgroup (of index 2) and
Aut(M) ∼= G : C2 where ‘:’ denotes a semi-direct product. This semi-direct product is
sometimes a direct product, namely when the automorphism θ is an inner automorphism of
G. In that case, G is also the full automorphism group of a non-orientable map N of type
{p, q} (and its dual of type {q, p}). Moreover,M is then an orientable double cover of N ,
and Aut(M) ∼= G× C2.

The following lemma gives point (3) of Theorem 1.1.

2at least up to version 2.19-3 of MAGMA
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Lemma 5.1. Let G be the O’Nan sporadic simple group. For every pair {p, q} of The-
orem 1.1.(1) except {3, 15}, there exists at least one chiral map M of type {p, q} with
Aut(M) ∼= G.

Proof. A non-exhaustive computer search with MAGMA produced chiral maps of all pos-
sible types except {3, 15} in a few days. By Table 1, there are 6 non-isomorphic pairs
of type {3, 15}. Using MAGMA, we produced the 6 non-isomorphic pairs {R,S} and
checked that for each of them, there exists θ ∈ Aut(G) that inverts R and S. For four of
them, θ ∈ Inn(G) and for two of them, θ is an outer automorphism.

Since O′N is simple, a non-chiral regular mapM with Aut(M) = O′N is necessarily
non-orientable.

Lemma 5.2. Let G be the O’Nan sporadic simple group. Non-orientable regular maps
of type {p, q} with G as full automorphism group do not exist for pairs {p, q} with p or q
equal to 20 or 31.

Proof. It suffices to observe that all elements of order 20 and 31 are not conjugate to their
inverse. Hence, an automorphism that would reverse R and S in this case is necessarily an
outer automorphism.

The above lemma combined with those values γ{p,q} equal to 0 gives at most 98 pos-
sible types for non-orientable maps having O′N as full automorphism group. A non-
exhaustive brute force search gave in a few days examples of such maps for 92 types.
For the remaining 6 types, we did exhaustive searches and here is a summary of what we
found.

• {3, 10}: an exhaustive search found 6 chiral maps and 1 pair {R,S} with θ an outer
automorphism;

• {4, 5}: an exhaustive search found 16 chiral maps and 2 pairs {R,S} with θ an outer
automorphism;

• {4, 6}: an exhaustive search found 42 chiral maps and 1 pair {R,S} with θ an outer
automorphism;

• {5, 5}: an exhaustive search found 22 chiral maps, 2 non-orientable maps and 2 pairs
{R,S} with θ an outer automorphism;

• {5, 7} and {7, 7}: we found at least one non-orientable map for each type.

The above results are summarized in point (4) of Theorem 1.1.

Lemma 5.3. Let G be the O’Nan sporadic simple group. There is no reflexible mapM of
type {p, q} such that Aut(M) = Aut(G) for any pair {p, q} with p or q equal to 8 or 16.

Proof. All elements of order 8 and 16 are conjugate to their inverse. Moreover, there is no
outer automorphism mapping such an element to its inverse.

The above lemma combined with those values γ{p,q} equal to 0 give at most 98 possible
types for reflexible mapsM with Aut(M) ∼= Aut(G). A brute force search gave us 95
types for which such pairs exist in a couple of days. We dealt separately with the three
types that the search did not find. Below is a summary of what we found.
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• {4, 5}: an exhaustive search found 16 chiral maps and 2 pairs [R,S] with θ an outer
automorphism;

• {5, 5}: an exhaustive search found 22 chiral maps, 2 non-orientable regular maps
and 2 pairs [R,S] with θ an outer automorphism;

• {6, 12}: at least one pairs [R,S] with θ an outer automorphism was found.

The above results are summarized in point (5) of Theorem 1.1.

6 Generating all maps for the O’Nan group
The O’Nan group has a unique conjugacy class of involutions and the centralizer of an
involution is a group 4 · L3(4) : 2 of order 161, 280. It is the largest centralizer of an
element of order at least 2. This suggests an algorithm to construct all of the 796,772 pairs
(R,S) for the O’Nan group to study the prevalence of chirality over regularity for this
group.

To generate all pairs {R,S} with S an element of order p and R an element of order
≥ p, we construct a permutation representation of O′N on its involutions. This is done by
constructing the coset space of O′N on CO′N(ρ) for an arbitrary involution ρ ∈ O′N.

Let P be a sequence. We will use P to store pairs of elements of O′N. Let G be
the permutation representation on the cosets of CO′N(ρ) and let φ : O′N → G be an
isomorphism between O′N in its natural permutation representation and G. Let S be a
sequence containing one representative of each conjugacy class of elements of order p in
O′N. For s ∈ S, letO be the set of orbits of φ(s). For each o ∈ O, let x be a representative
of o and let φ−1(Gx) be the centralizer of an involution in O′N that correspond to the fixed
point x. Let τ be the involution centralized by φ−1(Gx). Let R := τ ∗ S−1. Then {R,S}
is a pair with RS = τ an involution. If 〈R,S〉 = O′N and there is no pair {R′, S′} in
P isomorphic to {R,S}, append {R,S} to P . When a new pair {R,S} is found, we can
determine whether it gives an orientably-regular but chiral map or a non-orientable map
whose full automorphism group is O′N. In the process, we use the results of Section 5
to shorten the computations: we keep track of how many pairs of each type have been
generated so that, once we get the total number for a given type, we do not have to consider
that type anymore.

Each chiral map (respectively non-orientable map) whose full automorphism group is
O′N is also an abstract chiral polyhedron (respectively abstract regular polyhedron). There-
fore, the algorithm described above permits in theory to construct all chiral and regular
polyhedra for the O’Nan group.

7 Concluding remarks
In practice, to generate all the 284 pairs of type {3, q}, it took less than 4 hours on a
computer with a processor running at 2.9Ghz. We needed 11 days to generate all 5176
pairs of type {4, q} and 28 days for the 7738 pairs of type {5, q}. Experiments with other
types gave an average time of more than five minutes per map.

Out of the 284 pairs of type {3, q}, 230 give a chiral map and 39 a non-orientable
map with full automorphism group O′N. Out of the 5176 pairs of type {4, q}, 4906 give
a chiral map and 114 a non-orientable map with full automorphism group O′N. Out of
the 7738 pairs of type {5, q}, 7340 give a chiral map and 188 a non-orientable map with
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full automorphism group O′N. The tendency of maps of chiral type being more prevalent
seems confirmed by the partial results we obtained on maps of type {p, q} with q ≥ p ≥ 6.

For all these maps, answering questions like “what are the exponents3 ofM, is it self-
dual, etc.” is possible.
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3See [19] for a definition.
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[5] M. Conder and P. Dobcsányi. Determination of all regular maps of small genus. J. Combin.
Theory Ser. B 81 (2001), 224–242.
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Abstract

By a graph we mean a finite connected multigraph without bridges. The genus of a
graph is the dimension of its homology group. Two graphs are isospectral is they share the
same Laplacian spectrum. We prove that two genus two graphs are isospectral if and only
if they are isomorphic. Also, we present two isospectral bridgeless genus three graphs that
are not isomorphic.

The paper is motivated by the following open problem posed by Peter Buser: are
isospectral Riemann surfaces of genus two isometric?

Keywords: Graph, Laplacian spectrum, isospectral graphs, Laplacian polynomial, spanning tree.

Math. Subj. Class.: 05C50, 15A18, 58J53

1 Introduction
Over the last decade, a few discrete versions of the theory of Riemann surfaces were cre-
ated ([1, 18, 2, 8, 11]). In these theories, the role of Riemann surfaces is played by graphs.
The genus of a graph is the dimension of its homology group. Under these assumptions,
the theory of Jacobi manifolds is constructed and analogues of the Riemann-Hurwitz and
Riemann-Roch theorems were proved. Counterparts of many other theorems from the clas-
sical theory of Riemann surfaces were derived in the discrete case ([9, 10, 16]).

Since the classical paper by Mark Kac [14], the question of what geometric properties
of a manifold are determined by its Laplace operator has inspired many intriguing results.
One class of manifolds whose spectral theory has been studied with many beautiful results
is the class of compact Riemann surfaces with the canonical constant curvature metric.
Wolpert [19] showed that a generic Riemann surface is determined by its Laplace spectrum.
Nevertheless, pairs of isospectral non-isometric Riemann surfaces in every genus ≥ 4 are
known. See papers by Buser [7], Brooks and Tse [5], and others. There are also examples of

E-mail addresses: smedn@mail.ru (Alexander Mednykh), ilyamednykh@mail.ru (Ilya Mednykh)

cb This work is licensed under http://creativecommons.org/licenses/by/3.0/



224 Ars Math. Contemp. 10 (2016) 223–235

isospectral non-isometric surfaces of genus two and three with variable curvature ([5, 3]).
At the same time, isospectral genus one Riemann surfaces (flat tori) are isometric [4].
Similar results are also known for graphs ([12, 13]).

Peter Buser [6] posed an interesting problem: are two isospectral Riemann surfaces of
genus two isometric? Up to our knowledge the problem is still open but, quite likely, can
be solved positively. The aim of this paper is to give a positive solution of an analogous
problem for bridgeless graphs of genus two (Theorem 3.1). Also, we show that there are
two isospectral bridgeless graphs of genus three that are not isomorphic (Figure 5). Because
of the intrinsic link between Riemann surfaces and graphs we hope that our result will be
helpful to make a progress in solution of the Buser problem.

2 Preliminary results
2.1 Laplacian matrix and Laplacian spectrum

The Laplacian matrix of a graph and its eigenvalues can be used in several areas of math-
ematical research and have a physical interpretation in various physical and chemical the-
ories. The related adjacency matrix of a graph and its eigenvalues were much more inves-
tigated in the past than the Laplacian matrix. At the same time, the Laplacian spectrum is
much more natural and more important than the adjacency matrix spectrum because of it
numerous application in mathematical physics, chemistry and financial mathematics.

Graphs in this paper are finite and undirected, but they may have loops and multiple
edges. Denote by V (G) and E(G), respectively, the number of vertices and edges of a
graph G. Following [2] we denote by g(G) = E(G) − V (G) + 1 the genus of G. This
is the dimension of the first homology group of G. In graph theory, the term ”genus” is
traditionally used for a different concept, namely, the smallest genus of any surface in
which the graph can be embedded, and the integer g = g(G) is called the cyclomatic or
the Betti number of G. We call g the genus of G in order to highlight the analogy with
Riemann surfaces.

A bridge is an edge of a graph G whose deletion increases the number of connected
components. Equivalently, an edge is a bridge if and only if it is not contained in any cycle.
A graph is said to be bridgeless if it contains no bridges.

Let G be a graph. Denote by V(G) and E(G) the set of vertices and edges of a graph G
respectively. For each u, v ∈ V(G), we set auv to be equal to the number of edges between
u and v. The matrix A = A(G) = [auv]u,v∈V(G), is called the adjacency matrix of the
graph G.

Let d(v) denote the valency of v ∈ V(G), d(v) =
∑

u auv, and let D = D(G) be
the diagonal matrix indexed by V(G) and with dvv = d(v). The matrix L = L(G) =
D(G) − A(G) is called the Laplacian matrix of G. It should be noted that loops have no
influence on L(G). Throughout the paper we shall denote by µ(G, x) the characteristic
polynomial of L(G). For brevity, we will call µ(G, x) the Laplacian polynomial of G. Its
roots will be called the Laplacian eigenvalues (or sometimes just eigenvalues) of G. They
will be denoted by µ1(G) ≤ µ2(G) ≤ . . . ≤ µn(G), (n = V (G)), always enumerated in
increasing order and repeated according to their multiplicity. Recall [17] that for connected
graph G we always have µ1(G) = 0 and µ2(G) > 0.

Two graphsG andH are called Laplacian isospectral (or isospectral) if their Laplacian
polynomials coincide: µ(G, x) = µ(H,x).

The matrix L(G) is sometimes called the Kirchhoff matrix of G due to its role in the
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well-known Matrix-Tree Theorem which is usually attributed to Kirchhoff. A generaliza-
tion of the Matrix-Tree-Theorem was obtained in 1967 by A. K. Kel’mans who gave a
combinatorial interpretation to all the coefficients of µ(X,x) in terms of the numbers of
certain subforests of a graph X; see [15] and [17] for references and history of question.
We present the result by Kel’mans in the following form.

Theorem 2.1. [15] If µ(X,x) = xn−c1xn−1+ . . .+(−1)icix
n−i+ . . .+(−1)n−1cn−1x

then
ci =

∑
S⊂V, |S|=n−i

T (XS),

where T (H) is the number of spanning trees of H, and XS is obtained from X by identify-
ing all points of S to a single point.

2.2 Theta graphs

Let u and v are two (not necessary distinct) vertices. Denote by Θ(k, l,m) the graph con-
sisting of three internally disjoint paths joining u to v with lengths k, l,m ≥ 0 (see Fig.
1). We set σ1 = σ1(k, l,m) = k + l + m,σ2 = σ2(k, l,m) = k l + l m + km, and
σ3 = σ3(k, l,m) = k lm. It is easy to see that two graphs Θ(k, l,m) and Θ(k′, l′,m′) are
isomorphic if and only if the unordered triples {k, l,m} and {k′, l′,m′} coincide; equiva-
lently, σ1 = σ′1, σ2 = σ′2 and σ3 = σ′3, where σ′1 = σ1(k′, l′,m′), σ′2 = σ2(k′, l′,m′), and
σ′3 = σ1(k′, l′,m′).

Figure 1: Theta graph Θ(k, l,m).

We make the following useful observations:

(i) If σ2 > 0, then Θ(k, l,m) is a graph of genus two. In this case at least two of numbers
{k, l,m} are positive.

(ii) If σ1 > 0, σ2 = 0, then Θ(k, l,m) is a graph of genus one. Then exactly one of
numbers {k, l,m} is positive and the other two are zero. Moreover, Θ(k, l,m) =
Ck+l+m is a cyclic graph with k + l +m edges.
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(iii) If σ1 = 0, then k = l = m = 0 and Θ(k, l,m) is a graph of genus zero. More
precisely, Θ(k, l,m) = Θ(0, 0, 0) consists of one vertex.

Lemma 2.2. Let G be an arbitrary bridgeless graph of genus two. Then G is isomorphic
to Θ(k, l,m) for some k, l,m with σ2 = k l + l m+ km > 0.

Proof. Since the graph G is bridgeless it has no vertices of valency one. Denote by H the
graph obtained from G by deleting of all vertices of valency two. Suppose that H has V
vertices of valences n1, n2, . . . , nV and E edges. Since the valency of each vertex of H is
at least three we have ni ≥ 3, i = 1, 2, . . . , V. Note that deleting of a vertex of valency two
decreases the number of vertices and the number of edges of a graph by one. So, it does
not affect the genus and H is still a graph of genus two. Thus g(H) = 1− V +E = 2 and
E = V + 1. Counting the sum of valences of H through vertices and through edges we
obtain

n1 + n2 + . . .+ nV = 2E.

Hence
3V ≤ n1 + n2 + . . .+ nV = 2E = 2V + 2,

or V ≤ 2.

If V = 1 then n1 = 4 and H is the figure eight graph consisting of one vertex and
two loops. Putting back the vertices of valency two on the graph H we obtain the graph G
isomorphic to Θ(k, l, 0) for some positive k and l. In particular, σ2 = k l > 0.

If V = 2 then n1 = n2 = 3 and H is the theta graph consisting of two vertices and
three edges. The graphG is obtained fromH by adding the vertices of valency two. Hence,
G is isomorphic to Θ(k, l,m) for some positive k, l,m.

3 Main results
3.1 The main theorem and lemmas

The main result of the paper is the following theorem.

Theorem 3.1. Two genus two bridgeless graphs are Laplacian isospectral if and only if
they are isomorphic.

The proof of the theorem is based on the following three lemmas.

Lemma 3.2. Let G = Θ(k, l,m) be a theta graph and let µ(G, x) = xn− c1xn−1 + . . .+
(−1)n−1cn−1x be its Laplacian polynomial. Then n = k+ l+m− 1, c1 = 2(k+ l+m)
and cn−1 = (k l + l m+ km)(k + l +m− 1).

Proof. The number of vertices, edges and spanning trees of graph G are given by

V (G) = k + l +m− 1, E(G) = k + l +m, T (G) = k l + l m+ km.

Then by ([15], formulas 2.15 and 2.16) we have n = V (G) = k + l + m − 1, c1 =
2E(G) = 2(k+ l+m) and cn−1 = V (G) ·T (G) = (k l+ l m+km)(k+ l+m−1).
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Lemma 3.3. Let G = Θ(k, l,m) be a theta graph and let µ(G, x) = xn− c1xn−1 + . . .+
(−1)n−1cn−1x be its Laplacian polynomial. Then

cn−2 = A(σ1, σ2) +B(σ1, σ2)σ3

where A(s, t) = (4t−3st−2s2t+ s3t+ 4t2− st2)/12, B(s, t) = (3−4s+ s2−3t)/12,
σ1 = k + l +m, σ2 = k l + l m+ km, and σ3 = k lm.

Proof. By Theorem 2.1
cn−2 =

∑
S⊂V, |S|=2

T (XS), (3.1)

where XS runs through all graphs obtained from G = Θ(k, l,m) by gluing two vertices.
There are exactly four types of such graphs G1, G2, G3, and G4 shown in the Fig. 2. We
will enumerate the spanning trees of each type separately.

Type G1. Glue two 3-valent vertices of graph G. As a result we obtain the graph G1

shown on Fig. 2. The number of spanning trees of this graph is T1 = T (Ck) · T (Cl) ·
T (Cm) = k lm.

Type G2. Glue one 3-valent and one 2-valent vertices of graph G. The graph of type
G2 shown in Fig. 2 is obtained by gluing the upper 3-valent of graph G and a 2-valent
vertex on the path of G labelled by k. For given i, 1 ≤ i ≤ k − 1 the number of spanning
trees for a graph of type G2 is equal to T (Ci) · T (Θ(k− i, l, m)) = iσ2(k− i, l, m). We

set F (k, l, m) =
k−1∑
i=1

iσ2(k− i, l, m). Then the total number of spanning trees for graphs

of type G2 is
T2 = 2(F (k, l, m) + F (l, m, k) + F (m, k, l)).

The multiple 2 is needed since the graph Θ(k, l,m) has two 3-valent vertices.
Type G3. Glue two 2-valent vertices of graph G lying on different paths. We choose

one of them on the path labelled by k and the second on the path labbeled by l. Fix i, 1 ≤
i ≤ k − 1 and j, 1 ≤ j ≤ l − 1 and consider a graph of type G3 shown in Fig. 2. This
is a graph of genus three. To create a spanning tree on this graph we have to delete three
edges. There are two different ways to do this. Firstly, we delete edges on three of the
four paths labeled by i, j, k− i and l− j. This be done in σ3(i, j, k− i, l− j) ways, where
σ3(x, y, z, t) = xyz+xyt+xzt+yzt. Secondly, if we delete an edge from the path labeled
by m (in m possible ways) then we have to remove one edge from the pair of paths i, j and
one edge from the pair k− i, k− j. Then we have m((i+ j)(k− i+ l− j)) possibilities to
obtain a tree. As the result graph under consideration has G3(i, j, k, l, m) = σ3(i, j, k −
i, l − j) +m((i+ j)(k − i+ l − j) spanning trees. We set

J(k, l, m) =

k−1∑
i=1

l−1∑
j=1

G3(i, j, k, l, m).

Then the total number of spanning trees for graphs of type G3 is

T3 = J(k, l, m) + J(l, m, k) + J(m, k, l).

Type G4. Glue two 2-valent vertices lying on the same path of graph G. Choose the
path labelled by k. Let us fix i and j such that 1 ≤ i < j ≤ k − 1. Then the number
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of spanning trees for a given graph of type G4 is T (Cj−i)T (Θ(k + i − j, l,m)) = (j −
i)σ2(k + i− j, l,m). We set

H(k, l, m) =

k−2∑
i=1

k−1∑
j=i+1

(j − i)σ2(k + i− j, l,m).

As a result, the number of spanning trees of the given type is

T4 = H(k, l, m) +H(l, m, k) +H(m, k, l).

Putting the obtained formulas in Mathematica 8 by (3.1) we get

cn−2 = T1 + T2 + T3 + T4 = A(σ1, σ2) +B(σ1, σ2)σ3.

Figure 2: The graphs obtained from Θ(k, l,m) by gluing two vertices

Lemma 3.4. Let G = Θ(k, l,m) be a theta graph and let

µ(G, x) = xn − c1xn−1 + . . .+ (−1)n−1cn−1x

be its Laplacian polynomial. Then

cn−3 = C(σ1, σ2) +D(σ1, σ2)σ3 + E(σ1, σ2)σ2
3 ,

where

C(s, t) = (−34t+ 21st+ 25s2t− 10s3t− 3s4t+ s5t− 50t2 + 10st2

+ 12s2t2 − 2s3t2 − 16t3 + st3)/360,

D(s, t) = (−45 + 50s+ 5s2 − 12s3 + 2s4 + 24st− 9s2t+ 15t2)/360,

E(s, t) = −3(−8 + 3s)/360.
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Proof. By Theorem 2.1
cn−3 =

∑
S⊂V, |S|=3

T (XS), (3.2)

where XS runs through all graphs obtained from G = Θ(k, l,m) by gluing three vertices.
There are six types of such graphs W1,W2,W3,W4,W5, and W6 shown on the Fig. 3. We
examine the spanning trees of each type separately.

TypeW1. To create a graph of typeW1 we identify two 3-valent vertices of graphG and
one 2-valent vertex ofG (say on the path labelled by k). The obtained graph is shown in the

Fig. 3, has i(k − i)l m spanning trees. Consider the sum Fw(k, l, m) =
k−1∑
i=1

i(k − i)l m.

Find the total number of spanning trees for graphs of type W1 by the formula

Tw
1 = Fw(k, l, m) + Fw(l, m, k) + Fw(m, k, l).

Type W2. Glue one 3-valent vertices of graph G and two 2-valent vertices lying on
different paths of G (say on the paths labelled by k an l), obtaining a graph in Fig. 3. For
given i and j, 1 ≤ i ≤ k − 1, 1 ≤ j ≤ l − 1, the number of spanning trees for graph of

type W2 is ijσ2(k − i, l − j,m). We set Hw(k, l, m) =
k−1∑
i=1

l−1∑
j=1

ijσ2(k − i, l − j,m).

Taking into account that graph Θ(k, l,m) has two 3-valent vertices we obtain the following
formula the number of spanning trees for graphs of type W2 :

Tw
2 = 2(Hw(k, l, m) +Hw(l, m, k) +Hw(m, k, l)).

Type W3. Glue one 3-valent vertices and two 2-valent vertices lying on the same path
of G. For fixed i and j, 1 ≤ i < j ≤ k− 1, we have i(j − i)σ2(k− j, l,m) spanning trees
for graph of type W3. Summing over i and j we get

Jw(k, l, m) =

k−2∑
i=1

k−1∑
j=i+1

i(j − i)σ2(k − j, l,m).

Finally, the number of spanning trees for graphs of type W3 is given by

Tw
3 = 2(Jw(k, l, m) + Jw(l, m, k) + Jw(m, k, l)).

Type W4. Glue three 2-valent vertices all lying on different paths of G. Fix i, j and
s, 1 ≤ i ≤ k − 1, 1 ≤ j ≤ l − 1, 1 ≤ s ≤ m− 1. Then the number of spanning trees for
a given graph of type W4 is equal to σ2(i, j, s)σ2(k − i, l − j,m− s). Summing over i, j
and s we obtain the total number of spanning trees for graphs of type W4 :

Tw
4 =

k−1∑
i=1

l−1∑
j=1

m−1∑
s=1

σ2(i, j, s)σ2(k − i, l − j,m− s).

Type W5. Glue two 2-valent vertices lying on a path and one 2-valent vertex lying on
the other path ofG. Denote byG3(i, j, k, l,m) the graph of typeG3 shown in Fig. 2. From
the proof of previous Lemma we have T (G3(i, j, k, l,m)) = σ3(i, j, k− i, l− j) +m((i+
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j)(k − i+ l− j)). Fix i, j and s, 1 ≤ i < j ≤ k − 1, 1 ≤ s ≤ l− 1. Then the number of
spanning trees for a graph of type W5 in Fig. 3 is equal to

T (Cj−i)T (G3(i, s, k + i− j, l,m)) = (j − i)T (G3(i, s, k + i− j, l,m)).

Consider the sum

Kw(k, l, m) =

k−2∑
i=1

k−1∑
j=i+1

l−1∑
s=1

(j − i)T (G3(i, s, k + i− j, l,m)).

Then the number of spanning trees for graphs of type W3 is given by

Tw
5 = Kw(k, l, m) +Kw(l, m, k) +Kw(m, k, l)

+Kw(k, m, l) +Kw(l, k, m) +Kw(m, l, k). (3.3)

Type W6. Glue three 2-valent vertices on the same path of G. Fixed i, j and s such that
1 ≤ s < i < j ≤ k − 1. Then the number of spanning trees for a given graph of type W6

is equal to

T (Ci−s)T (Cj−i)T (Θ(k − j + s, l,m)) = (i− s)(j − i)σ2(k − j + s, l,m).

Summing over i, j and s we obtain

Lw(k, l,m) =
∑

1≤s<i<j≤k−1

(i− s)(j − i)σ2(k − j + s, l,m).

The total number of spanning trees in this case

Tw
6 = Lw(k, l, m) + Lw(l, m, k) + Lw(m, k, l).

By (3.4) and straightforward calculation in Mathematica.8 we obtain

cn−3 = Tw
1 + Tw

2 + Tw
3 + Tw

4 + Tw
5 + Tw

6

= C(σ1, σ2) +D(σ1, σ2)σ3 + E(σ1, σ2)σ2
3 .

3.2 Proof of the main theorem

Proof. LetG andG′ be two bridgeless graphs of genus two. Then by Lemma 1 for suitable
{k, l,m} and {k′, l′,m′} we have

G = Θ(k, l,m) and G′ = Θ(k′, l′,m′).

Denote by µ(G, x) = xn − c1xn−1 + . . .+ (−1)n−1cn−1x and

µ(G′, x) = xn
′
− c1xn

′−1 + . . .+ (−1)n
′−1cn′−1x

their Laplacian polynomials.
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Figure 3: The graphs obtained from Θ(k, l,m) by gluing three vertices

Suppose that the graphs G and G′ are isospectral. Then n′ = n, c′1 = c1, . . . , c
′
n−1 =

cn−1. From the second and the last equalities by Lemma 2 we obtain

2σ1 = 2σ′1 and σ2(σ1 − 1) = σ′2(σ′1 − 1). (3.4)

Since both graphs are of genus 2 we have σ1 > 1 and σ′1 > 1. Then the system of equations
(3.4) gives σ1 = σ′1 and σ2 = σ′2. The theorem will be proved if we show that σ3 = σ′3.
We will do this in two steps. First of all, we note that by [13] isospectral graphs with
n ≤ 5 vertices are isomorphic. So, we can assume that n = k + l + m − 1 > 5, that is,
σ1 = k + l +m > 6.

By Lemma 3,
cn−2 = A(σ1, σ2) +B(σ1, σ2)σ3, (3.5)

whereA(s, t) = (4t−3st−2s2t+s3t+4t2−st2)/12 andB(s, t) = (3−4s+s2−3t)/12.
Step 1. B(σ1, σ2) 6= 0. Since c′n−2 = cn−2, σ1 = σ′1 and σ2 = σ′2 from (3.5) we

obtain
B(σ1, σ2)σ′3 = B(σ1, σ2)σ3. (3.6)

Hence σ3 = σ′3 and the theorem is proved.
Step 2. B(σ1, σ2) = 0. Then by Lemma 3

cn−3 = C(σ1, σ2) +D(σ1, σ2)σ3 + E(σ1, σ2)σ2
3 , (3.7)

where

C(s, t) = (−34t+ 21st+ 25s2t− 10s3t− 3s4t+ s5t− 50t2 + 10st2

+ 12s2t2 − 2s3t2 − 16t3 + st3)/360,

D(s, t) = (−45 + 50s+ 5s2 − 12s3 + 2s4 + 24st− 9s2t+ 15t2)/360,

E(s, t) = −3(−8 + 3s)/360.
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Since c′n−3 = cn−3, σ1 = σ′1 and σ2 = σ′2 from (3.7) we obtain

D(σ1, σ2)σ′3 + E(σ1, σ2)σ′3
2

= D(σ1, σ2)σ3 + E(σ1, σ2)σ2
3 . (3.8)

We note that E(σ1, σ2) 6= 0 for any integer σ1. Then the above equation has two
solutions with respect to σ′3. The first solution is σ′3 = σ3 and the second one is

σ′3 = −D(σ1, σ2)

E(σ1, σ2)
− σ3. (3.9)

In the first case the theorem is proved. So we assume that σ′3 is given by equation (3.9).
Recall thatB(σ1, σ2) = 0. Then σ2 = (3−4σ1+σ2

1)/3 and equation (3.9) can be rewritten
in the form

σ′3 =
1

729
(2(425− 357σ1 − 144σ2

1 + 27σ3
1)− 490

−8 + 3σ1
)− σ3. (3.10)

Since σ3 and σ′3 are integers the number

N = 2(425− 357σ1 − 144σ2
1 + 27σ3

1)− 490

−8 + 3σ1

is an integer divisible by 729. Moreover, −8 + 3σ1 is a divisor of 490 and the number
σ2 = (3 − 4σ1 + σ2

1)/3 is a positive integer. There are a finite number possibilities of a
positive integer σ1 to satisfy these three conditions, namely, σ1 ∈ {6, 19, 166}. The case
σ1 = 6 can be excluded since we suggested that σ1 > 6. Another way to exclude σ1 = 6
is to check that in this case σ′3 = −3− σ3 is negative.

Consider the remaining cases σ1 = 19 and σ1 = 166. By (3.10) in these cases we have
σ′3 = 348−σ3 and σ′3 = 327789−σ3 respectively. The respective values of σ2 are 96 and
8965.

Let σ1 = 19.We have the following system of equations to find positive integer param-
eters k, l,m, σ3 of the graph G = Θ(k, l,m) :

k + l +m = 19, k l + l m+mk = 96, k l m = σ3.

This system has only one solution {k, l,m} = {3, 4, 12}, σ3 = 144.
Now we are able to find parameters k′, l′,m′, σ′3 of the graph G′ = Θ(k′, l′,m′). First

of all, σ′3 = 348− σ3 = 204. Then we have

k′ + l′ +m′ = 19, k′l′ + l′m′ +m′k = 96, k′l′m′ = 204.

The latter system has no integer solutions. So the case σ1 = 19 is impossible.
Let σ1 = 166. We have the following system k, l,m, σ3.

k + l +m = 166, k l + l m+mk = 8965, k l m = σ3.

This system has only one solution {k, l,m} = {39, 59, 68}, σ3 = 39 · 59 · 68.
Find parameters k′, l′,m′, σ′3 of the graph G′ = Θ(k′, l′,m′). Now, σ′3 = 327789 −

σ3 = 171321. Then we have

k′ + l′ +m′ = 166, k′l′ + l′m′ +m′k′ = 8965, k′l′m′ = 171321.

The system has no integer solutions. The case σ1 = 166 is also impossible.
This completes the proof.
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4 Final remarks
1. The main Theorem 3.1 is not valid for genus two graphs with bridges. Indeed, the

following two graphs (see Fig. 4) constructed in [12] are isospectral. They share the
Laplacian polynomial

−72x+ 192x2 − 176x3 + 73x4 − 14x5 + x6.

The first of these graphs is bridgeless, while the second one has a bridge.

Figure 4: Isospectral graphs of genus two. The second graph has a bridge.

2. There are isospectral bridgeless graphs of genus three which are not isomorphic (see
Fig. 5). These two graphs were constructed in [13].They share the Laplacian poly-
nomial

−384x+ 1520x2 − 2288x3 + 1715x4 − 708x5 + 164x6 − 20x7 + x8.

Figure 5: Isospectral graphs of genus three.

3. Any bridgeless graph of genus one is isomorphic to a cyclic graph Cn for some n ≥
1. If two cyclic graphs Cm and Cn are isospectral then their Laplace polynomials are
of the same degree m = n. Hence, the graphs are isomorphic.
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At the same time, there are isospectral unicycle graphs [20]. For example, the two
genus one graphs shown on Fig. 6 share the Laplacian polynomial

28x− 146x2 + 250x3 − 194x4 + 75x5 − 14x6 + x7.

Figure 6: Isospectral graphs of genus one.

4. One can hear the genus of a graph. That is, the genus of a graph G is completely
determined by its Laplace spectrum. Indeed, g(G) = 1 − V (G) + E(G). Let
µ(G, x) = xn−c1xn−1+. . .+(−1)n−1cn−1x be the Laplacian polynomial ofG. By
the arguments from the proof of Lemma 3.2 we have n = V (G) and c1 = 2E(G).
Thus V (G) and E(G), as well as the genus, are uniquely determined by the Lapla-
cian polynomial.

It follows from this observation, the previous remark, and the main result of the paper
that the bridgeless graphs of genera one and two are recognisable by their Laplacian
spectra among all bridgeless graphs.

5. One cannot hear a bridge of a graph. Indeed, the two graphs in Fig. 4 are isospectral.
We are not able to recognise the existence of a bridge of the second graph by its
spectrum.
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Abstract

The regular objects in various categories, such as maps, hypermaps or covering spaces,
can be identified with the normal subgroups N of a given group Γ, with automorphism
group isomorphic to Γ/N . It is shown how to enumerate such objects with a given finite
automorphism group G, how to represent them all as quotients of a single regular object
U(G), and how the outer automorphism group of Γ acts on them. Examples constructed
include kaleidoscopic maps with trinity symmetry.
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1 Introduction
In certain categories C, the objectsO can be identified with the permutation representations
of a particular group Γ = ΓC on sets Φ = ΦO, and the morphisms O → O′ correspond to
the functions ΦO → ΦO′ commuting with the actions of Γ. In the case of maps on surfaces
one takes Γ to be the free product V4 ∗ C2 acting on flags, or C∞ ∗ C2 acting on directed
edges of oriented maps. The corresponding groups for hypermaps are C2 ∗C2 ∗C2 and the
free group F2 = C∞ ∗C∞ of rank 2. For abstract polytopes of a given type one can use the
corresponding string Coxeter group, again acting on flags, though here one has to restrict
attention to quotient groups satisfying the intersection property. In the case of coverings of
a path-connected space X one uses the fundamental group π1X , acting on sheets or more
precisely on the fibre over a base-point.
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In such a case we will call C a permutational category, with parent group Γ. Each object
O in such a category C is a disjoint union of connected subobjects, corresponding to the
orbits of Γ on Φ; one usually restricts attention to the connected objects, as we shall here,
so that Φ can be identified with the set of cosets in Γ of a point-stabiliser M = Γφ, where
φ ∈ Φ. The permutation group induced byG on Φ is the monodromy groupG = MonO =
MonCO of O, a subgroup of the symmetric group Sym Φ on Φ. The automorphism group
A = AutO = AutCO of O, regarded as an object in C, is the centraliser of G in Sym Φ;
since G is transitive on Φ, A acts semiregularly on Φ, and

A ∼= NΓ(M)/M ∼= NG(Gφ)/Gφ.

The most symmetric objects in C are the regular objects, those for which A acts transi-
tively (and hence regularly) on Φ. This is equivalent to M being a normal subgroup of Γ,
in which case

A ∼= Γ/M ∼= G.

Indeed, in this case A and G can be identified with the left and right regular representation
of the same group. In principle, understanding regular objects is sufficient for an under-
standing of all objects in C, since each object O ∈ C is the quotient of some regular object
Õ ∈ C, corresponding to the core N of M in Γ, by a group M/N of automorphisms of Õ;
moreover, Õ is finite if and only ifO is finite, sinceN has finite index in Γ if and only ifM
has finite index. We shall therefore concentrate, for the remainder of this paper, on the reg-
ular objects in various categories C. In particular, we will study the setR(G) = RC(G) of
regular objectsO ∈ C with AutO isomorphic to a given groupG. If Γ is finitely generated
and G is finite then r(G) := |R(G)| is finite. We will consider how to calculate r(G) in
this case, how to represent the objects inR(G) as quotients of a single regular object U(G)
in C, and how the outer automorphism group Out Γ of Γ acts on R(G). Examples will be
given, in which the objects are maps, hypermaps or surface coverings, some of them rele-
vant to recent work by Archdeacon, Conder and Širáň on kaleidoscopic maps with trinity
symmetry [1].

2 Examples of permutational categories
Let us call a category C a permutational category if it is equivalent to the category of
permutation representations of some group Γ, called the parent group of C. This means
that there are functors from each category to the other, so that their composition, in either
order, is naturally equivalent to the identity. There are some well-known examples in the
literature, though the equivalences are rarely expressed in terms of categories. We will
summarise them briefly here; for further details, see, for example, [33] for maps, and [26]
for hypermaps.

The category M of maps on surfaces, with branched coverings of maps as its mor-
phisms, is a permutational category, with parent group

Γ = ΓM = 〈R0, R1, R2 | R2
i = (R0R2)2 = 1〉. (2.1)

Here each Ri acts on the set Φ of vertex-edge-face flags of a map O ∈ M by changing,
in the only way possible, the i-dimensional component of each flag while preserving its j-
dimensional component for each j 6= i. (A boundary flag is fixed by Ri if no such change
is possible.) This group, which is a free product

〈R0, R2〉 ∗ 〈R1〉 ∼= V4 ∗ C2
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of a Klein four-group and a cyclic group of order 2, can be regarded as the extended triangle
group ∆[∞, 2,∞] of type (∞, 2,∞), generated by reflections in the sides of a hyperbolic
triangle with angles 0, π/2, 0. This gives a functor from maps to permutation representa-
tions of Γ. Conversely, given a permutation representation of Γ on a set Φ, one can take a
set of triangles in bijective correspondence with Φ, each with vertices labelled 0, 1, 2, and
use the cycles of Ri on Φ to join pairs of triangles across edges jk (j, k 6= i); the result
is the barycentric subdivision of a map O ∈ M, with the vertices of O labelled 0 and its
edges formed by edges of triangles labelled 01, so that midpoints of edges and faces of
O are labelled 1 and 2. Branched coverings between maps O correspond to Γ-equivariant
functions between sets Φ, so we obtain functors O 7→ Φ and Φ 7→ O which give the
required equivalence of categories.

Other triangle groups act as parent groups for related categories. For the category Mk

of maps with all vertex-valencies dividing k we add the relation (R1R2)k = 1 to the
presentation (2.1), giving the parent group

ΓMk
= 〈R0, R1, R2 | R2

i = (R0R2)2 = (R1R2)k = 1〉 = ∆[k, 2,∞]. (2.2)

Similarly, the isomorphic group ∆[∞, 2, k] is the parent group for the dual maps, with all
face-valencies dividing k. For the category H of hypermaps, where hyperedges may be inci-
dent with any number of hypervertices and hyperfaces, we delete the relation (R0R2)2 = 1
from (2.1), giving the parent group

ΓH = 〈R0, R1, R2 | R2
i = 1〉 = ∆[∞,∞,∞] ∼= C2 ∗ C2 ∗ C2 (2.3)

again permuting flags. Similarly, the extended triangle group

∆[l,m, n] = 〈R0, R1, R2 | R2
i = (R1R2)l = (R0R2)m = (R0R1)n = 1〉

is the parent group for hypermaps of type dividing (l,m, n), that is, of type (l′,m′, n′)
where l′,m′ and n′ divide l,m and n.

For the corresponding categories M+, M+
k and H+ of oriented maps and hypermaps

we take the orientation-preserving subgroups of index 2 in these groups, generated by the
elements X = R1R0, Y = R0R2 and Z = R2R1 satisfying XY Z = 1. These are the
triangle groups

ΓM+ = 〈X,Y, Z | Y 2 = XY Z = 1〉 = ∆(∞, 2,∞) ∼= C∞ ∗ C2, (2.4)

ΓM+
k

= 〈X,Y, Z | Xk = Y 2 = XY Z = 1〉 = ∆(k, 2,∞) ∼= Ck ∗ C2 (2.5)

and
ΓH+ = 〈X,Y, Z | XY Z = 1〉 = ∆(∞,∞,∞) ∼= C∞ ∗ C∞ ∼= F2. (2.6)

Similarly, the triangle group

∆(l,m, n) = 〈X,Y, Z | X l = Y m = Zn = XY Z = 1〉

is the parent group for oriented hypermaps of type dividing (l,m, n).
In the case of oriented hypermaps, the Walsh map [51] represents a hypermap as a

bipartite map, with black and white vertices representing hypervertices and hyperedges, and
edges representing their incidence; then X and Y permute the set Φ of edges by following
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the local orientation around their incident black and white vertices. For oriented maps, X
rotates directed edges around their target vertices, while Y reverses them; equivalently, one
can convert a map into the Walsh map of a hypermap by adding a white vertex at the centre
of each edge, so that new edges correspond to directed edges of the original map.

If X is a path connected, locally path connected, and semilocally simply connected
topological space [43, Ch. 13]), the unbranched coverings β : Y → X of X form a
permutational category C with the fundamental group Γ = π1X as parent group, using
unique path-lifting to permute the fibre Φ = β−1(x0) ⊂ Y of β over a chosen base-
point x0 ∈ X . The regular coverings β correspond to the normal subgroups N of Γ, with
covering group Autβ ∼= Γ/N . If X is also a compact Hausdorff space (for instance, a
compact manifold or orbifold), then Γ is finitely generated [43, p. 500].

The categories of maps and hypermaps described above can be regarded as obtained in
the above way from suitable orbifolds X , such as a triangle with angles π/l, π/m, π/n for
hypermaps of type dividing (l,m, n), or a sphere with three cone-points of orders l,m, n
in the oriented case. Similarly, Grothendieck’s dessins d’enfants [21, 22] are the finite
coverings of a sphere minus three points, so their parent group is its fundamental group
Γ = F2, with generators X,Y and Z inducing the monodromy permutations at the three
punctures.

For the rest of this paper, C will denote a permutations category with a finitely generated
parent group Γ.

3 Counting regular objects
For each group G, there is a natural bijection between the setR(G) = RC(G) of (isomor-
phism classes of) regular objects O ∈ C with AutO ∼= G and the set N (G) = NΓ(G)
of normal subgroups N of Γ with Γ/N ∼= G. These normal subgroups are the kernels of
the epimorphisms Γ → G. Two such epimorphisms have the same kernel if and only if
they differ by an automorphism of G, so there is a bijection between N (G) and the set
of orbits of AutG, acting by composition on the set Epi(Γ, G) of epimorphisms Γ → G.
This action of AutG is semiregular, since only the identity automorphism of G fixes an
epimorphism.

If G is finite then so is Epi(Γ, G), since each epimorphism Γ → G is uniquely deter-
mined by the images in G of a finite set of generators of Γ. In this case the sets R(G) and
N (G) have the same finite cardinality

r(G) = rC(G) = |R(G)| = n(G) = nΓ(G) = |N (G)| = |Epi(Γ, G)|
|AutG|

. (3.1)

In [24], Hall developed a method for counting epimorphisms onto G by first count-
ing homomorphisms (generally an easier task) to subgroups of G, and then using Möbius
inversion in the lattice Λ(G) of subgroups of G.

Let σ and φ be functions from isomorphism classes of finite groups to C such that

σ(G) =
∑
H≤G

φ(H) (3.2)

for all finite groups G. Then a simple calculation gives the Möbius inversion formula for
G, namely

φ(G) =
∑
H≤G

µG(H)σ(H) (3.3)
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where µG is the Möbius function on Λ(G), defined recursively by∑
K≥H

µG(K) = δH,G, (3.4)

with δH,G = 1 ifH = G and 0 otherwise. (One can view this as a group-theoretic analogue
of the inclusion-exclusion principle, which applies to the lattice of all subsets of G; in that
situation, by replacing the condition K ≥ H in (3.4) with K ⊇ H one assigns the value
(−1)|G\H| to µG(H) for each subset H of G.)

Each homomorphism Γ → G is an epimorphism onto a unique subgroup H ≤ G, so
one can take σ(G) and φ(G) to be the numbers of homomorphisms and epimorphisms from
Γ toG (or possibly those satisfying some extra condition, such as being smooth, i.e. having
a forsion-free kernel). Thus

|Hom(Γ, G)| =
∑
H≤G

|Epi(Γ, H)|, (3.5)

so Möbius inversion gives

|Epi(Γ, G)| =
∑
H≤G

µG(H)|Hom(Γ, H)|. (3.6)

This proves the first part of the following theorem; the second follows easily.

Theorem 3.1. If C is a permutational category with a finitely generated parent group Γ,
and G is a finite group, then the number r(G) of isomorphism classes of regular objects
O ∈ C with AutO ∼= G is given by

r(G) =
1

|AutG|
∑
H≤G

µG(H)|Hom(Γ, H)|. (3.7)

The number m(G) of isomorphism classes of objects O ∈ C with MonO ∼= G is given by

m(G) = r(G)c(G), (3.8)

where c(G) is the number of conjugacy classes of subgroups of G with trivial core.

Applying equation (3.7) to a specific pair C and G requires three ingredients: one must
know |AutG|, µG(H) for each H ≤ G, and |Hom(Γ, H)| for each H ≤ G such that
µG(H) 6= 0. The first is usually the easiest to deal with: for instance |AutCn| is given by
Euler’s function φ(n), while the automorphism groups of the finite simple groups are all
known and can be found in sources such as [5, 52]. Finding the other two ingredients is
generally more troublesome, and this has been achieved only in special cases.

4 Evaluating the Möbius function
Evaluating the Möbius function µG requires detailed knowledge of the subgroup lattice of
G. It has been achieved for several infinite classes of groups G, and of course for specific
groups which are not too large one can use systems such as GAP or MAGMA. In this
context, the database of subgroup lattices described by Connor and Leemans in [4], and
available at [3], is a valuable resource.



242 Ars Math. Contemp. 10 (2016) 237–254

Example 4.1 A finite cyclic group G = Cn of order n has a unique subgroup H ∼= Cm
for each m dividing n, and no other subgroups. Hall [24] showed that µG(H) = µ(n/m),
where µ is the Möbius function of elementary number theory, given by µ(n) = (−1)k if n
is a product of k distinct primes, and µ(n) = 0 otherwise. Indeed, here µ can be regarded
as the Möbius function on the lattice of subgroups of finite index in the infinite cyclic group
Z.

Example 4.2 Similarly, it is an easy exercise to compute the Möbius function for a finite
dihedral group; see [28].

Example 4.3 An elementary abelian group G of order pd can be regarded as a vector space
of dimension d over the field Fp, and its subgroups H as the linear subspaces. The number
of these of each codimension k = 0, 1, . . . , d is equal to the Gaussian binomial coefficient(

d
k

)
p

=
(pd − 1)(pd−1 − 1) . . . (pd−k+1 − 1)

(pk − 1)(pk−1 − 1) . . . (p− 1)
,

and Hall [24] showed that they satisfy

µG(H) = (−1)kpk(k−1)/2.

Hall showed that in any finite group G, if µG(H) 6= 0 then H must be the intersection
of a set of maximal subgroups of G, so in particular H must contain the Frattini subgroup
Φ(G) of G, the intersection of all its maximal subgroups.

Example 4.4 IfG is a d-generator finite p-group then Φ(G) is the subgroupG′Gp generated
by the commutators and p-th powers in G, and G/Φ(G) is an elementary abelian p-group
of order pd. The subgroups H ≤ G with µG(H) 6= 0 all contain Φ(G), and correspond to
the subgroups of G/Φ(G), with µG(H) given by the preceding example.

If G = G1 ×G2 where G1 and G2 are finite groups of coprime orders, each subgroup
H ≤ G has the unique form H = H1 ×H2 where Hi ≤ Gi. In this case Hall showed that
µG(H) = µG1

(H1)µG2
(H2).

Example 4.5 Each nilpotent finite group G is a direct product of its Sylow subgroups,
which are p-groups for the different primes p dividing |G|, so the preceding examples
show how to compute µG.

Example 4.6 Dickson described the subgroups of the groups L2(q) = PSL2(q) in [7,
Ch. XII]. Using this, Hall [24] calculated the Möbius function µG for the simple groups
G = L2(p) for primes p ≥ 5. Equation (3.3) takes the form

φ(G) = σ(G)− (p+ 1)σ(G∞)− p(p− 1)

2
σ(D p+1

2
)

−p(p+ 1)

2
D p−1

2
+ p(p+ 1)σ(C p−1

2
) + |G|S,

where G∞ is the subgroup of index p + 1 fixing ∞, and S depends on the congruence
classes of p mod (5) and mod (8), which determine the existence of proper subgroups
H ∼= A5 or S4. For example, if p = 5, or if p ≡ ±2 mod (5) and p ≡ ±3 mod (8), so that
there are no such subgroups, then

S = − 1

12
σ(A4) +

1

4
σ(V4) +

1

3
σ(C3) +

1

2
σ(C2)− σ(1);
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there are similar formulae in the other cases. In [10] Downs extended Hall’s calculation of
µG to L2(q) and PGL2(q) for all prime powers q; see [11] for a proof for L2(2e) and a
statement of results for L2(q) where q is odd, and [13] for some combinatorial applications
by Downs and the author.

Example 4.7 The Suzuki groups G = Sz(q) are a family of non-abelian finite simple
groups, with q = 2e for some odd e > 1; see [5, 50, 52] for their properties, which
are similar to those of the groups L2(2e). Downs calculated µG for these groups in [12];
see [14] for a statement of the results and some applications.

5 Counting homomorphisms
In order to apply equation (3.7) to a group G, one needs to evaluate |Hom(Γ, H)| for those
subgroups H ≤ G with µG(H) 6= 0. If Γ has a presentation with generators Xi and
defining relationsRj , this is equivalent to counting the solutions (xi) inH of the equations
Rj(xi) = 1.

Example 5.1 If Γ is a free productCm1
∗· · ·∗Cmk

of cyclic groups of ordersmi ∈ N∪{∞},
then

|Hom(Γ, H)| =
k∏
i=1

∑
m|mi

|H|m

where |H|m denotes the number of elements of H of order m, and we regard all orders
m as dividing ∞, so that

∑
m|∞ |H|m = |H|. For instance, if Γ is a free group Fk of

rank k then |Hom(Γ, H)| = |H|k. Similarly, the torsion theorem for free products [36,
Theorem IV.1.6] implies that a homomorphism Γ → H is smooth if and only if it embeds
each finite factorCmi

, so the number of such homomorphisms can be found by multiplying
k factors equal to |H|mi

or |H| as mi is finite or infinite.

For certain groups Γ, the character table of H gives |Hom(Γ, H)|.

Example 5.2 If Γ is a polygonal group

∆(m1, . . . ,mk) = 〈X1, . . . , Xk | Xm1
1 = . . . = Xmk

k = X1 . . . Xk = 1〉

of type (m1, . . . ,mk) for some integers mi, then |Hom(Γ, H)| can be found by summing
the following formula (5.1) of Frobenius [18] over all choices of k-tuples of conjugacy
classes Ci of elements of orders dividing mi.

Theorem 5.1. Let Ci (i = 1, . . . , k) be conjugacy classes in a finite group H . Then the
number of solutions of the equation x1 . . . xk = 1 in H , with xi ∈ Ci for i = 1, . . . , k, is

|C1| . . . |Ck|
|H|

∑
χ

χ(x1) . . . χ(xk)

χ(1)k−2
(5.1)

where xi ∈ Ci and χ ranges over the irreducible complex characters of H .

Similarly, the number of smooth homomorphisms Γ → H can be found by restricting
the summation to classes of elements of order equal to mi. The case k = 3 of this theorem,
where Γ is a triangle group, has often been used in connection with oriented maps and
hypermaps: see [27] and [32], for instance.
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Example 5.3 If Γ is an orientable surface group Πg , that is, the fundamental group

Πg = π1Sg = 〈Ai, Bi (i = 1, . . . , g) |
g∏
i=1

[Ai, Bi] = 1〉

of a compact orientable surface Sg of genus g ≥ 1, one can use the following theorem of
Frobenius [18] and Mednykh [42], which counts solutions of the equation

∏g
i=1[ai, bi] =

1:

Theorem 5.2. If H is any finite group then

|Hom(Πg, H)| = |H|2g−1
∑
χ

χ(1)2−2g, (5.2)

where χ ranges over the irreducible complex characters of H .

Example 5.4 If Γ is a non-orientable surface group

Π−g = 〈Ai (i = 1, . . . , g) |
g∏
i=1

A2
i = 1〉

of genus g ≥ 1, one can use the following result of Frobenius and Schur [19]:

Theorem 5.3. If H is a finite group then

|Hom(Π−g , H)| = |H|g−1
∑
χ

cgχχ(1)2−g, (5.3)

where χ ranges over the irreducible complex characters of H .

Here cχ is the Frobenius-Schur indicator |H|−1
∑
h∈H χ(h2) of χ, equal to 1,−1 or 0

as χ is the character of a real representation, the real character of a non-real representation,
or a non-real character. See [28] for applications of these two theorems, and [48, Ch. 7] for
several generalisations of them.

6 Enumerations
Using Theorem 3.1 one can now enumerate, for a given finite group G, the regular objects
in C with automorphism group G, and also the objects in C with monodromy group G.

Example 6.1 It follows from a result of Hall [24] that if G = L2(p) for some prime p ≥ 5
and C = H+, so that Γ = F2, then

r(G) =
1

4
(p+ 1)(p2 − 2p− 1)− ε,

where ε = 49, 40, 11 or 2 as p ≡ ±1 mod (5) and ±1 mod (8), or ±1 mod (5) and ±3
mod (8), or±2 mod (5) and±1 mod (8), or±2 mod (5) and±3 mod (8). We also take ε =
2 when p = 5, so that r(G) = 19 in this case; the 19 regular oriented hypermaps associated
with the icosahedral group G = L2(5) ∼= A5 have been described by Breda and the author
in [2]. Since this group G has eight conjugacy classes of proper subgroups, all with trivial
core since G is simple, it follows from equation (3.8) that there are 19× 8 = 152 oriented
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hypermaps with monodromy group G, namely the quotients O/H where O ∈ R(G) and
H < G.

Example 6.2 In [10], Downs considered the categories H, H+, M, M+, M3 and M+
3 , and

gave formulae for r(G) where G = L2(q) or PGL2(q) for any prime power q. The results
for G = L2(2e) are given in [13]. Typical results for odd q are:

rM(L2(pe)) =
1

8e

∑
f |e

µ

(
e

f

)
pf (pf − a)

for all p > 2 and odd e > 1, where a = 2 or 4 as p ≡ 1 or −1 mod (4), and

rM3(PGL2(pe)) =
3

4e

∑
f

µ

(
e

f

)
(pf − 1)

for p > 3 and e > 1, where the sum is over all factors f of e with e/f odd.

Example 6.3 Using Downs’s calculation of the Möbius function for G = Sz(2e) in [12],
he and the author have enumerated various combinatorial objects with automorphism group
G in [14]. Typical results are that

rH+(G) =
1

e

∑
f |e

µ

(
e

f

)
2f (24f − 23f − 9)

and

rM(G) =
1

e

∑
f |e

µ

(
e

f

)
(2f − 1)(2f − 2).

The second formula, which also gives the number of reflexible maps inRM+(G), has been
obtained by more direct means by Hubard and Leemans in [25].

Example 6.4 If G is infinite thenR(G) could be finite or infinite. For instance, if C = H+,
so that Γ = F2, then r(Z2) = 1 whereas r(Z) = ℵ0.

7 Universal covers
For any group G, and any C, let

K(G) = KC(G) =
⋂

N∈N (G)

N. (7.1)

This is a normal subgroup of Γ, so it corresponds to a regular object

U(G) = UC(G) =
∨

O∈R(G)

O (7.2)

which we will call the universal cover for G, the smallest object in C covering each O ∈
R(G). This has automorphism group

G := AutU(G) ∼= Γ/K(G). (7.3)
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If Γ has generators Xi (i ∈ I) then one can realise G as the subgroup of the cartesian
power GR(G) of G generated by the elements (xi1, xi2, . . .) for i ∈ I , where xik is the
image of Xi in G = AutOk for some numbering O1,O2, . . . of the objects Ok ∈ R(G).
In particular, G has the same number of generators as Γ, and it satisfies all the identical
relations satisfied by G: for instance, if G is nilpotent of class c, is solvable of derived
length d, or has exponent e, then the same applies to G. Finally, if G is finite, as we will
assume from now on, then so are U(G) and G, with |G| dividing |G|r where r = r(G).

Example 7.1 Let C = H+, so that Γ = F2. If G = Cn then K(G) = Γ′Γn, so

G = Γ/Γ′Γn ∼= Cn × Cn.

Represented as a bipartite map, the hypermap U(G) is a regular embedding of the complete
bipartite graph Kn,n in a surface of genus (n − 1)(n − 2)/2. In fact, we obtain the same
universal cover U(G) and group G whenever G is a 2-generator abelian group of exponent
n.

This example shows that G can be a rather small subgroup of Gr, since G ∼= G2

whereas r > n. However, if G is a non-abelian finite simple group, then the following
result shows that G = Gr for any category C; see [29] for a proof.

Lemma 7.1. Let N1, . . . , Nr be distinct normal subgroups of a group Γ, with each Gi :=
Γ/Ni non-abelian and simple. If K = N1 ∩ · · · ∩Nr then

Γ/K ∼= G1 × · · · ×Gr.

Taking {N1, . . . , Nr} = NΓ(G), so Gi ∼= G for i = 1, . . . , r, gives the result.

Example 7.2 Let C = H+ again, and let G = L2(5) ∼= A5. By Example 6.1 we have
r(G) = 19, so G = G19, of order

6019 = 609359740010496× 1017 ≈ 6.1× 1031.

Guralnick and Kantor [23] have shown that if G is a non-abelian finite simple group
then each non-identity element of G is a member of a generating pair. If such a group G
has exponent e then it follows that UH+(G) has type (e, e, e), so by the Riemann-Hurwitz
formula it has genus

g = 1 +
e− 3

2e
|G|r.

In Example 7.2, for instance, G has exponent 30, so UH+(G) has genus

1 +
9

20
× 6019 = 274218830047232000000000000000001 ≈ 2.742× 1031.

For any finite group G we have |Epi(F2, G)| ≤ |G|2, so

rH+(G) ≤ |G|2

|AutG|
=
|G|.|Z(G)|
|OutG|

where OutG is the outer automorphism group AutG/InnG of G. In particular, if G has
trivial centre then

rH+(G) ≤ |G|
|OutG|

. (7.4)
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IfG is a non-abelian finite simple group, then a randomly-chosen pair of elements generate
G with probability approaching 1 as |G| → ∞: this was proved by Dixon [8] for the
alternating groups, Kantor and Lubotzky [35] for the classical groups of Lie type, and
Liebeck and Shalev [36] for the exceptional groups of Lie type. Moreover, convergence is
quite rapid. It follows that for such groups the upper bound in (7.4) is asymptotically sharp,
that is,

rH+(G) ∼ |G|
|OutG|

as |G| → ∞.

The information in [5, 52] shows that for each of the infinite families of non-abelian finite
simple groups, |OutG| grows much more slowly than |G|, so that rH+(G) grows almost
as quickly as |G|. For instance, rH+(An) ∼ n!/4 as n→∞. (See [9, 41] for more precise
results concerning generating pairs for An.)

Example 7.3 If G is the Monster, the largest sporadic simple group, then

|G| = 246.320.59.76.112.133.17.19.23.29.31.41.47.59.71

= 808017424794512875886459904961710757005754368000000000

≈ 8.080× 1053.

Since |OutG| = 1 we have r := rH+(G) ≈ |G|, so

|G| = |G|r ≈ |G||G| ≈ (8.080× 1053)8.080×1053

≈ 101055.639

.

Since G has exponent

e = 25.33.52.7.11.13.17.19.23.29.31.41.47.59.71

= 1165654792878376600800 ≈ 1.166× 1021,

the universal cover UH+(G) has type (e, e, e) and genus approximately |G|/2.

Similar considerations apply to other categorises C, though the universal covers U(G)
and their automorphism groups G are usually rather smaller.

Example 7.4 If C = M+ and G = A5 then r(G) = 3: the orientably regular maps in
R(G) are the icosahedron, the dodecahedron and the great dodecahedron, of types {3, 5},
{5, 3} and {5, 5}, and of genera 0, 0 and 4. It follows that G = G3, of order 216000, and
that UM+(G) is a map of type {15, 15} and genus

g = 1 +
11

60
× 603 = 39601.

Similarly r(G) = 3 if C = M: the three regular maps in RM(G) are the non-orientable
antipodal quotients of those inRM+(G), and the same applies to the universal covers U(G)
in these two categories.

Example 7.5 It follows from Theorems 3.1 and 5.2 that there are 2016 regular coverings
of an orientable surface of genus 2 with covering group G = A5 [28]. They have genus 61,
while U(G) has genus 1 + 602016 and covering group G2016.
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8 Operations on categories
The automorphisms of the parent group Γ of C permute the subgroups of Γ. Since inner au-
tomorphisms leave invariant each conjugacy class of subgroups, there is an induced action
of the outer automorphism group

Ω = ΩC := Out Γ = Aut Γ/Inn Γ

of Γ on isomorphism classes of objects in C. Since Ω preserves normality and quotient
groups, it leavesN (G) and henceR(G) invariant for each groupG. Here we will consider,
for various categories C, the isomorphic actions of ΩC on these pairs of sets. In some cases,
Γ decomposes as a free product, possibly with amalgamation, in which case the structure
theorems for such groups [36, §7.2] often allow ΩC to be determined explicitly. The case
C = M, with Γ = V4 ∗ C2, was dealt with by Thornton and the author in [33]; other cases
considered here are similar, so proofs are omitted.

8.1 Operations on oriented hypermaps

In the case C = H+, with Γ = F2, James [26] interpreted Ω as the group of all operations
on oriented hypermaps. For any integer n ≥ 1, the automorphism group of Fn is generated
by the elementary Nielsen transformations: permuting the free generators, inverting one of
them, and multiplying one of them by another [40, Theorem 3.2]. When n = 2 one can
identify Ω = Out Γ with GL2(Z) through its faithful induced action on the abelianisation
Γab = Γ/Γ′ ∼= Z2 of Γ [38, Ch. I, Prop. 4.5].

This group Ω can be decomposed as a free product with amalgamation as follows
(see [6, §7.2] for presentations of Ω). If we take the images of X and Y as a basis for
Γab, then there is a subgroup Σ ∼= S3

∼= D3 of Ω, generated by the matrices

E =

(
0 1
1 0

)
and

(
0 1
−1 −1

)
of order 2 and 3; this group, which simply permutes the three vertex colours of an oriented
hypermap, regarded as a tripartite map by stellating its Walsh map, was introduced by
Machı̀ in [39]. The central involution −I of Ω reverses the orientation of each hypermap
and, together with Σ, generates a subgroup

Ω1 = Σ× 〈−I〉 ∼= S3 × C2
∼= D6

of Ω which preserves the genus of each hypermap and permutes the periods in its type. If a
hypermap is represented as a bipartite map, then the matrices(

−1 0
0 1

)
and

(
1 0
0 −1

)
reverse the cyclic order of edges around each black or white vertex, while preserving the
order around those of the other colour; they are sometimes called Petrie operations, since
they preserve the embedded bipartite graph but replace faces with Petrie polygons (closed
zig-zag paths), so the genus may be changed. These two matrices, together withE, generate
a subgroup Ω2

∼= D4 such that

Ω0 := Ω1 ∩ Ω2 = 〈E,−I〉 ∼= V4
∼= D2
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and
Ω = Ω1 ∗Ω0

Ω2
∼= D6 ∗D2

D4.

The torsion theorem for free products with amalgamation [36, Theorem IV.2.7] shows that
the operations of finite order are the conjugates of the elements of Ω1 ∪ Ω2, described by
Pinto and the author in [30].

For any 2-generator group G, the orbits of Ω onR(G) correspond to the T2-systems in
G, that is, the orbits of AutF2 × AutG acting by composition on Epi(F2, G) and hence
on generating pairs for G. It is known [15, 45] that this action is transitive if G is abelian,
whereas Garion and Shalev [20] have shown that if G is a non-abelian finite simple group
then the number of orbits tends to∞ as |G| → ∞.

Example 8.1 It follows from work of Neumann and Neumann [45] that the 19 hypermaps
in R(A5) form two orbits of lengths 9 and 10 under Ω, which acts as S9 × S10 on them.
Those hypermaps whose type is a permutation of (2, 5, 5), (3, 3, 5) or (3, 5, 5)− form the
first orbit, while those of type a permutation of (2, 3, 5), (3, 5, 5)+ or (5, 5, 5) form the
other; here the superscript + or − indicates that the generators of order 5 are or are not
conjugate in A5.

This example illustrates a useful result of Nielsen [46], that when Γ = F2 the order of
the commutator [x, y] is an invariant of the action of Ω onR(G) for any group G: here the
order is 3 or 5 for the hypermaps in the two orbits.

8.2 Operations on all hypermaps

When C = H we have Γ = C2∗C2∗C2, containing F2 as a characteristic subgroup of index
2. As shown by James [26] there is again an action of GL2(Z) on hypermaps, as described
above, but now extended to all hypermaps. In this case −I , induced by conjugation by R1,
is in the kernel of the action (since any orientation is now ignored), and there is a faithful
action on H of the group

Out Γ ∼= GL2(Z)/〈−I〉 ∼= PGL2(Z) ∼= S3 ∗C2
V4.

8.3 Operations on oriented maps

When C = M+ we have Γ = C∞ ∗ C2, with Ω = Out Γ ∼= V4. This group Ω is
generated by vertex-face duality, induced by the automorphism of Γ transposing X and
Z, and orientation-reversal, induced by inverting X and fixing Y . These two involutions
commute, modulo conjugation by Y .

If we restrict to the category M+
k of oriented maps of valency dividing k, then Γ =

Ck∗C2, with Ω isomorphic to the multiplicative group Z∗k of units mod (k) provided k > 2.
The elements of Ω are the operations Hj defined by Wilson in [53], raising the rotation
of edges around each vertex to its jth power, and induced by automorphisms fixing Y and
sendingX toXj for j ∈ Z∗k. These operationsHj , studied by Nedela and Škoviera in [44],
preserve the embedded graph, but can change the surface. When k = 5, for instance, H2

transposes the icosahedron and the great dodecahedron.

8.4 Operations on all maps

When C = M we have Γ = V4 ∗ C2, with Ω = Out Γ ∼= S3 induced by the automorphism
group of the free factor 〈R0, R2〉 ∼= V4 permuting its three involutions R0, R2 and R0R2.
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As shown by Thornton and the author [33], this group Ω is simply an algebraic reinter-
pretation of the group of operations on regular maps introduced by Wilson in [53] (see
also [37]). It is generated by the classical duality of maps, which transposes vertices and
faces by transposing R0 and R2, and the Petrie duality, which transposes faces and Petrie
polygons by transposing R0 and R0R2; these two operations have a product of order 3
which acts as a triality operation, cyclically permuting the sets of vertices, faces and Petrie
polygons of each map. As noted by Wilson, maps admitting trialities but not dualities seem
to be rather rare: Poulton and the author have given some infinite families of examples
in [31].

If we restrict to the category Mk of maps of valency dividing k, then

Γ = ∆[k, 2,∞] = 〈R0, R1〉 ∗〈R0〉 〈R0, R2〉 ∼= Dk ∗C2 D2,

where the amalgamated subgroup C2 is generated by a reflection R0 in each factor. If
k > 2 the automorphisms of Dk fixing R0 form a group isomorphic to Z∗k, sending R0R1

to (R0R1)j for any j ∈ Z∗k, while those of D2 fixing R0 simply permute R2 and R0R2.
These extend to automorphisms of Γ which generate a subgroup Z∗k×C2 of Aut Γ: the first
factor induces Wilson’s operations Hj , and the second factor induces Petrie duality. The
structure theorems for free products with amalgamation [36, §7.2] show that this subgroup
maps onto Out Γ. Since H−1 is induced by conjugation by R0 we find that

Ω ∼= (Z∗k/{±1})× C2.

When k = 3, with Ω ∼= C2, we obtain the outer automorphism of the extended modular
group Γ = PGL2(Z) studied by Thornton and the author in [34].

8.5 Operations on surface coverings

If Sg is an orientable surface of genus g ≥ 1, and Γ = π1Sg , then by the Baer-Dehn-
Nielsen Theorem the group Ω = Out Γ is isomorphic to the extended mapping class group
Mod±(Sg) of Sg , that is, the group of isotopy classes of self-homeomorphisms of Sg
(see [17, Ch. 8]). The mapping class group Mod (Sg) is the subgroup of index 2 cor-
responding to the orientation-preserving self-homeomorphisms; both groups are finitely
presented, with ModSg generated by the Dehn twists [17, Ch. 3]. The induced action of
Mod±(Sg) on coverings of Sg corresponds to the action of Ω on permutation representa-
tions of Γ.

Example 8.2 If g = 1 then Γ ∼= Z2 and Ω ∼= Mod±(S1) ∼= GL2(Z), with Mod (S1) corre-
sponding to SL2(Z). This is generated by the Dehn twists corresponding to the elementary
matrices (

1 1
0 1

)
and

(
1 0
1 1

)
.

9 Invariance under operations
Although it is natural to regard the regular objects in C as its most symmetric objects, some
of these may have additional ‘external’ symmetries, in the sense that they are invariant (up
to isomorphism) under some or all of the operations in Ω. Self-dual maps, such as the
tetrahedron, are obvious examples. For any C and G the group K(G) defined in (7.1) is a
characteristic subgroup of Γ, so the corresponding regular object U(G) is invariant under
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Ω. This shows that each object O ∈ C, regular or not, is covered by an Ω-invariant regular
object U(G) ∈ C, which is finite if and only if O is, and which has automorphism group G
where G = MonO. The smallest Ω-invariant regular object covering O can be obtained
by restricting the normal subgroups N in (7.1) to those in the appropriate orbit of Ω on
NΓ(G).

Richter, Širáň and Wang [47] have shown that for infinitely many k there are regular
k-valent maps which are invariant under the group of operations

Ω1 := ΩM
∼= S3

(see also [33, Theorem 3]), while Archdeacon, Conder and Širáň [1] have recently con-
structed infinite families of k-valent orientably regular maps invariant under both Ω1 and
the group

Ω2 := ΩM+
k

∼= Z∗k.

They call these ‘kaleidoscopic maps with trinity symmetry’. In both cases, examples of
such maps can be constructed as maps UM(G) for finite groups G: for instance, the map
denoted by Mn in [1, Theorem 2.2] has this form where G is a dihedral group of order 4n,
with K(G) = Γ′′(Γ′)n in Γ = ΓM

∼= V4 ∗ C2.
The connection is as follows. For orientably regular maps, invariance under the op-

eration H−1 ∈ Ω2 is equivalent to reflexibility, so one needs to find normal subgroups
of Γ which are invariant under the actions of Ω1 = Out Γ (i.e. which are characteristic
subgroups of Γ) and (for kaleidoscopic maps) of Ω2

∼= Z∗k, where k is the valency of
the corresponding map. For any quotient G of Γ, these two groups Ωi act by permuting
the subgroups in NΓ(G), so they leave invariant their intersection K(G); the map U(G)
corresponding to K(G) is therefore kaleidoscopic with trinity symmetry.

Example 9.1 Let G = A5, so that the three maps Mi (i = 1, 2, 3) in R(G) are the
antipodal quotients of the icosahedron, the dodecahedron and the great dodecahedron (see
Example 7.4); these have types {3, 5}5, {5, 3}5 and {5, 5}3 where the subscript denotes
Petrie length, as in [6, §8.6]. Their join U(G) is a non-orientable regular map of type
{15, 15}15 and genus 39602, with automorphism group G ∼= A3

5. The groups Ω1 and
Ω2 permute the three mapsMi (Ω1 transitively, while Ω2

∼= Z∗15
∼= C2 × C4 has orbits

{M2} and {M1,M3}), so U(G) is kaleidoscopic with trinity symmetry. (This is the
non-orientable example constructed by a different method in [1, §7].)

Example 9.2 For an orientable example, we can take G = A5 ×C2, so U(G) is the join of
U(A5), described in the preceding example, and U(C2), a reflexible map of type {2, 2}2 on
the sphere corresponding to the derived group K(C2) = Γ′ of Γ. This gives an orientable
map of type {30, 30}30 and genus 187201, which is kaleidoscopic with trinity symmetry
and has automorphism group (A5 × C2)3.

More generally, if G is a non-abelian finite simple group which is a quotient of Γ (the
only ones which are not are L3(q), U3(q), L4(2e), U4(2e), A6, A7, M11, M22, M23 and
McL, according to [49, Theorem 4.16]), these constructions yield a pair of non-orientable
and orientable kaleidoscopic maps which have trinity symmetry and have automorphism
groups Gr and Gr × C3

2 , where r = rM(G).

Example 9.3 If G is the Suzuki group Sz(8), of order 26.5.7.13 = 29120, then r = 14 by
Example 6.3; the resulting maps have types {k, k}k and {2k, 2k}2k where k = 455, the
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least common multiple of the valencies 5, 7 and 13 of the vertices in the 14 maps in R(G)
(see [14]). The orientable map has genus

1 +
2912014 × 23

4
× 453

910
= 1 + 2912013 × 28992.

If only trinity symmetry is required, as in [47], then smaller examples of this type can
generally be found, with r dividing 6, by replacing U(G) with the join of an orbit of Ω1 on
RM(G). For instance, ifG = L2(p) for some prime p ≡ ±1 mod (24) one can take r = 1.

10 Finiteness
Throughout this paper, we have generally assumed that the group G is finite. If it is not,
then not only can RC(G) be infinite, it can even split into infinitely many orbits under the
action of ΩC.

Example 10.1 Let C = H+, so that Γ = F2, and let G = 〈x, y | x3 = y2 〉, the group
π1(S3 \ K) of the trefoil knot K. This group, isomorphic to the three-string braid group
B3 = 〈a, b | aba = bab〉 with x = ab and y = ab2, has centre Z(G) = 〈x3〉 ∼= C∞, with
G/Z(G) ∼= C3 ∗ C2

∼= PSL2(Z). Dunwoody and Pietrowski [16] have shown that the
pairs xi = x3i+1, yi = y2i+1 (i ∈ Z) all generate G and lie in different T2-systems. The
corresponding normal subgroups N ∈ NΓ(G), the kernels of the epimorphisms Γ → G
given by X 7→ xi, Y 7→ yi, therefore all lie in different orbits of the group Ω = Out Γ ∼=
GL2(Z), as do the corresponding hypermaps inRC(G).
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[44] R. Nedela and M. Škoviera, Exponents of orientable maps, Proc. Lond. Math. Soc. (3) 75
(1997), 1–31, doi:10.1112/S0024611597000245.

[45] B. H. Neumann and H. Neumann, Zwei Klassen charakteristischer Untergruppen und ihre Fak-
torgruppen, Math. Nachr. 4 (1951), 106–125, doi:10.1002/mana.19500040112.

[46] J. Nielsen, Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden,
Math. Ann. 78 (1917), 385–397, doi:10.1007/BF01457113.
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Abstract

We prove that the genus polynomials of the graphs called iterated claws are real-rooted.
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1 Introduction
Graphs are implicitly taken to be connected. Our graph embeddings are cellular and ori-
entable. For general background in topological graph theory, see [1, 9]. Prior acquaintance
with the concepts of partitioned genus distribution (abbreviated here as pgd) and produc-
tion (e.g., see [5, 11]) is prerequisite to reading this paper. Subject to this prerequisite, the
exposition here is intended to be accessible both to graph theorists and to combinatorialists.

The genus distribution of a graph G is the sequence g0(G), g1(G), g2(G), . . ., where
gi(G) is the number of combinatorially distinct embeddings of G in the orientable surface
of genus i. A genus distribution contains only finitely many positive numbers, and there
are no zeros between the first and last positive numbers. The genus polynomial is the
polynomial

ΓG(z) = g0(G) + g1(G)z + g2(G)z2 + . . .

We say that a sequence A = (ak)nk=0 is nonnegative if ak ≥ 0 for all k. An element ak
is said to be an internal zero of A if there exist indices i and j with i < k < j, such that
aiaj 6= 0 and ak = 0. If ak−1ak+1 ≤ a2k for all k, then A is said to be log-concave. If
there exists an index h with 0 ≤ h ≤ n such that

a0 ≤ a1 ≤ · · · ≤ ah−1 ≤ ah ≥ ah+1 ≥ · · · ≥ an,

thenA is said to be unimodal. It is well-known that any nonnegative log-concave sequence
without internal zeros is unimodal, and that any nonnegative unimodal sequence has no
internal zeros. A prior paper [7] by the present authors provides additional contextual
information regarding log-concavity and genus distributions.

1.1 The LCGD Conjecture and Real-Rootedness Problems

For convenience, we sometimes abbreviate the phrase “log-concave genus distribution” as
LCGD. Proofs that closed-end ladders and doubled paths have LCGDs [2] were based on
closed formulas for their genus distributions. Proof that bouquets have LCGDs [8] was
based on a recursion. The following conjecture was formulated in [8]:

LCGD Conjecture: Every graph has a log-concave genus distribution.

Stahl [12] used the term “H-linear” to describe chains of graphs obtained by amal-
gamating copies of a fixed graph H . He conjectured that a number of “H-linear” fami-
lies of graphs have genus polynomials with nonpositive real roots, which implies the log-
concavity of their sequences of coefficients, by Newton’s theorem. (Since all the coeffi-
cients of a genus polynomial are non-negative, it follows that all the roots are non-positive.)
Although it was shown [14] that the genus polynomials of some such families do indeed
have real roots, Stahl’s conjecture of real-rootedness for W4-linear graphs (where W4 is
the 4-wheel) was disproved by Liu and Wang [10].

Our previous paper [7] proves, nonetheless, that the genus distribution of every graph
in the W4-linear sequence is log-concave. Thus, even though Stahl’s proposed approach
to log-concavity via roots of genus polynomials is sometimes infeasible, [7] does support
Stahl’s expectation that chains of copies of a graph are a relatively accessible aspect of
the general LCGD problem. Moreover, Wagner [14] has proved the real-rootedness of the
genus polynomials for a number of graph families for which Stahl made specific conjec-
tures of real-rootedness.
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This leads to a couple of research problems that are subordinate to the LCGD Conjec-
ture, as follows:

Real-rootedness Problem: Characterize the graphs whose genus polynomials
are not real-rooted.
Real-rootedness Chain Problem: Characterize the graphs H whose genus
polynomials are real-rooted but whose H-linear chains contain graphs whose
genus polynomials are not real-rooted.

Furthermore, we shall see here that Stahl’s method of representing what we have elsewhere
([4, 6]) presented as a transposition of a production system for a surgical operation on
graph embeddings as a matrix of polynomials can simplify a proof that a family of graphs
has log-concave genus distributions.

1.2 Interlacing Roots in a Genus Polynomial Sequence

The earliest proofs [2, 8] of the log-concavity of the genus polynomials for a sequence of
graphs appealed directly to the condition aj−1aj+1 ≤ a2j . The need for more powerful
techniques motivated the development of the linear combination techniques of [7]. Here,
to prove the log-concavity of the genus polynomials for the sequence of iterated claws,
we combine Newton’s theorem that a real-rooted polynomial is log-concave (Theorem 4.1)
with a focus on interlacing of roots of consecutive genus polynomials for the graphs in the
sequence to prove their log-concavity.

2 The Sequence of Iterated Claws
Let the rooted graph (Y0, u0) be isomorphic to the dipole D3, and let the root u0 be either
vertex of D3. For n = 1, 2, . . ., we define the iterated claw (Yn, un) to be the graph
obtained the following surgical operation:

Newclaw: Subdivide each of the three edges incident on the root vertex un−1
of the iterated claw (Yn−1, un−1), and then join the three new vertices obtained
thereby to a new root vertex un.

Figure 1 illustrates the graph (Y3, u3).

u3
u0

z0

x0
y0 u2

x2
y2

z2
u1

z1

x1
y1

Figure 1: The rooted graph (Y3, u3).

The graph K1,3 is commonly called a claw graph, which accounts for our name iterated
claw. The notation Yn reflects the fact that a claw graph looks like the letter Y . We observe
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that Y1 ∼= K3,3. A recursion for the genus distribution of the iterated claw graphs is derived
in [6]. We observe that, whereas all of Stahl’s examples [12] of graphs with log-concave
genus distributions are planar, the sequence of iterated claws has rising minimum genus.
(Example 3.2 of [7] is another sequence of rising minimum genus. However, the graphs in
that sequence have cutpoints, unlike the iterated claws.)

We have seen in previous studies of genus distribution (especially [3]) that the number
of productions and simultaneous recursions rises rapidly with the number of roots and
the valences of the roots. The surgical operation newclaw is designed to circumvent this
problem.

For a single-rooted iterated claw (Yn, un), we can define three partial genus distribu-
tions, also called partials. Let

an,i = the number of embeddings Yn → Si such that
three different fb-walks are incident on the root un;

bn,i = the number of embeddings Yn → Si such that exactly
two different fb-walks are incident on the root un;

cn,i = the number of embeddings Yn → Si such that
one fb-walk is incident three times on the root un.

We also define partial genus polynomials to be the generating functions

An(z) =

∞∑
i=0

an,iz
i

Bn(z) =

∞∑
i=0

bn,iz
i

Cn(z) =

∞∑
i=0

cn,iz
i.

Clearly, the full genus distribution is the sum of the partials. That is, for i = 0, 1, 2, . . .,
we have

gi(Yn) = an,i + bn,i + cn,i
and

ΓYn
(z) = An(z) + Bn(z) + Cn(z).

We define gn,i = gi(Yn).

Remark 2.1. Partitioned genus distributions and recursion systems for pgds were first used
by Furst, Gross, and Statman [2]. Stahl [12] was first to employ a matrix equivalent of a
production system to investigate log-concavity.

Theorem 2.2. For n > 1, the effect on the pgd of applying the operation newclaw to the
iterated claw (Yn−1, un−1) corresponds to the following system of three productions:

ai −→ 12bi+1 + 4ci+2 (2.1)
bi −→ 2ai + 12bi+1 + 2ci+1 (2.2)
ci −→ 8ai + 8ci+1 (2.3)
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Proof. This is Theorem 4.5 of [6].

Corollary 2.3. For n > 1, the effect on the pgd of applying the operation newclaw to the
iterated claw (Yn−1, un−1) corresponds to the following recurrence relations:

an,i = 2bn−1,i + 8cn−1,i (2.4)
bn,i = 12an−1,i−1 + 12bn−1,i−1 (2.5)
cn,i = 4an−1,i−2 + 2bn−1,i−1 + 8cn−1,i−1 (2.6)

Proof. The recurrence system (2.4), (2.5), (2.6) is induced by the production system (2.1),
(2.2), (2.3).

It is convenient to express such a recurrence system in matrix form:

V (Yn) = M(z) · V (Yn−1) (2.7)

with the production matrix

M(z) =

 0 2 8
12z 12z 0
4z2 2z 8z

 . (2.8)

Since the initial graph Y0 in the sequence of iterated claws is isomorphic to the dipole D3,
the initial column vector for the sequence V (Yn) is

V (Y0) =

A0(z)
B0(z)
C0(z)

 =

 2
0
2z

 (2.9)

Proposition 2.4. The column vector V (Yn) is the product of the matrix powerMn(z) with
the column vector V (Y0).

Corollary 2.5. The column vector V (Yn) is the product of the matrix power Mn+1(z)
with the (artificially labeled) column vector

V (Y−1) =

 0
0

1/4


Corollary 2.6. To prove that every iterated claw has an LCGD, it is sufficient to prove that
the sum of the third column of the matrix Mn(z) is a log-concave polynomial.

3 Characterizing Genus Polynomials for Iterated Claws
In this section, we investigate some properties of the genus polynomials of iterated claws.
Corollary 2.6 leads us to focus on the sum of the third column of the matrix Mn(z), which
is expressible as (1, 1, 1)Mn(z)(4V (Y−1)), which implies that it equals 4 times the genus
polynomial of the iterated claw Yn−1. Theorem 3.1 formulates a generating function f(z, t)
for this sequence of sums, and Theorem 3.2 uses the generating function to construct an ex-
pression for the genus polynomials from which we establish interlacing of roots in Section
4.
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Theorem 3.1. The generating function f(z, t) =
∑

n≥0(1, 1, 1)Mn(z)(4V (Y−1))tn for
the sequence of sums of the third column of Mn(z) has the closed form

f(z, t) =
1 + (8− 12z)t− 24zt2

1− 20zt+ 8z(8z − 3)t2 + 384z3t3
. (3.1)

Proof. Let (pn, qn, rn) = (1, 1, 1)Mn(z) for all n ≥ 0. Then

(pn+1, qn+1, rn+1) = (pn, qn, rn)M(z) (3.2)

= (12zqn + 4z2rn, 2pn + 12zqn + 2zrn, 8pn + 8zrn).

The third coordinate of Equation (3.2) implies that

pn =
1

8
(rn+1 − 8zrn). (3.3)

By combining (3.3) with the first coordinate of (3.2) we obtain

qn =
1

96z
(rn+2 − 8zrn+1 − 32z2rn). (3.4)

The second coordinate of (3.2) yields

qn+1 = 2pn + 12zqn + 2zrn (3.5)

Substituting (3.3) and (3.4) (twice) into (3.5) leads to the recurrence relation

rn = 20zrn−1 + 8z(3− 8z)rn−2 − 384z3rn−3 (3.6)

with
r0 = 1,

r1 = 8 + 8z,

r2 = 160z + 96z2.

(3.7)

By multiplying Recurrence (3.6) by tn and summing over all n ≥ 0, we obtain Generating
Function (3.1).

It is easy to see that ΓYn
(z) = rn+1/4, where rn is defined in the proof of Theorem 3.1.

In terms of ΓYn
(z), the recurrence relation (3.6) becomes

ΓYn
(z) = 20zΓYn−1

(z) + 8z(3− 8z)ΓYn−2
(z)− 384z3ΓYn−3

(z). (3.8)

Theorem 3.2 provides an explicit expression for the genus polynomial ΓYn(z), a result is
of independent interest. It is not used here toward proof of log-concavity.

Theorem 3.2. The genus polynomial of the iterated claw Yn is given by

(1, 1, 1)Mn+1(z)V (Y−1) = 2n−1(hn+1(z) + 2(2− 3z)hn(z)− 6zhn−1(z)),
where

hn(z) =
∑

2j+i1+i2+i3=n

(
j + i1
i1

)(
j + i2
i2

)(
j + i3
i3

)
(1 +

√
3)i2(1−

√
3)i33j+i1(2z)n−j .
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Proof. By Theorem 3.1, we have

f(z, t) =
∑
n≥0

(1, 1, 1)Mn(4V (Y0))tn =
1 + (8− 12z)t− 24zt2

1− 20zt+ 8z(8z − 3)t2 + 384z3t3
.

Thus,

f(z/2, t/2) =
1 + (4− 3z)t− 3zt2

1− 5zt+ z(4z − 3)t2 + 6z3t3

=
1 + (4− 3z)t− 3zt2

(1− 2zt− 2z2t2)(1− 3zt)− 3zt2

=
∑
j≥0

(1 + (4− 3z)t− 3zt2)3jzjt2j

(1− 3zt)j+1(1 +
√

3zt)j+1(1−
√

3zt)j+1
.

Using the combinatorial identity (1 − at)−m =
∑

j≥0
(
m−1+j

j

)
ajtj , and then finding the

coefficient of tn, we derive the equation

(1, 1, 1)Mn(z/2)V (Y0) = 2n−2(hn(z) + 2(2− 3z)hn−1(z)− 6zhn−2(z)),

which, by Corollary 2.5, completes the proof.

Now let gn,i be the coefficient of zi in ΓYn
(z). The following table of values of gn,i

for n ≤ 4 is derived in [6].

gn,i i = 0 1 2 3 4 5

n = 0 2 2 0 0 0 0
1 0 40 24 0 0 0
2 0 48 720 256 0 0
3 0 0 1920 11648 2816 0
4 0 0 1152 52608 177664 30720

Denote by Ps,t the set of polynomials of the form
∑t

k=s akz
k, where ak is a positive

integer for any s ≤ k ≤ t. The above table suggests that ΓYn
(z) ∈ Pb(n+1)/2c, n+1 for

n ≤ 4. Theorem 3.3 shows that it holds true in general. Like Theorem 3.2, this enumerative
result is of independent interest and is not used toward proof of log-concavity.

Theorem 3.3. For all n ≥ 0, the polynomial ΓYn
(z) ∈ Pb(n+1)/2c, n+1. Moreover, we

have the leading coefficient

gn,n+1 = 4n
b(n+1)/2c∑

k=0

(
n+ 2

2k + 1

)
3k, (3.9)

and, for any number i such that b(n+ 1)/2c+ 1 ≤ i ≤ n, we have

gn,i > 11gn−1,i−1. (3.10)
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Proof. We see in the table above, for n ≤ 4, that γmin(Yn) = b(n + 1)/2c and that
γmax(Yn) = n + 1, or equivalently, that ΓYn

(z) ∈ Pb(n+1)/2c, n+1. We see also, for
n ≤ 4, that Equation (3.9) and Inequality (3.10) are true. Now suppose that n ≥ 5. For
convenience, let gk,i = 0 for all i < 0. We can also take gk,i = 0 for i > k + 1, by
induction using (3.8), for k < n. From Recurrence (3.8) and the induction hypothesis, we
have

gn,i = 20gn−1,i−1 + 24gn−2,i−1 − 64gn−2,i−2 − 384gn−3,i−3, n ≥ 3. (3.11)

For i > n+ 1, the induction hypothesis implies that each of the four terms on the right
side of Recurrence (3.11) is zero-valued. So the degree of ΓYn(z) is at most n + 1. Let
si = gi,i+1. Taking i = n+ 1 in (3.11), we get

sn = 20sn−1 − 64sn−2 − 384sn−3, (3.12)

with the initial values s0 = 2, s1 = 24, s2 = 256. The above recurrence can be solved
by a standard generating function method, see [15, p.8]. In practice, we use the command
rsolve in the software Maple and get the explicit formula directly as

sn = 4n
∑
k≥0

(
n+ 2

2k + 1

)
3k.

It follows that gn,n+1 > 0. Hence the degree of ΓYn
(z) is exactly n+ 1.

Similarly, for i < b(n + 1)/2c, the four terms on the right side of (3.11) are zero-
valued, so the minimum genus of Yn is at least b(n + 1)/2c. Moreover, applying (3.11)
with i = b(n+ 1)/2c and using the induction hypothesis gk,i = 0 for all i < b(k + 1)/2c
with k < n, we find the first term is positive for n odd and zero for n even, the second term
is always positive, and the third and fourth terms are always zero. In other words,

gn,b(n+1)/2c = 20gn−1,b(n+1)/2c−1 + 24gn−2,b(n+1)/2c−1 ≥ 24gn−2,b(n+1)/2c−1 > 0.

This confirms the minimum genus of Yn is exactly b(n+ 1)/2c.
Now consider i such that b(n + 1)/2c + 1 ≤ i ≤ n. By (3.11), and using (3.10)

inductively, we deduce

gn,i = 11gn−1,i−1 + 24gn−2,i−1 + (9gn−1,i−1 − 64gn−2,i−2 − 384gn−3,i−3)

> 11gn−1,i−1 + 24gn−2,i−1 + (35gn−2,i−2 − 384gn−3,i−3)

> 11gn−1,i−1 + 24gn−2,i−1 + gn−3,i−3

≥ 11gn−1,i−1.

So Inequality (3.10) holds true. It follows that gn,i > 0. Hence

ΓYn
(z) ∈ Pb(n+1)/2c,n+1.

This completes the proof.
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4 Genus Polynomials for Iterated Claws are Real-Rooted
Our goal in this section is to establish in Theorem 4.3 the real-rootedness of the genus
polynomials ΓYn(z) of the iterated claws, via an associated sequenceWn(z) of normalized
polynomials. It follows from this real-rootedness that the genus polynomials for iterated
claws are log-concave, by the following theorem of Newton.

Theorem 4.1 (Newton’s theorem). Let a0, a1, . . . , an be real numbers and let all the roots
of the polynomial

P (x) =

n∑
j=0

aix
i

be real. Then a2j ≥ aj−1aj+1 for j = 1, . . . , n− 1.
Proof. For instance, see Theorem 2 of [13].

To proceed, we “normalize” the polynomials ΓYn
(z) by defining

Wn(z) = z−b(n+1)/2cΓYn(z), (4.1)

so that Wn(z) starts from a non-zero constant term, and has the same non-zero roots as
ΓYn

(z). We use the symbol dn to denote the degree of Wn(z), that is,

dn = degWn(z) = (n+ 1)−
⌊
n+ 1

2

⌋
=

⌈
n+ 1

2

⌉
. (4.2)

By Theorem 3.3, we have Wn(z) ∈ P0,dn
. Substituting (4.1) into the recurrence rela-

tion (3.8), we derive

Wn(z) =

{
20zWn−1(z) + 8(3− 8z)Wn−2(z)− 384z2Wn−3(z), if n is even,
20Wn−1(z) + 8(3− 8z)Wn−2(z)− 384zWn−3(z), if n is odd,

(4.3)
with the initial polynomials

W0(z) = 2(1 + z),

W1(z) = 8(5 + 3z),

W2(z) = 16(3 + 45z + 16z2).

(4.4)

Let P denote the union ∪n≥0P0,n = ∪n≥0{
∑n

k=0 akz
k | ak ∈ Z+}. Lemma 4.2 is

ultimately a consequence of the intermediate value theorem.

Lemma 4.2. Let P (x), Q(x) ∈ P . Suppose that P (x) has roots x1 < x2 < · · · < xdegP ,
and that Q(x) has roots y1 < y2 < · · · < ydegQ. If degQ − degP ∈ {0, 1} and if the
roots interlace so that

x1 < y1 < x2 < y2 < · · · ,

then

(−1)i+degPP (yi) > 0 for all 1 ≤ i ≤ degQ, (4.5)

(−1)j+degQQ(xj) < 0 for all 1 ≤ j ≤ degP . (4.6)
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Proof. Since P (x) is a polynomial with positive coefficients, we have

(−1)degPP (−∞) > 0. (4.7)

We suppose first that degP (x) is odd, and we consider the curve P (x). We see that In-
equality (4.7) reduces to P (−∞) < 0. Thus, the curve P (x) starts in the lower half plane
and intersects the x-axis at its first root, x1. From there, the curve P (x) proceeds with-
out going below the x-axis, until it meets the second root, x2. Since x1 < y1 < x2, we
recognize that (4.5) holds for i = 1, i.e.,

P (y1) > 0. (4.8)

After passing through x2, the curve P (x) stays below the x-axis up to the third root, x3. It is
clear that the curve P (x) continues going forward, intersecting the x-axis in this alternating
way. It follows from this alternation that

P (yk)P (yk+1) < 0 for all 1 ≤ k ≤ degQ− 1. (4.9)

From (4.8) and (4.9), we conclude that (4.5) holds for all 1 ≤ i ≤ degQ, when degP (x)
is odd.

We next suppose that degP (x) is even. In this case, we can draw the curve P (x) so
that it starts in the upper half plane, first intersects the x-axis at x1, then goes below the
axis up to x2, and continues alternatingly. Therefore the sign-alternating relation (4.9) still
holds. Since P (y1) < 0 when degP (x) is even, we have proved (4.5).

It is obvious that Inequality (4.6) can be shown along the same line. This completes the
proof of Lemma 4.2.

Now we proceed with our main theorem on the genus polynomial of iterated claws.
Beyond proving real-rootedness of the genus polynomials, we derive two interlacing rela-
tionships on their roots.

Theorem 4.3. For every n ≥ 0, the polynomial Wn(z) is real-rooted. Moreover, if the
roots of Wk(z) are denoted by xk,1 < xk,2 < · · · , then we have the following interlacing
properties:

(i) for every n ≥ 2, the polynomial Wn(z) has one more root than Wn−2(z), and the
roots interlace so that

xn,1 < xn−2,1 < xn,2 < xn−2,2 < · · · < xn,dn−1 < xn−2,dn−1 < xn,dn
;

(ii) for every n ≥ 1, the polynomial Wn(z) has either one more (when n is even) or the
same number (when n is odd) of roots as Wn−1(z), and the roots interlace so that

xn,1 < xn−1,1 < xn,2 < xn−1,2 < · · · < xn−1,dn−1 < xn,dn
when n even;

and

xn,1 < xn−1,1 < xn,2 < xn−1,2 < · · · < xn,dn
< xn−1,dn

when n odd.
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Proof. From the initial polynomials (4.4), it is easy to verify Theorem 4.3 for n ≤ 2. We
suppose that n ≥ 3 and proceed inductively.

For every k ≤ n− 1, we denote the roots of Wk(z) by xk,1 < xk,2 < · · · < xk,dk
. For

convenience, we define xk,0 = −∞ and xk,dk+1 = 0, for all k ≤ n − 1. To clarify the
interlacing properties, we now consider the signs of the function Wm(z) at −∞ and at the
origin, for any m ≥ 0. Since Wm(z) is a polynomial of degree dm, with all coefficients
non-negative, we deduce that

(−1)dmWm(−∞) > 0. (4.10)

Having the constant term positive implies that

Wm(0) = gn,0 > 0. (4.11)

By the intermediate value theorem and Inequality (4.10), for the polynomial Wn(z) to
have dn = degWn(z) distinct negative roots and for Part (i) of Theorem 4.3 to hold, it is
necessary and sufficient that

(−1)dn+jWn(xn−2,j) > 0 for 1 ≤ j ≤ dn−2 + 1. (4.12)

In fact, for j = dn−2 + 1, Inequality (4.12) becomes

(−1)dn+dn−2+1Wn(0) > 0. (4.13)

By (4.11), Inequality (4.13) holds if and only if dn + dn−2 is odd, which is true since

dn + dn−2 =

⌈
n+ 1

2

⌉
+

⌈
n− 1

2

⌉
= 2

⌈
n− 1

2

⌉
+ 1.

Now consider any j such that 1 ≤ j ≤ dn−2. We are going to prove (4.12). We will
use the particular indicator function Ieven, which is defined by

Ieven(n) =

{
1, if n is even,
0, if n is odd.

Note that xn−2,j is a root of Wn−2(z). By Recurrence (4.3), we have

Wn(zn−2,j) = x
Ieven(n)
n−2,j

(
20Wn−1(xn−2,j)− 384xn−2,jWn−3(xn−2,j)

)
. (4.14)

Since xn−2,j < 0, the factor xIeven(n)n−2,j contributes (−1)n+1 to the sign of the right hand
side of (4.14). On the other hand, it is clear that the sign of the parenthesized factor can be
determined if both the summands 20Wn−1(xn−2,j) and −384xn−2,jWn−3(xn−2,j) have
the same sign. Therefore, Inequality (4.12) holds if

(−1)dn+j+n+1Wn−1(xn−2,j) > 0, (4.15)

(−1)dn+j+n+1Wn−3(xn−2,j) > 0. (4.16)

By the induction hypothesis on part (ii) of this theorem, we can substitute P = Wn−1
and Q = Wn−2 into Lemma 4.2. Then Inequality (4.5) gives

(−1)dn−1+jWn−1(xn−2,j) > 0. (4.17)
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Thus, Inequality (4.15) holds if and only if the total power

dn + j + n+ 1 + dn−1 + j =

⌈
n+ 1

2

⌉
+

⌈
n

2

⌉
+ n+ 2j + 1

of (−1) in (4.15) and (4.17) is even, which is clear by a simple parity argument. More-
over, again using the induction hypothesis on part (ii), we can make substitutions P (x) =
Wn−2(x) and Q(x) = Wn−3(x) into Lemma 4.2. Then Inequality (4.6) gives

(−1)dn−3+jWn−3(xn−2,j) < 0. (4.18)

Thus, Inequality (4.16) holds if and only if the total power

dn + j + n+ 1 + dn−3 + j =

⌈
n+ 1

2

⌉
+

⌈
n− 2

2

⌉
+ n+ 2j + 1 (4.19)

of (−1) in (4.16) and (4.18) is odd, which is also clear by a simple parity argument. This
completes the proof of (4.12), and the proof of Part (i).

The approach to proving Part (ii) is similar to that used to prove Part (i). By the inter-
mediate value theorem and Inequality (4.10), Part (ii) holds if and only if

(−1)dn+jWn(xn−1,j) > 0 for 1 ≤ j ≤ dn−1, (4.20)

and also for j = dn−1 + 1 when n is even. In fact, when n is even and j = dn−1 + 1, we
have

(−1)dn+dn−1+1Wn(0) > 0. (4.21)

By (4.11), Inequality (4.21) holds if and only if (−1)dn+dn−1+1 = 1, which is clear since

dn + dn−1 + 1 =

⌈
n+ 1

2

⌉
+

⌈
n

2

⌉
+ 1 = n+ 2.

For 1 ≤ j ≤ dn−1, we are now going to show (4.20). By setting x = xn−1,j , Recur-
rence (4.3) turns into

Wn(xn−1,j) = 8(3− 8xn−1,j)Wn−2(xn−1,j)− 384x
1+Ieven(n)
n−1,j Wn−3(xn−1,j). (4.22)

Since xn−1,j < 0, we see that 8(3−8xn−1,j) > 0, and that the factor−384x
1+Ieven(n)
n−1,j con-

tributes (−1)n+1 to the sign of the right-hand side of (4.22). Therefore, Inequality (4.20)
holds if

(−1)dn+jWn−2(xn−1,j) > 0, (4.23)

(−1)dn+j+n+1Wn−3(xn−1,j) > 0. (4.24)

Substituting P (x) = Wn−1(x) and Q(x) = Wn−2(x) into Lemma 4.2, we find that
Inequality (4.6) yields

(−1)dn−2 + jWn−2(xn−1,j) < 0 when 1 ≤ j ≤ dn−1. (4.25)

Thus, Inequality (4.23) holds if and only if the total power

dn + j + dn−2 + j =

⌈
n+ 1

2

⌉
+

⌈
n− 1

2

⌉
+ 2j
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of (−1) in (4.23) and (4.25) is odd, which holds true, obviously, by parity. On the other
hand, by the induction hypothesis on Part (i) and substituting P (x) = Wn−1(x) and
Q(x) = Wn−3(x) into Lemma 4.2, Inequality (4.6) becomes

(−1)dn−3+jWn−3(xn−1,j) < 0. (4.26)

Therefore, Inequality (4.24) holds if and only if the total power dn + j+n+ 1 + dn−3 + j
of (−1) in (4.24) and (4.26) is odd, which coincides with (4.19). This completes the proof
of (4.20), ergo the proof of Part (ii), and hence the entire theorem.

Corollary 4.4. The sequence of coefficients for every genus polynomial ΓYn
(z) is log-

concave.
Proof. Recalling Equation (4.1), we have

ΓYn(z) = zb(n+1)/2cWn(z).

By Theorem 4.3, we know that the polynomial Wn(z) is real-rooted. It follows that the
polynomial ΓYn

(z) is real-rooted. Applying Theorem 4.1 (Newton’s theorem), we know
that the polynomial ΓYn

(z) is log-concave.

5 On Real-Rootedness
In the study of genus polynomials, the role of real-rootedness may rise beyond being a
sufficient condition for log-concavity. The introductory section presents two basic research
problems specifically on real-rootedness. One may reasonably anticipate that continuing
study of the roots of genus polynomials will lead to new insights into the imbeddings of
graphs.
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Abstract

In 2014, Xu and Du classified all regular covers of a complete bipartite graph Kn,n

minus a matching, denoted by Kn,n−nK2, whose covering transformation group is cyclic
and whose fibre-preserving automorphism group acts 2-arc-transitively. In this paper, a
further classification is achieved for all the regular covers of Kn,n − nK2, whose cover-
ing transformation group is isomorphic to Z2

p with p a prime and whose fibre-preserving
automorphism group acts 2-arc-transitively. Actually, there are only few covers with these
properties and it is shown that all of them are covers of K4,4 − 4K2.

Keywords: Arc-transitive graph, covering graph, 2-transitive group.

Math. Subj. Class.: 05C25, 20B25, 05E30

1 Introduction
Throughout this paper graphs are finite, simple and undirected. For the group- and graph-
theoretic terminology we refer the reader to [15, 17]. For a graph X , let V (X), E(X),
A(X) and AutX denote the vertex set, edge set, arc set and the full automorphism group
of X respectively. An edge and an arc of X are denoted by {u, v} and (u, v), respectively.
An s-arc of X is a sequence (v0, v1, . . . , vs) of s+ 1 vertices such that (vi, vi+1) ∈ A(X)
and vi 6= vi+2, and X is said to be 2-arc-transitive if AutX acts transitively on the set of
2-arcs of X .

Let X be a graph, and let P be a partition of V (X) into disjoint sets of equal size m.
The quotient graph Y := X/P is the graph with the vertex set P and two vertices P1 and
P2 of Y are adjacent if there is at least one edge between a vertex of P1 and a vertex of
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P2 in X . We say that X is an m-fold cover of Y if the edge set between P1 and P2 in X
is a matching whenever P1P2 ∈ E(Y ). In this case Y is called the base graph of X and
the sets Pi are called the fibres of X . An automorphism of X which maps a fibre to a fibre
is said to be fibre-preserving. The subgroup K of all those automorphisms of X which fix
each of the fibres setwise is called the covering transformation group. It is easy to see that
if X is connected then the action of K on the fibres of X is necessarily semiregular, that
is, Kv = 1 for each v ∈ V (X). In particular, if this action is regular we say that X is a
regular cover of Y.

The main motivation for the present paper is to contribute toward the classification of
finite 2-arc-transitive graphs. In [23, Theorem 4.1], Professor Praeger divided all the finite
2-arc-transitive graphs X into the following three subclasses:

(1) Quasiprimitive type: every nontrivial normal subgroup of AutX acts transitively on
vertices;

(2) Bipartite type: every nontrivial normal subgroup of AutX has at most two orbits
on vertices and at least one of them has two orbits on vertices;

(3) Covering type: there exists a normal subgroup of AutX having at least three orbits
on vertices, and thus X is a regular cover of some graphs of types (1) or (2).

During the past twenty years, a lot of results regarding the primitive, quasiprimitive
and bipartite 2-arc-transitive graphs have appeared [11, 18, 19, 20, 23, 24]. However, very
few results concerning the 2-arc-transitive covers are known, except for some covers of
graphs with small valency and small order. The first meaningful class of graphs to be
studied might be complete graphs. In [7], a classification of covers of complete graphs
is given, whose fibre-preserving automorphism groups act 2-arc-transitively and whose
covering transformation group is either cyclic or Z2

p. This classification is generalized in
[8] to covering transformation group Z3

p. In [26], the same problem as in [7] and [8] is
considered, but the covering transformation group considered is metacyclic.

As for covers of bipartite type, in [25], all regular covers of complete bipartite graph
minus a matching Kn,n − nK2 were classified, whose covering transformation group is
cyclic and whose fibre-preserving automorphism group acts 2-arc-transitively. In this pa-
per, we consider the same base graphs while the covering transformation group is Z2

p with
p a prime. Remarkably, we shall show that all the regular covers with these properties are
just covers of K4,4 − 4K2.

Note that to classify regular covers of given graphs such as Kn and Kn,n, whose cov-
ering transformation group is an elementary group Zkp and whose fibre-preserving auto-
morphism group acts 2-arc-transitively is a very difficult task. Essentially, it is related to
the group extension theory, the group representation theory and other specific branches of
group theory. We believe that the classification of all such covers for all the values k is
almost not feasible. Therefore, the first step might be to study the problem for small values
k and to construct some new interesting covers.

Except for the graph Kn,n − nK2, another often considered graph is the complete
bipartite graph Kn,n. In further research, we shall focus on the 2-arc-transitive regular
elementary abelian covers of this graph. For further reading on the topic of covers, see
[4, 5, 9, 13, 14, 22].

A cover of a given graph can be derived through a voltage assignment, see Gross and
Tucker [15, 16]. Let Y be a graph and K a finite group. A voltage assignment (or, K-
voltage assignment) on the graph Y is a function f : A(Y ) → K with the property that
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f(u, v) = f(v, u)
−1 for each (u, v) ∈ A(Y ). The values of f are called voltages, and K is

called the voltage group. The derived graph Y ×f K from a voltage assignment f has for
its vertex set V (Y )×K, and its edge set

{{(u, g), (v, f(v, u)g)}
∣∣ {u, v} ∈ E(Y ), g ∈ K}.

By the definition, the derived graph Y ×f K is a covering of the graph Y with the first
coordinate projection p : Y ×f K → Y, which is called the natural projection and with the
covering transformation group isomorphic to K. Conversely, each connected regular cover
X of Y with the covering transformation group K can be described by a derived graph
Y ×f K from some voltage assignment f . Moreover, the voltage assignment f naturally
extends to walks in Y. For any walk W of Y , let fW denote the voltage of W . Finally, we
say that an automorphism α of Y lifts to an automorphism α of X if αp = pα, where p is
the covering projection from X to Y .

Before stating the main result, we first introduce a family of derived graphs. Let Y =
K4,4 − 4K2 with the bipartition V (Y ) = {a, b, c, d} ∪ {w, x, y, z} as shown in Figure (a),
and fix a spanning tree T of K4,4 − 4K2 as shown in Figure (b). Identify the elementary
group Z2

p with the 2-dimensional linear vector space over Fp. Then we define a family of
derived graphs X(p) := (K4,4 − 4K2)×φ Z2

p with voltage assignment φ such that

φ(b, y) = (1, 0), φ(c, w) = φ(d,w) = φ(d, x) = (0, 1), φ(c, x) = (1, 1)

and φ(u, v) = 0 for any tree arc (u, v).
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Figure (a): the graph K4,4 − 4K2; (b): a spanning tree T of K4,4 − 4K2.

The following theorem is the main result of this paper.

Theorem 1.1. Let X be a connected regular cover of the complete bipartite graph minus a
matching Kn,n − nK2 (n ≥ 3), whose covering transformation group K is isomorphic to
Z2
p with p a prime and whose fibre-preserving automorphism group acts 2-arc-transitively.

Then n = 4 and X is isomorphic to X(p).

2 Preliminaries
In this section we introduce some preliminary results needed in Section 3.

The first result may be deduced from the classification of doubly transitive groups (see
[2] and [3, Corollary 8.3]).

Proposition 2.1. Let G be a 3-transitive permutation group of degree at least 4. Then one
of the following occurs.
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(i) G ∼= S4;
(ii) soc(G) is 4-transitive;

(iii) soc(G) ∼= M22 or A5, which are 3-transitive but not 4-transitive;
(iv) PSL(2, q) ≤ G ≤ PΓL(2, q), where the projective special linear group PSL(2, q)

is the socle of G which does not act 3-transitively, and G acts on the projective
geometry PG(1, q) in a natural way, having degree q + 1, with q ≥ 5 an odd prime
power;

(v) G ∼= AGL(m, 2) with m ≥ 3;
(vi) G ∼= Z4

2 oA7 < AGL(4, 2).

Let G be a finite group and H be a proper subgroup of G, and let D = D−1 be inverse-
closed union of some double cosets ofH inG\H. Then the coset graphX = X(G;H,D)
is defined by taking V (X) = {Hg

∣∣ g ∈ G} as the vertex set and E(X) = {{Hg1, Hg2}
∣∣

g2g
−1
1 ∈ D} as the edge set. By the definition, the size of V (X) is the number of right

cosets of H in G and its valency is |D|/|H|. It follows that the group G in its coset action
by right multiplication on V (X) is transitive, and the kernel of this representation of G is
the intersection of all the conjugates of H in G. If this kernel is trivial, then we say the
subgroup H is core-free. In particular, if H = 1, then we get a Cayley graph. Conversely,
each vertex-transitive graph is isomorphic to a coset graph (see [21]).

Let G be a group, let L and R be subgroups of G and let D be a union of double cosets
ofR and L inG, namely, D =

⋃
iRdiL. By [G : L] and [G : R], we denote the set of right

cosets of G relative to L and R, respectively. Define a bipartite graph X = B(G,L,R;D)
with bipartition V (X) = [G : L] ∪ [G : R] and edge set E(X) = {{Lg,Rdg}

∣∣ g ∈
G, d ∈ D}. This graph is called the bicoset graph of G with respect to L, R and D (see
[10]).

Proposition 2.2. ([10, Lemmas 2.3, 2.4])

(i) The bicoset graph X = B(G,L,R;D) is connected if and only if G is generated by
elements of D−1D.

(ii) Let Y be a bipartite graph with bipartition V (Y ) = U(Y ) ∪W (Y ), let G be a
subgroup of Aut (Y ) acting transitively on both U and W , let u ∈ U(Y ) and w ∈
W (Y ), and set D = {g ∈ G

∣∣ wg ∈ Y1(u)}, where Y1(u) is the neighborhood of u.
ThenD is a union of double cosets ofGw andGu inG, and Y ∼= B(G,Gu, Gw;D).
In particular, if {u,w} ∈ E(Y ) and Gu acts transitively on its neighborhood, then
D = GwGu.

Proposition 2.3. ([17, Satz 4.5]) LetH be a subgroup of a groupG. Then CG(H) is a nor-
mal subgroup of NG(H) and the quotient NG(H)/CG(H) is isomorphic with a subgroup
of AutH .

Let G be a group and N a subgroup of G. If there exists a subgroup H of G such that
G = NH and N ∩H = 1, then the subgroup H is called a complement of N in G. The
following proposition is due to Gaschütz.

Proposition 2.4. ([17, Satz 17.4]) Let G be a finite group. Let A and B be two subgroups
of G such that A is abelian normal in G, A ≤ B ≤ G and (|A|, |G : B|) = 1. If A has a
complement in B, then A has a complement in G.
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Proposition 2.5. ([7, Lemma 2.7]) If p is a prime, then the general linear group GL(2, p)
does not contain a nonabelian simple subgroup.

A central extension of a group G is a pair (H,π) where H is a group and π : H →
G is a surjective homomorphism with ker(π) ≤ Z(H). A central extension (G̃, π) of
G is universal if for each central extension (H,σ) of G there exists the unique group
homomorphism α : G̃ → H with π = ασ. If G is a perfect group, namely G′ = G,
then up to isomorphism, G has the unique universal central extension, say (G̃, π), (see [1,
pp.166-167]). In this case, G̃ is called the universal covering group of G and ker(π) the
Schur multiplier of G.

Proposition 2.6. ([6, page xv]) The Schur multiplier of the simple group PSL(2, q) is Z2

for q 6= 9, and Z6 for q = 9.

The following proposition is quoted from [9].

Proposition 2.7. ([9, Lemma 2.5]) Let Y be a graph and let B be a set of cycles of Y
spanning the cycle space CY of Y . If X is a cover of Y given by a voltage assignment f
for which each C ∈ B is trivial, then X is disconnected.

3 Proof of Theorem 1.1
Now we prove Theorem 1.1. Let U = {1, 2, · · · , n} and W = {1′, 2′, · · · , n′}. Set
Y = Kn,n − nK2 (n ≥ 3) with the vertex set V (Y ) = U ∪W and edge set E(Y ) =
{{i, j′}

∣∣ i 6= j, i, j = 1, 2 · · · , n}. Let X be a cover of Y with the covering projection
φ : X → Y and the covering transformation group K ∼= Z2

p, where p is a prime.
Suppose that n = 3. Then Y is a 6-cycle and there is only one cotree arc. Since X is

assumed to be connected, all the voltage assigned to the cotree arcs in Y should generate
K. It means that K is a cyclic group, a contradiction.

Suppose that n = 4. In [12, Theorem 4.1], all regular covers of K4,4 − 4K2 were
classified, whose covering transformation group K is either cyclic or elementary abelian,
and whose fibre-preserving automorphism group acts arc-transitively. Among them, X(p)
is the unique cover whenK ∼= Z2

p and the fibre-preserving automorphism group acts 2-arc-
transitively.

In what follows, we will assume n ≥ 5. Since our aim is to find the covers of Y
whose fibre-preserving automorphism group acts 2-arc-transitively, this group module the
covering transformation group K should be isomorphic to a 2-arc-transitive subgroup of
AutY , in other word, there exists a 2-arc-transitive subgroup of AutY to be lifted. Now,
let A ≤ AutY be a 2-arc-transitive subgroup, and let G ≤ A be the corresponding index
2 subgroup of A fixing U and W setwise. Let Ã and G̃ be the respective lifts of A and G.
Clearly, Aut (Y ) = Sn × 〈σ〉, where σ is the involution exchanging every pair i and i′.

Now, we show that G has a faithful 3-transitive representation on the two biparts of Y .
Take arbitrary two different triples {u1, v1, w1} and {u2, v2, w2} with ui, vi, wi ∈ U and
i ∈ {1, 2}. Since (u1, v

′
1, w1) and (u2, v

′
2, w2) are both 2-arcs, and since A acts 2-arc-

transitively on Y , there exists an element g ∈ A such that (u1, v
′
1, w1)g = (u2, v

′
2, w2),

noting that v′g1 = v′2 implying vg1 = v2. Moreover, it is obvious that g fixes two biparts set-
wise so that g ∈ G. So G acts 3-transitively on U . By the symmetry, G acts 3-transitively
on another bipart. Therefore, G should be one of the 3-transitive groups listed in Proposi-
tion 2.1. Since n ≥ 5, we conclude the following four cases from Proposition 2.1:
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(1) either soc(G) is 4-transitive or soc(G) ∼= M22;

(2) n = 5 and soc(G) = A5;

(3) soc(G) = PSL(2, q) with q ≥ 5;

(4) G is of affine type, that is the last two cases of Proposition 2.1.

To prove the theorem, we shall prove the non-existence for the above four cases separately
in the following subsections.

3.1 Either soc(G) is 4-transitive or soc(G) ∼= M22

Lemma 3.1. There exist no regular covers X of Kn,n − nK2, whose fibre-preserving
automorphism group acts 2-arc-transitively and whose covering transformation group is
isomorphic to Z2

p with p a prime, such that either soc(G) acts 4-transitively on two biparts
or soc(G) ∼= M22.

Proof. Suppose that G has a nonabelian simple socle T := soc(G) which is either 4-
transitive or isomorphic to M22. Let T̃ be the lift of T so that T̃ /K = T . In view of
Proposition 2.3, we have

(T̃ /K)/(CT̃ (K)/K) ∼= T̃ /CT̃ (K) ≤ Aut (K) ∼= GL(2, p). (3.1)

Since CT̃ (K)/K � T̃ /K and T̃ /K is simple, we get CT̃ (K)/K = 1 or T̃ /K. If the first
case happens, then Eq(3.1) implies that GL(2, p) contains a nonabelian simple subgroup,
which contradicts Proposition 2.5. Thus, CT̃ (K) = T̃ , that is, K ≤ Z(T̃ ). It was shown
in [9, pp.1361-1364] that the voltages on all the 4-cycles and 6-cycles of the base graph
Y are trivial, provided K ≤ Z(T̃ ) and either T is 4-transitive or T ∼= M22. Therefore,
Proposition 2.7 implies that the covering graph X is disconnected. This completes the
proof of the lemma.

3.2 n = 5 and soc(G) = A5

Lemma 3.2. Suppose that n = 5 and soc(G) = A5. Then, there are no connected graphs
X arising as regular covers of Y whose covering transformation group K is isomorphic to
Z2
p with p a prime, and whose fibre-preserving automorphism group acts 2-arc-transitively.

Proof. Since G is isomorphic to either A5 or S5, it suffices to consider the case G ∼= A5.
Let G̃ be a lift of G, that is, G̃/K = G. As in Lemma 3.1, a similar argument shows that
K ≤ Z(G̃). Set T̃ := G̃′. In what follows, we divide our proof into four steps.

Step 1: Show T̃ ∩K = 1 or Z2.

Set T̃ := G̃′. Since G′ = G, we get

T̃ /T̃ ∩K ∼= T̃K/K = (G̃/K)′ = G′ = G = G̃/K ∼= A5, (3.2)

which implies that G̃ = T̃K. As K ≤ Z(G̃), we have

T̃ = [G̃, G̃] = [T̃K, T̃K] = [T̃ , T̃ ] = T̃ ′.
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Thus, T̃ ∩ K ≤ T̃ ′ ∩ Z(T̃ ) and Eq(3.2) implies that T̃ is a proper central extension of
T̃ ∩ K by G ∼= A5. By Proposition 2.6, we know that the Schur Multiplier of A5 is Z2.
Thus, T̃ ∩K is either 1 or Z2.

Let u ∈ V (Y ) be an arbitrary vertex, and take ũ ∈ φ−1(u), where φ is the covering
projection from X to Y .

Step 2: Show D4 ≤ G̃ũ ∩ T̃ .

Now, we have G̃ũ ∼= Gu ∼= A4 and so

G̃ũ/G̃ũ ∩ T̃ ∼= G̃ũT̃ /T̃ ≤ G̃/T̃ = T̃K/T̃ ∼= K/K ∩ T̃ . (3.3)

Since G̃ũ ∩ T̃ � G̃ũ ∼= A4, it follows that G̃ũ ∩ T̃ ∼= 1, D4 or A4. If G̃ũ ∩ T̃ = 1, then
Eq(3) implies that G̃ũ ∼= A4 is isomorphic to a quotient group of K ∼= Z2

p, a contradiction.
So, we get D4 ≤ G̃ũ ∩ T̃ .

Step 3: Show T̃ ∼= A5 and G̃ = T̃ ×K.

By Step 1, we know that T̃ ∩K = 1 or Z2. If T̃ ∩K ∼= Z2, then Eq(3.2) implies that
T̃ ∼= SL(2, 5) which has the unique involution, contradicting the fact that D4 ≤ G̃ũ ∩ T̃ .
Hence, it follows that T̃ ∩K = 1, and so T̃ ∼= A5 and G̃ = T̃ ×K.

Step 4: Show the nonexistence of the covering graph X .

Suppose that

V (Y ) = {1, 2, 3, 4, 5}∪{1′, 2′, 3′, 4′, 5′} and E(Y ) = {{i, j′}
∣∣ i 6= j, 1 ≤ i, j ≤ 5}.

Since T̃ ∼= A5, we may identify T̃ with A5. In T̃ , set

x = (23)(45), y = (25)(34), z = (234), b = (15)(23).

Then, G̃F = (〈x, y〉o 〈z〉)×K, where F = φ−1(1) is the fibre over the vertex 1 ∈ V (Y ).
Take ũ ∈ F. Since D4 ≤ G̃ũ ∩ T̃ , one may deduce that D4

∼= 〈x, y〉 ≤ G̃ũ so that
L := G̃ũ = 〈x, y〉o〈zk1〉 for some k1 ∈ K. Note that G̃F = G̃F ′ , where F ′ = φ−1(1′) is
the fibre over the vertex 1′ ∈ V (Y ). Then, one may assume thatR := G̃w̃ = 〈x, y〉o〈zk2〉
for some k2 ∈K and w̃ ∈ F ′.

By Proposition 2.2, the covering graph X should be isomorphic to a bicoset graph
X ′ = B(G̃, L,R;D), where D = Rbk3L for some k3 ∈ K with two biparts:

Ũ ′ = {Lk
∣∣ k ∈ K} ∪ {Lbxiyjk ∣∣ i, j = 0, 1, k ∈ K},

W̃ ′ = {Rk
∣∣ k ∈ K} ∪ {Rbxiyjk ∣∣ i, j = 0, 1, k ∈ K}.

Moreover, X ′ should satisfy the following two conditions.

(i) d(X ′) = 4:



276 Ars Math. Contemp. 10 (2016) 269–280

Since the length of the orbit of L containing the vertex Rbk3L is 4, zk1 must fix the
vertex Rbk3, that is,

Rbk3 = Rbk3zk1 = Rbk3zk1(bk3)−1bk3 = Rzbk1bk3 =

Rz−1k−12 k2k1bk3 = Rbk3k2k1,

which implies that
k2 = k−11 . (3.4)

(ii) Connectedness property:

By Eq(4), we have

〈D−1D〉 = 〈LbRbL〉 = 〈L, Rb〉 = 〈x, y, zk1, xb, yb, zbk2〉 ≤ T̃ × 〈k1〉 6= G̃.

It follows from Proposition 2.2(i) that the bicoset graph X ′ is disconnected, which com-
pletes our proof.

3.3 G is of affine type

Lemma 3.3. Suppose that either G ∼= AGL(m, 2), where m ≥ 3 or G ∼= Z4
2 o A7 <

AGL(4, 2). Then, there are no connected graphs X arising as regular covers of Y whose
covering transformation group K is isomorphic to Z2

p with p a prime, and whose fibre-
preserving automorphism group acts 2-arc-transitively.

Proof. The arguments in both cases are exactly the same, and so here we just discuss the
first case in details. Suppose that G ∼= AGL(m, 2) ∼= Zm2 o GL(m, 2), and let G̃ be a lift
of G, namely G̃/K = G.

Since
CG̃(K)/K � G̃/K ∼= Zm2 o GL(m, 2),

it follows that CG̃(K)/K=1, Zm2 or G̃/K. By Proposition 2.3, we have

(G̃/K)/(CG̃(K)/K) ∼= G̃/CG̃(K) ≤ Aut (K) ∼= GL(2, p). (3.5)

If the first two cases happen, then Eq(3.5) implies that GL(2, p) contains a nonabelian
simple subgroup, which contradicts Proposition 2.5. Thus, CG̃(K) = G̃, that is K ≤
Z(G̃).

Let Ã be the group of fibre-preserving automorphism of X acting 2-arc-transitively.
Let Ũ and W̃ be the two biparts of X . Take a fibre F in Ũ and take a vertex ũ1 ∈ F . Set
M̃ := G̃ũ1

∼= GL(m, 2) and T̃ /K = soc(G̃/K) ∼= Zm2 . Then G̃ = T̃ o M̃ . Let F ′ denote
the unique corresponding fibre in W̃ without edges leading to F and take a vertex w̃1 ∈ F ′.
Then G̃F = G̃F ′ . Since M̃ is the unique subgroup isomorphic to GL(m, 2) in K × M̃ , it
follows that G̃w̃1

= M̃ .

First, suppose that p 6= 2. Now, G̃F = K×M̃ . Since (|G̃ : G̃F |, |K|) = (2m, p2) = 1,
by Proposition 2.4, K has a complement in G̃. So, we may suppose that G̃ = K ×
(L̃ o M̃), where L̃ ∼= Zm2 . Since G̃ is transitive on W̃ , there exists an element x ∈ G̃
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such that (ũ1, w̃
x
1 ) ∈ E(X). By Proposition 2.2(ii), X is isomorphic to a bicoset graph

B(G̃, M̃ , M̃x;D), where D = M̃M̃x. Since L̃o M̃ � G̃, we get 〈D−1D〉 = 〈M̃, M̃x〉 ≤
L̃o M̃ 6= G̃. It follows from Proposition 2.2(i) that X is disconnected.

Next, suppose that p = 2, namely K ∼= Z2 × Z2. Let F = {ũ1, ũ2, ũ3, ũ4} and
F ′ = {w̃1, w̃2, w̃3, w̃4}. Clearly, M̃ has four orbits on Ũ \F and W̃ \F ′, respectively, say

∆1, ∆2, ∆3, ∆4; ∆′1, ∆′2, ∆′3, ∆′4.

For i = 0, 1, 2, · · · , by Xi(ũ1) we denote the set of vertices of distance i from ũ1. Without
loss of generality, let X1(ũ1) = ∆′1. Since M̃ acts 2-arc-transitively on the arcs initialed
from ũ1, it follows that X2(ũ1) is an orbit of M̃ , that is, X2(ũ1) = ∆i for some i ∈
{1, 2, 3, 4}. Then X3(ũ1) = {w̃j}, for some j ∈ {1, 2, 3, 4}. Clearly, X4(ũ1) = ∅ and
therefore X is disconnected.

3.4 soc(G) = PSL(2, q) for q ≥ 5

In this subsection, identify V (Y ) with two copies of the projective line PG(1, q).

Lemma 3.4. Suppose that PSL(2, q) ≤ G ≤ PΓL(2, q), where q = rl ≥ 5 is an odd
prime power. Then, there are no connected graphs X arising as regular covers of Y whose
covering transformation group K is isomorphic to Z2

p with p a prime, and whose fibre-
preserving automorphism group acts 2-arc-transitively.

Proof. Let G̃ be the lift of G so that G̃/K = G. Since PΓL(2, q)′ = PSL(2, q) and
PSL(2, q) ≤ G ≤ PΓL(2, q), we have G′ = PSL(2, q). Hence, G̃ is insolvable and there
exists a positive integer m such that G̃(m) = G̃(m+1). Suppose that T̃ = G̃(m), it follows
that

T̃ /T̃ ∩K ∼= T̃K/K = G̃(m)K/K = (G̃/K)(m) = G(m) ∼= PSL(2, q). (3.6)

Therefore, T̃K/K is simple and so (T̃K/K) ∩ (CG̃(K)/K) = 1 or T̃K/K.
Again, by Proposition 2.3 and 2.5, we have T̃K/K ≤ CG̃(K)/K, implying that T̃ ∩

K ≤ Z(T̃ ). Thus, by Eq(3.6), T̃ is a proper central extension of T̃ ∩K by PSL(2, q). In
viewing of Proposition 2.6, the Schur Multiplier of PSL(2, q) is either Z2 for q 6= 9 or Z6

for q = 9.
It is obvious that T̃ ∩K ∼= 1 or Z2 for q 6= 9. Next, we show it is also true for q = 9.

Assume, the contrary, that T̃ ∩ K ∼= Z3 for q = 9. Since T̃K/K ∼= PSL(2, 9), we get
(T̃K)ũ ∼= Z2

3 o Z4. Let Z2
3
∼= H̃ ≤ (T̃K)ũ. As H̃ ∩K = 1 and (|T̃K : H̃K|, |K|) = 1,

it follows from Proposition 2.4 that K has a complement in T̃K, say Ñ . Thus, T̃K =
K × Ñ ∼= Z2

3 × PSL(2, 9). Since [K, T̃ ] = 1, one may get

Ñ = Ñ ′ = (T̃K)′ = [T̃K, T̃K] = [T̃ , T̃ ] = T̃ ′ = T̃ ,

contradicting T̃ ∩ K = Z3. Therefore we have either T̃ ∩ K = 1 or T̃ ∩ K = Z2. In
what follows, we discuss these two cases respectively. Set M̃ := T̃K so that M̃/K ∼=
PSL(2, q).

Case 1: T̃ ∩K = 1
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In this case, we have M̃ = T̃ × K and T̃ ∼= PSL(2, q), and we shall identify T̃ with
PSL(2, q). In PSL(2, q), set

ti =

(
1 i
0 1

)
, x =

(
θ 0
0 θ−1

)
, y =

(
0 1
−1 0

)
.

where F∗q = 〈θ〉 and i ∈ Fq . Let Q = 〈ti
∣∣ i ∈ Fq〉 ∼= Zlr and Q̃ ≤ T̃ be the lift of Q.

Acting on PG(1, q), set H := (PSL(2, q))∞ = Qo 〈x〉 and the points i ∈ PG(1, q) \ {∞}
correspond to the cosets Hyti.

Take ũ ∈ φ−1(∞) and set H̃ := M̃ũ. Since H̃ is a lift of H , we may assume that
H̃ = Q̃1 o 〈xk1〉 for some k1 ∈ K, and Q̃1 ≤ Q̃×K. Actually, we are showing Q̃1 = Q̃
below.

Suppose that Q̃ 6= Q̃1, it follows that p = r. Then, there exist two nontrivial elements
c1 ∈ Q̃ and k ∈ K such that c1k ∈ Q̃1. Moreover, we have |Q̃1 ∩ Q̃| ≥ rl−2.

If l > 2, then there exists a nontrivial element c2 ∈ Q̃1 ∩ Q̃. Since 〈x〉 has two orbits
both with length q−1

2 on Q\{1} by conjugacy action, 〈xk1〉 has the same property on Q̃1 \
{1}, whose two orbits should be B1 := {(c1k)〈xk1〉} = {c〈xk1〉1 k} and B2 := {c〈xk1〉2 }.
Therefore, Q̃1 = B1 ∪ B2 ∪ {1}. Noting r ≥ 3, the inverse (c1k)−1 of c1k ∈ Q̃1 is not
contained in B1 ∪B2 ∪ {1}, a contradiction.

If l = 1, then we get Q̃1 ∩ Q̃ = 1. As q = rl = r ≥ 5, there exist two nontrivial
elements c2 ∈ Q̃ and k′ ∈ K such that c2k′ ∈ Q̃1. Again, Q̃1 = {c〈xk1〉1 k} ∪ {c〈xk1〉2 k′} ∪
{1}. Since p = r ≥ 5, take ks ∈ K \{1, k, k′} for some integer s. Then, (c1k)s = c1

sks ∈
Q̃1 is neither contained in {c〈xk1〉1 k} nor in {c〈xk1〉2 k′}, a contradiction.

If l = 2 and r ≥ 5, we shall have the same discussion as in the case l = 1. Now, we
only need to consider l = 2 and r = 3, that is, q = rl = 9. Since c1k ∈ Q̃1, it is easy to
check that

(xk1)−1(c1k)(xk1) = cx1k = c−11 k ∈ {(c1)〈xk1〉k} ⊂ Q̃1.

Hence, 1 6= (c1k)(c−11 k) = k2 ∈ Q̃1, a contradiction again.

By the above discussion, we may assume that L := M̃ũ = Q̃o 〈xk1〉 andR := M̃ũ′ =

Q̃o 〈xk2〉 for some k1, k2 ∈ K and ũ′ ∈ φ−1(∞′). Then by Proposition 2.2, our graph X
is isomorphic to a bicoset graph X ′ = B(M̃, L,R;D) for some double coset D with two
biparts:

Ũ ′ = {Lk
∣∣ k ∈ K} ∪ {Lytik ∣∣ i ∈ Fq, k ∈ K},

W̃ ′ = {Rk
∣∣ k ∈ K} ∪ {Rytik ∣∣ i ∈ Fq, k ∈ K}.

Since there is only one edge from L to the block {Ryk
∣∣ k ∈ K}, we may assume that the

neighbor of L corresponds to the bicoset D = Ryk3L for some k3 ∈ K. Then X ′ should
satisfy the following two conditions.

(i) d(X ′) = q:

Since the length of the orbit of L containing the vertexRyk3L is q, we have xk1 should
fix the vertex Ryk3, that is,

Ryk3 = Ryk3xk1 = Ryk3xk1(yk3)−1yk3 = Ryxyk−12 k1yk3
= Rx−2k−12 k1yk3 = Rk2k1yk3,
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which implies that
k2 = k−11 . (3.7)

(ii) Connectedness property:

By Eq(3.7), we have

〈D−1D〉 = 〈L(yk3)−1R(yk3)L〉 = 〈L, Ry〉
= 〈Q̃, xk1, Q̃y, xyk2〉 = 〈Q̃, xk1, Q̃y, xyk−11 〉 ≤ T̃ × 〈k1〉 6= M̃.

Again, Proposition 2.2(i) implies that the graph X ′ is disconnected.

Case 2: T̃ ∩K = Z2 and T̃ ∼= SL(2, q)

In this case, we have K ∼= Z2 × Z2 and identify T̃ with SL(2, q).
In SL(2, q), set

e =
(

−1 0
0 −1

)
, ti =

(
1 i
0 1

)
, x =

(
θ 0
0 θ−1

)
, y =

(
0 −1
1 0

)
,

where F∗q = 〈θ〉 and i ∈ Fq . Let Q̃ = 〈ti
∣∣ i ∈ Fq〉 ∼= Zlr.

Take ũ ∈ φ−1(∞), one may assume that M̃ũ = Q̃1 o 〈xk〉 ∼= Zlr o Z q−1
2

, where

Q̃1 ≤ K× Q̃ and k ∈ K. Since Q̃ ∼= Zlr and r is an odd prime, we get Q̃1 = Q̃. Moreover,
as (xk)

q−1
2 = 1 and K ∼= Z2 × Z2, it follows that k

q−1
2 = e, that is, k = e and q−1

2 is
odd. Hence, we may assume that L := M̃ũ = Q̃o 〈xe〉 and R := M̃ũ′ = Q̃o 〈xe〉, where
ũ′ ∈ φ−1(∞′).

Finally, with the same discussion as Case 1, one may get the nonexistence of X .

Combining the lemmas in Subsections 3.1, 3.2, 3.3 and 3.4, we complete our proof of
Theorem 1.1.
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Abstract

A 3-connected quadrangulation of a closed surface is said to be K′3-irreducible if no
face- or cube-contraction preserves simplicity and 3-connectedness. In this paper, we prove
that a K′3-irreducible quadrangulation of a closed surface except the sphere and the projec-
tive plane is either (i) irreducible or (ii) obtained from an irreducible quadrangulation H
by applying 4-cycle additions to F0 ⊆ F (H) where F (H) stands for the set of faces of H .
We also determine K′3-irreducible quadrangulations of the sphere and the projective plane.
These results imply new generating theorems of 3-connected quadrangulations of closed
surfaces.

Keywords: Quadrangulation, closed surface, generating theorem.

Math. Subj. Class.: 05C10

1 Introduction
In this paper, we only consider simple graphs which have no loops and no multiple edges.
We denote the vertex set and the edge set of a graph G by V (G) and E(G), respectively.
We say that S ⊂ V (G) is a cut of G if G − S is disconnected. In particular, S is called a
k-cut if S is a cut with |S| = k. A cycle C of G is said to be separating if V (C) is a cut.
Similarly, a simple closed curve γ on a closed surface F 2 is said to be separating if F 2−γ
is disconnected.

A quadrangulation G of a closed surface F 2 is a simple graph cellularily embedded on
the surface so that each face is quadrilateral; thus, a 2-path on the sphere is not a quadran-
gulation. We denote the set of faces of G by F (G) throughout the paper. For quadrangu-
lations we consider applying three reductions, called a face-contraction, a 4-cycle removal
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Figure 1: Reductions for quadrangulations.

and a cube-contraction, as shown in Figure 1. (Precise definitions of these reductions will
be given in the next section.) The corresponding inverse operations are called a vertex-
splitting, a 4-cycle addition and a cube-splitting, respectively. In particular, the operations
of a face-contraction and a 4-cycle removal were first introduced by Batagelj [1]

Irreducible quadrangulations, such that no face-contraction is applicable without mak-
ing a loop or multiple edges, on a fixed closed surface with low genus were obtained in
earlier papers. In [9], it was proven that a 4-cycle is the unique irreducible quadrangulation
of the sphere, and that there exist precisely two irreducible quadrangulations of the projec-
tive plane shown in Figure 2, where Q1

P and Q2
P are the unique quadrangular embeddings

of K4 and K3,4 on the projective plane, respectively. The irreducible quadrangulations of
the torus and the Klein bottle have also been determined in [6, 5]. In [8], it was proven
that for any closed surface F 2 there exist only finitely many irreducible quadrangulations
of F 2, up to homeomorphism.

A 3-connected quadrangulation G of a closed surface F 2 is said to be K3-irreducible if
any of a face-contraction and a 4-cycle removal breaks simplicity or 3-connectedness of G.
The following theorem is the starting point of the study of 3-connected quadrangulations.
(The definitions of a pseudo double wheel, a Möbius wheel and a double cube are given in
the next section.)

Theorem 1.1 (Brinkmann et al.[2]). Any K3-irreducible quadrangulation of the sphere is
isomorphic to a pseudo double wheel.

Observe that a 3-connected quadrangulation of the sphere corresponds to a 4-regular
3-connected graph on the same surface by taking its dual. Broersma et al. [3] considered
the same problem of the dual version with weaker conditions than those of Brinkmann. For
the projective plane, Nakamoto proved the following.

Theorem 1.2 (Nakamoto[7]). Any K3-irreducible quadrangulation of the projective plane
is isomorphic to either a Möbius wheel or Q2

P .

Furthermore, the results in [4] imply the following.
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Theorem 1.3 (Nagashima et al.[4]). Let G be a quadrangulation of a closed surface other
than the sphere and the projective plane. Then G is K3-irreducible if and only if G is
irreducible.

Q2
PQ1

P

1

Figure 2: Irreducible quadrangulations on the projective plane.

In this paper, we determine other minimal subsets of 3-connected quadrangulations by
replacing 4-cycle removals with cube-contractions. A 3-connected quadrangulation G is
said to be K′3-irreducible if any of a face-contraction and a cube-contraction breaks the
simplicity or the 3-connectedness of G. The followings are our main results in the paper.
In these statements, F (H) stands for the set of faces of a quadrangulation H .

Theorem 1.4. Let G be a K′3-irreducible quadrangulation of a closed surface F 2 other
than the sphere and the projective plane. Then, G is either (i) irreducible or (ii) obtained
from an irreducible quadrangulation H by applying 4-cycle additions to F0 ⊆ F (H).

Theorem 1.5. Let G be a K′3-irreducible quadrangulation of the sphere. Then, G is either
(i) a pseudo double wheel or (ii) a double cube.

Theorem 1.6. Let G be a K′3-irreducible quadrangulation of the projective plane. Then,
G is (i) a Möbius wheel, (ii) Q2

P or (iii) obtained from Q1
P (resp. Q2

P ) by applying 4-cycle
additions to F0 ⊆ F (Q1

P ) (resp. F0 ⊆ F (Q2
P )).

Corollary 1.7. For any closed surface F 2, there exist only finitely many quadrangulations
which are K′3-irreducible but are not K3-irreducible, up to homeomorphism.

This paper is organized as follows. In the next section, we define the reductions used
in this paper and introduce typical 3-connected quadrangulations on the sphere and the
projective plane called a pseudo double wheel and a Möbius wheel, respectively. In Section
3, we develop some theoretical tools and prove Theorem 1.4. The last section is devoted to
prove the planar case and the projective-planar case individually, using some figures.

2 Reductions and typical quadrangulations
Let G be a quadrangulation of a closed surface F 2 and let f be a face of G bounded by
a cycle v0v1v2v3. (We also use the notation like f = v0v1v2v3 in this paper.) The face-
contraction of f at {v0, v2} in G consists of identification of v0 and v2, and replacement of
the resulting multiple edges {v0v1, v2v1} and {v0v3, v2v3} with two single edges, respec-
tively. In the resulting graph, let [v0v2] denote the vertex arisen by the identification of v0
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and v2 (see the left-hand side of Figure 1). Similarly, we define the face-contraction of f
at {v1, v3}. The inverse operation of a face-contraction is called a vertex-splitting. We say
that f is contractible at {v0, v2} in G, if the graph obtained from the face-contraction of f
at {v0, v2} is simple. Assume in addition that G is 3-connected. A face f of G is said to be
3-contractible at {v0, v2} if f is contractible at {v0, v2} and the graph obtained from the
face-contraction is still 3-connected.

Let f = v0v1v2v3 be a face of a quadrangulation G of F 2. A 4-cycle addition to f
consists of inserting a 4-cycle C = u0u1u2u3 inside f in G and joining vi and ui for
i = 0, 1, 2, 3. The inverse operation of a 4-cycle addition is called a 4-cycle removal (of
C), as shown in the center of Figure 1. We call the subgraph Q isomorphic to a cube with
eight vertices ui, vi for i = 0, 1, 2, 3 an attached cube. For an attached cube Q, we call
the above 4-cycle C an inner 4-cycle of Q. In addition, we denote ∂Q = v0v1v2v3. Let
G be a 3-connected quadrangulation of a closed surface having an attached cube Q. We
say that an inner 4-cycle C of Q (or easily an attached cube Q) is removable if the graph
obtained from G by applying 4-cycle removal C preserves the 3-connectedness. (Observe
that a 4-cycle removable never destroy simplicity of G.)

As mentioned in the introduction, there exist some results of 3-connected quadrangu-
lations (or quadrangulations with minimum degree 3) on surfaces. In those results, the
4-cycle removal is necessary by the following reason: Let G̃ be the graph obtained from
a 3-connected quadrangulation G of a closed surface by applying 4-cycle additions to all
faces of G. Clearly G̃ is 3-connected, but we cannot apply any face-contraction to G̃ with-
out creating a vertex of degree 2.

Our third reduction of quadrangulations of closed surfaces is defined as a sequence of
the above two reductions. Assume that a quadrangulation G has an attached cube Q with
an inner 4-cycle C and with ∂Q = v0v1v2v3. A cube-contraction of Q at {v0, v2} in
G consists of a 4-cycle removal of C followed by a face-contraction at {v0, v2} (see the
right-hand side of Figure 1). The inverse operation of a cube-contraction is called a cube-
splitting. We say that an attached cube Q is contractible if the graph obtained from G by
applying a cube-contraction of Q preserves the simplicity and the 3-connectedness. One
might suspect that if an attached cube Q is contractible then Q is removable (and the face
that appeared by the removal is contractible). However, this is not true in general since a
4-cycle removal might break the 3-connectedness of the graph.

v0

v1

v2

v3

u0

u1u2

u3

x

y

W8

v0

v1

v2v3 x

W̃5

v2 v3

v4
v0

v1

v4

1

Figure 3: W8 and W̃5.

We need to describe two special types of embeddings. Firstly, embed a 2k-cycle C =
v0u0v1u1 . . . vk−1uk−1 (k ≥ 3) into the sphere, put a vertex x on one side and a vertex y on
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the other side and add edges xvi and yui for i = 0, . . . , k−1. The resulting quadrangulation
of the sphere with 2k+2 vertices is said to be a pseudo double wheel and denoted by W2k

(see the left-hand side of Figure 3). The smallest pseudo double wheel is W6, which is
isomorphic to a cube, when the graphs are assumed to be 3-connected. The cycle C of
length 2k is called the rim of W2k. We call a quadrangulation of the sphere obtained from
W6 by a single 4-cycle addition a double cube, which is isomorphic to C4 × P2.

Secondly, embed a (2k−1)-cycle C = v0v1 . . . v2k−2 (k ≥ 2) into the projective plane
so that the tubular neighborhood of C forms a Möbius band. Next, put a vertex x on the
center of the unique face of the embedding and join x to vi for all i so that the resulting
graph is a quadrangulation. The resulting quadrangulation of the projective plane with 2k
vertices is said to be a Möbius wheel and denoted by W̃2k−1 (see the right-hand side of
Figure 3).

3 Lemmas to prove Theorem 1.4
The following lemma holds not only for quadrangulations but also for even embeddings of
closed surfaces F 2, that is, for graphs embedded on F 2 with each face bounded by a cycle
of even length. Taking a dual of an even embedding and using the odd point theorem, we
can easily obtain this lemma.

Lemma 3.1. An even embedding of a closed surface has no separating closed walk of odd
length.

LetG be a quadrangulation of a closed surface F 2 and let f = v0v1v2v3 be a face ofG.
Then a pair {vi, vi+2} is called a diagonal pair of f in G, where the subscripts are taken
modulo 4. A closed curve γ on F 2 is said to be a diagonal k-curve for G if γ passes only
through distinct k faces f0, . . . , fk−1 and distinct k vertices x0, . . . , xk−1 of G such that
for each i, fi and fi+1 share xi, and that for each i, {xi−1, xi} forms a diagonal pair of fi
of G, where the subscripts are taken modulo k.

Lemma 3.2. Let G be a quadrangulation of a closed surface F 2 with a 2-cut {x, y}. Then
there exists a separating diagonal 2-curve for G only through x and y.

Proof. Observe that every quadrangulation of any closed surface F 2 is 2-connected and ad-
mits no closed curve on F 2 crossing G at most once. Thus there exists a surface separating
simple closed curve γ on F 2 crossing only x and y, since {x, y} is a cut of G.

We shall show that γ is a diagonal 2-curve. Suppose that γ passes through two faces
f1 and f2 meeting at two vertices x and y. If γ is not a diagonal 2-curve, then x and y are
adjacent on ∂f1 or ∂f2. Since G has no multiple edges between x and y, and since {x, y}
is a 2-cut of G, we may suppose that x and y are adjacent in ∂f1, but not in ∂f2. Here we
can take a separating 3-cycle of G along γ. This contradicts Lemma 3.1.

Lemma 3.3. Let G be a 3-connected quadrangulation of a closed surface F 2, and let f =
v0v1v2v3 be a face of G. If the face-contraction of f at {v0, v2} breaks 3-connectedness
of the graph but preserves simplicity, then G has a separating diagonal 3-curve passing
through v0, v2 and another vertex x ∈ V (G)− {v0, v1, v2, v3}.

Proof. LetG′ be the quadrangulation of F 2 obtained fromG by the face-contraction of f at
{v0, v2}. Since G′ has connectivity 2, G′ has a 2-cut. By Lemma 3.2, G′ has a separating
diagonal 2-curve γ′ passing through two vertices of the 2-cut. Clearly, one of the two
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vertices must be [v0v2] of G′, which is the image of v0 and v2 by the face-contraction of
f . (Otherwise, G would not be 3-connected, a contradiction.) Let x be a vertex of G′ on
γ′ other than [v0v2]. Note that x is not a neighbor of [v0v2] in G′. Now apply the vertex-
splitting of [v0v2] to G′ to recover G. Then a diagonal 3-curve for G passing through only
v0, v2 and x arises from γ′ for G′.

The next lemma plays an important role in a later argument.

Lemma 3.4. Let G be a 3-connected quadrangulation on a closed surface F 2. If G has a
separating 4-cycle C = x0x1x2x3 and a face f of G such that

(i) one of the diagonal pairs of f is {xi, xi+2} for some i, and

(ii) f has a separating diagonal 3-curve γ intersecting C only at xi and xi+2 trans-
versely,

then there exists a 3-contractible face in G.

Proof. Suppose that G has a separating 4-cycle C = x0x1x2x3 and a face f bounded by
ax1cx3. Since C is separating, G has two subgraphs GR and GL such that GR ∪GL = G
and GR ∩GL = C. Suppose that f is contained in GR. Furthermore, we assume that GR

contains as few vertices of G as possible.
Since C is separating, we have ∂f 6= C. By (ii), f has a separating diagonal 3-curve

γ through x1, x3 and some vertex x. Note that x ∈ V (GL) − V (C) by the condition (ii)
in the lemma. Now assume that f is not 3-contractible at {a, c}. Observe that γ (or the
3-cut {x1, x, x3}) separates a from c. Further, G does not have both of edges ax and cx
since ∂f 6= C. Therefore, there is no path of G of length at most 2 joining a and c other
than ax1c and ax3c. Moreover, if {a, c}∩{x0, x2} = ∅, then f has no separating diagonal
3-curve joining a and c. This contradicts our assumption by Lemma 3.3 and so we may
suppose that a = x0 and c 6= x2, and f has a separating diagonal 3-curve, say γ′, through
a (= x0) and c.

Since γ′ separates x1 and x3 and since x2 is a common neighbors of x1 and x3, γ′

must pass through x2, and hence we can find a face f ′ of GR one of whose diagonal pair
is {c, x2}. Let C ′ be the 4-cycle x1x2x3c of G. Since deg(c) ≥ 3, we have ∂f ′ 6= C ′,
and hence C ′ is a separating 4-cycle in GR such that C ′ 6= C. Moreover, γ′ and C ′ cross
transversely at x2 and c. Therefore, C ′ and f ′ are a 4-cycle and a face which satisfy the
assumption of the lemma, and moreover, C ′ can cut a strictly smaller graph than GR from
G. Therefore, this contradicts the choice of C.

Lemma 3.5. Let G be a 3-connected quadrangulation of a closed surface F 2. If G is
K3-irreducible then G is K′3-irreducible.

Proof. Let G be a 3-connected quadrangulation of a closed surface. Assume that G is not
K′3-irreducible. Then, G has either a 3-contractible face or a contractible cube. If G has
a 3-contractible face, then G is not K3-irreducible. Therefore, we suppose that G has no
3-contractible face but has a contractible cube Q with an inner 4-cycle C in the following
argument.

Now, we apply a 4-cycle removal ofC toG and letG′ be the resulting quadrangulation.
Let f ′ = ∂Q be the new face of G′ into which C was inserted. If G′ is 3-connected, G is
not K3-irreducible by the definition, and we are done. Therefore, we assume that G′ is not
3-connected. By Lemma 3.2, there is a diagonal 2-curve γ passing through f ′ and another
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face f ′′; otherwise, G would have a 2-cut, contrary to our assumption. Note that f ′′ is also
a face in G. Now ∂Q and f ′′ satisfy the conditions of Lemma 3.4, and hence there exists a
3-contractible face in G. However, this contradicts the above assumption. Thus, the lemma
follows.

In the following argument, we denote the set of K3-irreducible (resp. K′3-irreducible)
quadrangulations of a closed surface F 2 by K3I(F 2) (resp. K′3I(F 2)).

Lemma 3.6. LetG be a 3-connected quadrangulation of F 2. IfG ∈ K′3I(F 2)\K3I(F 2),
then G has an attached cube Q such that the graph obtained from G by applying a 4-cycle
removal of Q is in K′3I(F 2).

Proof. Let G be in K′3I(F 2)\K3I(F 2). By the definition, G has an attached cube Q with
an inner 4-cycle C which is removable, but is not contractible. We apply a 4-cycle removal
of C and let G− be the resulting quadrangulation. We denote the new face of G− by f−,
where f− = ∂Q.

First, we confirm thatG− is 3-connected. Otherwise, G− has a 2-cut and has a separat-
ing diagonal 2-curve γ on F 2 by Lemma 3.2. If γ does not pass through f− then γ would
also be a diagonal 2-curve inG, a contradiction. Let f0 be the other face passed by γ. Here,
f0 and ∂Q in G satisfy the conditions in Lemma 3.4 and there exists a 3-contractible face,
contrary to G being K′3-irreducible.

By way of contradiction, assume that G− is not in K′3I(F 2). That is, G− has either
(a) a 3-contractible face or (b) a contractible cube. First, we assume (a) and let f be a
3-contractible face in G−. If f− = f , the attached cube Q in G would be contractible,
contrary to G being K′3-irreducible. Thus, suppose f− 6= f . In this case, let G′ be the
resulting 3-connected quadrangulation after applying a face-contraction of f in G−. Since
any 4-cycle addition doesn’t break the 3-connectedness of a quadrangulation, the graph
obtained from G′ by a 4-cycle addition to f− is clearly 3-connected. This means that f is
also 3-contractible in G, a contradiction.

Next, suppose (b) and let Q′ be such a contractible cube with ∂Q′ = v0v1v2v3. If Q′

does not contain f− as one of its five faces, Q′ is also contractible in G and G would not
be K′3-irreducible by the similar argument as above. Thus, we assume that Q′ contains
f−. Let C = u0u1u2u3 denotes the inner 4-cycle of Q′ where uivi ∈ E(Q′) for i =
0, 1, 2, 3. We consider the following two cases up to symmetry; (b-1) f− = C and (b-
2) f− = v0u0u1v1. At first, suppose (b-1). Here, we apply a face-contraction of f1 =
v0u0u1v1 at {u0, v1} to G. If the above face-contraction breaks the 3-connectedness of G,
there exists a face f2 = v1xv3y in the outside of Q′ by Lemma 3.3; note that it clearly
preserves the simplicity of the graph since v1 6= v3. Now, a separating diagonal 3-curve
passing through {v1, u0, v3} satisfies the conditions of Lemma 3.4 and hence G is not K′3-
irreducible, contrary to our assumption. In fact, an analogous proof is valid for (b-2) if we
try to apply a face contraction at {v1, u2} to G. Therefore the lemma follows.

Lemma 3.7. Let G be a 3-connected quadrangulation of a closed surface F 2. If G ∈
K′3I(F 2) \ K3I(F 2), then G can be obtained from H ∈ K3I(F 2) by applying 4-cycle
additions to F0 ⊆ F (H).

Proof. Assume that G ∈ K′3I(F 2) \ K3I(F 2). By the previous lemma, there exists a
sequence of K′3-irreducible quadrangulations G = G0, G1, . . . , Gk such that Gi+1 is ob-
tained from Gi by a single 4-cycle removal of Ci, where Gk ∈ K3I(F 2). (Since the
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number of vertices of G is finite, Gk ∈ K3I(F 2).) Let Qi denote an attached cube in Gi

with an inner 4-cycle Ci.
For a contradiction, we assume that there exists l ∈ {0, . . . , k − 2} such that Gl is

obtained from Gl+1 by a 4-cycle addition which is put on a face not of F (Gk); this l
should be maximal. This implies that Cl is put on a face of Ql+1 as one of its five faces.
Then the same argument as the proof of Lemma 3.6 holds and hence Gl would not be K′3-
irreducible, contrary to our assumption. Thus for each i ∈ {0, . . . , k − 1}, Gi is obtained
from Gi+1 by a 4-cycle addition which is put on a face of F (Gk).

Proof of Theorem 1.4. By Lemma 3.5, we have K3I(F 2) ⊆ K′3I(F 2). Furthermore, by
Theorem 1.3 and Lemma 3.7, we obtain (i) and (ii) in the statement. Thus, we have got a
conclusion. �

4 Spherical and projective-planar cases
In this section, we discuss the spherical case and the projective-planar case.
Proof of Theorem 1.5. Let G be a K′3-irreducible quadrangulation of the sphere. We have
K3I(S2) ⊆ K′3I(S2) by Lemma 3.5, where S2 stands for the sphere.

If G is K3-irreducible, then G is isomorphic to a pseudo double wheel by Theorem 1.1.
If G is in K′3I(S2) \ K3I(S2), G can be obtained from a pseudo double wheel W2k

(k ≥ 3) by some 4-cycle additions to faces of W2k by Lemma 3.7. However if k ≥ 4,
G has a 3-contractible face (or a contractible cube), as shown in the first operation in
Figure 4. (For example, the entire Figure 4 presents a sequence of a face-contraction and
a cube-contraction which deforms W8 with an attached cube Q into W6, preserving the
3-connectedness.)

W8 with Q W6

1

Figure 4: W8 with an attached cube Q deformed into W6.

Therefore, we only consider the case of k = 3 in the following argument. Assume
that G is obtained from W6 by at least two 4-cycle additions to faces of W6. Similarly
to the above argument, G would have a 3-contractible face (or a contractible cube) , as
in Figure 5, contrary to G being K′3-irreducible; note that it suffices to discuss these two
cases, up to symmetry. Therefore, we conclude that G is obtained from W6 by exactly
one 4-cycle addition. This is nothing but a double cube; observe that a double cube has no
3-contractible face and no contractible cube. �

To conclude with, we prove the projective-planar case.
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1

Figure 5: W6 with two attached cubes can be reduced.

Proof of Theorem 1.6. In this case, we use Möbius wheels W̃k(k ≥ 3) and Q2
P as base

graphs by Theorem 1.2.
First we consider the former case. Similarly to the previous proof (and see Figure 6),

we consider only a Möbius wheel W̃3 as a base to which we apply some 4-cycle additions.
However, W̃3 (= Q1

P ) is isomorphic to the complete graph with four vertices, and hence it
is irreducible. This fact implies that every G obtained from W̃3 by applying at most three
4-cycle additions is K′3-irreducible since any face-contraction and any cube-contraction to
G destroys the simplicity of the graph, or results in a vertex of degree 2. From this case,
we obtain exactly three quadrangulations in K′3I(P 2) \ K3I(P 2), up to homeomorphism,
where P 2 stands for the projective plane.

W̃5 with Q W̃3

1

Figure 6: W̃5 with an attached cube Q deformed into W̃3.

Similarly, as the latter case, we obtain the other ten quadrangulations in K′3I(P 2) \
K3I(P 2) from Q2

P ; consider all the way to put attached cubes into faces of Q2
P , up to

symmetry. As a result, we have |K′3I(P 2) \ K3I(P 2)| = 13 in total. �
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Abstract

Given an n3 configuration, a 1-point extension is a technique that constructs an (n+1)3
configuration from it. It is proved that all (n + 1)3 configurations can be constructed from
an n3 configuration using a 1-point extension, except for the Fano, Pappus, and Desar-
gues configurations, and a family of Fano-type configurations. A 3-point extension is also
described. A 3-point extension of the Fano configuration produces the Desargues and anti-
Pappian configurations.

The significance of the 1-point extension is that it can frequently be used to construct
real and/or rational coordinatizations in the plane of an (n + 1)3 configuration, whenever
it is geometric, and the corresponding n3 configuration is also geometric.

Keywords: Fano configuration, Pappus, Desargues, (n, 3)-configuration.

Math. Subj. Class.: 51E20, 51E30

1 Projective Configurations
A projective configuration consists of a set Σ of points and lines, and an incidence re-
lation Π, such that two lines intersect in at most one point. We denote this by (Σ,Π).
For example, a triangle with points A,B,C and lines a, b, c can be represented by the pair
({A,B,C, a, b, c}, {Ab,Ac,Ba,Bc, Ca,Cb}). A configuration (Σ,Π) can also be viewed
as a bipartite incidence graph of points versus lines. We will always assume that the inci-
dence graph of a configuration is connected. Excellent references on configurations are the
recent books by Grünbaum [7], and by Pisanski and Servatius [11].

An n3-configuration is a projective configuration with n points and n lines such that ev-
ery line is incident on 3 points, and every point is incident on 3 lines. There is a unique 73-
configuration, the Fano configuration, and a unique 83-configuration, the Möbius-Kantor
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configuration. In 1887, Martinetti [10] presented a method to construct the (n+1)3 config-
urations from the n3 configurations. This is described in [7, 6]. Boben [1, 2] has analysed
and extended Martinetti’s construction significantly. Important related work has also been
done by Carstens, Dinski and Steffen [4]. See also [12]. A recent paper [13] by Stokes stud-
ies extensions of configurations in a very general setting. The 1-point extension presented
here can be related to Stokes’s construction, but does not follow directly from it.

An n3 configuration which can be represented by a collection of points and straight
lines in the real or rational plane, such that all incidences are respected, and no two points
or two lines coincide, and no unwanted incidences occur, is termed a geometric n3 configu-
ration. In order to show that an n3 configuration is geometric, the usual method is to assign
suitable homogeneous coordinates to its points and lines. We call this a coordinatization of
the configuration. Some n3 configurations are not geometric configurations, although it is
currently an unsolved problem to determine which n3 configurations are geometric.

The purpose of this paper is to present a theorem, the 1-point extension theorem, which
describes another method to construct an (n+ 1)3-configuration from an n3-configuration;
and to characterize which configurations can be obtained in this way. The significance of
this construction is that if the n3 configuration is geometric, with a given coordinatization,
then there is usually a simple method to extend the coordinatization to the (n + 1)3 con-
figuration, that is, the (n + 1)3 configuration will also be geometeric. This is too long to
include here, it will be the subject of another paper, currently in preparation [8].

In particular the following theorem is proved.

Theorem 1.1. Let (Σ,Π) be an (n + 1)3-configuration. Then (Σ,Π) can be constructed
by a 1-point extension from an n3-configuration if and only if (Σ,Π) is not one of the
following configurations:

a) the Fano configuration,

b) the Pappus configuration,

c) the Desargues configuration,

d) a Fano-type configuration (to be described).

We begin with the idea of a 1-point extension in an n3-configuration.

Theorem 1.2. (1-Point Extension) Let (Σ,Π) be an n3-configuration. Let a1, a2, a3 be
3 distinct points in Σ, and let `1, `2, `3 be 3 distinct lines in Σ such that a1 = `1 ∩ `2,
a2 = `2 ∩ `3 and a3 ∈ `3, where a3 6∈ `1. We can represent this in tabular form as

(Σ,Π) `1 `2 `3 · · ·
a1 a1 a2 · · ·
· a2 a3 · · ·
· · · · · ·

where the dots indicate other points of the configuration. Let `′ be the third line containing
a1. Suppose further that if `′ ∩ `3 6= Ø, then `′ ∩ `3 = a3. Construct a new configuration
(Σ′,Π′) as follows. Σ′ = Σ ∪ {a0, `0} where a0 is a new point and `0 is a new line.
Π′ = Π− {a1`1, a2`2, a3`3} ∪ {a1`3, a2`0, a3`0, a0`0, a0`1, a0`2}. We can represent this
in tabular form as
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(Σ′,Π′) `0 `1 `2 `3 · · ·
a2 a0 a1 a1 · · ·
a3 · a0 a2 · · ·
a0 · · · · · ·

Here the dots represent exactly the same points as in the previous table. Then (Σ′,Π′) is
an (n + 1)3-configuration.

Proof. The only incidences in which (Σ′,Π′) and (Σ,Π) differ are those involving `0, `1,
`2, `3. It is easy to verify from the tables that each of a1, a2 and a3 occurs in exactly 3 lines
in both (Σ′,Π′) and (Σ,Π), and that a0 also occurs in exactly 3 lines. We must still verify
that any two lines of (Σ′,Π′) intersect in at most one point. Notice that `0 intersects `1 and
`2 in exactly one point, since a3 6∈ `1, `2. Also, `0 intersects `3 in exactly one point. If
` 6= `1, `2, `3 is any line of (Σ,Π) intersecting `1, then in (Σ′,Π′), it intersects `1 in either
0 or 1 point. If ` intersects `2 in (Σ,Π), then in (Σ′,Π′), it intersects `2 in either 0 or 1
point. If ` = `′, the third line of (Σ,Π) containing a1, then in (Σ′,Π′), ` intersects `3 in
only a1, because of the condition concerning `′. If ` 6= `′ and ` intersects `3 in (Σ,Π),
then then since a1 6∈ `3 in (Σ,Π), it follows that ` intersects `3 in 0 or 1 point in (Σ′,Π′).
Finally, if ` is any line of (Σ,Π) not intersecting `1, `2, then it does not intersect `1, `2 in
(Σ′,Π′). If ` does not intersect `3 in (Σ,Π), it may intersect `3 in a1 in (Σ′,Π′). This
completes the proof of the theorem.

Example 1.3. The Fano configuration can be represented by the following table.

Fano `1 `2 `3 `4 `5 `6 `7
1 2 3 4 5 6 7
2 3 4 5 6 7 1
4 5 6 7 1 2 3

Choose `1, `2, `3 as indicated, and choose a1 = 2, a2 = 3, a3 = 6, and let a0 = 8.
Notice that the third line containing a1 is `′ = `6, which intersects `3 in a3 = 6. Then
by Theorem 1.2, the following table represents an 83-configuration, which is known to be
unique.

83-config `0 `1 `2 `3 `4 `5 `6 `7
3 1 2 2 4 5 6 7
6 4 5 3 5 6 7 1
8 8 8 4 7 1 2 3

The 83-configuration can be viewed as a double cover of the cube [9]. It is possible to apply
a 1-point extension to this configuration in two possible ways, resulting in two distinct 93-
configurations. The third 93-configuration, known as the Pappus configuration, cannot be
obtained in this way.

The 1-point extension theorem can be illustrated by the diagram of Figure 1. In (Σ,Π),
we have a substructure consisting of 3 points a1, a2, a3, and 3 lines, `1, `2, `3, sequentially
incident, forming a self-dual substructure contained in the n3-configuration. After the ex-
tension, we find that (Σ′,Π′) contains a triangle with vertices a1, a2, a0 and sides `2, `3, `0,
where the third point on `0 is a3, and the third line through a0 is `1. This is again a self-dual
substructure in the configuration.
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Figure 1: A 1-point extension with 3 points

Corollary 1.4. In (Σ′,Π′), the third line through a1 does not intersect `1; the third point
on `3 is not collinear with a3; and the third line through a2 does not intersect `2.

Proof. If there were a line ` in (Σ′,Π′) through a1 which intersected `1 in a point u, then
in (Σ,Π), ` would intersect `1 in u and a1, which is impossible. If there were a point x in
(Σ′,Π′) on `3 collinear with a3, then the line ` containing a3 and x would also be a line in
(Σ,Π), where it would intersect `3 in two points. Finally, if there were a line ` in (Σ′,Π′)
through a2 which intersected `2 in a point u, then in (Σ,Π), ` would intersect `2 in a2 and
u, which is impossible.

The purpose of this paper is to characterize the configurations that can be obtained using
1-point extensions. In practice, the 1-point extensions are very easy to find and apply, and
can easily be done by computer. However, the characterization of which configurations
can be obtained by them is very long and tedious. We shall refer to the Fano, Pappus, and
Desargues configurations, illustrated in Figure 1.1.

Figure 2: The Fano, Pappus, and Desargues configurations

The conditions of Corollary 1.4 will be used frequently in the characterization. We state
them here. We are concerned with an ordered triangle, denoted ∆(i, j, k), where i, j and k
are the first, second, and third vertices, respectively, of the triangle. The line containing i
and j is denoted `ij , etc.

Definition 1.5. Let (Σ,Π) be a configuration containing an ordered triangle ∆(i, j, k). We
define the following 3 conditions:

A) The third line through k intersects `ij ;
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B) The third line through i intersects the third line through j;

C) The third point on `ik is collinear with the third point on `jk.

The definition is illustrated in Figure 3.

i i ij j j

k

A B C

k k

Figure 3: Conditions A,B and C for triangle ∆(i, j, k)

Theorem 1.6. Let (Σ′,Π′) be an (n + 1)3-configuration containing a triangle ∆. If con-
ditions A,B and C do not apply to some ordering of the triangle, then (Σ′,Π′) can be
derived from an n3-configuration by a 1-point extension.

Proof. Let the ordered triangle to which conditions A,B and C do not apply be ∆(a0, a1,
a2), and let the sides of the triangle be `0, `2, `3, where a0 = `0 ∩ `2, a1 = `2 ∩ `3,
a2 = `3 ∩ `0. Let a3 be the third point on `0, and let `1 be the third line through a0.
Observe that a3 6∈ `1. These incidences are characterized by the following table.

(Σ,Π) `0 `1 `2 `3
a2 a0 a1 a1
a3 · a0 a2
a0 · · ·

We can then delete a0 and `0, and change the incidences to the following.

(Σ′,Π′) `1 `2 `3
a1 a1 a2
· a2 a3
· · ·

Call the result (Σ′,Π′). If ` is the third line through a2 in (Σ,Π), then since condition A
does not apply, we know that in (Σ′,Π′), ` and `2 intersect in just one point. If ` is the
third line through a1 in (Σ,Π), then since condition B does not apply, we know that in
(Σ′,Π′), ` and `1 intersect in just one point, a1. Since `∩ `3 = a1 in (Σ,Π), it follows that
in (Σ′,Π′), if ` and `3 intersect, they intersect in a3.

If ` is any line other than `0 through a3 in (Σ,Π), then since condition C does not
apply, we know that in (Σ′,Π′), ` and `3 intersect in just one point. The result is an n3-
configuration to which Theorem 1.2 applies.
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Given an ordered triangle ∆(i, j, k), the dual is an ordered triangle whose sides are
lines which can be denoted i′, j′, k′. The dual of condition A is that the third point on k′

is collinear with i′ ∩ j′. But this is just condition A again applied to the triangle ∆(i′ ∩
k′, j′ ∩ k′, i′ ∩ j′). So condition A is self-dual. The dual of condition B is that the third
point on i′ is collinear with the third point on j′. This is just condition C applied to the
triangle ∆(i′ ∩ k′, j′ ∩ k′, i′ ∩ j′). So B and C are dual conditions.

Theorem 1.6 is the main tool which we will use to characterize the extensions. We
will find all configurations such that at least one of conditions A,B, and C apply to every
ordering of every triangle. We will also need longer cycles than triangles.

2 The General Extension Theorem
Before beginning the characterization of the n3-configurations that can be obtained by
1-point extensions, we generalize Theorem 1.2 to m points and m lines, sequentially inci-
dent.

Theorem 2.1. (General 1-Point Extension) Let (Σ,Π) be an n3-configuration. Let a1, a2,
. . . , am be m distinct points in Σ, where 3 ≤ m ≤ n, and let `1, `2, . . . , `m be m distinct
lines in Σ such that a1 = `1 ∩ `2, a2 = `2 ∩ `3, . . ., am−1 = `m−1 ∩ `m, and am ∈ `m.
Suppose that am−1, am 6∈ `1, `2, and that ai 6∈ `i+3, where i = 1, 2, . . . ,m − 3. We can
represent this in tabular form as

(Σ,Π) `1 `2 `3 . . . `m−1 `m
a1 a1 a2 . . . am−2 am−1
· a2 a3 . . . am−1 am
· · · . . . · ·

where the dots indicate other points of the configuration. Let `′i be the third line con-
taining ai, where 1 ≤ i ≤ m − 2. Suppose further that if `′i ∩ `i+2 6= Ø, then `′i ∩
`i+2 = ai+2. Construct a new configuration (Σ′,Π′) as follows. Σ′ = Σ ∪ {a0, `0}
where a0 is a new point and `0 is a new line. Π′ = Π − {a1`1, a2`2, . . . , am`m} ∪
{a1`3, a2`4, . . . , am−2`m, am−1`0, am`0, a0`0, a0`1, a0`2}. We can represent this in tab-
ular form as

(Σ′,Π′) `0 `1 `2 `3 . . . `m−1 `m
am−1 a0 a0 a1 . . . am−3 am−2
am · a1 a2 . . . am−2 am−1
a0 · · · . . . · ·

Here the dots represent exactly the same points as in the previous table. Then (Σ′,Π′) is
an (n + 1)3-configuration.

Proof. The only incidences in which (Σ′,Π′) and (Σ,Π) differ are those involving `0, `1,
`2, . . . , `m. It is easy to verify from the tables that each of a1, a2, . . . , am occurs in exactly
3 lines in both (Σ′,Π′) and (Σ,Π), and that a0 also occurs in exactly 3 lines. We must still
verify that any two lines of (Σ′,Π′) intersect in at most one point. Notice that `0 intersects
`1 and `2 in exactly one point, since am−1, am 6∈ `1, `2. It does not intersect `3, . . . , `m−1,
and it intersects `m in exactly one point.

Let ` 6= `1, `2, . . . , `m be a line of (Σ,Π). If ` intersects `1 in (Σ,Π), then in (Σ′,Π′),
it intersects `1 in either 0 or 1 point. If ` intersects `2 in (Σ,Π), then in (Σ′,Π′), it intersects
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`2 in either 0 or 1 point. Suppose that ` intersects `3 in (Σ,Π). If ` = `′1, then `∩`3 = a3 in
(Σ,Π) according to the condition of the theorem concerning `′i. It follows that `∩ `3 = a1
in (Σ′,Π′). If ` 6= `′1, then ` intersects `3 in either 0 or 1 point in (Σ′,Π′). An identical
argument holds if ` intersects one of `4, . . . , `m in (Σ,Π).

Suppose that ` does not intersect `1 in (Σ,Π). Then it also does not intersect `1 in
(Σ′,Π′). Similarly, if ` does not intersect `2 in (Σ,Π), then it also does not intersect `2 in
(Σ′,Π′). Suppose that ` does not intersect `3 in (Σ,Π). Then in (Σ′,Π′), it may intersect
`3 only in a1. A similar argument holds if ` does not intersect `4, . . . , `m.

Finally, let `i and `j , where 1 ≤ i < j ≤ m, be two lines of (Σ,Π). If j = i + 1, then
`i and `j intersect in one point in both (Σ,Π) and (Σ′,Π′). Suppose that j = i + 2. If
`i ∩ `j = Ø in (Σ,Π), then it is also Ø in (Σ′,Π′). Now `i ∩ `j 6= ai−1 in (Σ,Π) (when
i > 1), because of the hypothesis that ak 6∈ `k+3. Also, `i∩ `j 6= ai, because `i+1 contains
ai and ai+1. It follows that |`i ∩ `j | is the same in (Σ,Π) and (Σ′,Π′) when j = i + 2.
Suppose now that j ≥ i + 3. It is easy to see that |`i ∩ `j | ≤ 1 in (Σ′,Π′). This completes
the proof of the theorem.

Theorem 2.1 is illustrated in Figure 4, with m = 4. This general form of Theorem 2.1 is
stated separately from Theorem 1.2, because the form with m = 3 is simpler, and because
we shall mostly only require Theorems 1.2 and 1.6 when characterizing extensions.
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Figure 4: A 1-point extension with 4 points

An ordered cycle in a configuration is a sequence of distinct points and lines which are
cyclicly incident, for example C = (a1, `1, a2, `2, . . . , am, `m), where ai = `i−1 ∩ `i for
i = 2, 3, . . . ,m, and a1 = `m ∩ `1. Here m ≥ 3. Each point of C is incident on two lines
of C, and vice versa.

Corollary 2.2. Let (Σ,Π) and (Σ′,Π′) be as in Theorem 2.1, so that C = (a0, `2, a1, `3,
. . . , am−2, `m, am−1, `0) is an ordered cycle in (Σ′,Π′). Then in (Σ′,Π′):

i) the third points of `m and `0 are not collinear;

ii) the third point on `i is not contained in the third line through ai, for i = 2, . . . ,m− 1;

iii) the third lines through a0 and a1 do not intersect.
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Proof. The third point of `0 is am. If there were a line ` in (Σ′,Π′) containing am and
the third point of `m, then in (Σ,Π), ` and `m would intersect in two points, which is
impossible.

Let ` be the third line through ai in (Σ′,Π′), for some i = 2, . . . ,m − 1, and let u be
the third point on `i. Suppose that u ∈ `. In (Σ′,Π′), ai is contained in `i+1 and `i+2, but
in (Σ,Π), ai is contained in `i and `i+1. We then find that in (Σ,Π), ` ∩ `i = {u, ai},
which is impossible.

The third line through a0 is `1. Let ` be the third line through a1. If ` ∩ `1 = u in
(Σ′,Π′), then in (Σ,Π), ` ∩ `1 = {u, a1}, which is impossible.

Observe that a triangle is a set of three distinct points and lines that are cyclically
incident. Similarly, we define a quadrangle to be a set of four distinct points and lines that
are cyclically incident. We will also need conditions similar to A,B,C for quadrangles.
An ordered quadrangle with vertices i, j, k,m is denoted �(i, j, k,m). In analogy with
Definition 1.5 and Corollary 2.2, we make the following definition for a quadrangle.

Definition 2.3. Let (Σ,Π) be a configuration containing an ordered quadrangle
�(i, j, k,m). We define the following 4 conditions:

D) The third point on `im is collinear with the third point on `km;

E) The third line through m intersects `jk;

F) The third line through k intersects `ij ;

G) The third line through j intersects the third line through i.

These conditions are illustrated in Figure 5.
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Figure 5: Conditions D,E, F,G for quadrangle �(i, j, k,m)

The analog of Theorem 1.6 for general 1-point extensions is the following.

Theorem 2.4. Let (Σ′,Π′) be an (n + 1)3-configuration containing an ordered cycle
C = (a0, `2, a1, `3, a2, `4, . . . , am−2, `m, am−1, `0), where m ≥ 4; a0, a1, . . . , am−1
are distinct points; and `0, `2, `3, . . . , `m−1 are distinct lines. Let `1 denote the third
line containing a0 and let am denote the third point on `0. Suppose that `1 is distinct
from `0, `2, `3, . . . , `m−1 and that a2 6∈ `1. Let `′i denote the third line containing ai,
for i = 1, 2, . . . ,m − 1. Suppose that `′i does not not contain the third point of `i, for
i = 2, . . . ,m− 1; that `′1 ∩ `1 = Ø; and that am is not collinear with the third point of `m.
Then (Σ′,Π′) can be derived from an n3-configuration by a 1-point extension.

Proof. The incidences of the ordered cycle can be represented by the following table.
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(Σ,Π) `0 `1 `2 `3 . . . `m−1 `m
am−1 a0 a0 a1 . . . am−3 am−2
am · a1 a2 . . . am−2 am−1
a0 · · · . . . · ·

We can then delete a0 and `0, and change the incidences to the following.

(Σ′,Π′) `1 `2 `3 . . . `m−1 `m
a1 a1 a2 . . . am−2 am−1
· a2 a3 . . . am−1 am
· · · . . . · ·

Call the result (Σ,Π). It is clear that each point of (Σ,Π) is contained in exactly three
lines. We have to show that any two lines intersect in at most one point in (Σ,Π), and
that `1, `2, `3, . . . , `m are distinct lines in (Σ,Π). Any two of `1, `2, . . . , `m intersect in
at most one point because we began with an ordered cycle of distinct points, and because
a2 6∈ `1. Let ` be any line not in this set. Suppose that ` intersects `i in two points, for
some i = 2, . . . ,m−1. Now `i contains ai−1, ai and a third point z. If ` contained ai, then
` = `′i, which does not intersect `i in (Σ′,Π′), by assumption. Therefore ai 6∈ `. Otherwise
` must contain ai−1 and z. But these points are in `i in (Σ′,Π′), and ` is unchanged. It
follows that ` intersects `2, . . . , `m−1 in at most one point each.

Suppose that ` intersects `1 in two points in (Σ,Π). Now `1 contains a1 and two other
points u, v. As u and v are both on `1 in (Σ′,Π′), it follows that ` does not contain both u
and v. Therefore ` = `′1. But by assumption, `′1 ∩ `1 = Ø in (Σ′,Π′).

Suppose that ` intersects `m in two points in (Σ,Π). The two points cannot be am−1,
am, because these points occur on `0 in (Σ′,Π′). They cannot be am−1 and a third point
w, because these points occur on `m in (Σ′,Π′). And they cannot be am and the third
point w, because by assumption, am is not collinear with the third point of `m in (Σ′,Π′).
We conclude that (Σ,Π) is an n3-configuration to which the conditions of Theorem 2.1
apply.

Corollary 2.5. Let (Σ′,Π′) be an (n+1)3-configuration containing a quadrangle �(i, j, k,
m). If conditions D,E, F and G do not apply to some ordering of the quadrangle, and
if the third line through i does not contain k, then (Σ′,Π′) can be derived from an n3-
configuration by a 1-point extension.

Proof. The conditions D,E, F,G, and a2 = k 6∈ `1 are the conditions of Theorem 2.4
applied to an ordered quadrangle.

Theorem 2.6. Let (Σ′,Π′) be an (n + 1)3-configuration. If (Σ′,Π′) does not contain a
triangle, then it can be derived by a 1-point extension from an n3-configuration.

Proof. Choose a cycle of smallest possible length in (Σ′,Π′). Denote the cycle by

(a0, `2, a1, `3, a2, `4, . . . , am−2, `m, am−1, `0),

where m ≥ 4. Let `1 be the third line containing a0, and let am be the third point on `0.
This can be denoted in tabular from by
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(Σ,Π) `0 `1 `2 `3 . . . `m−1 `m
am−1 a0 a0 a1 . . . am−3 am−2
am · a1 a2 . . . am−2 am−1
a0 · · · . . . · ·

Let `′i denote the third line containing ai, where i = 1, 2, . . . ,m− 1. If `′i were to intersect
`i in a point z, where i = 2, . . . ,m − 1, this would create a triangle ∆(ai−1, ai, z). If
`′1 were to intersect `1 in a point u, this would create a triangle ∆(a0, a1, u). If am were
collinear with the third point w of `m, this would create a triangle ∆(am−1, am, w). If
`1 contained a2, this would create a triangle ∆(a0, a1, a2). It follows that the conditions
of Theorem 2.4 apply, so that (Σ′,Π′) can be derived by a 1-point extension from an n3-
configuration.

3 Fano-Type Configurations
Let F denote the Fano configuration, the unique 73 configuration. We will use three sub-
configurations to build a family of n3 configurations which cannot be obtained by 1-point
extensions.

Definition 3.1. Denote by F ′ the unique configuration obtained from F by removing a
single incidence. Denote by F` the unique configuration obtained from F by removing a
line. Denote by Fp the unique configuration obtained from F by removing a point. Note
that F` and Fp are dual configurations.

Figure 6: The configurations F`, Fp and F ′

The configurations F`, Fp and F ′ are not n3-configurations. They can be used as build-
ing blocks of n3 configurations, which we call Fano-type configurations. F ′ has one point
on only two lines, and one line containing only two points. Fp has three lines containing
only two points. Every point is in three lines. F` has three points in only two lines. Every
line contains three points. These are illustrated schematically in Figure 7, where the points
missing a line are indicated as black circles, and the lines missing a point are indicated as
lines.

These sub-configurations can be used as modules, which can be connected together like
vertices of a graph, to create graphs representing n3 configurations. For example, two or
more copies of F ′ can be connected into a cycle or path of arbitrary length. If only F` and
Fp are used, the resulting structure is a bipartite graph.
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Figure 7: F ′, F` and Fp schematically

Theorem 3.2. Let G be a multigraph which is isomorphic to either a cycle of length ≥ 2,
or a subdivision of a 3-regular bipartite multigraph, with bipartition (X,Y ). Replace each
vertex of X by a configuration Fp, replace each vertex of Y by a configuration F`, and
replace each vertex of degree two by a configuration F ′. The result is an n3 configuration
which can not be obtained by a 1-point extension.

Proof. Refer to Figure 8, showing a cycle of length four, and a configuration constructed
from the unique 3-regular bipartite multigraph on four vertices.

Figure 8: Configurations constructed from F ′, F` and Fp

We must show that the n3 configurations constructed like this cannot be obtained by
a 1-point extension. Observe first that the Fano configuration F is a projective plane,
so that every two points are contained in a line, and every two lines intersect in a point.
Consequently, every triangle contained in F ′, F` or Fp has an ordering which satisfies one
of conditions A,B or C. By Corollary 1.4, a Fano-type configuration cannot be obtained by
a triangular 1-point extension (Theorem 1.2). Suppose that it can be obtained by a general
1-point extension (Theorem 2.1). By Corollary 2.2, there must be an ordered cycle C of
length ≥ 4 satisfying certain conditions. Let C = (a0, `2, a1, `3, . . . , am−2, `m, am−1, `0)
be as in Corollary 2.2, and let `′i denote the third line containing ai, where i = 1, 2, . . . ,m−
1. Let `1 denote the third line containing a0, and let am denote the third point on `0. If C
were contained within an F ′, F` or Fp, then C would have length 4, because any 5 points of
F necessarily contain three collinear points. But in F ′, F` or Fp, every ordered quadrangle
satisfies at least one of conditions D,E, F,G, since the Fano configuration is a projective
plane.

It follows that C is not contained within an F ′, F` or Fp. Consider the portion of C
contained within some F ′, F` or Fp. It is a sequence of sequentially incident points and
lines. Suppose first that it is contained within an F ′. Referring to Figure 6 we see that the
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shortest possible portion of C contained within an F ′ is (ai, `i+2, ai+1, `i+3, ai+2, `i+4),
for some i = 0, 1, . . . ,m − 1 where subscripts are reduced modulo m. If ai+2 6= a0, a1,
then `′i+2 contains the third point of `i+2, which is in F ′. If ai+2 = a0, then ai+1 = am−1
and `i+2 = `m, so that am is collinear in F ′ with the third point of `m. If ai+2 = a1,
then ai+1 = a0, so that `1 and `′1 are in F ′ and `′1 ∩ `1 6= Ø. Thus, the conditions of
Corollary 2.2 are never satisfied if a portion of C is contained within an F ′.

Suppose next that a portion of C is contained within an F`. Referring to Figure 6 we see
that the shortest possible portion of C contained within an F` is (ai, `i+2, ai+1, `i+3, ai+2),
for some i = 0, 1, . . . ,m − 1 where subscripts are reduced modulo m. If ai+2 6= a0, a1,
then `′i+2 contains the third point of `i+2, which is in F`. If ai+2 = a0, then ai+1 = am−1
and `i+2 = `m, so that am is collinear in F` with the third point of `m. If ai+2 = a1,
then ai+1 = a0, so that `1 and `′1 are in F` and `′1 ∩ `1 6= Ø. Thus, the conditions of
Corollary 2.2 are never satisfied if a portion of C is contained within an F`. A similar
result holds for Fp, which is the dual of F`. We conclude that the Fano-type configurations
can not be obtained by a 1-point extension.

4 The Characterization Theorem
In this section we will assume that (Σ,Π) is an n3-configuration which cannot be derived
by a 1-point extension. It follows from Theorem 2.6 that we can assume that (Σ,Π) has a
triangle. Let the points of (Σ,Π) be numbered 1, 2, . . . , n. Without loss of generality, we
can assume that ∆(2, 3, 1) is a triangle in (Σ,Π). This is illustrated in Figure 9. It will
be convenient to omit the commas and brackets from expressions like ∆(2, 3, 1), and write
simply ∆231.

24

1

3

Figure 9: Triangle ∆231 with condition A

We divide the analysis into two cases according to whether or not (Σ,Π) has a triangle
satisfying condition A. The theorem obtained will be the following.

Theorem 4.1. If (Σ,Π) is an n3-configuration which cannot be obtained from a 1-point
extension, then either:

i) (Σ,Π) is one of the Fano, Pappus, or Desargues configurations; or

ii) (Σ,Π) is a Fano-type configuration.

Proof. The proof of this theorem is very long, involving an analysis of many possible cases.

Case A. (Σ,Π) has a triangle satisfying condition A.
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Let the ordered triangle be ∆231, as above. Condition A tells us that the third line
through 1 intersects `23. Call the point of intersection 4. This is shown in Figure 9.
We will show that any n3 configuration that cannot be obtained by a 1-point ex-
tension, and which satisfies Condition A, is either a Fano-type configuration, or the
Fano configuration. Now consider ∆142. It currently does not satisfy conditions
A,B, or C. Since every triangle must satisfy at least one of these conditions, there
are three possibilities, which we indicate by ∆142A, ∆142B, and ∆142C. These
are shown in Figure 10. In ∆142A, the third line through 4 intersects `12 (in point
5). In ∆142B, the third lines through 1 and 4 intersect (in point 5). In ∆142C, the
third points on `12 (point 5) and `24 (point 3) are collinear.
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Figure 10: ∆142A, ∆142B, and ∆142C

These three structures are easily seen to be isomorphic, by relabelling the points.
Each structure is self-dual, having two points incident on 3 lines each, and two lines
each containing 3 points. Thus, without loss of generality, we can assume that the
subconfiguration ∆142A exists in (Σ,Π) in Case A. Consider triangle ∆124. It
currently does not satisfy condition A,B, or C. Since it must satisfy at least one of
these conditions, there are three possibilities, which we indicate by ∆142A∆124A,
∆142A∆124B, and ∆142A∆124C. These are shown in Figure 11.
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Figure 11: ∆142A∆124A, ∆142A∆124B, and ∆142A∆124C

The structures ∆142A∆124B and ∆142A∆124C are duals of each other. The first
has 6 points and 5 lines, while the other has 5 points and 6 lines. It can be verified
by exhaustion that every ordered triangle in these structures satisfies at least one of
conditions A,B, or C.

Case ∆142A∆124A.
Consider the quadrangle �6431 in ∆142A∆124A. It must satisfy at least one of
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conditions D,E, F,G (see Figure 5). Condition D is possible only if `25 intersects
`13. Condition E is not possible. Condition F is possible only if the third line
through 3 intersects `46. Condition G is possible only if there is a line `56. These
cases are illustrated in Figure 12.
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Figure 12: ∆142A∆124A�6431D, ∆142A∆124A�6431F , ∆142A∆124A�6431G

Now the diagrams ∆142A∆124A�6431D and ∆142A∆124A�6431G are duals of
each other, for the mapping which sends points 1, 2, 3, 4, 5, 6, 7 of D to `15, `16, `25,
`24, `46, `13, `56 of G is an isomorphism. Therefore we need only consider cases D
and F .

Case ∆142A∆124A�6431D.
It can be verified that all triangles of the diagram satisfy one of conditions A,B,C.
Consider the quadrangle �3164. Condition D is only possible if point 7 lies on line
`46. Condition E is not possible. Condition F is only possible if there is a line
`67. Condition G is only possible if there is a line `35. These cases are illustrated in
Figure 13.

Figure 13: ∆142A∆124A�6431D�3164D, F , and G

Case ∆142A∆124A�6431D�3164D.
It can be verified that every triangle satisfies at least one of conditions A,B,C, and
every quadrangle satisfies at least one of conditions D,E, F,G. This configuration
is isomorphic to the Fano configuration, with one line removed (`356), which we
denote as F`. The dual configuration is the Fano configuration, with one point
removed, which we denote as Fp.

Case ∆142A∆124A�6431D�3164F.
Consider the quadrangle �2376. Condition D requires that `15 intersects `67, which
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is impossible. Condition E requires that `46 contains point 1, which is impossible.
Condition F requires that `75 contains point 4, which is impossible. Condition G
requires a line `35. The result is illustrated in Figure 14.

Figure 14: Case ∆142A∆124A�6431D�3164F�2376G

We then consider quadrangle �6237. Condition D requires that `15 intersects `67,
which is impossible. Condition E requires that `75 contains point 4, which is impos-
sible. Condition F requires that `35 contains point 1, which is impossible. Condition
G requires that `46 and `25 intersect in point 5, which is impossible. We conclude
that case ∆142A∆124A�6431D�3164F is not possible.

Case ∆142A∆124A�6431D�3164G.
Consider the quadrangle �4316. Condition D requires that `25 intersects `46. The
point of intersection can only be 7. Condition E requires that `75 contains point
6, which is impossible. Condition F requires that `15 contains point 2, which is
impossible. Condition G requires a line `356. These cases are illustrated in Figure 15.

Figure 15: Cases ∆142A∆124A�6431D�3164G�4316D and G

These two configurations are easily seen to be isomorphic, by the permutation of
the points given by (2, 3, 4)(5, 6, 7), mapping D onto G. They are both isomorphic
to the Fano configuration, with one incidence removed, denoted by F ′. Every
triangle satisfies at least one of conditions A,B,C, and every quadrangle satisfies at
least one of conditions D,E, F,G.
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Note that we can complete F ′ to the Fano configuration, which can not be constructed
by a 1-point extension.

We summarise Case A as follows:

Consider an n3 configuration (Σ,Π), where n > 7, which cannot be constructed by
a 1-point extension. Every triangle satisfying condition A is contained in a unique
sub-configuration isomorphic to one of F`, Fp or F ′.

Case B. (Σ,Π) has no triangle satisfying condition A.

We begin with triangle ∆231. It must satisfy condition B or C. These two possibil-
ities are shown in Figure 16.

2

4

1

3 2

4 5

1

3

Figure 16: ∆231B and ∆231C

These two structures are duals of each other. Hence we can assume without loss of
generality that (Σ,Π) contains the structure ∆231B.

Consider the triangle ∆123. It must satisfy condition B or C. We must take these
as two separate cases, Case B∆123B and Case B∆123C. They are shown in Fig-
ure 17. It will be necessary to examine a great many subcases.

Figure 17: Cases B∆123B and B∆123C

Case B∆123B.
Consider triangle ∆132. There are two possibilities, cases B∆123B∆132B and
B∆123B∆132C, which must both be considered. They are shown in Figure 18.

Case B∆123B∆132B.
Consider triangle ∆243. There are two choices B∆123B∆132B∆243B and
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Figure 18: Cases B∆123B∆132B and B∆123B∆132C

B∆123B∆132B∆243C. They are shown in Figure 19. These structures both have
7 points {1, 2, . . . , 7}, so that a mapping from the first to the second can be denoted
by a permutation. It is easy to see that the permutation (1, 2, 3)(4, 6, 5)(7) maps
the first to the second. Thus, without loss of generality, we can suppose that (Σ,Π)
contains the structure B∆123B∆132B∆243B.

Figure 19: Isomorphic cases B∆123B∆132B∆243 B and C

Consider triangle ∆342. There are two possibilities, B∆123B∆132B∆243B
∆342B and B∆123B∆132B∆243B∆342C. They are shown in Figure 20. We
must consider both possibilities.

Figure 20: Cases B∆123B∆132B∆243B∆342B and B∆123B∆132B∆243B∆342C

This is beginning to look remarkably like the Pappus configuration.

Case B∆123B∆132B∆243B∆342B.
Consider the quadrangle �1248. At least one of conditions D,E, F,G must be
satisfied. Of these, it is only possible to satisfy condition E, namely the third line
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through 8 must intersect `24. The point of intersection can only be 5. Therefore the
left diagram of Figure 21 must exist in (Σ,Π).

Figure 21: Cases B�1248E and B�1248E�7238E

Consider the quadrangle �7238. At least one of conditions D,E, F,G must be
satisfied. Of these, it is only possible to satisfy condition E, namely the third line
through 8 must intersect `23. Therefore the right diagram of Figure 21 must exist in
(Σ,Π).

Consider the quadrangle �3159. It is only possible to satisfy condition E, namely the
third line through 9 must intersect `15 in point 6. Therefore the following structure
(Figure 22) must exist in (Σ,Π).

Figure 22: Case B�1248E�7238E�3159E

Consider the quadrangle �1347. It is only possible to satisfy condition E, namely
the third line through 7 must intersect `34. The point of intersection must be 6,
so that point 7 is incident with `69. Therefore the diagram is completed to a 93-
configuration, so that (Σ,Π) can only be the Pappus configuration.

Case B∆123B∆132B∆243B∆342C.
This case is illustrated in Figure 20. Consider the triangle ∆274. There are two
possibilities, ∆274B and ∆274C, shown in Figure 23. These are duals of each other.
The mapping which sends the points 1, 2, . . . , 8 of ∆274B to the lines `15, `25, `34,
`32, `12, `13, `58, `47 of ∆274C is an isomorphism. Hence we only need to consider
one of them, the first, say.

Consider the quadrangle �1783. It is only possible to satisfy condition E, namely
the third line through 3 must intersect `78. The point of intersection must be 6, so
that `78 must be extended to include point 6. Consider next quadrangle �1745. It is
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Figure 23: Case B∆123B∆132B∆243B∆342C∆274, B and C

only possible to satisfy condition E, namely the third line through 5 must intersect
`47. The result is illustrated in Figure 24.

Figure 24: Case B∆123B∆132B∆243B∆342C∆274B�1783�1745

Finally, consider quadrangle �7138. It is only possible to satisfy condition E,
namely the third line through 8 must intersect `13. The point of intersection must
be 9, so that `13 must be extended to include point 9. Once again we have the Pap-
pus configuration.

Case B∆123B∆132C.
This case is illustrated in Figure 18. Consider the triangle ∆267. There are two
possible ways to satisfy condition B, namely the third line through 6 could contain
either 4 or 5. The first of these choices is illustrated in Figure 25. The second is
not allowed, as it would create a triangle ∆125 satisfying condition A. There are
two possible ways to satisfy condition C, namely `67 could intersect `13 or `34. Call
these two results C1 and C2, respectively, also shown in Figure 25.

Case B∆123B∆132C∆267B.
Consider the quadrangle �1673. It is not possible to satisfy conditions D or F .
Condition E can only be satisfied if `34 intersects `67. Condition G can only be
satisfied if `15 intersects `46. These cases are shown in Figure 26.

Now case G (the right diagram) leads to a contradiction, for consider the quadrangle
�3167. Conditions E,F,G are not possible. Condition D is only possible if 5 ∈ `67.
But this creates a triangle ∆156 satisfying condition A, a contradiction. Therefore
we consider case E (the left diagram). Consider the quadrangle �3761. Conditions
D,F,G cannot be satisfied. Condition E can only be satisfied if `15 intersects `67
in point 8, as shown in Figure 27. Consider next the quadrangle �6137. Conditions
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Figure 25: Cases B∆123B∆132C∆267 B,C1, and C2

Figure 26: Cases B∆123B∆132C∆267B�1673 E and G

D,F,G cannot be satisfied. Condition E can only be satisfied if the third line through
7 intersects `13 in a point 9, also illustrated in Figure 27.

Figure 27: Cases E�1673E and E�1673E�6137E

Consider now the quadrangle �2685 in the right diagram of Figure 27. Conditions
D,F,G cannot be satisfied. Condition E can only be satisfied if the third line through
5 contains point 7, which is only possible if 5 ∈ `79. The result is isomorphic to the
diagram of Figure 24. Once again, we obtain the Pappus configuration.

Case B∆123B∆132C∆267C1.
Refer to Figure 25. Consider the quadrangle �2784. Conditions D and F cannot
be satisfied. Condition E can only be satisfied if there is a line `46, which gives a
result identical to the left diagram of Figure 26. Condition G can only be satisfied
if the third line through 7 intersects `26 in point 1, but this creates a triangle ∆127
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satisfying condition A, which is not allowed. This completes this case.

Case B∆123B∆132C∆267C2.
Refer to Figure 25. Consider the quadrangle �1376. Conditions D,E, F are not
possible. Condition G is only possible if `15 and `34 intersect, shown in Figure 28.
Consider now the quadrangle �1872. Conditions D,E, F are not possible. Condi-
tion G is possible if `15 intersects the third line through 8. The point of intersection
can be either 5 or 9, resulting in G1 and G2, also shown in Figure 28.

Figure 28: Cases C2�1376G, G�1872G1 and G�1872G2

Consider the quadrangle �7218 in diagram G�1872G1. Conditions D,E, F cannot
be satisfied. Condition G can only be satisfied if the third line through 7 intersects
`24. The point of intersection can be 4 or 5. But 4 creates a triangle ∆734 satis-
fying condition A, a contradiction. Therefore the intersection must be point 5, as
shown in Figure 29. Then consider quadrangle �7812. Conditions D,E, F cannot
be satisfied. Condition G can only be satisfied if `15 and `89 intersect, also shown
in Figure 29. Next, consider quadrangle �1572. Conditions D,E, F,G cannot be
satisfied, a contradiction. This completes this case.

Figure 29: Cases G1 : �7218G and �7218G�7812G

Consider next G�1872G2, and quadrangle �7218. Conditions D,E, F cannot
be satisfied. Condition G can only be satisfied if the third line through 7 inter-
sects `24. The point of intersection must be 4. But this creates a triangle ∆734
satisfying condition A, a contradiction. This completes this case, and also case
B∆123B∆132C∆267C2, and case B∆123B∆132C and case B∆123B.

Case B∆123C.
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Refer to Figure 17. Consider the triangle ∆132. Condition B can be satisfied if
the third line through 1 intersects `34. There are two ways this can occur – the
intersection can be point 4, or a new point. This gives B1 and B2, shown in Figure 30.
Condition C can be satisfied if point 6 is collinear with the third point on `12. There
are two ways this can occur. The line through 6 intersecting `12 can be `56 or a new
line. This gives C1 and C2, shown in Figure 31.

Figure 30: Case B∆123C∆132 B1 and B2

Figure 31: Case B∆123C∆132 C1 and C2

It can be observed that C1 is isomorphic to the dual of B1. If we map points
1, 2, 3, 4, 5, 6, 7 of C1 to lines `12, `23, `13, `56, `14, `34, `24, respectively, of B1, we
have an isomorphism. Similarly, C2 is isomorphic to the dual of B2. An isomor-
phism maps points 1, 2, 3, 4, 5, 6, 7 of C2 to lines `12, `13, `23, `56, `24, `34, `17, re-
spectively, of B2. Consequently, we have only cases B1 and B2 to deal with.

Case B∆123C∆132B1.
Consider the quadrangle �1562. Condition D can only be satisfied if the third point
on `12 is collinear with point 3. But then triangle ∆123 would satisfy condition A,
which is not allowed. Condition E can be satisfied if `24 intersected `56. This is
shown in Figure 32. Condition F can only be satisfied if the third line through 6
intersected `15 in point 3. However, 6 and 3 are already collinear. Condition G can
be satisfied if the third line through 5 intersected `14. The third line through 5 cannot
be `24, for ∆124 would then satisfy condition A. Thus, the third line through 5 must
be a new line, as shown also in Figure 32.

Case B∆123C∆132B1�1562E.
Consider the triangle ∆267. Condition B can be satisfied if the third line through 6
intersected `12. The third line through 6 cannot be `14, as the triangle ∆123 would
then satisfy condition A. Hence, the third line through 6 must be a new line, as
shown in Figure 33. Condition C can only be satisfied if points 4 and 5 are collinear.
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Figure 32: Case B∆123C∆132B1�1562 E and G

The line containing 4 and 5 cannot be `14 and it cannot be `34. Therefore Condition
C is impossible, and we must have B∆123C∆132B1�1562E∆267B, shown in
Figure 33.

Figure 33: Case B∆123C∆132B1�1562E∆267B

This structure is found to be isomorphic to the dual of B∆123B∆132C∆267B
�1673G, shown in Figure 26. The isomorphism maps points 1, 2, 3, 4, 5, 6, 7, 8
to lines `24, `26, `56, `15, `34, `18, `68, `14. This completes case B∆123C∆132B1
�1562E.

Case B∆123C∆132B1�1562G.
Consider the quadrangle �2651. Condition D can only be satisfied if the third point
on `23 is collinear with point 3. However triangle ∆132 would then satisfy condition
A. Condition E can only be satisfied if `14 intersected `56. The point of intersection
cannot be 7. If it were point 4, then ∆563 would then satisfy condition A. Hence
condition E is not possible. Condition F can only be satisfied if `57 intersected `26
in point 3. However 5 and 3 are already collinear. Condition G can be satisfied if the
third line through 6 intersected `24. The point of intersection cannot be 4. The only
possibility is a new line through 6, as shown in Figure 34.

Consider the quadrangle �4863. Condition D can only be satisfied if the third point
on `34 is collinear with point 2. The triangle ∆342 would then satisfy condition A,
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Figure 34: Cases B∆123C∆132B1�1562G : �2651G and �2651G�4863G

which is not allowed. Condition E can only be satisfied if `13 intersected `68 in
either 1 or 5. However, 1 and 5 are already each on 3 lines. Condition F can only be
satisfied if `56 intersected `48 in 2. However 6 and 2 are already collinear. Condition
G can be satisfied if the third line through 8 intersected `14. The point of intersection
can only be 7, shown in the right diagram of Figure 34.

Consider the quadrangle �6512. Condition D can only be satisfied if the third point
on `12 were collinear with point 3. But triangle ∆123 would then satisfy condition
A. Condition E can only be satisfied if `24 intersected `15 in 3. This is not possi-
ble. Condition F can only be satisfied if `14 intersected `56. This is not possible.
Condition G can only be satisfied if `57 intersected `68. This is shown in Figure 35.

Figure 35: Cases �6512G and �6512G�5743G

Consider the quadrangle �5743. Condition D can only be satisfied if the third point
on `34 were collinear with point 1. But then triangle ∆341 would satisfy condition
A. Condition E can only be satisfied if `23 intersected `47 in point 1. This is not
possible. Condition F can only be satisfied if `24 intersected `57 in 9. This is not
possible. Condition G can only be satisfied if `78 intersected `56 in a new point, also
shown in Figure 35.

Consider the triangle ∆157. Condition B can only be satisfied if `12 intersected
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`56. The point of intersection must be point 0. Condition C can only be satisfied if
points 4 and 9 are collinear. The line of collinearity must be `34. The resulting two
structures are both isomorphic to the Desargues configuration, with one incidence
missing, as can be seen from Figure 1.1. If we then consider ∆268, the remaining
incidence is forced. This completes case B∆123C∆132B1�1562G and also case
B∆123C∆132B1.

Case B∆123C∆132B2.
Refer to Figure 30. Consider the triangle ∆173. Condition B can be satisfied if
the third line through 7 intersected `12. The point of intersection cannot be point 2.
Therefore it is a new point, as shown in Figure 36. Condition C can be satisfied if
points 4 and 5 are collinear. The line of collinearity cannot be `56, for triangle ∆453
would then satisfy condition A. Hence `45 is a new line, also shown in Figure 36. be
satisfied if `57 intersected `68. This is shown in Figure 35.

Figure 36: Cases B∆123C∆132B2∆173 B and C

Now case B∆123C∆132B2∆173C is isomorphic to case B∆123B∆132C∆267B,
shown in Figure 25. As both diagrams have 7 points, the isomorphism can be given
by a permutation, (1, 5, 6)(2, 3, 4), which maps diagram B∆123B∆132C∆267B
to B∆123C∆132B2∆173C. Thus we need only consider case B∆123C∆132B2

∆173B.

Consider the triangle ∆781 in the left diagram of Figure 36. Condition B can be
satisfied if the third line through 8 intersected `37. The point of intersection cannot
be 3. Therefore there must be a line `48, as shown in Figure 37. Condition C can
be satisfied if the third point on `17 is collinear with point 2. The line of collinearity
cannot be `26, for if point 6 were on `17, triangle ∆173 would satisfy condition A.
Hence `24 must intersect `17 in a new point. This is also shown in Figure 37.

Case B∆123C∆132B2∆173B∆781B.
Consider the triangle ∆365. Condition B can be satisfied if the third line through
6 intersected `37. The point of intersection cannot be 4, because `48 would then
contain 6, causing a triangle ∆682 satisfying condition A. Line `17 cannot contain
6, for then triangle ∆136 would satisfy condition A. Therefore condition B requires
that `78 contain 6, shown in Figure 38. Condition C can be satisfied if the third point
on `56 were collinear with point 1. The line of collinearity must be `17, also shown
in Figure 38.
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Figure 37: Cases B∆123C∆132B2∆173B∆781 B and C

Figure 38: Case B∆123C∆132B2∆173B∆781B∆365 B and C

Case B∆123C∆132B2∆173B∆781B∆365B.
Refer to the left diagram of Figure 38. Consider the quadrangle �2176. Condition
D can only be satisfied if points 3 and 8 were collinear. This is not possible as
3 and 8 are already incident on 3 lines each. Condition E can only be satisfied if
`56 intersected `17, shown in Figure 39. Condition F can only be satisfied if `37
intersected `12 in 8. However, 7 and 8 are already collinear. Condition G can only
be satisfied if `15 and `24 intersected. The point of intersection must be 5, making
triangle ∆132 satisfy condition A. We conclude that only E is possible.

Figure 39: Case B∆123C∆132B2∆173B∆781B∆365B�2176E

Consider the quadrangle �2156. Condition D can only be satisfied if points 3 and
9 were collinear, which is impossible. Condition E can only be satisfied if `67 in-
tersected `15 in point 3, which is impossible. Condition F can only be satisfied if
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the third line through 5 intersected `12 in point 8, which is impossible. Condition
G can only be satisfied if `17 and `24 intersected. The point of intersection must be
point 9, also shown in Figure 39. As can be seen from the diagram, this is the Pappus
configuration with one incidence missing. We conclude that this case results in the
Pappus configuration.

Case B∆123C∆132B2∆173B∆781B∆365C.
Refer to the right diagram of Figure 38. Consider the quadrangle �7123. Condition
D can only be satisfied if points 4 and 6 are collinear, which is impossible. Condition
E can only be satisfied if `13 contains 8, which is impossible. Condition F can only
be satisfied if `24 contains point 9. Condition G can only be satisfied if `78 inter-
sected `13. The point of intersection must be 5, creating a triangle ∆195 satisfying
condition A, a contradiction. We conclude that only condition F is possible, shown
in Figure 40.

Figure 40: Cases B∆123C∆132B2∆173B∆781B∆365C�7123F and �2371F

Consider the quadrangle �2371. Condition D can only be satisfied if points 8 and
9 are collinear, which is impossible. Condition E is only possible if `13 contains 4,
which is impossible. Condition F is possible only if `78 contains 6. Condition G
is only possible if `29 and `35 intersected, which is impossible. We conclude that
condition F is necessary.

We next consider quadrangle �4862. Condition D can only be satisfied if points
9 and 3 are collinear, which is impossible. Condition E can only be satisfied if
`21 contains point 7, which is impossible. Condition F is possible only if `69 and
`48 intersect in point 5. Condition G is only possible if `47 and `81 intersected,
which is impossible. We conclude that condition F is necessary, giving the Pappus
configuration. This completes case B∆123C∆132B2∆173B∆781B.

Case B∆123C∆132B2∆173B∆781C.
Refer to the right diagram of Figure 37. Consider triangle ∆243. Condition B can
only be satisfied if the third line through 4 intersected `28. The point of intersection
can only be 8, as shown in Figure 41. Condition C can only be satisfied if points 6
and 7 are collinear. The line of collinearity cannot be `17, as triangle ∆231 would
then satisfy condition A. Hence, the line can only be `78, which must contain 6, as
shown in Figure 41.

Case C is isomorphic to the dual of B∆123C∆132B2∆173B∆178B∆365B,
shown in Figure 38. An isomorphism maps points 1, 2, . . . , 9 of C to lines `67, `34,
`23, `24, `56, `13, `12, `17, `48, respectively, of B. Thus we only need consider case
B.
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Figure 41: Case B∆123C∆132B2∆173B∆178C∆243B and C

Consider the quadrangle �8731. Condition D can only be satisfied if points 2 and 6
are collinear, which is impossible, as the line of collinearity could only be `24. Condi-
tion E cannot be satisfied. Condition F can only be satisfied if `36 intersects `87. The
point of intersection must be 6, as shown in Figure 42. Condition G can only be satis-
fied if `84 and `79 intersect, which is impossible. Thus, only condition F is possible.
But this diagram is isomorphic to case B∆123B∆132C∆267B�1673E�6137E,
shown in Figure 27. An isomorphism is given by (5, 9)(6, 7, 8).

Figure 42: Case B∆123C∆132B2∆173B∆178C∆243B�8731F

We summarise Case B as follows:
An n3 configuration (Σ,Π), which cannot be constructed by a 1-point extension, and

having no triangle satisfying condition A, is one of the Pappus or Desargues configura-
tions.

We still must show that the Fano, Pappus, and Desargues configurations cannot be
obtained by 1-point extensions. This is clearly so for the Fano configuration, as there are
no 63 configurations. Consider the Pappus configuration. One way to show that it cannot be
obtained by a 1-point extension is to start with the unique 83 configuration and to show that
the possible 1-point extensions do not produce the Pappus configuration. Another way is
to show that every ordering of every triangle and quadrilateral in the Pappus configuration
satisfies one of conditions A,B,C,D,E, F,G, so that the Pappus configuration does not
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arise by a 1-point extension. The collineation group of the Pappus configuration has order
108. It is transitive on points, lines, triangles, and quadrangles, so that only one triangle
and one quadrilateral need be tested. We omit the proof.

Figure 43: The Pappus configuration

Consider next the Desargues configuration. Its collineation group has order 120. It is
transitive on points, lines, triangles, quadrangles, and also on quadruples (a0, `2, a1, `3),
where a0, a1 ∈ `2, a0 6= a1, a1 ∈ `3, and `2 6= `3. It is not transitive on pentagons,
hexagons, etc. Refer to Figure 44. We look for a cycle beginning (a0, `2, a1, `3, . . . , `0) =
(1, `13, 3, `34, . . .), satisfying the conditions of Theorem 2.4. Since `′1 ∩ `1 = Ø, where
`′1 = `37, and `1 is the third line through a0 = 1, we must have `1 = `15, so that `0 = `17.
Since a2 6∈ `1, by Theorem 2.4, we cannot have a2 = 5. Hence, a2 = 4.

Figure 44: The Desargues configuration

Then since `′2 ∩ `2 = Ø, we cannot have `′2 = `42, as `42 intersects `2 = `13 in 2.
Therefore `4 = `49, from which we have a3 = 9, and the cycle is (1, `13, 3, `34, 4, `49, 9,
. . . , `17). Since `′3 ∩ `3 = Ø, we cannot have `′3 = `59, as `59 intersects `3 = `34 in 5. It
follows that `5 = `59. But then a4 must be either 1 or 5, both of which are impossible. We
conclude that the Desargues configuration cannot be obtained by a 1-point extension. This
completes the proof of Theorem 4.1.

Observe that we have only used 1-point extensions based on triangles and quadrangles
in the proof of Theorem 4.1. Hence we have proved that if an (n+1)3 configuration cannot
be obtained using a 1-point extensions based on triangles or quadrangles, then it is the
Fano, Pappus, Desargues, or a Fano-type configuration. Therefore we have the following
corollary.
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Corollary 4.2. Every (n+1)3 configuration that can be obtained from an n3 configuration
by a 1-point extension, can be obtained using a 1-point extension based on triangles or
quadrangles.

A consequence of this corollary is that the (n + 1)3 configurations can be constructed
from the n3 configurations by constructing all sequences of sequentially incident points
and lines of length at most 4, and testing whether they satisfy the conditions required for a
1-point extension. Isomorphism testing of the resulting (n + 1)3 configurations then gives
all configurations that can be constructed by 1-point extensions. Those which cannot be
constructed in this way are the Fano-type configurations, which can be constructed from
cycles and subdivisions of bipartite 3-regular multigraphs, using Theorem 3.2.

One of the central problems in the theory of n3 configurations is to determine whether
they are geometric, that is, whether they can be coordinatized over the reals and/or rationals.
See [3, 14, 15, 16]. This means to assign homogeneous coordinates in the real and/or
rational projective plane, so that the lines are straight lines, and all incidences and non-
incidences are respected. The application of 1-point extensions to geometric configurations
will be described in another article (in preparation).

5 The 3-Point Extension
Let (Σ,Π) be an n3-configuration. Choose a line `, and let its points be a1, a2, a3. Con-
struct a new configuration (Σ′,Π′) as follows. Σ′ = Σ ∪ {b1, b2, b3, `1, `2, `3}, where
b1, b2, b3 are new points and `1, `2, `3 are new lines. The incidences Π′ are constructed as
follows. `1 contains the points a1, b2, b3. `2 contains the points b1, a2, b3, and `3 contains
the points b1, b2, a3. Choose 3 lines `′1, `

′
2, `
′
3 6= ` such that `′i contains ai. Remove ai

from `′i and place bi on `′i. This is illustrated in the following table. Then Π′ contains all
remaining incidences of Π, except for the incidences a1`′1, a2`

′
2, a3`

′
3.

` `1 `2 `3 `′1 `′2 `′3
a1 a1 b1 b1 b1 b2 b3
a2 b2 a2 b2 · · ·
a3 b3 b3 a3 · · ·

Theorem 5.1. (Σ′,Π′) is an (n + 3)3-configuration.

Proof. Note that each bi is incident on exactly 3 lines, and that each of `′1, `
′
2, `
′
3 is inci-

dent on exactly 3 points. We must verify that any 2 lines of (Σ′,Π′) intersect in at most
one point. Clearly `, `1, `2, `3 intersect each other in at most one point. Similarly for
`, `′1, `

′
2, `
′
3. The same is true for all other lines of Σ′, because it is true for (Σ,Π).

Example 5.2. The Fano configuration has 7 points and 7 lines, all of which are equivalent
under automorphisms. There is one way to choose 3 points a1, a2, a3. The incidences of
`, `1, `2, `3 are uniquely determined. The choice of `′1, `

′
2, `
′
3 is not unique, as each ai is

incident on two lines other than `. There results two possible 3-point extensions of the
Fano configuration. One of these is the Desargues configuration. The other is known as the
“anti-Pappian” configuration [5].

A complete quadrilateral in an n3 configuration is a set of four distinct lines intersect-
ing in six distinct points. Notice that the extended configuration (Σ′,Π′) always contains
a complete quadrilateral `, `1, `2, `3, intersecting in the six points a1, a2, a3, b1, b2, b3. The
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3-point extension can also be constructed from the dual point of view – rather than be-
ginning with 3 collinear points a1, a2, a3, we begin with 3 concurrent lines, and so forth.
This is equivalent to using the 3-point extension in the dual of (Σ,Π), and then dualizing
(Σ′,Π′). In this case, the 3-point extension will always contain a complete quadrangle, that
is, the dual of a complete quadrilateral.

Theorem 5.3. The Fano-type configurations cannot be obtained by a 3-point extension.

Proof. Suppose that a Fano-type configuration (Σ,Π) were obtained by a 3-point exten-
sion. It would then contain a complete quadrilateral `, `1, `2, `3, intersecting in the six
points a1, a2, a3, b1, b2, b3. These four lines and six points must all be part of a single
F ′, Fp, or F`. Refer to Figure 6. Now the points a1, a2, a3 must be collinear. Furthermore,
there must be a line containing a1, b2, b3, and so forth. This determines the labelling of an
F ′, Fp, or F`. But we then find there is a line containing at least one of the pairs a1, b1;
a2, b2; a3, b3, which is not possible in a 3-point extension.
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1 Introduction
The number of i-dimensional faces of a convex polytope has been studied by many re-
searchers for a long time. One of the most famous classical results is “Euler’s formula.”
The extremal problem concerning the number of faces is an important topic in the study of
convex polytopes. On the other hand, the study of edge polytopes of finite graphs has been
conducted by many authors from viewpoints of commutative algebra on toric ideals and
combinatorics of convex polytopes. We refer the reader to [2, 3] for foundations of edge
polytopes. Faces of edge polytopes are studied in, e.g., [2, 4, 5]. Recently, Tran and Ziegler
[6] studied this extremal problem on edge polytopes. In particular, using [5, Lemma 1.4],
they gave bounds for the maximum possible number µd of edges of the edge polytope aris-
ing from finite simple graphs with d vertices. Following [1, Question 1.3], we wish to find
a finite simple graph G with d vertices such that the edge polytope of G has µd edges and
to compute µd.

Recall that a finite simple graph is a finite graph with no loops and no multiple edges.
Let [d] = {1, . . . , d} be the vertex set and Ωd the set of finite simple graphs on [d], where
d ≥ 3. Let ei denote the ith unit coordinate vector of the Euclidean space Rd. Let G ∈ Ωd

and E(G) the set of edges of G. If e = {i, j} ∈ E(G), then we set ρ(e) = ei + ej ∈ Rd.
The edge polytope PG of G ∈ Ωd is the convex hull of the finite set {ρ(e) : e ∈ E(G)}
in Rd. Let ε(G) denote the number of edges, namely 1-dimensional faces, of PG. For
example, consider the case of the complete graph Kd on [d]. By [5, Lemma 1.4], for edges
e and f (e 6= f) ofKd, the convex hull of {ρ(e), ρ(f)} is an edge of the edge polytopePKd

if and only if e and f have a common vertex. Hence, ε(Kd) = d
(
d−1
2

)
= d(d−1)(d−2)/2.

On the other hand, ε(Km,n) = mn(m+ n− 2)/2, where Km,n is the complete bipartite
graph on the vertex set [m ] ∪ {m+ 1, . . . ,m+ n} for which m,n ≥ 1 (see [4, Theorem
2.5]). In this paper, we are interested in µd = max{ ε(G) : G ∈ Ωd } for d ≥ 3.

Theorem 1.1. For an integer d ≥ 3, let Ωd be the set of finite simple graphs on [d]. Given
a graph G ∈ Ωd, let ε(G) denote the number of edges of the edge polytope PG of G. Then,
the following holds:

(a) If 3 ≤ d ≤ 13 and G ∈ Ωd with G 6= Kd, then ε(G) < ε(Kd).

(b) Let G ∈ Ω14 with G 6= K14. Then ε(G) ≤ ε(K14). Moreover, ε(G) = ε(K14) if
and only if either G = K14 −K4,5 or G = K14 −K5,5.

(c) If d ≥ 15, then there exists G ∈ Ωd such that ε(G) > ε(Kd).

We devote Section 2 to giving a proof of Theorem 1.1. At present, for d ≥ 15, it
remains unsolved to find G ∈ Ωd with µd = ε(G) and to compute µd. (Later, we will see
that µ15 ≥ ε(K15) + 50 = 1415.) In Section 3, we study the asymptotic behavior of µd.
Recently, Tran–Ziegler [6] gave a lower bound for µd by a random graph:

ε(G(d, 1/
√

3)) =
1

54
d4 +

1

18
d3 − 8

27
d2 +

1

3
d.

They also gave an upper bound for µd: µd ≤ ( 1
32 + o(1))d4. (However, this upper bound

is not sharp. See [6, Remark].) In this paper, we succeeded in improving their lower
bound by constructing a non-random graph (see Example 3.1) and a random graph whose
complement is bipartite (see Theorem 3.2):

ε(G) =
5
√

5− 11

8
d4 − 12

√
5− 27

2
d3 +

19
√

5− 44

2
d2 + d,
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where G = Kd −G(Kd/2,d/2, p) with p = 3−
√

5. These results suggest the following:

Conjecture 1.2. Let G ∈ Ωd with µd = ε(G). Then, the complement of G is a bipartite
graph.

Note that, by Theorem 1.1, this conjecture is true for 3 ≤ d ≤ 14.

2 Proof of Theorem 1.1
In this section, we give a proof of Theorem 1.1. The following lemma is studied in [5,
Lemma 1.4].

Lemma 2.1. Let e and f (e 6= f) be edges of a graph G ∈ Ωd. Then, the convex hull
of {ρ(e), ρ(f)} is an edge of the edge polytope PG if and only if one of the following
conditions is satisfied.

(i) e and f have a common vertex in [d].

(ii) e = {i, j} and f = {k, l} have no common vertices, and the induced subgraph of G
on the vertex set {i, j, k, l} has no cycles of length 4.

The complement graph G of a graph G ∈ Ωd is the graph whose vertex set is [d] and
whose edges are the non-edges of G. For a vertex i of a graph G, let degG(i) denote the
degree of i in G. We translate Lemma 2.1 in terms of the complement G of G.

Lemma 2.2. Let H be the complement of a graph G ∈ Ωd. Then, we have

ε(G) =

d∑
i=1

(
d− 1− degH(i)

2

)
+ a(H) + b(H) + c(H)

= ε(Kd) +
1

2

d∑
i=1

deg2
H(i)− (2d− 3)|E(H)|+ a(H) + b(H) + c(H),

where a(H), b(H) and c(H) are the number of induced subgraphs ofH on 4 vertices of the
form (a) a path of length 3; (b) a cycle of length 4; (c) a path of length 2 and one isolated
vertex, respectively.

Proof. First, the number of pairs of edges satisfying Lemma 2.1 (i) is equal to

d∑
i=1

(
d− 1− degH(i)

2

)
=

d∑
i=1

(d− 1)(d− 2)− (2d− 3) degH(i) + deg2
H(i)

2

= ε(Kd) +
1

2

d∑
i=1

deg2
H(i)− (2d− 3)|E(H)|.

Second, the number of pairs of edges satisfying Lemma 2.1 (ii) is equal to the number of
the induced subgraphs W of G where W is one of the following: (a’) W is a path of length
3; (b’) W consists of two disjoint edges; (c’) W is a graph on {i, j, k, `} with E(W ) =
{{i, j}, {j, k}, {i, k}, {k, `}}. Note that each induced subgraph has exactly one such pair
of edges. The complement of each (a’), (b’), and (c’) is (a), (b) and (c), respectively.
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For a graph H ∈ Ωr with r ≤ d, let Kd − H denote the graph G ∈ Ωd such that
E(G) = E(Kd) \ E(H). Using Lemma 2.2, we have the following:

Proposition 2.3. Let H ∈ Ωr and let ψ(H) denote the number of induced paths in H of
length 2. Then, the function ϕ(d) = ε(Kd −H) − ε(Kd) for d = r, r + 1, r + 2, . . . is a
linear polynomial of d whose leading coefficient is ψ(H)− 2|E(H)|.

Proof. Since d is a natural number it is sufficient to show that ϕ(d+ 1)−ϕ(d) = ψ(H)−
2|E(H)| for any d. Let H1 = Kd −H and H2 = Kd+1 −H . Then, H2 is obtained by
adding one isolated vertex d + 1 to H1. Hence, it follows that a(H1) = a(H2), b(H1) =
b(H2), c(H1) + ψ(H) = c(H2) and degH1

(i) = degH2
(i) for all 1 ≤ i ≤ d. Thus, by

Lemma 2.2, we have

ϕ(d+ 1)− ϕ(d)

= ε(Kd+1 −H)− ε(Kd+1)− ε(Kd −H) + ε(Kd)

=

d+1∑
i=1

(
d− degH2

(i)

2

)
−

d∑
i=1

(
d− 1− degH1

(i)

2

)
+ ψ(H)

+
d(d− 1)(d− 2)

2
− (d+ 1)d(d− 1)

2

=

(
d

2

)
+

d∑
i=1

((
d− degH1

(i)

2

)
−
(
d− 1− degH1

(i)

2

))
+ ψ(H)− 3d(d− 1)

2

=

(
d

2

)
+

d∑
i=1

(d− 1− degH1
(i)) + ψ(H)− 3d(d− 1)

2

= ψ(H)−
d∑

i=1

degH1
(i)

= ψ(H)− 2|E(H)|,

as desired.

Proposition 2.4. Let G ∈ Ωd and let H1, H2, . . . ,Hm be all the nonempty connected
components of G. Then, ε(Kd)− ε(G) =

∑m
j=1(ε(Kd)− ε(Kd −Hj)).

Proof. Let H = G and let H ′j = Kd −Hj for 1 ≤ j ≤ m. Then, it is easy to
see that |E(H)| =

∑m
j=1 |E(H ′j)|,

∑d
i=1 deg2

H(i) =
∑m

j=1

∑d
i=1 deg2

H′
j
(i), a(H) =∑m

j=1 a(H ′j), b(H) =
∑m

j=1 b(H
′
j), and c(H) =

∑m
j=1 c(H

′
j). Thus, by Lemma 2.2, we

are done.

A graph G ∈ Ωd is called bipartite if [d] admits a partition into two sets of vertices V1
and V2 such that, for every edge {i, j} of G, either i ∈ V1, j ∈ V2 or j ∈ V1, i ∈ V2 is
satisfied. A complete bipartite graph is a bipartite graph such that every pair of vertices i, j
with i ∈ V1 and j ∈ V2 is adjacent. Let Km,n denote the complete bipartite graph with
|V1| = m and |V2| = n.

Proposition 2.5. Let G = Kd −Km,n such that m+ n ≤ d and m,n ≥ 1. Then,

ε(G)− ε(Kd) =
1

2
mn(m+ n− 6)d− 1

4
mn(3mn+ 2m2 + 2n2 − 5m− 5n− 13).
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Proof. Let H = Km,n. Then,

ψ(H)− 2|E(H)| = m

(
n

2

)
+ n

(
m

2

)
− 2mn =

1

2
mn(m+ n− 6).

Moreover, since Km+n −Km,n is the disjoint union of Km and Kn, we have

ϕ(m+ n) =
m(m− 1)(m− 2)

2
+
n(n− 1)(n− 2)

2
+

(
m

2

)(
n

2

)
− (m+ n)(m+ n− 1)(m+ n− 2)

2

=
1

4
mn(mn− 7m− 7n+ 13)

by Lemma 2.1. Hence, by Proposition 2.3,

ε(G)− ε(Kd) =
1

2
mn(m+ n− 6)(d− (m+ n)) +

1

4
mn(mn− 7m− 7n+ 13)

=
1

2
mn(m+ n− 6)d− 1

4
mn(3mn+ 2m2 + 2n2 − 5m− 5n− 13),

as desired.

Let k3(H) denote the number of triangles (i.e., cycles of length 3) of H . The following
lemma is important.

Lemma 2.6. Let H be the complement graph of G ∈ Ωd. Then, we have

ε(G) ≤ ε(Kd) +
d2 − 16d+ 29

7
|E(H)| − 3

7
(d− 8)k3(H).

Proof. The number of pairs of edges satisfying Lemma 2.1 (i) is, by Lemma 2.2, ε(Kd)−
(2d− 3)|E(H)|+ 1

2

∑d
i=1 deg2

H(i). For an edge {i, j} of H , let k3(i, j) be the number of
triangles in H containing {i, j}. We define three subsets of [d] \ {i, j}:

Xi,j = {` ∈ [d] \ {i, j} : {i, `} ∈ E(H), {j, `} /∈ E(H)},
Yi,j = {` ∈ [d] \ {i, j} : {j, `} ∈ E(H), {i, `} /∈ E(H)},
Zi,j = {` ∈ [d] \ {i, j} : {i, `} /∈ E(H), {j, `} /∈ E(H)}.

It then follows that, |Xi,j |+ |Yi,j |+ |Zi,j |+ k3(i, j) = d− 2, and

1

2

d∑
i=1

deg2
H(i) =

1

2

∑
{i,j}∈E(H)

(degH(i) + degH(j))

=
1

2

∑
{i,j}∈E(H)

(|Xi,j |+ |Yi,j |+ 2k3(i, j) + 2)

= |E(H)|+ 3k3(H) +
1

2

∑
{i,j}∈E(H)

(|Xi,j |+ |Yi,j |).
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Second, we count the number of pairs satisfying Lemma 2.1 (ii). By Lemma 2.2, this
number is equal to a(H) + b(H) + c(H). Here, we count the number of the induced
subgraphs H ′ of type (a), (b) and (c) containing an edge e = {i, j} of H . If e is an
edge of H ′, then the other two vertices ` and m of H ′ satisfy exactly one of the following
conditions:

(i) ` ∈ Xi,j ,m ∈ Yi,j ;

(ii) ` ∈ Yi,j ,m ∈ Zi,j ;

(iii) ` ∈ Zi,j ,m ∈ Xi,j .

If i, j, `,m satisfy condition (i), then one of the following holds:

• H ′ is a path (e1, e2, e3) and e = e2 (type (a)) ;

• H ′ is a cycle of length 4 and e is one of four edges (type (b)).

It then follows that
a(H) + 4b(H) =

∑
{i,j}∈E(H)

|Xi,j ||Yi,j |.

If i, j, `,m satisfy either condition (ii) or (iii), then one of the following holds:

• H ′ is a path (e1, e2, e3) and e ∈ {e1, e3} (type (a)) ;

• H ′ is a path (e1, e2) with one isolated vertex and e ∈ {e1, e2} (type (c)).

It then follows that

2a(H) + 2c(H) =
∑

{i,j}∈E(H)

(|Yi,j ||Zi,j |+ |Zi,j ||Xi,j |) .

Thus, we have

a(H)+b(H)+c(H) = −a(H)

4
+

∑
{i,j}∈E(H)

(
1
4 |Xi,j ||Yi,j |+ 1

2 |Yi,j ||Zi,j |+ 1
2 |Zi,j ||Xi,j |

)
.

Subject to |Xi,j |+ |Yi,j |+ |Zi,j | = d− 2− k3(i, j), we study an upper bound of

α =
∑

{i,j}∈E(H)

(
|Xi,j |+ |Yi,j |

2
+

1

4
|Xi,j ||Yi,j |+

1

2
|Yi,j ||Zi,j |+

1

2
|Zi,j ||Xi,j |

)
.

Each summand of α satisfies

|Xi,j |+ |Yi,j |
2

+
1

4
|Xi,j ||Yi,j |+

1

2
|Yi,j ||Zi,j |+

1

2
|Zi,j ||Xi,j |

=
1

4
|Xi,j ||Yi,j |+

1

2
(|Xi,j |+ |Yi,j |)(d− 1− k3(i, j)− (|Xi,j |+ |Yi,j |))

≤ 1

4

(
|Xi,j |+ |Yi,j |

2

)2

+
1

2
(|Xi,j |+ |Yi,j |)(d− 1− k3(i, j)− (|Xi,j |+ |Yi,j |))

= − 7

16
(|Xi,j |+ |Yi,j |)2 +

d− 1− k3(i, j)

2
(|Xi,j |+ |Yi,j |).
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The last function has the maximum number 1
7 (d − 1 − k3(i, j))2 when |Xi,j | + |Yi,j | =

4
7 (d− 1− k3(i, j)). Hence,∑
{i,j}∈E(H)

1

7
(d− 1− k3(i, j))2 ≤

∑
{i,j}∈E(H)

1

7
(d− 1)(d− 1− k3(i, j))

=
1

7

∑
{i,j}∈E(H)

(d− 1)2 − 1

7

∑
{i,j}∈E(H)

(d− 1)k3(i, j)

=
1

7
(d− 1)2|E(H)| − 3

7
(d− 1)k3(H)

is an upper bound of α. Thus,

ε(Kd)− (2d− 3)|E(H)|+ |E(H)|+ 3k3(H) +
1

7
(d− 1)2|E(H)| − 3

7
(d− 1)k3(H)

is an upper bound of ε(G) as desired.

Using Proposition 2.5 and Lemma 2.6, we prove Theorem 1.1.

Proof of Theorem 1.1. (a) Let 3 ≤ d ≤ 13 and G ∈ Ωd with G 6= Kd. If d = 3, then
ε(G) < ε(Kd) is trivial. If d = 4, then ε(K4) = 12. Since |E(G)| < 6, we have
ε(G) ≤

(
5
2

)
= 10 < ε(K4). Let d ≥ 5 and let H be the complement graph of G. By

Lemma 2.6,

ε(G)− ε(Kd) ≤ d2 − 16d+ 29

7
|E(H)| − 3

7
(d− 8)k3(H).

If 8 ≤ d ≤ 13, then ε(G)− ε(Kd) < 0 since d2−16d+29
7 < 0, |E(H)| > 0 and k3(H) ≥ 0.

Let 5 ≤ d ≤ 7. Then,

ε(G)− ε(Kd) ≤


− 26

7 |E(H)|+ 9
7k3(H) if d = 5,

− 31
7 |E(H)|+ 6

7k3(H) if d = 6,

− 34
7 |E(H)|+ 3

7k3(H) if d = 7.

Hence, if k3(H) ≤ 2, then ε(G) − ε(Kd) is negative. On the other hand, if k3(H) ≥ 3,
then |E(H)| ≥ 5. Since k3(H) ≤

(
d
3

)
, it follows that ε(G)− ε(Kd) is negative.

(b) Let G ∈ Ω14 with G 6= K14 and let H = G. We need to evaluate the function
which appears in the proof of Lemma 2.6 more accurately by focusing on d = 14. Let
|Zi,j | = 12− k3(i, j)− |Xi,j | − |Yi,j | and

f =
|Xi,j |+ |Yi,j |

2
+

1

4
|Xi,j ||Yi,j |+

1

2
|Yi,j ||Zi,j |+

1

2
|Zi,j ||Xi,j |

g = − 7

16
(|Xi,j |+ |Yi,j |)2 +

13− k3(i, j)

2
(|Xi,j |+ |Yi,j |)

be functions of |Xi,j | and |Yi,j |. Recall that f ≤ g ≤ 1
7 (13 − k3(i, j))2 and g = 1

7 (13 −
k3(i, j))2 when |Xi,j |+ |Yi,j | = 4

7 (13− k3(i, j)). If 1 ≤ k3(i, j) ≤ 12, then

1

7
(13−k3(i, j))2 = 24−13

7
k3(i, j)−11

7
+

1

7
(k3(i, j)−1)(k3(i, j)−12) < 24−13

7
k3(i, j).
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If k3(i, j) = 0, then 1
7 (13− k3(i, j))2 = 24 + 1/7. However, since

4

(
|Xi,j |+ |Yi,j |

2
+

1

4
|Xi,j ||Yi,j |+

1

2
|Yi,j ||Zi,j |+

1

2
|Zi,j ||Xi,j |

)
is an integer, the value of f is at most 24 if |Xi,j | and |Yi,j | are non-negative integers.
Thus, for k3(i, j) = 0, 1, . . . , 12, the value of f is at most 24 − 13

7 k3(i, j) if |Xi,j | and
|Yi,j | are non-negative integers. Thus, by the same argument in the proof of Lemma 2.6,
ε(G)− ε(K14) is at most

−24|E(H)|+ 3k3(H) + 24|E(H)| − 3 · 13

7
k3(H)− a(H)

4
= −18

7
k3(H)− a(H)

4
≤ 0.

Therefore, ε(G) ≤ ε(K14).
Suppose that ε(G) = ε(K14). Then, − 18

7 k3(H)− a(H)
4 ≥ 0. Since k3(H), a(H) ≥ 0,

we have k3(H) = a(H) = 0. Moreover,

|Xi,j |+ |Yi,j |
2

+
1

4
|Xi,j ||Yi,j |+

1

2
|Yi,j ||Zi,j |+

1

2
|Zi,j ||Xi,j | = 24

and |Xi,j | + |Yi,j | + |Zi,j | = 12 for an arbitrary edge {i, j} of H . It is easy to see that
|Xi,j |+ |Yi,j | ∈ {7, 8}. It then follows that, for an arbitrary {i, j} ∈ E(H), (|Xi,j |, |Yi,j |,
|Zi,j |) ∈ {(3, 4, 5), (4, 3, 5), (4, 4, 4)}. In particular, the degree of each vertex is either 0,
4 or 5. Moreover, since k3(H) = 0, {j}∪Xi,j and {i}∪Yi,j are independent sets. Hence,
by a(H) = 0, the induced subgraph of H on {i, j} ∪Xi,j ∪ Yi,j is the complete bipartite
graph K|Xi,j |+1,|Yi,j |+1.

Suppose that an edge {i, j} of H satisfies (|Xi,j |, |Yi,j |, |Zi,j |) = (4, 4, 4). Then, the
induced subgraph of H on {i, j}∪Xi,j ∪Yi,j is K5,5. Since the degree of any vertex of H
is either, 0, 4 or 5, other four vertices are isolated. Therefore, G = K14 −K5,5.

It is enough to consider the case that (|Xs,t|, |Ys,t|, |Zs,t|) 6= (4, 4, 4) holds for every
edge {s, t}. Suppose that (|Xi,j |, |Yi,j |) = (3, 4). Then, the induced subgraph of H on
{i, j}∪Xi,j ∪Yi,j is K4,5. Since (|Xs,t|, |Ys,t|, |Zs,t|) 6= (4, 4, 4) for each edge {s, t}, the
degree of every vertex in {i} ∪ Yi,j is 4. In this case, K4,5 is a connected component of H .
Since the degree of other five vertices is at most 4, it follows that they are isolated vertices.
Therefore, G = K14 −K4,5.

(c) Let d ≥ 15 and let G = Kd −Km,n ∈ Ωd. By Proposition 2.5, we have

ε(G)− ε(Kd) =
1

2
mn(m+ n− 6)d− 1

4
mn(3mn+ 2m2 + 2n2 − 5m− 5n− 13).

When m = n = 5, we obtain ε(G)− ε(Kd) = 50(d− 14) > 0 as desired.

3 Asymptotic behavior of µd

For 0 < p < 1 and an integer d > 0, let G(d, p) denote the random graph on the vertex
set [d] in which the edges are chosen independently with probability p. For a graph H on
the vertex set [d] and 0 < p < 1, let G(H, p) denote the random graph on the vertex set
[d] in which the edges of H are chosen independently with probability p and the edges
not belonging to H are not chosen. Tran–Ziegler [6] showed that, for the random graph
G(d, 1/

√
3),

ε(G(d, 1/
√

3)) =
1

54
d4 +

1

18
d3 − 8

27
d2 +

1

3
d,
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and hence this is a lower bound for µd.
First, for d � 0, we give an example of a (non-random) graph G on the vertex set [d]

such that ε(G) > ε(G(d, 1/
√

3)).

Example 3.1. Let G = Kd −Kad,ad −K(1/2−a)d,(1/2−a)d where a = 1
28 (7 +

√
21) and

d� 0. By Propositions 2.4 and 2.5, it follows that

ε(G) =
9

448
d4 +

1

7
d3 − 103

112
d2 + d.

Since 1/54 =. . 0.0185 and 9/448 =. . 0.0201, we have ε(G) > ε(G(d, 1/
√

3)) for d� 0.

Second, we give a random graph G on the vertex set [d] such that ε(G)>ε(G(d, 1/
√

3))
for d� 0.

Theorem 3.2. For an integer d, let G be a random graph Kd − G(Kd/2,d/2, p) with p =

3−
√

5. Then,

ε(G) =
5
√

5− 11

8
d4 − 12

√
5− 27

2
d3 +

19
√

5− 44

2
d2 + d.

In particular, we have ε(G) > ε(G(d, 1/
√

3)) for all d� 0.

Proof. Let m = d/2 and let [d] = V1 ∪ V2 be a partition of the vertex set of Km,m. The
number of pairs of edges {i, j}, {i, k} satisfying Lemma 2.1 (i) is

η1 = m(m− 1)(m− 2) + 2m2(m− 1)(1− p) +m2(m− 1)(1− p)2

where each term corresponds to the case when (i) i, j, k ∈ Vs, (ii) i, j ∈ Vs, k /∈ Vs and
(iii) i ∈ Vs, j, k /∈ Vs, respectively.

Next, we study the number of pairs of edges {i, j}, {k, `} satisfying Lemma 2.1 (ii).
Let Gijk` denote the induced subgraph of G on the vertex set {i, j, k, `} ⊂ [d]. If either
“i, j, k, ` ∈ Vs” or “i, ` ∈ Vs and j, k /∈ Vs” holds, then {i, j, k, `} is a cycle of Gijk`

whenever {i, j}, {k, `} ∈ E(G). Hence, we consider the following two cases:

Case 1. Suppose i, j ∈ Vs and k, ` /∈ Vs. Then, Gijk` has a cycle of length 4 if and only
if either {i, k}, {j, `} ∈ E(G) or {i, `}, {j, k} ∈ E(G) holds. Thus, the expected
number of pairs of edges is η2 =

(
m
2

)2
(1− (1− p)2)2.

Case 2. Suppose that i ∈ Vs and j, k, ` /∈ Vs hold. Then, all of {k, `}, {j, k} and {j, `}
are edges of G. On the other hand, {i, j} is an edge of G with probability 1 − p.
If {i, j} is an edge of G, then Gijk` has a cycle of length 4 if and only if either
{i, k} ∈ E(G) or {i, `} ∈ E(G) holds. Thus, the expected number of pairs of edges
is η3 = m2(m− 1)(m− 2)(1− p)p2.

Therefore, ε(G) = η1 + η2 + η3. If m = d/2 and p = 3−
√

5, then

ε(G) =
5
√

5− 11

8
d4 − 12

√
5− 27

2
d3 +

19
√

5− 44

2
d2 + d,

whose leading coefficient is 5
√
5−11
8 =. . 0.0225425.
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Remark 3.3. By Theorem 3.2, the graph G in Example 3.1 does not satisfy µd = ε(G) for
d� 0. In fact, for d = 20, by Propositions 2.4 and 2.5, it follows that

max

{
ε(G) :

G ∈ Ω20 and each non-empty connected
component of G is a complete bipartite graph

}
= 4176.

Let G′ ∈ Ω20 be the graph such that G′ is the bipartite graph with E(G′) =

{{1, 12}, {1, 14}, {1, 15}, {1, 16}, {1, 18}, {1, 19}, {1, 20}, {2, 11}, {2, 12}, {2, 13}, {2, 15},
{2, 17}, {2, 19}, {2, 20}, {3, 11}, {3, 12}, {3, 13}, {3, 14}, {3, 15}, {3, 16}, {3, 18}, {4, 14},
{4, 15}, {4, 16}, {4, 17}, {4, 18}, {4, 19}, {4, 20}, {5, 11}, {5, 12}, {5, 13}, {5, 15}, {5, 17},
{5, 18}, {5, 20}, {6, 12}, {6, 16}, {6, 17}, {6, 18}, {6, 19}, {6, 20}, {7, 11}, {7, 12}, {7, 13},
{7, 14}, {7, 16}, {7, 17}, {7, 19}, {8, 11}, {8, 12}, {8, 13}, {8, 14}, {8, 15}, {8, 18}, {8, 19},

{8, 20}, {9, 11}, {9, 14}, {9, 15}, {9, 16}, {9, 17}, {9, 18}, {9, 19}, {10, 11}, {10, 13}, {10, 15},
{10, 16}, {10, 18}, {10, 19}, {10, 20}}.

Then, ε(G′) = 4203 > 4176.
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A graph is equitably k-colorable if its vertices can be partitioned into k independent
sets in such a way that the number of vertices in any two sets differ by at most one. The
smallest k for which such a coloring exists is known as the equitable chromatic number
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of cubic graphs is studied. Although the problem of ordinary coloring of coronas of cubic
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1 Introduction
All graphs considered in this paper are connected, finite and simple, i.e. undirected, loop-
less and without multiple edges, unless otherwise is stated.

If the set of vertices of a graph G can be partitioned into k (possibly empty) classes
V1, V2, . . . , Vk such that each Vi is an independent set and the condition

∣∣|Vi| − |Vj |∣∣ ≤ 1
holds for every pair (i, j), then G is said to be equitably k-colorable. If |Vi| = l for every
i = 1, 2, . . . , k, then G on n = kl vertices is said to be strong equitably k-colorable. The
smallest integer k for whichG is equitably k-colorable is known as the equitable chromatic
number ofG and it is denoted by χ=(G) [14]. Since equitable coloring is a proper coloring
with an additional constraint, we have χ(G) ≤ χ=(G) for any graph G.

The notion of equitable colorability was introduced by Meyer [14]. However, an earlier
work of Hajnal and Szemerédi [9] showed that a graph G with maximal degree ∆ is equi-
tably k-colorable if k ≥ ∆ + 1. Recently, Kierstead et al. [11] have given an O(∆n2)-time
algorithm for obtaining a (∆ + 1)-coloring of a graph G on n vertices.

This model of graph coloring has many practical applications. Every time when we
have to divide a system with binary conflict relations into equal or almost equal conflict-
free subsystems we can model this situation by means of equitable graph coloring. In par-
ticular, one motivation for equitable coloring suggested by Meyer [14] concerns scheduling
problems. In this application, the vertices of a graph represent a collection of tasks to be
performed and an edge connects two tasks that should not be performed at the same time.
A coloring of this graph represents a partition of tasks into subsets that may be performed
simultaneously. Due to load balancing considerations, it is desirable to perform equal or
nearly-equal numbers of tasks in each time slot, and this balancing is exactly what equi-
table colorings achieve. Furmańczyk [5] mentions a specific application of this type of
scheduling problem, namely, assigning university courses to time slots in a way that avoids
scheduling incompatible courses at the same time and spreads the courses evenly among
the available time slots.

The topic of equitable coloring was widely discussed in literature. It was considered
for some particular graph classes and also for several graph products: cartesian, weak or
strong tensor products [13, 5] as well as for coronas [6, 10]. Graph products are interesting
and useful in many situations. The complexity of many problems, also equitable coloring,
that deal with very large and complicated graphs is reduced greatly if one is able to fully
characterize the properties of less complicated prime factors. Moreover, corona graphs lie
often close to the boundary between easy and hard problems.

The corona of two graphsG andH is the graphG◦H obtained by taking one copy ofG,
called the center graph, |V (G)| copies of H , named the outer graph, and making the i-th
vertex ofG adjacent to every vertex in the i-th copy ofH . Such type of graph products was
introduced by Frucht and Harary in 1970 [4] (for an example see Fig. 1). After that many
works have been devoted to study its structure and to obtain some relationships between
the corona graph and its factors [1, 4, 12, 15].

In general, the problem of optimal equitable coloring, in the sense of the number of
colors used, is NP-hard and remains so for corona products of graphs. In fact, Furmańczyk
et al. [6] proved that the problem of deciding whether χ=(G ◦ K2) ≤ 3 is NP-complete
even if G is restricted to the line graph of a cubic graph.

Let us recall some basic facts concerning cubic graphs. It is well known from Brook’s
theorem [2] that for any cubic graph G 6= K4, we have χ(G) ≤ 3. On the other hand,
Chen et al. [3] proved that for any cubic graph with χ(G) = 3, its equitable chromatic
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number equals 3 as well. Moreover, since a connected cubic graph G with χ(G) = 2 is
a bipartite graph with partition sets of equal size, we have the equivalence of the classical
and equitable chromatic numbers for 2-chromatic cubic graphs. Since the only cubic graph
for which the chromatic number is equal to 4 is the complete graph K4, we have

2 ≤ χ=(G) = χ(G) ≤ 4, (1.1)

for any cubic graph G.
In the paper we will consider the equitable coloring of coronas. We assume that in

corona G ◦H , |V (G)| = n and |V (H)| = m. A vertex with color i is called an i-vertex.
We use color 4 instead of 0, in all colorings in the paper, including cases when color label
is implied by an expresion (mod4).

Let

• Q2 denote the class of equitably 2-chromatic cubic graphs,

• Q3 denote the class of equitably 3-chromatic cubic graphs,

• Q4 denote the class of equitably 4-chromatic cubic graphs.

Clearly, Q4 = {K4}.

Next, let Q2(t) ⊂ Q2 (Q3(t) ⊂ Q3) denote the class of bipartite (tripartite) cubic
graphs with partition sets of cardinality t, and let Q3(u, v, w) ⊂ Q3 denote the class of
3-partite graphs with color classes of cardinalities u, v and w, respectively, where u ≥ v ≥
w ≥ u− 1. Observe that

χ(K4 ◦H) =

{
4 if H ∈ Q2,
χ(H) + 1 otherwise. (1.2)

In the next section we show a way to color G ◦ H with 3 colors provided that the
corona admits such a coloring. Next, in Section 3 we give a linear-time procedure for
coloring corona products of cubic graphs with 5 colors. It turns out that this number of
colors is sufficent for equitable coloring of any corona of cubic graphs, but in some cases
less than 5 colors suffice. In Section 4 we give our main result that deciding whether G◦H
is equitably 4-colorable is NP-complete whenH ∈ Q3(t) and 10 divides t, in symbols 10|t.
Hence, our 5-coloring algorithm of Section 3 is 1-absolute approximate and the problem
of equitable coloring of cubical coronas belongs to very few NP-hard problems that have
approximation algorithms of this kind. Most of our results are summarized in Table 1.

PPPPPPPPG
H

Q2 Q3 Q4

Q2 3 or 4 [Thm. 2.3] 4 or 5∗ [Thms. 3.3, 4.3] 5 [Thm. 3.2]

Q3 3 or 4 [Thm. 2.3] 4 or 5∗ [Thm. 3.4, Col. 4.4] 5 [Thm. 3.2]

Q4 4 [Thm. 2.3] 4 5 [Thm. 3.2]

Table 1: Possible values of χ=(G ◦ H), where G and H are cubic graphs. Asterix (∗)
means that deciding this case is NP-complete.

To the best of our knowledge, cubical coronas are so far the only class of graphs for
which equitable coloring is harder than ordinary coloring. And, since χ=(G ◦H) ≤ 5 and
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∆(G ◦ H) ≥ 7, our results confirm Meyer’s Equitable Coloring Conjecture [14], which
claims that for any connected graph G, other than a complete graph or an odd cycle, we
have χ=(G) ≤ ∆.

2 Equitable 3-coloring of corona of cubic graphs
First, let us recall a result concerning coronas G ◦H , where H is a 2- or 3-partite graph.

Theorem 2.1 ([6]). Let G be an equitably k-colorable graph on n ≥ k vertices and let H
be a (k − 1)-partite graph. If k|n, then

χ=(G ◦H) ≤ k.

Proposition 2.2. If G and H are cubic graphs, then χ=(G ◦ H) = 3 if and only if G ∈
Q2 ∪Q3, H ∈ Q2, and G has a strong equitable 3-coloring.

Proof. (⇐) Since G is strong equitably 3-colorable, the cardinality of its vertex set must
be divisible by 3. The thesis follows now from Theorem 2.1.
(⇒) Assume that χ=(G ◦H) = 3. This implies:

• H must be 2-chromatic, and due to (1.1) it must be also equitably 2-chromatic,

• G must be 3-colorable (not necessarily equitably), χ(G) ≤ χ=(G) ≤ 3, which
implies G ∈ Q2 ∪Q3.

Otherwise, we would have χ(G ◦H) ≥ 4 which is a contradiction.
Since H ∈ Q2 is connected, its bipartition is determined. Let H ∈ Q2(t), t ≥ 3.

Observe that every 3-coloring of G determines a 3-partition of G ◦ H . Let us consider
any 3-coloring of G with color classes of cardinality n1, n2 and n3, respecively, where
n = n1 + n2 + n3. Then the cardinalities of color classes in the implied 3-coloring of
G ◦H form a sequence ((n2 + n3)t, (n1 + n3)t, (n1 + n2)t). Such a 3-coloring of G ◦H
is equitable if and only if n1 = n2 = n3. This means that G must have a strong equitable
3-coloring, which, keeping in mind that χ=(G ◦ H) ≥ 3 for all cubic graphs G and H ,
completes the proof.

In the remaining cases of coronas G ◦ H , where H ∈ Q2, we have to use more than
three colors. However, it turns out that in all such cases four colors suffice.

Theorem 2.3. If G is a cubic graph, H ∈ Q2, then

χ=(G ◦H) =

{
3 if G ∈ Q2(s) ∪Q3, 3|s and G is equitably 3-colorable,
4 otherwise.

Proof. Due to Proposition 2.2, we only have to define an equitable 4-coloring of G ◦ H .
The cases of G ∈ Q2 ∪ Q4 are easy. We start from an equitable 4-coloring of the center
graph and extend it to the corona.

Let us assume that G ∈ Q3. First, we color equitably G with 3 colors and then extend
this coloring to equitable 4-coloring of G ◦H , H = H(U, V ) ∈ Q2(t). Since the number
of vertices of cubic graph G is even, we have to consider two cases.
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Case 1: n = 4k, for some k ≥ 2.

Since G is equitably 3-colorable, the color classes of equitable 3-coloring of G are
of cardinalities d4k/3e, d(4k − 1)/3e and d(4k − 2)/3e, respectively. And, since
|V (G ◦H)| = 4k(2t + 1), in every equitable 4-coloring of G ◦H each color class
must be of cardinality 2kt+ k.

We extend our 3-coloring of G to G ◦H as follows (see Fig. 1a)). We color:

• the vertices in one copy of H linked to a 1-vertex in G using t times color 3
(vertices in partitionU ), t−(d(4k−1)/3e−k) times color 2 and d(4k−1)/3e−k
times color 4 (vertices in partition V ),

• the vertices in one copy of H linked to a 2-vertex in G using t times color 1
(vertices in partitionU ), t−(d(4k−2)/3e−k) times color 3 and d(4k−2)/3e−k
times color 4 (vertices in partition V ),

• the vertices in one copy of H linked to a 3-vertex in G using t times color 2
(vertices in partition U ), t− (d4k/3e − k) times color 1 and d4k/3e − k times
color 4 (vertices in partition V ).

Figure 1: An example of coloring of W ◦K3,3, where W is the Wagner graph (C8 with 4
diagonals): a) partial 4-coloring; b) equitable 4-coloring.

So far, colors 1, 2 and 3 have been used 2t+ k times, while color 4 has been used k
times.

Now, we color each of uncolored copy of H with two out of three allowed colors in
such a way that in this step colors 1, 2 and 3 are used (2k − 2)t times and color 4 is
used 2kt times, which results in an equitable 4-coloring of the whole corona G ◦H
(see Fig. 1b)).

Case 2: n = 4k + 2, for some k ≥ 1.

Since G is equitably 3-colorable, its color classes are of cardinalities d(4k + 2)/3e,
d(4k+1)/3e and d4k/3e, respectively, in any equitable coloring of G. Since |V (G◦
H)| = (4k+ 2)(2t+ 1) = 8kt+ 4t+ 4k+ 2, in every equitable 4-coloring the color
classes must be of cardinality 2kt+ t+ k or 2kt+ t+ k + 1.
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We color:

• the vertices in one copy of H linked to a 1-vertex of G using t times color
3 (vertices in partition U ), t − (d(4k + 1)/3e − k − 1) times color 2 and
d(4k + 1)/3e − k − 1 times color 4 (vertices in partition V ),

• the vertices in one copy of H linked to a 2-vertex of G using t times color 1
(vertices in partition U ), t− (d4k/3e − k) times color 3 and d4k/3e − k times
color 4 (vertices in partition V ),

• the vertices in one copy of H linked to a 3-vertex of G using t times color
2 (vertices in partition U ), t − (d(4k + 2)/3e − k − 1) times color 1 and
d(4k + 2)/3e − k − 1 times color 4 (vertices in partition V ).

So far, colors 1 and 2 have been used 2t+ k + 1 times, while color 3 has been used
2t+ k times and color 4 has been used k times.

Finally, we color still uncolored copies of H with two (out of three) allowed colors
so that colors 1, 2 and 3 are used (2k−1)t times and color 4 is used 2kt times, which
results in an equitable 4-colorings of the whole corona G ◦H .

3 Equitable 5-coloring of coronas of cubic graphs
We start by considering cases when 5 colors are necessary for such graphs to be colored
equitably.

Proposition 3.1 ([6]). If G is a graph with χ (G) ≤ m+ 1, then χ=(G ◦Km) = m+ 1.

This proposition immediately implies

Corollary 3.2. If G is a cubic graph, then

χ=(G ◦K4) = 5.

It turns out that 5 colors may be required also in some coronas G ◦ H , where G ∈
Q2 ∪Q3 and H ∈ Q3.

Theorem 3.3. If G ∈ Q2(s) and H ∈ Q3, then

4 ≤ χ=(G ◦H) ≤ 5.

Proof. Since H ∈ Q3, we obviously have χ=(G ◦H) ≥ 4.
To prove the upper bound, we consider two cases. Let H = H(U, V,W ) with triparti-

tion of H satisfying |U | ≥ |V | ≥ |W |.

Case 1: s = 2k + 1, k ≥ 1.

We start with the following 4-coloring of G ◦H .
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1. Color graph G with 4 colors, using each of colors 1 and 2 k times and colors 3
and 4 (k + 1) times, respectively.

2. Color the vertices of each copy of H(U, V,W ) linked to an i-vertex of G using
color (i + 1) mod 4 for vertices in U , color (i + 2) mod 4 for vertices in V ,
and color (i+ 3) mod 4 for vertices in W (we use color 4 instead of 0).

Now, we have to consider three subcases, where we bound the number of vertices
that have to be recolored to 5.

Subcase 1.1: H ∈ Q3(t+ 1, t, t), where t = v = w.
The color sequence of the 4-coloring of this corona is C4 = (c1, c2, c3, c4) =
(3kt+ 2k + 2t+ 1, 3kt+ 2k + 2t, 3kt+ 2k + t+ 1, 3kt+ 2k + t+ 2).
In every equitable 5-coloring of the corona G ◦H , where G ∈ Q2(2k+ 1) and
H ∈ Q3(t+1, t, t), every color must be used γ15 = d(12kt+8k+6t+4)/5e =
(2kt+t+k+d(2kt+t+3k+4)/5e) or γ25 = (2kt+t+k+b(2kt+t+3k+4)/5c)
times. The number di of vertices colored with i, 1 ≤ i ≤ 4, that have to be
recolored is equal to ci − γ15 or ci − γ25 . We have

d1 ≤ c1 − γ15 ≤ c1 − γ25 = kt+ t+ k + 1− b(2kt+ t+ 3k + 4)/5c =

= (k + 1)(t+ 1)− b(2kt+ t+ 3k + 4)/5c ≤ (k + 1)(t+ 1).

Similarly, we have

d2 ≤ k(t+ 1) + t,

d3 ≤ k(t+ 1), and
d4 ≤ k(t+ 1).

Subcase 1.2: H ∈ Q3(t+ 1, t+ 1, t), where t = w.
The color sequence of the 4-coloring of this corona is C4 = (c1, c2, c3, c4) =
(3kt+ 3k + 2t+ 2, 3kt+ 3k + 2t+ 1, 3kt+ 3k + t+ 1, 3kt+ 3k + t+ 2).
In every equitable 5-coloring of the corona G ◦H , where G ∈ Q2(2k+ 1) and
H ∈ Q3(t+ 1, t+ 1, t), every color must be used γ15 = d(12kt+ 12k + 6t+
6)/5e = (2kt+ t+ 2k+ 1 + d(2kt+ t+ 2k+ 1)/5e) or γ25 = (2kt+ t+ 2k+
1 + b(2kt+ t+ 2k + 1)/5c) times.
Similarly, as in Subcase 1.1, we have

d1 ≤ c1 − γ15 ≤ c1 − γ25 ≤ (k + 1)(t+ 1),

d2 ≤ k(t+ 1) + y,

d3 ≤ k(t+ 1), and
d4 ≤ k(t+ 1).

Subcase 1.3: H ∈ Q3(t), where t = u = v = w.
The color sequence of the 4-coloring of this corona is C4 = (c1, c2, c3, c4) =
(3kt+ k + 2t, 3kt+ k + 2t, 3kt+ k + t+ 1, 3kt+ k + t+ 1).
In every equitable 5-coloring of the corona G ◦ H , where G ∈ Q2(2k + 1)
and H ∈ Q3(t, t, t), every color must be used d(12kt + 4k + 6t + 2)/5e =



340 Ars Math. Contemp. 10 (2016) 333–347

(2kt + t + d(2kt + t + 4k + 2)/5e) or (2kt + t + b(2kt + t + 4k + 2)/5c)
times.
Similarly, as in previous subcases, we have

d1 ≤ (k + 1)t,

d2 ≤ kt+ t,

d3 ≤ kt, and
d4 ≤ kt.

Consequently, in all subcases, the number of i-vertices that have to be recolored is
bounded by:

• (k + 1)u for i = 1,
• ku+ w for i = 2,
• ku for i = 3, 4.

To obtain an equitable 5-coloring from the 4-coloring of G ◦ H(U, V,W ), |U | ≥
|V | ≥ |W |, we recolor the appropriate number of i-vertices in partitions U linked to
(i − 1)-vertices of G for the vertices which were colored with color i. Due to the
above, this is possible in the cases of colors 1, 3 and 4. In the case of 2-vertices, the
number of vertices recolored in partition U in copies of H can be insufficient. In this
case, we can recolor the vertices in partition W (of cardinality w) in one copy of H
linked to 3-vertex of G.

Case 2: s = 2k, k ≥ 2.

Again, we start with 4-coloring of G ◦H , as follows.

1. Color graph G with 4 colors, using each of colors 1,2, 3 and 4 k times.

2. Color the vertices of each copy of H(U, V,W ) linked to an i-vertex of G using
color (i + 1) mod 4 for vertices in U , color (i + 2) mod 4 for vertices in V ,
and color (i+ 3) mod 4 for vertices in W (we use color 4 instead of 0).

Notice that the resulting 4-coloring does not require recoloring: it is equitable and
establishes that the lower bound is tight.

Similar technique for obtaining an equitable coloring is used in the proof of the follow-
ing theorem, by introducing the fifth color.

Theorem 3.4. If G,H ∈ Q3, then

4 ≤ χ=(G ◦H) ≤ 5.

Proof. LetG = G(A,B,C), where |A| ≥ |B| ≥ |C| ≥ |A|−1, and letH = H(U, V,W ),
where |U | ≥ |V | ≥ |W | ≥ |U | − 1. We start with a 4-coloring of G ◦H .

1. Color the vertices of graph G with 3 colors: the vertices in A with color 1, in B with
2, and in C with color 3.
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2. Color the vertices of each copy of H linked to an i-vertex using color (i+ 1) mod 4
for vertices in U , color (i+ 2) mod 4 for vertices in V , and color (i+ 3) mod 4 for
vertices in W , i = 1, 2, 3 (see Fig. 2a)).

Figure 2: An example of coloring of W ◦ P , where W is the Wagner graph and P is the
prism graph: a) ordinary 4-coloring; b) equitable 5-coloring.

Since |V (G ◦ H)| = (m + 1)n, the color cardinality sequence C = (c1, c2, c3, c4) of
the above 4-coloring of G ◦H is as follows:

(
dn/3e+ d(n− 1)/3e d(m− 2)/3e+ d(n− 2)/3e d(m− 1)/3e ,

dn/3e dm/3e+ d(n− 1)/3e+ d(n− 2)/3e d(m− 1)/3e ,
dn/3e d(m− 1)/3e+ d(n− 1)/3e dm/3e+ d(n− 2)/3e ,

dn/3e d(m− 2)/3e+ d(n− 1)/3e d(m− 1)/3e+ d(n− 2)/3e dm/3e
)
,

respectively. This 4-coloring is not equitable. We have to recolor some vertices colored
with 1, 2, 3 and 4 into 5. The number of vertices colored with i, 1 ≤ i ≤ 4, that have to be
recolored is equal to ci − d((m+ 1)n− i+ 1)/5e.

We have the following claims:
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1
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⌉
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Proof of inequalities (3.1)-(3.4). Let us consider three cases, G ∈ Q3(s), Q3(s + 1, s, s),
andQ3(s+1, s+1, s), and in each case three subcases, H ∈ Q3(t), Q3(t+1, t, t), Q3(t+
1, t + 1, t), respectively. The estimation technique for the number of vertices that have to
be recolored to color 5 is similar to that used in the proof of Theorem 3.3.

Case 1: G ∈ Q3(s), where s = 2k for some k ≥ 1.

Subcase 1.1: H ∈ Q3(t), where t = 2l for some l ≥ 1.

We have |V (G◦H)| = (3t+1)3s = 5(7kl+k)+kl+k, while the color cardinality
sequence C of the 4-coloring of G ◦ H is C = (s + 2st, s + 2st, s + 2st, 3st) =
(8kl + 2k, 8kl + 2k, 8kl + 2k, 12kl).

Since in every equitable 5-coloring of G ◦H each of 5 colors has to be used (7kl +
k+d(kl+k)/5e) or (7kl+k+b(kl+k)/5c) times, we have to recolor some vertices
colored with 1, 2, 3 and 4 into 5. The number of vertices that have to be recolored is
as follows:

• the vertices colored with 1:
8kl + 2k − 7kl − k − d(kl + k)/5ee ≤ 2kl =

⌊
1
2 |C|

⌋
|V |,

• the vertices colored with 2:
8kl + 2k − 7kl − k − d(kl + k − 1)/5ee ≤ 2kl =

⌊
1
2 |A|

⌋
|U |,

• the vertices colored with 3:
8kl + 2k − 7kl − k − d(kl + k − 2)/5e ≤ 2kl ≤

⌊
3
4 |B|

⌋
|U |,

• the vertices colored with 4:
12kl − 7kl − k − d(kl + k − 3)/5e ≤ 4kl + dk2 · 2le =
=
⌈
1
2 |A|

⌉
|W |+

⌈
1
4 |B|

⌉
|V |+

⌈
1
2 |C|

⌉
|U |.

Subcase 1.2: H ∈ Q3(t+ 1, t, t), where t = 2l + 1 for some l ≥ 1.

We have |V (G ◦H)| = (3t+ 2)3s = 5(7kl + 6k) + kl, while the color cardinality
sequence C of the 4-coloring ofG◦H is C = (s+2st, 2s+2st, 2s+2st, 3st+s) =
(8kl + 6k, 8kl + 8k, 8kl + 8k, 12kl + 8k).



H. Furmańczyk and M. Kubale: Equitable coloring of corona products 343

Since in every equitable 5-coloring of G ◦H each of 5 colors has to be used (7kl +
6k+dkl/5e) or (7kl+6k+bkl/5c) times, we have to recolor some vertices colored
with 1, 2, 3 and 4 into 5. The number of vertices that have to be recolored is as
follows:

• the vertices colored with 1:
kl − dkl/5e ≤ 2kl + k =

⌊
1
2 |C|

⌋
|V |,

• the vertices colored with 2:
k(l + 1) + k − d(kl − 1)/5e ≤ 2k(l + 1) =

⌊
1
2 |A|

⌋
|U |,

• the vertices colored with 3:
k(l + 1) + k − d(kl − 2)/5e ≤ b 34kc(2l + 2) =

⌊
3
4 |B|

⌋
|U |,

• the vertices colored with 4:
5kl + 2k − d(kl − 3)/5e ≤ 4kl + 2k + dk2 e(2l + 1) =
=
⌈
1
2 |A|

⌉
|W |+

⌈
1
4 |B|

⌉
|V |+

⌈
1
2 |C|

⌉
|U |.

Subcase 1.3: H ∈ Q3(t+ 1, t+ 1, t), where t = 2l for some l ≥ 1.

We have |V (G◦H)| = (3t+3)3s = 5(7kl+3k)+kl+3k, while the color cardinality
sequence C of the 4-coloring ofG◦H is C = (2s+2st, 2s+2st, 3s+2st, 3st+2s) =
(8kl + 4k, 8kl + 4k, 8kl + 6k, 12kl + 4k).

Since in every equitable 5-coloring of G ◦H each of 5 colors has to be used (7kl +
3k+ d(kl+ 3k)/5e) or (7kl+ 3k+ b(kl+ 3k)/5c) times, we have to recolor some
vertices colored with 1, 2, 3 and 4 into 5. The number of vertices that have to be
recolored is as follows:

• the vertices colored with 1:
kl + k − d(kl + 3k)/5e ≤ 2kl + k =

⌊
1
2 |C|

⌋
|V |,

• the vertices colored with 2:
kl + k − d(kl + 3k − 1)/5e ≤ 2kl + k =

⌊
1
2 |A|

⌋
|U |,

• the vertices colored with 3:
kl + 3k − d(kl + 3k − 2)/5e ≤ b 32kc(2l + 1) =

⌊
3
4 |B|

⌋
|U |,

• the vertices colored with 4:
5kl + k − d(kl + 3k − 3)/5e ≤ 4kl + k + dk2 e(2l + 1) =
=
⌈
1
2 |A|

⌉
|W |+

⌈
1
4 |B|

⌉
|V |+

⌈
1
2 |C|

⌉
|U |.

Case 2: G ∈ Q3(s + 1, s, s), where s = 2k + 1 for some k ≥ 1. The proof follows by a
similar argument to that in Case 1, we omit the details.

Case 3: G ∈ Q3(s + 1, s + 1, s), where s = 2k for some k ≥ 1. The proof follows by a
similar argument to that in Case 1, we omit the details.

End of the proof of inequalities (3.1)-(3.4).

Now, to obtain an equitable 5-coloring of G ◦H , we choose the vertices that have to be
recolored.

• Since the number of 1-vertices that have to be recolored to 5 is not greater than
b 12 |C|c|V |, then the vertices colored with 1 are chosen from the partitions V of
b 12 |C|c copies of H linked to the vertices from partition C of G.
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• Similarly, 2-vertices that have to be recolored are chosen from the partitions U of
b 12 |A|c copies of H linked to the vertices from partition A of G.

• 3-vertices to be recolored are chosen from the partitions U of b 34 |B|c copies of H
linked to the vertices from partition B of G.

• 4-vertices are chosen from:

– partitions W of d 12 |A|e copies of H linked to the vertices from the partition A
of G (different copies than in recoloring of 2-vertices),

– partitions V of d 14 |B|e copies of H linked to the vertices from the partition B
of G (different copies than in recoloring of 3-vertices),

– partitions U of d 12 |C|e copies of H linked to the vertices from the partition C
of G (different copies than in recoloring of 1-vertices) (see Fig. 2b)).

Taking into account our claim, such recoloring is possible.

As we have already observed, the lower bound in Theorem 3.3 is tight. Also upper
bounds in Theorems 3.3 and 3.4 are tight. There are infinitely many coronas G ◦H , where
G ∈ Q2 ∪ Q3 and H ∈ Q3, that require five colors to be equitably colored. For example,
in such coronas graph H ∈ Q3 may be built of 3t (t must be even) vertices and it must
contain t disjoint triangles (cycles C3) (cf. Fig. 3). Let us consider for example G = K3,3.
In the corona K3,3 ◦ H , where H is defined as above, the number of vertices is equal to
36k + 6, for some positive integer k. In any equitable 4-coloring of the corona, the color
sequence must be (9k+ 2, 9k+ 2, 9k+ 1, 9k+ 1). Since modifying the tripartite structure
of H is impossible (it contains t = 2k disjoint triangles), such a coloring does not exist for
k ≥ 2.
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Figure 3: An example of graph H ∈ Q3 for which χ=(G ◦H) = 5, for G ∈ Q3.

4 Complexity results
Although we have only two possible values, 4 and 5, for χ=(G ◦H), where G ∈ Q2 ∪Q3

and H ∈ Q3, it is hard to decide which is correct1. All G,H are still cubic.
We consider the following combinatorial decision problems:

Note that the IS3(H, k) problem is NP-complete and remains so even if 10|m [8]. This
is so because we can enlargeH by adding j (0 ≤ j ≤ 4) isolated copies ofK3,3 to it so that
the number of vertices in the new graph is divisible by 10. Graph H has an independent set
of size at least k if and only if the new graph has an independent set of size at least k + 3j.

1graphs considered in this section need not be connected
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IS3(H, k): Given a cubic graph H on m vertices and an integer k, the question
is: does H have an independent set I of size at least k?

and its subproblem for m = 10q, k = 4m/10 = 4q, i.e. IS3(H, 4q).

Lemma 4.1. Problem IS3(H, 4m/10) is NP-complete.

Proof. Our polynomial reduction is from IS3(H, k). For anm-vertex cubic graphH , 10|m,
and an integer k, let r = |4m/10 − k|. If k ≥ 4m/10 then we construct a cubic graph
G = H + rK4 + rP else we construct G = H + rK4 + 2rP + 4rK3,3, where P ∈ Q3(2)
is the prism graph. It is easy to see that the answer to problem IS3(H, k) is ’yes’ if and
only if the answer to problem IS3(G, 4m/10) is ’yes’.

Lemma 4.2. LetH be a cubic graph and let k = 4/10m, wherem is the number of vertices
of H . The problem of deciding whether H has a coloring of type (4m/10, 3m/10, 3m/10)
is NP-complete.

Proof. We prove that H has a coloring of type (4m/10, 3m/10, 3m/10) if and only if
there is an affirmative answer to IS3(H, 4m/10).

Suppose first that H has the above 3-coloring. Then the color class of size 4m/10 is an
independent set that forms a solution to IS3(H, 4m/10).

Now suppose that there is a solution I to IS3(H, 4m/10). Thus |I| ≥ 4m/10. We
know from [7] that in this case there exists an independent set I ′ of size exactly 4m/10
such that the subgraph H − I ′ is equitably 2-colorable bipartite graph. This means that H
can be 3-colored so that the color sequence is (4m/10, 3m/10, 3m/10).

In the following we show that, given such an unequal coloring of H , we can color
K3,3 ◦H equitably with 4 colors.

(i) Color the vertices of K3,3 with 4 colors - the color sequence is (2, 2, 1, 1).

(ii) Color the vertices in copies of H = H(U, V,W ), |U | = 4m/10, |V | = |W | =
3m/10, in the following way:

• vertices in partitions U of H adjacent to a 1-vertex of K3,3 are colored with
color 2, in partitions V - with 3, and in partitions W - with 4,

• vertices in partitions U of H adjacent to a 2-vertex of K3,3 are colored with
color 1, in partitions V - with 3, and in partitions W - with 4,

• vertices in partition U of H adjacent to the 3-vertex of K3,3 are colored with
color 1, in partition V - with 2, and in partition W - with 4,

• vertices in partition U of H adjacent to the 4-vertex of K3,3 are colored with
color 2, in partition V - with 1, and in partition W - with 3.

Color sequence of the corona is (15m/10+2, 15m/10+2, 15m/10+1, 15m/10+1).
On the other hand, let us assume that the corona K3,3 ◦ H , where H ∈ Q3(t) and

t = 10k, is equitably 4-colorable, where the color sequence for K3,3 is (2, 2, 1, 1). Since
|V (K3,3 ◦ H)| = 6(3t + 1) = 18t + 6 and t = 10k for some k, then each of the four
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colors in every equitable coloring is used 45k+1 or 45k+2 times. Since color 1 (similarly
color 2) can be used only in four copies of H , then in at least one copy we have to use
it 12k = 12t/10 times. It follows that there must exist an independent set of cardinality
12t/10 in H . Since H has 3t vertices, the size of this set is 4m/10.

The above considerations lead us to the following

Theorem 4.3. The problem of deciding whether χ=(K3,3 ◦H) = 4 is NP-complete even
if H ∈ Q3(t) and 10|t. �

A similar argument implies the following

Corollary 4.4. The problem of deciding whether χ=(P ◦ H) = 4, where P is the prism
graph, is NP-complete even if H ∈ Q3(t) and 10|t. �

In this way we have obtained the full classification of complexity for equitable coloring
of cubical coronas.

5 Conclusion
In this paper, we presented all the cases of corona of cubic graphs for which 3 colors suffice
for equitable coloring. In the remaining cases we have proved constructively that 5 colors
are enough for equitable coloring. Since there are only two possible values for χ=(G◦H),
namely 4 or 5, our algorithm is 1-absolute approximate. Due to Theorem 4.3 and Corollary
4.4 the algorithm cannot be improved unless P=NP. Since time spend to assign a final color
to each vertex is constant, the complexity of our algorithm is linear. Finally, the algorithm
confirms the Equitable Coloring Conjecture [14].

Our results are summarized in Table 2. This table contains also the values of classical
chromatic numbers of appropriate coronas and the complexity classification. Let us notice
that all cases are polynomially solvable for ordinary coloring.

PPPPPPPPG
H

Q2 Q3 Q4

Q2, Q3 3 3 or 4 4 4 or 5∗ 5 5
Q4 4 4 4 4 5 5

Table 2: The exact values of classical chromatic number (in italics) and possible values of
the equitable chromatic number (in bold) of coronas G ◦ H . Asterix (∗) means that this
case is NP-complete. The other cases are solvable in linear time.
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[5] H. Furmańczyk, Equitable coloring of graph products, Opuscula Math. 26 (2006), 31–44.
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Abstract

We consider the regular triangular maps corresponding to the principal congruence
subgroups Γ(n) of the classical modular group. We relate the sizes of the Petrie polygons
on these maps to the periods of reduced Fibonacci sequences.

Keywords: Regular map, Petrie polygon, Fibonacci sequence.

Math. Subj. Class.: 05C10, 11B39, 20H05

1 Introduction
An interesting number theoretic problem is to determine the period of the Fibonacci sequence
mod n. Here we look at the period σ(n) of the Fibonacci sequence mod n up to sign. A
Petrie polygon on a regular map is a zig-zag path through the map and an important invariant
of a regular map is the length of a Petrie polygon. The maps we consider here are those that
arise out of principal congruence subgroups Γ(n) of the classical modular group Γ. In this
case It is shown that these lengths are equal to σ(n). A particularly nice example is when
n = 7. Here the regular map is the famous map on the Klein quartic and we find σ(7) = 8
giving the title “The Eightfold Way” to the sculpture by Helaman Ferguson that represents
Klein’s Riemann surface of genus 3 derived from the Klein quartic. This is described in the
book “The eightfold way: the beauty of Klein’s quartic curve”, a collection of papers related
to the Klein quartic edited by Silvio Levy [5].

Let X be a compact orientable surface. By a map (or clean dessin d’enfant) on X we
mean an embedding of a graph G into X such that X \ G is a union of simply-connected
polygonal regions, called faces. A map thus has vertices, edges and faces. A directed edge
is called a dart and a map is called regular if its automorphism group acts transitively on its
darts. The platonic solids are the most well-known examples of regular maps. These are the
regular maps on the Riemann sphere. We recall how we study maps using triangle groups.
The universal map of type (m,n)is the tessellation of one of the three simply connected
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Riemann surfaces, that is the Riemann sphere Σ, the Euclidean plane C, or the hyperbolic
plane, H (depending on whether the genus of X is 0,1, or > 1) by regular m-gons with n
meeting at each vertex. This map is denoted by M̂(m,n). The automorphism group, and
also the conformal automorphism group, of M̂(m,n) is the triangle group Γ[2,m, n]. In
general, a map is of type (m,n) if m is the least common multiple of the face sizes and n
is the least common multiple of the vertex valencies. As shown in [3] every map of type
(m,n) is a quotient of M̂(m,n) by a subgroup M of the triangle group Γ[2,m, n]. Then
M is called a map subgroup of M̂(m,n) or sometimes a fundamental group of M̂(m,n),
inside Γ[2,m, n]. A platonic surface is one that underlies a regular map. The map is regular
if and only if M is a normal subgroup of Γ[2,m, n]. Thus a platonic surface is one of the
form U/M where M is a normal subgroup of a triangle group and U is a simply connected
Riemann surface.

It is permissible to letm or n, or both to be∞. In this paper we are particularly interested
in the case where m = 3, n =∞. This means that the corresponding maps are triangular
though in general we are not concerned with the vertex valencies. However, if the map is
regular then we must have all vertex valencies equal. For example, the icosahedron is a
triangular map with all vertices of valency 5.

To study triangular maps we use the triangle group [2, 3,∞] which is known to be
the modular group Γ =PSL(2,Z) one of the most significant groups in mathematics.
The regular maps correspond to normal subgroups of Γ. The most well-known normal
subgroups of Γ are the principal congruence subgroups Γ(n) defined in section 5. We let
M3(n) = M̂3(3,∞)/Γ(n). We call these maps principal congruence maps or PC maps.

For low values of n these maps are well-known. For n = 2, 3, 4, 5 we get the triangle,
tetrahedron, octahedron and icosahedron respectively. These are the only PC maps of genus
0. For n = 6 we get the regular map {3, 6}2.2 on the torus and for n = 7 we get the Klein
map on Klein’s Riemann surface of genus 3. (See [2, 1]).

2 Petrie polygons
A Petrie polygon in a mapM is defined as a zig-zag path in the map. More precisely, we
start at a vertex, then go along an edge to an adjacent vertex, the turn left and go to the next
vertex and then turn right, etc., (or interchange left and right.) We have a path in which
two consecutive edges belong to the same face but no three consecutive edges belong to the
same face, [1, p. 54]. Eventually, in a finite regular map, we will come back to the original
vertex.This path is called a Petrie path or Petrie polygon. The number of edges of this Petrie
polygon is called the Petrie length of the map.

We now relate the Petrie polygons to triangle groups. From the triangle group Γ[2,m, n],
we can form the extended triangle group Γ(2,m, n) which is the group generated by the
reflections R1, R2, R3 in the edges of a triangle with angles π/2, π/m, π/n where we
choose our ordering so that Γ(2,m, n) has a presentation

〈R1, R2, R3|R2
1 = R2

2 = R2
3 = (R1R2)2 = (R2R3)m = (R3R1)n = 1〉.

If we letX = R1R2, Y = R2R3, Z = R3R1, then we find that Γ[2,m, n] has a presentation

〈X,Y, Z|X2 = Y m = Zn = XY Z = 1〉.

In section 5.2 of [1, p. 54], it is shown that R1R2R3 is a transformation that goes one
step around a Petrie polygon. Now
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(R1R2R3)2 = R1R2R3R1R2R3 = R1R2R3R2R2R1R2R3 = XY −1X−1Y

showing that Petrie length is twice the order of this commutator which implies that the Petrie
length is independent of the Petrie polygon chosen; it is just a property of the map.

3 The Farey map
This is basically the map M̂(3,∞), which we abbreviate toM3. We construct it as follows.
The vertices are the extended rationals Q ∪ {∞} and two rationals a

b and c
d are joined by an

edge if and only if ad− bc = ±1.
This map has the following properties.
(a) There is a triangle with vertices 1

0 ,
1
1 ,

0
1 called the principal triangle.

(b) The modular group Γ acts as a group of automorphisms ofM3.
(c) The general triangle has vertices a

c ,
a+b
c+d ,

b
d .

Thus the Farey map (Figure 1) is a triangular map with triangular faces given by (c). In
[7] it is shown that this is the universal triangular map in the sense that any other triangular
map on an orientable surface is a quotient ofM3 by a subgroup Λ of the modular group Γ.
AsM3 has vertices the extended rationals this means that every triangular map the vertices
can be given coordinates which are Λ orbits of points in Q ∪ {∞}. We shall denote the
orbit of a

b by [ab ]. This is illustrated in [2] where there are many examples, in particular
coordinates for the triangular platonic solids are given. Also see Figure 2.

Figure 1: Farey map

4 The Petrie polygons of the Farey map
We consider a Petrie path inM3. By transitivity we may assume it’s first edge goes from
W1 = 1

0 to W2 = 0
1 . A left turn then takes us to W3 = 1

1 Now a right turn takes us to

W4 = 1
2 . By applying a modular transformation

(
a b
c d

)
to the vertices∞, 0 and 1 to the
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principal triangle we find that three consecutive vertices of the Petrie polygon are a
c ,

b
d ,

a+b
c+d ,

that is the third vertex is the Farey median of the previous two. As the first two vertices of
the Petrie polygon are 1

0 and 1
1 the kth vertex of the Petrie polygon is equal to fk−1

fk
where fk

is the kth element of the Fibonacci sequence defined by f0 = 0, f1 = 1, fk+1 = fk + fk−1.
for k ≥ 1. Thus the Petrie polygon is

1

0
,

0

1
,

1

1
,

1

2
,

2

3
,

3

5
· · ·

Lemma 4.1. The matrix P =

(
0 1
1 1

)
maps each vertex of the Petrie polygon ofM3 to

the next one and also P k =

(
fk−1 fk
fk fk+1

)
The proof follows immediately from the definition of the Fibonacci sequence, and

induction.

Note that P having determinant -1 is not an element of Γ but T = P 2 =

(
1 1
1 2

)
is an

element of Γ.
In the following sections we will consider the Petrie polygon modulo n. As a

b = −a
−b ,

we introduce the following concept.

Definition 4.2. We call the least positive integer m with the property that fm−1 ≡ ±1,
modn, fm ≡ 0 modn the semi-period σ(n) of the Fibonacci sequence modn. The period
π(n) is the least positive integer m such that fm−1 ≡ 1 modn, fm ≡ 0 modn.

For example if m = 7, the Fibonacci sequence mod 7 is 0,1,1,2,3,5,1,6,0, so that
σ(7) = 8 and π(7) = 16. The function π has been quite well-studied in the literature and is
often called the Pisano period. See [8].

5 The principal congruence subgroups
The most well-known normal subgroup of the modular group are the principal congruence
subgroups. Let n ∈ Z, Then the principal congruence subgroup of level n in Γ is the
subgroup

Γ(n) =
{(a b

c d

)
∈ Γ :

(
a b
c d

)
≡ ±

(
1 0
0 1

)
mod n

}
Now Γ(n) is a normal subgroup of Γ and so corresponds to a regular mapM3(n) which

lies on the surface H∗/Γ(n) where H∗ = H ∪Q ∪ {∞}.
Another important group for us is Γ1(n). This is defined as

Γ1(n) =
{(a b

c d

)
∈ Γ :

(
a b
c d

)
≡ ±

(
1 b
0 1

)
mod n

}
where 0 ≤ b < n.
We will not make use of this subgroup but in [2] it was shown that the left cosets of

Γ1(n) in Γ are in one-to-one correspondence with the vertices ofM3(n).
Γ(n) is a normal subgroup of Γ of index

n3

2
Πp|n(1− 1

p2
). (1)
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6 The Petrie polygons of M3(n)

Our principle object of study are the Petrie polygons of the PC-mapsM3(n). We can regard
M3(n) as M̂3(3,∞)/Γ(n), that is as a quotient of the Farey map. We illustrate our study
with the classical regular mapM3(7). This is known as the Klein map and is a map of type
{3, 7}. This lies on Klein’s Riemann surface of genus 3, known as the Klein quartic. Petrie
polygons for this map appear on page 320 in the classic paper [4], although they were not
called Petrie polygons there. In fact, Petrie polygons are named after John Flinders Petrie
(1907-1972), and Klein’s paper [4] was written in 1878. Three of the Petrie polygons are
drawn on page 320 of “The Eightfold Way” [5]. The eight in the title comes from the fact
that the size of the Petrie polygons is 8. This will be a special case of results in this paper
where we determine the sizes of of the Petrie polygons in PC maps.

In general we observe that the group Γ/Γ(n) has a transitive action on the Petrie
polygons of M3(n). For Γ clearly has a transitive action on the darts of M3(∞), and
so Γ/Γ(n) has an induced action on the darts ofM3(n). Clearly, this action will give a
transitive action on the set of Petrie polygons ofM3(n).

The vertices ofM3(n) are equivalence classes of vertices of M̂3(3,∞). We let [ab ]
denote the equivalence class of ab inM3(n) and [ab ] is joined by an edge to [ cd ] inM3(n) if
and only if ad− bc ≡ 1 mod n.

The points [ 10 ], [ 01 ], · · · [ fr−1

fr
] · · · form the vertices of a Petrie polygon which we call

Pe(n).
Recall the definition of the semiperiod σ(n) in section 4.

Theorem 6.1. The Petrie length of Pe(n) is equal to σ(n).

Proof. fσ(n)−1 = fσ(n)+1 = ±1, fσ(n) = 0, so the result follows.

Note that Pe(n) is a Petrie polygon onM3(n).
The Fibonacci sequence mod 7 is 0,1,1,2,3,5,1,6,0 and the Petrie polygon Pe(7) has

vertices [ 10 ], [ 01 ], [ 11 ], [ 12 ][ 23 ], [ 35 ], [ 51 ], [ 16 ]. The next vertex is [−10 ] which is equal to [ 10 ] so we
have closed up our polygon, which has 8 vertices. This polygon is illustrated in Figure 2,
where we denote [ab ] by (a, b). This picture of the Klein surface comes from [2]. The same
picture also appears in at the paper [6]. We can apply the same idea for other values of n.
For exampleM5 is the icosahedron and σ(5) = 10 which is the known Petrie length for the
icosahedron.

7 The universal Petrie polygon
To determine the stabiliser of a Petrie polygon it is useful to introduce a new idea. We first
extend the standard Fibonacci sequence to include negative numbers. We still want the basic
recurrence relation ft−1 + ft = ft+1 to hold, so this extended Fibonacci sequence is

· · · − 3, 2,−1, 1, 0, 1, 1, 2, 3, · · ·

so that f−k = (−1)k−1fk. The universal Petrie polygon Pe(∞) is the infinite polygon
with vertices fk

fk+1
where k ∈ Z and edges the closed intervals [ fk−1

fk
, fk
fk+1

]. Note that
f−k

f−k+1
= (−1)k−1fk

(−1)kfk−1
= − fk

fk−1
and hence the transformation R : t 7→ − 1

t represented

by the matrix
(

0 1
−1 0

)
is an automorphism of Pe(∞). Also T = P 2 =

(
1 1
1 2

)
is an
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Figure 2: Petrie Polygon

automorphism of Pe(∞) that belongs to Γ. Note that R2 = (TR)2 = I so that T and R
generate an infinite dihedral group of automorphisms of Pe(∞).

Theorem 7.1. The automorphism group of Pe(∞) in Γ is equal to 〈T,R〉 ∼= D∞.

Proof. The group 〈T,R〉 is a group of automorphisms of Pe(∞). We show that it acts
transitively on Pe(∞). First of all, P maps each Farey fraction two steps along the Farey
sequence as

T (
fk−1
fk

) =
fk−1 + fk
fk−1 + 2fk

=
fk+1

fk+1 + fk
=
fk+1

fk+2

Thus the union of the orbits of 0
1 and 1

0 under 〈T 〉 is the whole of Pe(∞), and as R( 1
0 ) = 0

1 ,
〈T,R〉 acts transitively on Pe(∞). We note that the stabiliser of 1

0 = ∞ in Aut Pe(∞) is
trivial. For the stabilizer of ∞ in Γ consists of the transformations z 7→ z + m, where
m ∈ Z, and the only translation that preserves Pe(∞) is the identity, Now suppose that
A ∈ AutPe(∞). Then A(∞) = fk−1

fk
. By transitivity, there exists B ∈ 〈T,R〉such that

B(∞) = fk−1

fk
. Thus A−1B fixes∞ and thus A = B.

We now search for the automorphism group of Pe(n).

Theorem 7.2. The automorphism group of Pe(n) is isomorphic to Dσ(n)/2.
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Proof. We have an epimorphism θ : Γ −→ PSL(2,Zn) and θ(T ) = P =

(
1 1
1 2

)
, where

we think of this matrix as lying in PSL(2,Zn).

Now Pσ(n) =

(
fσ(n)−1 fσ(n)
fσ(n) fσ(n)+1

)
.

Now fσ(n) ≡ 0 mod n and fσ(n)−1 = fσ(n)+1 = ±1, by the definition of σ(n).
Thus Pσ(n) = ±I and so Tσ(n)/2 = ±I . which is the identity in PSL (2,Zn) Thus the
automorphism group of Pe(n) is generated by R and T with R2 = (RT )2 = Tσ(n)/2 = 1
and hence 〈R, T 〉 ∼= Dσ(n)/2 of order σ(n).

It is interesting to see how this theorem works in practice, so let us go back to our
example of n = 7 as illustrated in Figure 2. As σ(7) = 8 we have an action of D4 on Pe(7)
an 8-sided polygon . The element T has two cycles of length 4, namely

(1, 0) −→ (1, 1) −→ (2, 3) −→ (5, 1) −→ (1, 0)
(0, 1) −→ (1, 2) −→ (3, 5) −→ (1, 6) −→ (0, 1)
and for the involution R we have (1, 0)↔ (0, 1), (1, 1)↔ (6, 1), (1, 2)↔ (5, 1), (2, 3)

↔ (4, 2).
(Note that [ 35 ] = [−4−2 ] = [ 42 ] so that (3, 5) = (4, 2), etc.)
As Γ/Γ(n) acts transitively on the darts ofM3(n) we use equation (1) in section 5 to

obtain

Corollary 7.3. The number of Petrie polygons onM3(n) is equal to

n3

2σ(n)
Πp|n(1− 1

p2
).

Example. Let n = 7. Then σ(7) = 8. The number of Petrie polygons ofM3(7) is equal
to 21. Klein drew three of them in [5]. The others can be found by rotating these through
2πk/7, for k = 1, · · · 6.

8 More about σ(n)
Theorem 8.1. For all positive integers m > 2, σ(m) is even.

Proof. Pσ(m) =

(
fσ(m)−1 fσ(m)

fσ(m) fσ(m)+1

)
≡ ±1 mod m

Thus (detP )σ(m) ≡ 1 mod m, so (−1)σ(m) ≡ 1 modm and thus σ(m) is even.

Exactly the same proof shows that π(m) is even for m > 2. A much easier proof than
that given in [8].

Let ρ = 1+
√
5

2 (the golden ratio) and ρ∗ = 1−
√
5

2 . Note that ρρ∗ = −1 and ρ+ ρ∗ = 1.
Let Zn[ρ] = {a + bρ|a, b ∈ Z/(n)} and if α = a + bρ, define α∗ = a + bρ∗. Then

(αβ)∗ = α∗β∗.
We define the norm N on Zn[ρ] by N(α) = αα∗. Then N(αβ) = N(α)N(β). We call

α a unit if N(α) = ±1, so that ρ is a unit. The units of Zn[ρ] form a group Z∗n[ρ] under
multiplication.

Theorem 8.2. σ(n) is the order of ρ in Z∗n[ρ], if fσ(n)−1 = 1 and is equal to half the order
of ρ if fσ(n)−1 = −1. In all cases π(n) is equal to the order of ρ in Z∗n[ρ].
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Proof. From ρ2 = ρ + 1 we can use induction to prove that ρm = fmρ + fm−1 Thus if
m = σ(n), fm = 0 and fm−1 = ±1. Thus ρσ(n) = 1 if fσ(n)−1 = 1 and is equal to -1 if
fσ(n)−1 = −1 and in the latter case the order of ρ is 2n.

The proof for π is similar.

9 The Pisano period and the semiperiod
There is a lot about the Pisano period π(m) in the literature . For example, see [8], where
the Pisano period is calculated for all primes less than 2000. Very little is known about the
semiperiod σ(m). We end with a few results comparing the two.

Lemma 9.1. π(m) = σ(m) if and only if fσ(m)−1 = 1. π(m) = 2σ(m) if and only if
fσ(m)−1 = −1.

Proof. Let k be the least integer such that, modulo m, fk−1 = −1, fk = 0. Then k = σ(m)
and fσ(m)+r = −fσ(r), so that f2σ(m)−1 = −fσ(m)−1 = 1, f2σ(m) = 0 and π(m) =
2σ(m).

Alternatively, fk−1 = +1 and then π(m) = σ(m).

We want to determine which of these occur. We give some partial answers. From
Theorem 9.2 we see that σ(m) = π(m) if and only if ρm−1 = 1 and σ(m) = 2π(m) if and
only if ρm−1 = +1.

Theorem 9.2. Let p ≡ ±2 mod 5 be an odd prime. Then π(p) = 2σ(p).

Proof. The point is that 5 is a quadratic residue mod p if and only if p ≡ ±1 mod 5.
Otherwise 5 is a non-residue and by adjoining

√
5 to Fp, the finite field of p elements which

we can take to be Z/pZ, we get a finite fieldK of characteristic p with p2 elements. This
field can be considered to be Fp/I , Where I is the ideal generated by x2 − x− 1, which
we can identify with all elements of the form a + bρ, where a, b ∈ Fp the field with p
elements. The polynomial x2− x− 1 has no roots in Fp but two roots in K interchanged by
the Frobenius automorphism φ : a −→ ap. If α is a root of this polynomial then the other
root is ap = 1 − α and hence so that ap+1 = α − α2 = −1. Thus, by Theorem 8.2 and
Lemma 9.1, π(p) = 2σ(p).

Theorem 9.3. Let p ≡ 11, 19 mod 20. Then π(p) = σ(p).

Proof. We have p ≡ ±1 mod 5 and so 5 has a square root in Fp the finite field with p
elements and hence ρ ∈ Fp. Its multiplicative group has order p− 1. Now

ρπ(p) = fπ(p)ρ+ fπ(p)−1 ≡ 1mod p

Therefore π(p) is a divisor of p − 1. Now p ≡ 3 mod 4 so that p = 4k + 3 for some
integer k. This p− 1 = 4k + 2. If π(p) = 2σ(p), then σ(p) is a divisor of 2k + 1 and thus
σ(p) is odd contradicting Theorem 8.1. Therefore σ(p) = π(p).

We would like to thank Tom Harris for helping us with the results in section 9 and the
referee for his careful reading of the manuscript.
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Abstract

An edge-coloring of a graph G is said to be odd if for each vertex v of G and each
color c, the vertex v either uses the color c an odd number of times or does not use it at all.
The minimum number of colors needed for an odd edge-coloring ofG is the odd chromatic
index χ′o(G). These notions were introduced by Pyber in [7], who showed that 4 colors
suffice for an odd edge-coloring of any simple graph. In this paper, we consider loopless
subcubic graphs, and give a complete characterization in terms of the value of their odd
chromatic index.

Keywords: Subcubic graph, odd edge-coloring, odd chromatic index, odd edge-covering, T -join.

Math. Subj. Class.: 05C15

1 Introduction
1.1 Terminology and notation

Throughout the article we mainly follow the terminology and notation used in [1, 11]. A
graph G = (V (G), E(G)) is always regarded as being finite, i.e. having a finite nonempty
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set of vertices V (G) and a finite (possibly empty) set of edges E(G). An edge with iden-
tical ends is called a loop, and an edge with distinct ends a link. Two or more links with
the same pair of ends are said to be parallel edges. The parameters n(G) = |V (G)| and
m(G) = |E(G)| are called order and size of G, respectively. A graph of order 1 is said to
be trivial, whereas a graph of size 0 empty. For every v ∈ V (G), EG(v) denotes the set of
edges incident to v, and the size of EG(v) (every loop being counted twice) is the degree of
v inG, with notation dG(v). The maximum (resp. minimum) vertex degree inG is denoted
by ∆(G) (resp. δ(G)). We speak of G as a subcubic graph whenever ∆(G) ≤ 3. Each
vertex v having an even (resp. odd) degree dG(v) is an even (resp. odd) vertex. In partic-
ular, if dG(v) equals 0 (resp. 1), we say that v is an isolated (resp. pendant) vertex of G.
Any vertex of degree d is also called a d-vertex. A graph is even (resp. odd) whenever all
its vertices are even (resp. odd). The set of neighboring vertices of v ∈ V (G) is denoted by
NG(v). For every u ∈ NG(v), the edge set EG(u)∩EG(v) is called the uv-bouquet in G,
with notation Buv . The maximum size of a bouquet inG is its multiplicity. We say thatG is
a simple graph whenever it is loopless and of multiplicity at most 1. Whenever the under-
lying graph G is clear from the context, the edge-complement of a subgraph H is denoted
by Ĥ , i.e. Ĥ = G − E(H). A co-forest in G is a subgraph whose edge-complement is a
forest. Every maximal path whose interior consists entirely of 2-vertices (of G) is called
an open thread; similarly, every cycle all of whose vertices except one are 2-vertices of G
is a closed thread. For every connected graph G that is not a cycle, each of its 2-vertices
belongs to a unique thread, either open or closed.

1.2 Odd edge-colorings and odd chromatic index

Any mapping ϕ : E(G) → S is referred to as an edge-coloring of G, and then S is called
the color set of ϕ. We say that ϕ is a k-edge-coloring when |S| ≤ k. Since the nature of
the colors is irrelevant, it is conventional to use S = [k] := {1, 2, . . . , k} whenever the
color set is of size k. For each color c ∈ S, Ec(G,ϕ) denotes the color class of c, being
the set of edges colored by c (i.e. Ec(G,ϕ) = ϕ−1(c)); whenever G and ϕ are clear from
the context, we denote the color class of c simply by Ec. Given an edge-coloring ϕ and a
vertex v of G, we say the color c appears at v if Ec ∩ EG(v) 6= ∅. Any decomposition
{H1, . . . ,Hk} of G can be interpreted as its k-edge-coloring for which the color classes
are E(H1), . . . , E(Hk).

An odd edge-coloring of a given graph G is an edge-coloring such that each nonempty
color class induces an odd subgraph. In other words, at each vertex v, for any appearing
color c the degree dG[Ec](v) is odd. Equivalently, an odd edge-coloring can be seen as a
decomposition of G into (edge disjoint) odd subgraphs. Such decompositions represent a
counterpart to decompositions into even subgraphs, which were mainly used while proving
various flow problems (see e.g. [6, 9]). Historically speaking, as a topic in graph theory,
decomposing into subgraphs of a particular kind started with the paper of Erdös et al. [2].
An odd edge-coloring of G using at most k colors is referred to as an odd k-edge-coloring,
and then we say that G is odd k-edge-colorable. Whenever G is odd edge-colorable, the
odd chromatic index χ′o(G) is defined to be the minimum integer k for which G is odd
k-edge-colorable.

It is obvious that a necessary and sufficient condition for odd edge-colorability of G is
the absence of vertices incident only to loops. Apart from this, the presence of loops does
not influence the existence nor changes the value of the index χ′o(G). Therefore, while
studying these matters it is enough to confine to loopless graphs.
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Figure 1: A simple graph with odd chromatic index equal to 4.

As a notion, odd edge-coloring was introduced by Pyber in his survey on graph cover-
ings [7]. The mentioned work considers simple graphs and (among others) contains a proof
of the following result.

Theorem 1.1 (Pyber, 1991). For every simple graph G, it holds that χ′o(G) ≤ 4.

Pyber remarked that the upper bound is realized by the wheel on four spokes W4 (see
Fig. 1). This upper bound of four colors does not apply to the class of all looplees graphs
G. For instance, Fig. 2 depicts four graphs with the following characteristic property: each
of their odd subgraphs is of order 2 and size 1, i.e. a copy of K2. Consequently, for each
of them the odd chromatic index equals the size of the graph.

(1,1,1) (2,1,1) (2,2,1) (2,2,2)

Figure 2: Four Shannon triangles (the smallest one of each type).

As defined in [4], a Shannon triangle is a loopless graph on three pairwise adjacent
vertices. Observe that for any Shannon triangle, as a direct consequence of the handshake
lemma, the edge set of every odd subgraph is fully contained in a single bouquet. Let p, q, r
be the parities of the sizes of the bouquets of a Shannon triangle G in non-increasing order,
with 2 (resp. 1) denoting that a bouquet consists of an even (resp. odd) number of parallel
edges. Then G is a Shannon triangle of type (p, q, r), and it holds that χ′o(G) = p+ q + r.
The following result was proven in [4].

Theorem 1.2. For every connected loopless graph G, it holds that χ′o(G) ≤ 6. Equality is
achieved if and only if G is a Shannon triangle of type (2, 2, 2).

In this paper we study the odd chromatic index for the class of loopless subcubic graphs
G. We shall prove that over that class of graphs holds maxG χ

′
o(G) = 4. Moreover,

we will give a complete characterization of the loopless subcubic graphs in terms of the
value of their odd chromatic index. In doing so, we will use methods such as eliminating
characteristic subtrees and unicyclic subgraphs, or odd co-forests, developed in [3, 10, 12].

The rest of the article is divided into three sections. In the next one, as a preliminary,
are collected several ‘easy’ results (most of them previously known). Section 3 is devoted
to a derivation of our main result - a characterization of the loopless subcubic graphs G in



362 Ars Math. Contemp. 10 (2016) 359–370

terms of the value of χ′o(G). The final section briefly conveys some ideas on odd edge-
coverability of loopless subcubic graphs.

2 Preliminary results
We begin by recalling the definition of a T -join. For a graph G, let T be an even-sized
subset of V (G). Following [1], a spanning subgraph H of G is said to be a T -join if dH(v)
is odd for all v ∈ T and even for all v ∈ V (G) \ T . For example, if P is an x-y path
in G, the spanning subgraph of G with edge set E(P ) is an {x, y}-join. Observe that the
symmetric difference of a T -join and an S-join is a T 4S-join. With the use of this simple
fact and the mentioned example, it can be readily deduced (see [8]) that for any connected
graph G and any even-sized subset T of V (G), there exists a T -join of G. Note also that
by taking S = ∅ we infer that the symmetric difference of a T -join and a spanning even
subgraph is again a T -join. In particular, removal (resp. addition) of the edges of an edge-
disjoint cycle from (resp. to) a T -join, furnishes a T -join. Thus, whenever a T -join of
G exists, there also exists such a forest (resp. co-forest). The above discussion yields the
following conclusion.

Lemma 2.1. Given a connected graph G of even order, there exists an odd co-forest in G.

The next lemma originally appears in [7]. For a proof we refer the reader to [4].

Lemma 2.2. If F is a forest, then χ′o(F ) ≤ 2.

With the use of Lemmas 2.1 and 2.2, it can be easily shown that every connected graph
of even order is odd 3-edge-colorable.

Proposition 2.3. For every connected graph G of even order, it holds that χ′o(G) ≤ 3.

Proof. There exists an odd co-forest H in G. Take an odd edge-coloring of Ĥ with the
color set {1, 2} and extend it to E(G) by coloring E(H) with 3. Note that we have thus
constructed an odd 3-edge-coloring of G.

Corollary 2.4. Let v be a 2-vertex in a connected graph G of odd order. Then G admits a
3-edge-coloring that is nearly odd with the only exception being that EG(v) is monochro-
matic.

Proof. Suppress the vertex v, i.e. remove it and then add an edge e with ends in NG(v)
(the edge e is either a link or a loop depending on whether NG(v) is of size 1 or 2). Denote
the obtained graph by H . Since H is connected and of even order, the previous proposition
assures its odd 3-edge-colorability. Apply such an edge-coloring to H , and then ‘reinstate’
the vertex v on the edge e. We thus regain the graph G with a required edge-coloring.

3 Odd edge-colorability
As already mentioned, throughout this section we consider loopless subcubic graphs. We
begin by showing that four colors suffice for an odd edge-coloring of any such graph.

Proposition 3.1. If G is a loopless subcubic graph, then χ′o(G) ≤ 4.
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Proof. We may assume that G is connected and non-trivial. Moreover, by Proposition 2.3
we may assume that n(G) is odd. In case δ(G) = 1 it is easily shown that χ′o(G) ≤ 3.
Indeed, say v is one of its pendant vertices. Since the graph G − v is connected and of
even order, by Lemma 2.1 there exists an odd co-forest K in G − v. Let us denote its
edge-complement in G by F , i.e. F = G− E(K). Then {K,F} is a decomposition of G
into an odd subgraph K and a forest F . By coloring E(K) with 1, and applying to F an
odd 2-edge-coloring with the color set {2, 3}, we furnish an odd 3-edge-coloring of G.

Henceforth we assume that δ(G) = 2. Let v be one of its non-cut vertices. Either
dG(v) = 2 or dG(v) = 3. We study first the case when dG(v) = 2 (see Fig. 3).

G− v

v

G− v

v

e f e f

Figure 3: The two possibilities when dG(v) = 2.

Let EG(v) = {e, f}. By Lemma 2.1, consider a decomposition {K,F} of G − v
consisting of an odd subgraph K and a forest F . Then the graph F + e is also a forest.
Color E(K) with 1, the edge f by 2, and combine with an odd edge-coloring of F +e with
the color set {3, 4}. This confirms that G is odd 4-edge-colorable.

v

G− v

u

Figure 4: The only possibility when dG(v) = 3.

Now we study the case when dG(v) = 3 (see Fig. 4). Denote by u the neighbor of
v for which the uv-bouquet is of size 2. Clearly, u is a pendant vertex of G − v. Select
an odd co-forest K in G − v. Observe that in its edge-complement K̂ (taken in G − v),
the vertex u is isolated. Color E(K) with 1; apply to the forest K̂ an odd edge-coloring
with the color set {2, 3}; color the bouquet Buv with 2 and 3; finally, color the remaining
non-colored edge (incident to v) by 4. This gives an odd 4-edge-coloring of G.

The established upper bound (of four colors) for the odd chromatic index of any loop-
less subcubic graph is sharp. For example, consider the smallest Shannon triangle G of
type (2, 1, 1) (the second of the graphs depicted in Fig. 2). As already observed in the in-
troduction, χ′o(G) = 4. Note that this particular G can be obtained from a cubic bipartite
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graph (of order 2) by a single edge subdivision. As it turns out, every subcubic graph ob-
tainable in this manner requires four colors for an odd edge-coloring. On the other hand,
for any other connected loopless graph three colors suffice. In order to prove this assertion
we will use the following lemma.

Lemma 3.2. Let G be a connected graph having at least two 2-vertices. Then there exists
a tree T in G that satisfies the following two conditions:

(i) every 2-vertex of G belongs to V (T ),

(ii) every pendant vertex of T is a 2-vertex of G.

Proof. We argue by induction on the number k of 2-vertices in G. In case k = 2, we
merely take T to be a path in G connecting the only two 2-vertices. Assume that k > 2
and let the statement be true whenever the number of 2-vertices is less than k. Suppress
a 2-vertex v of G, i.e. remove v and add a new edge e between its neighbors; denote the
obtained graph by G′. The inductive hypothesis provides us with a tree T ′ satisfying the
conditions (i) and (ii) for G′. If e ∈ E(T ′), then by reversing the suppression, i.e. by
subdividing e, we arrive at the desired tree. Otherwise, T ′ is a subtree of G − v. If that is
the case, then let P be a v-V (T ′) path in G and set T = P ∪ T ′. Note that T is a tree in G
for which both (i) and (ii) hold.

Proposition 3.3. For any connected loopless subcubic graph G, the following two state-
ments are equivalent:

(i) χ′o(G) = 4;

(ii) G is obtainable from a cubic bipartite graph by a single edge subdivision.

Proof. (i) ⇒ (ii): Let G be a connected loopless subcubic graph that cannot be obtained
from a cubic bipartite graph by a single edge subdivision. We shall prove that χ′o(G) ≤ 3.
As in the proof of Proposition 3.1, we may assume that n(G) is odd and δ(G) = 2. There
are two cases to be considered.

Case 1: G has at least two 2-vertices. Let T be a tree in G as in Lemma 3.2. Note
that for each non-isolated vertex u of its edge-complement T̂ the degree dT̂ (u) is odd.
Therefore, the combination of an odd 2-edge-coloring of T with the color set {1, 2} and a
monochromatic edge-coloring of T̂ with the color 3 constitutes an odd 3-edge-coloring of
G.

Case 2: G has a unique 2-vertex. Denote this particular vertex by v. Assume first the
existence of an odd cycle (i.e. a cycle of odd length) Co in G that does not pass through
v. Since G is connected, there exists a nontrivial v-V (Co) path P . Let w be the other
endpoint of P (besides v) and consider the subgraph G′ = P ∪Co. Note that w is the only
isolated vertex of Ĝ′; moreover, every other vertex of Ĝ′ has an odd degree. Color the set
E(Ĝ′) with 3; use the color 1 for EG(w); color the remaining non-colored edges of P and
Co alternately by 1 and 2 such that the obtained edge-coloring of G′ fails to be proper only
at w (such a 2-edge-coloring of G′ is possible because Co is an odd cycle). This completes
an odd 3-edge-coloring of G.

Assume now that such an odd cycle does not exist in G, meaning that every cycle
avoiding v is even. We claim that there exists an even cycle Ce passing through v. To
prove this, we argue as follows. Suppress the vertex v, and let e be the new edge. The
obtained graph G∗ is cubic (since v is the only 2-vertex of G and δ(G) = 2), which further
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implies that G∗ is not bipartite (otherwise, G would be obtainable from the cubic bipartite
graph G∗ by a single edge subdivision). Consider an odd cycle C∗ of G∗. By our current
assumption, C∗ is not a cycle in G, which implies that e ∈ E(C∗). Therefore, v ∪ V (C∗)
constitutes the vertex set of an even cycle Ce passing through v. Once the existence of
Ce is established, we can construct an odd 3-edge-coloring of G as follows: take a proper
2-edge-coloring of Ce with the color set {1, 2}; then color the edge set of Ĉe with 3.

(ii) ⇒ (i): Let G be obtainable from a cubic bipartite graph by a single edge subdivi-
sion. We shall show that χ′o(G) = 4. Denote by v the unique 2-vertex of G, and let G′ be
the graph obtained from G by suppressing v. Since G′ is bipartite, there exists a partition
X,Y of V (G′) such that E(G′) = E(X,Y ). By Proposition 3.1, χ′o(G) ≤ 4. Suppose
this inequality is strict, i.e. suppose there exists an odd 3-edge-coloring of G with the color
set {1, 2, 3}. Without loss of generality, we may assume that the v-X edge is colored by 1,
whereas the v-Y edge is colored by 2. Let x1, x2, x3, x123 be respectively the number of
vertices u from X such that EG(u) is colored entirely with 1, entirely with 2, entirely with
3, or by all the three colors 1, 2, 3. Analogously, we employ notation y1, y2, y3, y123 for the
sizes of the respective subsets of Y .

By double counting the color class E1, we derive the equality

3x1 + x123 = 1 + 3y1 + y123 . (3.1)

Reasoning similarly for the class E2, we deduce

1 + 3x2 + x123 = 3y2 + y123 . (3.2)

Let us now consider the difference x123 − y123. From (3.1) it follows that x123 − y123 ≡
1(mod 3). On the other hand, (3.2) yields x123 − y123 ≡ −1(mod 3). This is the desired
contradiction.

It is a trivial task to characterize the connected loopless subcubic graphs G that are
odd 1-edge-colorable. Namely, χ′o(G) = 0 if and only if G is K1, whereas χ′o(G) = 1
precisely when G is odd. We proceed to characterize odd 2-edge-colorability.

Proposition 3.4. IfG is a connected loopless subcubic graph, then the following two state-
ments are equivalent:

(i) χ′o(G) ≤ 2;

(ii) for every cycle C of G, the set {v ∈ V (C) : dG(v) = 2} is even-sized.

Proof. (i) ⇒ (ii): Assume (i) and apply to G an odd 2-edge-coloring. Consider an arbi-
trary cycle C of G. Note that for every v ∈ V (C) the edge set EC(v) is either monochro-
matic (when dG(v) = 3) or dichromatic (when dG(v) = 2). This clearly implies that the
set {v ∈ V (C) : dG(v) = 2} is even-sized.

(ii) ⇒ (i): Assume that (ii) holds. In case G is a cycle, it is readily seen that (i)
follows. Henceforth, we prove that (i) holds when G is not a cycle. For each pair x, y
of non-even vertices of G consider an arbitrary x-y walk W , and count the number of
traversed 2-vertices, i.e. count the 2-vertices of G appearing (possibly with repetition) in
the interior of W . We claim that the parity of this number is an invariant of the unordered
pair x, y, i.e. does not dependent on the choice of W . Indeed, if we suppose the existence
of an x-y walkW ′ which presents a counterexample combined withW , then the symmetric
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difference E(W ) ⊕ E(W ′) must contain the edge set of a cycle C of G for which the set
{v ∈ V (C) : dG(v) = 2} is odd-sized.

Let us employ notation x ∼ y (resp. x ≈ y) whenever the parity of the considered
number is odd (resp. even). Seen as binary relations on the set on non-even vertices, both∼
and ≈ are symmetric. Moreover, by concatenating suitable walks, one readily deduces that
≈ is an equivalence relation, whereas ∼ is non-transitive (i.e. x ∼ y & y ∼ z ⇒ x ≈ z).

This means that there are at most two equivalence classes of ≈. In other words, the set
of non-even vertices ofG can be written as a disjoint union of two (possibly empty) subsets
A,B such that x ∼ y holds if and only if x and y belong to distinct subsets. Note that there
is no A-B edge in G. For each u ∈ A color EG(u) with 1; similarly, for each u ∈ B color
EG(u) with 2. This gives a partial edge-coloring of G such that any non-colored edge is
incident to a 2-vertex. Apply the following procedure: as long as there exists a 2-vertex,
say v, with EG(v) not fully colored, consider the unique thread H that contains v. Two
edges of H are already colored, and this pre-coloring extends to an edge-coloring of H
with the color set {1, 2} that is proper at each 2-vertex belonging to V (H). (In case the
two pre-colored edges received the same color then the length of H is odd; on the other
hand, if they are of different colors, then the length is even.) This eventually completes an
odd 2-edge-coloring of G.

Since all the threads of a given connected loopless subcubic graph G can be detected
in linear time, it is linearly decidable whether the set on non-even vertices of G admits
a partition into two (possibly empty) subsets A and B as in the proof of the implication
(ii) ⇒ (i). Thus, it can be checked in linear time whether χ′o(G) ≤ 2. Moreover, the
proof of (ii) ⇒ (i) suggests the following constructive characterization of odd 2-edge-
colorability.

Corollary 3.5. Every connected loopless subcubic graph G satisfying χ′o(G) ≤ 2 is either
an even cycle or can be obtained from a connected odd subcubic graph Go (loops allowed)
in the following manner:

1. split V (Go) arbitrarily into two (possibly empty) subsets A and B;

2. subdivide an odd number of times each edge from E(A,B);

3. subdivide an even non-zero number of times each loop from E(Go);

4. subdivide an even (possibly zero) number of times each link whose endvertices be-
long to the same set from the pair A,B.

To summarize this section, we state the promised characterization of all connected loop-
less subcubic graphs in terms of their odd chromatic index.

Theorem 3.6. Let G be a connected loopless subcubic graph. Then

χ′o(G) =



0 if G is empty ;

1 if G is odd ;

2 if G has 2-vertices, with an even number of them on each cycle ;

4 if G is obtained from a cubic bipartite graph by a single edge
subdivision ;

3 otherwise .
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The above comments on the algorithmic aspects of odd 2-edge-colorability, combined
with the well-known fact that the decision problem whether a given graph is bipartite can be
solved in polynomial time (by using Breadth-First Search), assure that our characterization
is good.

Corollary 3.7. For any loopless subcubic graph G, the odd chromatic index χ′o(G) can be
determined in polynomial time of n(G).

4 Odd edge-coverability
In this section we present an application of Theorem 3.6 while briefly studying the odd
edge-coverability of subcubic graphs, a related concept to odd edge-colorability. An edge-
covering of a graph G is a family {H1, . . . ,Hk} of subgraphs such that

⋃k
i=1E(Hi) =

E(G). Any edge-covering of G can be interpreted as a ‘generalized edge-coloring’, i.e. a
mapping ϕ∗ : E(G) → P∗([k]) assigning to each edge of G a nonempty subset of the set
of colors {1, . . . , k}. In other words, we pass from edge-colorings to edge-coverings by
allowing more than one color per edge. In the context of an edge-covering ϕ∗, the color
class Ec of any color c ∈ [k] consists of the edges e ∈ E(G) for which c ∈ ϕ∗(e). If each
non-empty color class induces an odd subgraph, then we speak of an odd edge-covering of
G. More verbosely, we say thatG is odd k-edge-coverable whenever it admits an odd edge-
covering with at most k colors. The minimum size (i.e. minimum number of colors) of an
odd edge-covering of G is denoted by covo(G). Similar to odd edge-colorability, a given
graph G is odd edge-coverable if and only if there are no vertices incident only to loops,
and apart from this, the presence of loops does not influence the existence nor changes the
value of covo(G). Therefore, any study of odd edge-coverability should be restricted to
loopless graphs. Since every odd edge-coloring of G is also an odd edge-covering, it holds
that

covo(G) ≤ χ′o(G) . (4.1)

As a notion, odd edge-covering was introduced in [5]. The scope of the mentioned
work are all simple graphs, and the following result is proven.

Theorem 4.1 (Mátrai, 2006). For every simple graph G, it holds that covo(G) ≤ 3.

In this section we consider the possible values of the index covo(G) taken over all
connected loopless subcubic graphs G. When G is the smallest Shannon triangle of type
(2, 1, 1) (the second graph in Fig. 2), the handshake lemma readily implies that covo(G) =
4; indeed, for every graph G of order n(G) = 3 the equality covo(G) = χ′o(G) holds. We
shall prove that this is the only exception to odd 3-edge-coverability of connected loopless
subcubic graphs. For this we should note that, according to (4.1) and Theorem 3.6, any
exception must be obtainable from a cubic bipartite graph by a single edge subdivision.
Thus, it is enough to consider the odd 3-edge-coverability of that particular class of graphs.

Proposition 4.2. Apart from the smallest Shannon triangle of type (2, 1, 1), every other
connected loopless subcubic graph is odd 3-edge-coverable.

Proof. Suppose the opposite, i.e. let G present a counterexample. Hence, G can be ob-
tained from a cubic bipartite graph H by a single edge subdivision. Say the subdivided
edge e ∈ E(H) has endpoints x and y, and let v be the introduced 2-vertex. Denote by ex
and ey the respective ‘parts’ of e in G (see Fig. 5).
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Figure 5: The graphs H and G. (The possibility of another xy-edge in H , i.e. an xy-edge in G, is
not excluded.)

Let Bxy be the xy-bouquet of H . Since H is a cubic graph and G is not the smallest
Shannon triangle of type (2, 1, 1), the size of Bxy is either 1 or 2. We claim the latter.
To confirm this, we argue by contradiction. Suppose the opposite, i.e. let x and y be
non-adjacent in G. First we show that the graph G − v is connected. Otherwise, it must
consist of two components Hx and Hy , containing x and y, respectively. Moreover, since
the only even vertex of the graph Hx (resp. Hy) is the 2-vertex x (resp. y), the handshake
lemma implies that both n(Hx) and n(Hy) are odd. By Corollary 2.4, there exists an edge-
coloring ϕx (resp. ϕy) of Hx (resp. Hy) with the color set {1, 2, 3} that is nearly odd, the
only exception being that the edge set EHx

(x) is colored with 1 (resp. the edge set EHy
(y)

is colored with 2). Apply ϕx ∪ ϕy , and then color ex by 1 and ey by 2. We thus obtain an
odd 3-edge-coloring of G, a contradiction. This confirms that G− v is indeed connected.

Denote by P a shortest x-y path inG−v, and say x, u1, . . . , uk−1, y are the consecutive
vertices met on a traversal of P . Since H is bipartite with x and y belonging to different
partite sets, the length k is an odd integer greater than 2. Suppose that NG−v(x) = {u1},
i.e. let the bouquet Bxu1

be of size 2. We can then apply to G the following edge-covering
with the color set {1, 2, 3}: color ex with 1; for ey use both 2 and 3; color Bxu1 with 1; for
the u1u2-edge of P use both 1 and 3; color the rest of E(G) with 3. This clearly implies
covo(G) ≤ 3, a contradiction. Therefore, it must be that, besides u1, there exists another
neighbor of x in G − v; let us denote this particular vertex by u. The choice of P assures
u /∈ V (P ). We construct an odd 3-edge-covering of G as follows: color ex by 1; color
ey by 2; for the unique xu-edge use both 1 and 3; apply to P a proper edge-coloring with
the color set {1, 2} such that the xu1-edge receives the color 1; for the rest of E(G) use
3. But the obtained odd 3-edge-covering presents a contradiction, thus establishing that
|Bxy| = 2, as claimed.

Now, let u be the third neighbor of x in G (besides v and y). Apply to G the following
edge-covering ϕ∗ with the color set {1, 2, 3}: color ex by 1; color ey by 2; color the unique
xy-edge of G by 1; for the unique xu-edge use both 1 and 3; color the rest of E(G) with
3. It is readily checked that ϕ∗ is an odd 3-edge-covering of G. But this contradicts the
choice of G as a counterexample, and thus settles the proposition.

There are plentyful of connected loopless subcubic graphs G satisfying covo(G) = 3.
For instance, every nontrivial odd cycle is such. As another example we may take any G
that possesses an even cycle C passing through only one 3-vertex (i.e. the rest of V (C)
consists entirely of 2-vertices of G). Yet another example is the graph obtained from K3,3
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by a single edge-subdivision. In order to derive a result for odd edge-coverability analogous
to Theorem 3.6, we need to characterize the odd 2-edge-coverability of connected loopless
subcubic graphs. The final proposition of this section can be seen as a step towards such a
characterization.

Proposition 4.3. For every connected loopless subcubic graph G the following two state-
ments are equivalent:

(i) covo(G) ≤ 2;

(ii) There exists an S ⊆ E(G) such that

• S is not incident to any 2-vertex of G,
• every pendant vertex of G− S is a pendant vertex of G,
• for every cycle C of G− S, the set {v ∈ V (C) : dG(v) = 2} is even-sized.

Proof. (i)⇒ (ii): Assume the existence of an odd 2-edge-covering ofG with the color set
{1, 2}. Define S = E1 ∩ E2, i.e. let S be the collection of edges that are colored by both
colors. It is easily seen that this particular choice for S meets all the requirements of (ii).

(ii)⇒ (i): Let S ⊆ E(G) be as stated in (ii). We claim that the third requirement for
S assures G − S admits an edge-coloring with the color set {1, 2} which is dichromatic
precisely at each 2-vertex of G. To construct such a 2-edge-coloring of G − S we follow
a similar pattern to the one in the proof of the second implication from Proposition 3.4:
namely, in the graph G− S, for each pair of vertices x, y neither of which is a 2-vertex of
G, we consider an arbitrary x-y walk W and count the 2-vertices of G appearing (possibly
with repetition) in the interior of W ; the third requirement for S assures that the parity of
this number is an invariant of the unordered pair x, y; let the notation x ≈ y mean that this
parity is even; as before, it is easily shown that ≈ is an equivalence relation with at most
two equivalence classes; and so on.

Once such an edge-coloring of G − S is constructed, we can extend it to a 2-edge-
covering ϕ∗ of G simply by coloring each edge in S by both 1 and 2. The first two require-
ments for S clearly imply that ϕ∗ is odd.

We conclude the paper with the following remark regarding potential further work.
In [4] it was conjectured that the problem of determining whether an arbitrary loopless
graph G is odd 2-edge-colorable is NP-hard. Perhaps for some values of ∆(G) beyond 3
this is still decidable in polynomial time. The authors believe that an analogous result to
Theorem 3.6 is possible for ∆(G) = 4.
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1 Introduction
For any graph Γ, let V (Γ) and E(Γ) be the vertex-set and the edge-set of Γ, respectively,
and λΓ be the graph Γ with each of its edges replicated λ times. Throughout the paper Kv

will denote the complete graph on v vertices, while Kn \ Kh will denote the graph with
V (Kn) as vertex-set and E(Kn) \ E(Kh) as edge-set (this graph is sometimes referred to
as a complete graph of order n with a hole of size h); finally, Kn1,n2,...,nt

will denote the
complete multipartite graph with t-parts of sizes n1, n2, . . . , nt.

Let G and H be simple finite graphs. A λ-fold G-design of H ((λH,G)-design in
short) is a pair (X,B) where X is the vertex-set of H and B is a collection of isomorphic
copies (called blocks) of the graph G, whose edges partition the edges of λH . If λ = 1, we
drop the term “1-fold”. If H = Kv , we refer to such a λ-fold G-design as one of order v.
A (λH,G)-design is balanced if for every vertex x of H the number of blocks containing
x is a costant r.

A (λH,G)-design is said to be α-resolvable if it is possible to partition the blocks
into classes (often referred to as α-parallel classes) such that every vertex of H appears
in exactly α blocks of each class. When α = 1, we simply speak of resolvable design
and parallel classes. The existence problem of resolvable G-decompositions has been the
subject of an extensive research (see [1, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 21, 24]).
The α-resolvability, with α > 1, has been studied for: G = K3 by D. Jungnickel, R. C.
Mullin, S. A. Vanstone [13], Y. Zhang and B. Du [25]; G = K4 by M. J. Vasiga, S. Furino
and A.C.H. Ling [22]; G = C4 by M.X. Wen and T.Z. Hong [17].

In this paper we investigate the existence of an α-resolvable λ-fold (K4 − e)-design
(where K4 − e is the complete graph K4 with one edge removed). In what follows, by
(a, b, c; d) we will denote the graph K4 − e having {a, b, c, d} as vertex-set and {{a, b},
{a, c}, {b, c}, {a, d}, {b, d}} as edge-set. Basing on the definitions given above, we can
derive the following necessary conditions:

(1) λv(v − 1) ≡ 0 (mod 10);

(2) αv ≡ 0 (mod 4);

(3) 2λ(v − 1) ≡ 0 (mod 5α).

Note that, since the number of α-parallel classes of an α-resolvable λ-fold (K4 − e)-
design of order v is 2λ(v−1)

5α and every vertex appears exactly α times in each of them, we
have the following theorem.

Theorem 1.1. Any α-resolvable λ-fold (K4 − e)-design is balanced.

From Conditions (1) − (3) we can desume minimum values for α and λ, say α0 and
λ0, respectively. Similarly to Lemmas 2.1, 2.2 in [22], we have the following lemmas.

Lemma 1.2. If an α-resolvable λ-fold (K4 − e)-design of order v exists, then α0|α and
λ0|λ.

Lemma 1.3. If an α-resolvable λ-fold (K4 − e)-design of order v exists, then a tα-
resolvable nλ-fold (K4 − e)-design of order v exists for any positive integers n and t

with t | 2λ(v−1)5α .

The above two lemmas imply the following theorem (for the proof see Theorem 2.3 in
[22]).
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Theorem 1.4. If an α0-resolvable λ0-fold (K4 − e)-design of order v exists and α and λ
satisfy Conditions (1)− (3), then an α-resolvable λ-fold (K4− e)-design of order v exists.

Therefore, in order to show that the necessary conditions for α-resolvable designs are
also sufficient, we simply need to prove the existence of an α0-resolvable λ0-fold (K4−e)-
design of order v, for any given v.

2 Auxiliary definitions
A (λKn1,n2,...,nt , G)-design is known as a λ-fold group divisible design, G-GDD in short,
of type {n1, n2, . . . , nt} (the parts are called the groups of the design). We usually use an
“exponential” notation to describe group-types: the group-type 1i2j3k... denotes i occur-
rences of 1, j occurrences of 2, etc. When G = Kn we will call it an n-GDD.

If the blocks of a λ-fold G-GDD can be partitioned into partial α-parallel classes, each
of which contains all vertices except those of one group, we refer to the decomposition
as a λ-fold (α,G)-frame; when α = 1, we simply speak of λ-fold G-frame (n-frame if
additionally G = Kn). In a λ-fold (α,G)-frame the number of partial α-parallel classes
missing a specified group of size g is λg|V (G)|

2α|E(G)| .
An incomplete α-resolvable λ-fold G-design of order v + h, h ≥ 1, with a hole of size

h is a (λ(Kv+h \ Kh), G)-design in which there are two types of classes, λ(h−1)|V (G)|
2α|E(G)|

partial classes which cover every vertex α times except those in the hole and λv|V (G)|
2α|E(G)| full

classes which cover every vertex of Kv+h α times.

3 v ≡ 0 (mod 4)

In [4, 5, 23] it was showed that there exists a resolvable (K4 − e)-design of order v ≡ 16
(mod 20); while, for every v ≡ 0, 4, 8, 12 (mod 20) Gionfriddo et al. ([7]) proved that
there exists a resolvable 5-fold (K4− e)-design of order v. Hence the necessary conditions
are also sufficient.

4 v ≡ 1 (mod 2)

4.1 v ≡ 1 (mod 10)

If v ≡ 1 (mod 10), then λ0 = 1 and α0 = 4 and so a solution is given by a cyclic
(K4− e)-design ([2]), where every base block generates a 4-parallel class. If v = 10k+ 1,
k ≥ 4, the desired design can be obtained by developing in Z10k+1 the base blocks listed
below:

(1 + 2i, 4k + 1 + i, 1; 2k + 2), i = 3, 4, . . . ,
⌊
k
2

⌋
;

(2k + 3− 2i, 5k + 2− i, 1; 2k + 2), i = 1, 2, . . . ,
⌈
k
2

⌉
;

(1, 4k + 1, 3; 6k);

(1, 2k + 2, 5; 6k + 1);

where bxc (or dxe) denote the greatest (or lower) integer that does not exceed (or that
exceed) x. If v = 11, 21, 31, the base blocks are:

v = 11: (1, 10, 2; 5) developed in Z11;
v = 21: (1, 11, 3; 15), (1, 7, 2; 10) developed in Z21;
v = 31: (2, 13, 1; 5), (1, 27, 10; 11), (1, 7, 3; 14) developed in Z31.
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4.2 v ≡ 3, 5, 7, 9 (mod 10)

If v ≡ 3, 5, 7, 9 (mod 10), then λ0 = 5 and α0 = 4 and so a solution is given by a cyclic
5-fold (K4 − e)-design, where every base block generates a 4-parallel class. The required
design is obtained by developing in Zv the following blocks:

(1 + i, v − 1− i, 0; 1), i = 1, 2, . . . , v−32 ;
(0, 1, 2; v − 1).

5 v ≡ 2 (mod 4)

5.1 v ≡ 6 (mod 20)

If v ≡ 6 (mod 20), then λ0 = 1 and α0 = 2. In order to prove the existence of a 2-
resolvable (K4 − e)-design of order v for every v ≡ 6 (mod 20), preliminarly we need to
construct one of order 6.

Lemma 5.1. There exists a 2-resolvable (K4 − e)-design of order 6.

Proof. Let V = {0, 1, 2, 3, 4, 5} be the vertex-set and {(0, 1, 2; 3), (2, 3, 4; 5), (4, 5, 0; 1)}
be the class.

For constructing a 2-resolvable (K4 − e)-design of any order v ≡ 6 (mod 20) and for
later use, note that starting from a (K4 − e)-frame of type hn also a λ-fold (2,K4 − e)-
frame of type hn can be obtained for any λ > 0, since necessarily h ≡ 0 (mod 5) and so
the number of partial parallel classes missing any group is even.

Lemma 5.2. For every v ≡ 6 (mod 20), there exists a 2-resolvable (K4 − e)-design of
order v.

Proof. Let v = 20k + 6. The case k = 0 follows by Lemma 5.1. For k > 0, consider
a (2,K4 − e)-frame of type 54k+1 ([5]) with groups Gi, i = 1, 2, . . . , 4k + 1 and a new
vertex ∞. For each i = 1, 2, . . . , 4k + 1, let Pi the unique partial 2-parallel class which
misses the group Gi. Place on Gi∪{∞} a copy of a 2-resolvable (K4−e)-design of order
6, which exists by Lemma 5.1, and combine its full class with the partial class Pi so to
obtain the desired design.

5.2 v ≡ 2, 10, 14, 18 (mod 20)

To prove the existence of an α-resolvable λ-fold (K4−e)-design of order v ≡ 2, 10, 14, 18
(mod 20), with minimum values λ0 = 5 and α0 = 2, we will construct some small exam-
ples most of which will be used as ingredients in the constructions given by the following
theorems.

Theorem 5.3. Let v, g, u, and h be positive integers such that v = gu+ h. If there exists

i) a 5-fold (2,K4 − e)-frame of type gu;

ii) a 2-resolvable 5-fold (K4 − e)-design of order g;

iii) an incomplete 2-resolvable 5-fold (K4− e)-design of order g+ h with a hole of size
h;

then there exists a 2-resolvable 5-fold (K4 − e)-design of order v = gu+ h.
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Proof. Take a 5-fold (2,K4−e)-frame of type gu with groupsGi, i = 1, 2, . . . , u and a set
H of size h such taht H ∩ (∪ui=1Gi) = ∅. For j = 1, 2, . . . , g, let Pi,j be the j-th 2-partial
class which misses the groupGi. Place onH∪G1 a copyD1 of a 2-resolvable 5-fold (K4−
e)-design of order g + h having g + h − 1 classes R1,1, R1,2, . . . , , R1,g, H1,1, H1,2, . . . ,
H1,h−1. For i = 2, 3, . . . , u, place on H ∪ Gi a copy Di of an incomplete 2-resolvable
5-fold (K4 − e)-design of order g + h with H as hole and having h − 1 partial classes
Hi,1, Hi,2, . . . ,Hi,h−1 and g full classes Ri,1, Ri,2, . . . , , Ri,g . Combine the g partial
classes P1,j with the full classes R1,1, R1,2, . . . , , R1,g of D1 and for i = 2, 3, . . . , u the
g partial classes Pi,j of Di with the full classes Ri,1, Ri,2, . . . , Ri,g so to obtain gu 2-
parallel classes on H ∪ (∪ui=1Gi). Combine the classes H1,1, H1,2, . . . ,H1,h−1 with the
partial classes Hi,1, Hi,2, . . . ,Hi,h−1 so to obtain h − 1 2-parallel classes. The result is a
2-resolvable 5-fold (K4−e)-design of order gu+h with gu+h−1 2-parallel classes.

The following lemma gives an input design in the construction of Theorem5.5.

Lemma 5.4. There exists a 2-resolvable 5-fold (K4 − e)-GDD of type 23.

Proof. Let {0, 3}, {1, 4} and {2, 5} be the groups and consider the following classes: P1 =
{(0, 2, 1; 4), (1, 5, 0; 3), (3, 4, 2; 5)}, P2 = {(3, 5, 1; 4), (1, 2, 0; 3), (0, 4, 2; 5)}, P3 = {(0,
5, 1; 4), (2, 4, 0; 3), (1, 3, 2; 5)}, P4 = {(2, 3, 1; 4), (4, 5, 0; 3), (0, 1, 2; 5)}.

Theorem 5.5. Let v, g, m, h and u be positive integers such that v = 2gu + 2m + h. If
there exists

i) a 3-frame of type m1gu;

ii) a 2-resolvable 5-fold (K4 − e)-design of order 2m+ h;

iii) an incomplete 2-resolvable 5-fold (K4 − e)-design of order 2g + h with a hole of
size h;

then there exists a 2-resolvable 5-fold (K4 − e)-design of order 2gu+ 2m+ h.

Proof. Let F be a 3-frame with one group G of cardinality m and u groups Gi, i =
1, 2, . . . , u of cardinality g; such a frame has m

2 partial classes which missG, each contain-
ing gu

3 triples, and, for i = 1, 2, . . . , u, g2 partial classes which miss Gi, each containing
g(u−1)+m

3 triples. Expand each vertex 2 times and add a set H of h new vertices. Place on
H∪(G×{1, 2}) a copyD of a 2-resolvable 5-fold (K4−e)-design of order 2m+h having
2m + h − 1 classes R1, R2, . . . , R2m, H1, H2, . . . ,Hh−1. For each i = 1, 2, . . . , u place
on H ∪ (Gi × {1, 2}) a copy Di of an incomplete 2-resolvable 5-fold (K4 − e)-design of
order 2g+ h with H as hole and having h− 1 partial classes Hi,j with j = 1, 2, . . . , h− 1
and 2g full classes Ri,t, t = 1, 2, . . . , 2g. For each block b = {x, y, z} of a given class
of F place on b × {1, 2} a copy of a 2-resolvable 5-fold (K4 − e)-GDD of type 23 from
Lemma 5.4, having {x1, x2}, {y1, y2} and {z1, z2} as groups. This gives 2m partial classes
(whose blocks are copies of K4 − e) which miss G × {1, 2} and 2g partial classes which
miss Gi × {1, 2}, i = 1, 2, . . . , u. Combine the 2m partial classes which miss the group
G× {1, 2} with the classes R1, R2, . . . , R2m so to obtain 2m classes. For i = 1, 2, . . . , u
combine the 2g partial classes which miss the group Gi × {1, 2} with the full classes of
Di so to obtain 2gu classes. Finally, combine the h − 1 classes H1, H2, . . . ,Hh−1 of D
with the partial classes of Di so to obtain h − 1 classes. This gives a 2-resolvable 5-fold
(K4 − e)-design of order v and v − 1 2-parallel classes.
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Theorem 5.6. Let v, k and h be non-negative integers. If there exists

i) an incomplete α-resolvable λ-fold (K4 − e)-design of order v + k + h with a hole
of size k + h;

ii) an incomplete α-resolvable λ-fold (K4− e)-design of order k+h with a hole of size
h;

then there exists an incomplete α-resolvable λ-fold (K4 − e)-design of order v + k + h
with a hole of size h.

Lemma 5.7. There exists a resolvable (K4 − e)-GDD of type 52101.

Proof. Let Z10 ∪ {∞0,∞1, . . . ,∞9} be the vertex-set and 2Z10, 2Z10 + 1, {∞0,∞1,
. . . ,∞9} be the groups. The desired design is obtained by adding 2 (mod 10) to the
following base blocks, including the subscripts of ∞: (0, 1,∞0;∞1), (2, 5,∞0;∞1),
(4, 9,∞0;∞1), (6, 3,∞0;∞1), (8, 7,∞0;∞1). The parallel classes are generate by every
base block.

Lemma 5.8. There exists a 2-resolvable 5-fold (K4 − e)-GDD of type 103.

Proof. Start with the 2-resolvable 5-fold (K4 − e)-GDD G of type 23 of Lemma 5.4 with
groups Gi, i = 1, 2, 3. For each block b = (x, y, z; t) of a given 2-parallel class of G
consider a copy of a resolvable (K4 − e)-GDD of type 52101 where {x} × Z5, {y} × Z5,
{z, t} × Z5 are the groups.

Lemma 5.9. There exists an incomplete 2-resolvable 5-fold (K4 − e)-design of order 6
with a hole of size 2.

Proof. On V = Z4 ∪ H , where H = {∞1,∞2} is the hole, consider the partial class
{(1, 3, 0; 2), (0, 2, 1; 3)} and the four full classes obtained by developing {(0, 2,∞1;∞2),
(∞1, 1, 0; 3), (∞2, 2, 3; 1)} in Z4, where∞i + 1 =∞i for i = 1, 2.

Lemma 5.10. There exists an incomplete 2-resolvable 5-fold (K4 − e)-design of order 10
with a hole of size 2.

Proof. On V = Z8 ∪ H , where H = {∞1,∞2} is the hole, consider the partial class
{(0, 4, 2; 6), (1, 5, 3; 7), (2, 6, 4; 0), (3, 7, 5; 1)} and the eight full classes obtained by de-
veloping {(0, 1,∞1; 3), (2, 3,∞2; 7), (∞1, 5, 6; 2), (∞2, 6, 4; 5), (4, 7, 1; 0)} in Z8, where
∞i + 1 =∞i for i = 1, 2.

Lemma 5.11. There exists an incomplete 2-resolvable 5-fold (K4 − e)-design of order 14
with a hole of size 4.

Proof. Let V = Z10 ∪ H be the vertex-set, where H = {∞1,∞2,∞3,∞4} is the hole.
The partial classes are obtained by adding 2 (mod 10) to the base blocks (2, 6, 9; 5),
(5, 9, 2; 8), (8, 7, 6; 9), each block generating a partial class; while, the full classes are
obtained by adding 2 (mod 10) to the following base blocks partitioned into two full
classes, each class generating five full classes: {(0, 8,∞1;∞2), (1, 5,∞3;∞4), (∞1, 4,
0; 9), (∞2, 6, 2; 3), (∞3, 3, 7; 8), (∞4, 9, 1; 4), (2, 7, 6; 5)}, {(1, 5,∞1;∞2), (0, 8,∞3;
∞4), (∞1, 3, 9; 4), (∞2, 9, 7; 0), (∞3, 2, 6; 1), (∞4, 6, 8; 3), (4, 7, 2; 5)}, where ∞i +
1 =∞i for i = 1, 2, 3, 4.



M. Giongriddo, et al.: The spectrum of α-resolvable λ-fold (K4 − e)-designs 377

Lemma 5.12. There exists an incomplete 2-resolvable 5-fold (K4 − e)-design of order 14
with a hole of size 2.

Proof. On V = Z12 ∪ H , where H = {∞1,∞2} is the hole, consider the partial class
{(0, 6, 3; 9), (1, 7, 4; 10), (2, 8, 5; 11), (3, 9, 6; 0), (4, 10, 7; 1), (5, 11, 8; 2)} and the twelve
full classes obtained by developing {(0, 1,∞1; 11), (2, 4,∞2; 10), (∞1, 10, 6; 5), (∞2, 9,
2; 0), (3, 7, 8; 1), (5, 8, 7; 9), (6, 11, 3; 4)} in Z12, where∞i + 1 =∞i for i = 1, 2.

Lemma 5.13. There exists an incomplete 2-resolvable 5-fold (K4 − e)-design of order 22
with a hole of size 6.

Proof. Let V = Z16 ∪H be the vertex-set, where H = {∞1,∞2, . . . ,∞6} is the hole. In
Z16 develop the full 2-parallel base class {(0, 3,∞1; 12), (1, 5,∞2; 2), (8, 13,∞3; 4), (14,
15,∞4; 11), (6, 11,∞5;∞6), (∞1, 2, 1; 3), (∞2, 4, 13; 8), (∞3, 7, 0; 14), (∞4, 9, 6; 10),
(∞5, 10, 5; 15), (∞6, 12, 7; 9)}. Additionally, include the partial 2-parallel class {(0, 8, 2;
10), (1, 9, 3; 11), (2, 10, 4; 12), (3, 11, 5; 13), (4, 12, 6; 14), (5, 13, 7; 15), (6, 14, 8; 0), (7,
15, 9; 1)} repeated five times.

As consequence of Lemmas 5.9 and 5.13, by Theorem 5.6 the following lemma follows.

Lemma 5.14. There exists a 2-resolvable 5-fold (K4 − e)-design of order 22 with a hole
of size 2.

Lemma 5.15. There exists a 2-resolvable 5-fold (K4 − e)-design of order 10.

Proof. Let V = Z9 ∪ {∞} be the vertex-set. The required design is obtained by developing
the base class {(∞, 0, 6; 5), (1, 5, 4; 3), (7, 8, 1;∞), (2, 6, 7; 8), (3, 4, 2; 0)} in Z9.

Lemma 5.16. There exists an incomplete 2-resolvable 5-fold (K4 − e)-design of order 30
with a hole of size 10.

Proof. Start from a 2-resolvable 5-fold (K4−e)-GDD of type 103 (which exists by Lemma
5.8) having Gi, i = 1, 2, 3, as groups. Fill in the groups G2 and G3 with a copy of a 2-
resolvable 5-fold (K4 − e)-design of order 10, which exists by Lemma 5.15. This gives an
incomplete 2-resolvable 5-fold (K4 − e)-design of order 30 with G1 as hole.

Lemma 5.17. There exists an incomplete 2-resolvable 5-fold (K4 − e)-design of order 38
with a hole of size 12.

Proof. Let V = Z26 ∪H be the vertex-set, where H = {∞1,∞2, . . . ,∞12} is the hole.
The partial classes are: {(i, 13 + i, 2 + i; 15 + i) : i = 0, 1, . . . , 12}, repaeated five times;
{(2i, 10 + 2i, 3 + 2i; 7 + 2i) : i = 0, 1, . . . , 12} and {(1 + 2i, 11 + 2i, 4 + 2i; 8 + 2i) : i =
0, 1, . . . , 12}, repeated twice; {(2i, 10+2i, 1+2i; 9+2i) : i = 0, 1, . . . , 12}; {(1+2i, 11+
2i, 2 + 2i; 10 + 2i) : i = 0, 1, . . . , 12}. The full classes are obtained by developing in V =
Z26 the full base class {(∞1, 2, 1; 7), (∞2, 12, 3; 24), (∞3, 16, 4; 11), (∞4, 13, 5; 25),
(∞5, 15, 9; 22), (∞6, 17, 11; 23), (∞7, 19, 18; 20), (∞8, 14, 10; 18), (∞9, 4, 0; 8), (∞10,
9, 17; 19), (∞11, 7, 2; 12), (∞12, 15, 3; 24), (1, 5,∞1;∞2), (10, 20,∞3;∞4), (6, 23,∞5;
∞6), (16, 21,∞7;∞8), (22, 25,∞9;∞10), (13, 21,∞11;∞12), (0, 14, 6; 8)}.

As consequence of the existence of a 2-resolvable 5-fold (K4 − e)-design of order
v = 4, 12 (see Section 3 and Theorem 1.4) and Lemmas 5.1, 5.11, 5.13, 5.16, 5.17, 5.15,
by Theorem 5.6 the following lemma follows.
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Lemma 5.18. There exists a 2-resolvable 5-fold (K4−e)-design of order v = 14, 22, 30, 38.

Lemma 5.19. There exists a 2-resolvable 5-fold (K4 − e)-design of order v = 42, 234.

Proof. Start with a resolvable 3-GDD of type 3
v
6 ([20]). Expand each vertex 2 times and

for each triple b of a given parallel class place on b×{1, 2} a copy of a 2-resolvable 5-fold
(K4 − e)-GDD of type 23, which exists by Lemma 5.4. Finally, fill each group of size 6
with a copy of a 2-resolvable 5-fold (K4 − e)-design of order 6, which exists by Lemma
5.1.

Lemma 5.20. There exists a 2-resolvable 5-fold (K4 − e)-design of order v = 50, 62.

Proof. Start from a 3-frame of type 6
v−2
12 ([3]) and apply Contruction 5.5 with m = g = 6,

h = 2 and u = v−14
12 to obtain a 2-resolvable 5-fold (K4 − e)-design of order v = 50, 62

(the input designs are: a 2-resolvable 5-fold (K4 − e)-design of order 14, which exists by
Lemma 5.18; a 2-resolvable 5-fold (K4− e)-GDD of type 23, which exists by Lemma 5.4;
an incomplete 2-resolvable 5-fold (K4− e)-design of order 14 with a hole of size 2, which
exists by Lemma 5.12).

Lemma 5.21. There exists a 2-resolvable 5-fold (K4 − e)-design of order v = 34, 274.

Proof. Start from a 3-frame of type 4
v−2
8 ([3]) and apply Theorem 5.5 with m = g = 4,

h = 2 and u = v−10
8 to obtain a 2-resolvable 5-fold (K4 − e)-design of order v = 34, 274

(the input designs are: a 2-resolvable 5-fold (K4 − e)-design of order 10, which exists by
Lemma 5.15; a 2-resolvable 5-fold (K4− e)-GDD of type 23, which exists by Lemma 5.4;
an incomplete 2-resolvable 5-fold (K4− e)-design of order 10 with a hole of size 2, which
exists by Lemma 5.10).

Lemma 5.22. There exists a 2-resolvable 5-fold (K4 − e)-design of order 70.

Proof. Start from a 3-frame of type 84 ([3]) and apply Theorem 5.5 with m = g = 8,
h = 6 and u = 3 to obtain a 2-resolvable 5-fold (K4 − e)-design of order 70 (the input
designs are; a 2-resolvable 5-fold (K4 − e)-design of order 22, which exists by Lemma
5.18; a 2-resolvable 5-fold (K4 − e)-RGDD of type 23, which exists by Lemma 5.4; an
incomplete 2-resolvable 5-fold (K4 − e)-design of order 22 with a hole of size 6, which
exists by Lemma 5.13).

Lemma 5.23. For every v ≡ 2 (mod 20), there exists a 2-resolvable 5-fold (K4 − e)-
design of order v.

Proof. Let v=20k + 2. The case v = 22, 42, 62 are covered by Lemmas 5.18, 5.19 and
5.20. For k ≥ 4, start from a 5-fold (2,K4−e)-frame of type 20k ([5]) and apply Theorem
5.3 with h = 2 to obtain a 2-resolvable 5-fold (K4−e)-design of order v (the input designs
are a 2-resolvable 5-fold (K4 − e)-design of order 22, which exists by Lemma 5.18, and
an incomplete 2-resolvable 5-fold (K4− e)-design of order 22 with a hole of size 2, which
exists by Lemma 5.14).

Lemma 5.24. For every v ≡ 10 (mod 20), there exists a 2-resolvable 5-fold (K4 − e)-
design of order v.
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Proof. Let v=20k + 10. The case v = 10, 30, 50, 70 are covered by Lemmas 5.15, 5.18,
5.20 and 5.22. For k ≥ 4, start from a 5-fold (2,K4− e)-frame of type 20k ([5]) and apply
Theorem 5.3 with g = 20 and h = 10 to obtain a 2-resolvable 5-fold (K4 − e)-design of
order v (the input designs are a 2-resolvable 5-fold (K4 − e)-design of order 10, which
exists by Lemma 5.15, and an incomplete 2-resolvable 5-fold (K4 − e)-design of order 30
with a hole of size 10, which exists by Lemma 5.16).

Lemma 5.25. For every v ≡ 14 (mod 20), there exists a 2-resolvable 5-fold (K4 − e)-
design of order v.

Proof. Let v=20k + 14. The case v = 14, 34, 234, 274 are covered by Lemmas 5.18, 5.19
and 5.21. For k ≥ 2, k /∈ {11, 13}, start from a 5-fold (2,K4 − e)-frame of type 102k+1

([5]), apply Theorem 5.3 with h = 4 and proceed as in Lemma 5.24.

Lemma 5.26. For every v ≡ 18 (mod 60), there exists a 2-resolvable 5-fold (K4 − e)-
design of order v.

Proof. Let v=60k+18. Take a resolvable 3-GDD of type 310k+3 ([6]). Expand each vertex
2 times and for each block b of a parallel class place on b× {1, 2} a copy of a 2-resolvable
5-fold (K4 − e)-GDD of type 23 which exists by Lemma 5.4, so to obtain a 2-resolvable
5-fold (K4 − e)-GDD of type 610k+3. Finally, fill in each group of size 6 with a copy of a
2-resolvable 5-fold (K4 − e)-design, which exists by Lemma 5.1.

Lemma 5.27. For every v ≡ 38 (mod 60), there exists a 2-resolvable 5-fold (K4 − e)-
design of order v.

Proof. Let v = 60k + 38. The case v = 38 follows by Lemmas 5.18. For k ≥ 1, start
from a 3-frame of type 65k+3 ([6]) and apply Theorem 5.5 with m = g = 6, h = 2 and
u = 5k + 2 to obtain a 2-resolvable 5-fold (K4 − e)-design of order v (the input designs
are: a 2-resolvable 5-fold (K4 − e)-design of order 14, which exists by Lemma 5.18; a
2-resolvable 5-fold (K4 − e)-GDD of type 23, which exists by Lemma 5.4; an incomplete
2-resolvable 5-fold (K4 − e)-design of order 14 with a hole of size 2, which exists by
Lemma 5.11)

Lemma 5.28. For every v ≡ 58 (mod 120), there exists a 2-resolvable 5-fold (K4 − e)-
design of order v.

Proof. Let v = 120k + 58. Start from a 3-frame of type 415k+7 ([6]) and apply Theorem
5.5 with m = g = 4, h = 2 and u = 15k + 6 to obtain a 2-resolvable 5-fold (K4 − e)-
design of order v (the input designs are: a 2-resolvable (K4− e)-design of order 10, which
exists by Lemma 5.15; a 2-resolvable 5-fold (K4 − e)-RGDD of type 23, which exists by
Lemma 5.4; an incomplete 2-resolvable 5-fold (K4 − e)-design of order 10 with a hole of
size 2, which exists by Lemma 5.10).

Lemma 5.29. For every v ≡ 118 (mod 120), there exists a 2-resolvable 5-fold (K4−e)-
design of order v.

Proof. Let v = 120k + 118. Start from a 3-frame of type 101415k+12, k ≥ 0, ([6]) and
apply Theorem 5.5 with h = 2 to obtain a 2-resolvable 5-fold (K4 − e)-design of order v
(the input designs are: a 2-resolvable 5-fold (K4 − e)-design of order 22, which exists by
Lemma 5.18; a 2-resolvable 5-fold (K4 − e)-RGDD of type 23, which exists by Lemma
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5.4; an incomplete 2-resolvable 5-fold (K4 − e)-design of order 10 with a hole of size 2,
which exists by Lemma 5.10).

6 Main result
The results obtained in the previous sections can be summarized into the following theorem.

Theorem 6.1. The necessary conditions (1)− (3) for the existence of α-resolvable λ-fold
(K4 − e)-designs are also sufficient.
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Abstract

A graph G is a core if every endomorphism of G is an automorphism. A graph is called
a pseudo-core if every its endomorphism is either an automorphism or a colouring. Suppose
that Jq(n,m) is a Grassmann graph over a finite field with q elements. We show that every
Grassmann graph is a pseudo-core. Moreover, J2(4, 2) is not a core and Jq(2k + 1, 2)
(k ≥ 2) is a core.
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1 Introduction
Throughout this paper, all graphs are finite undirected graphs without loops or multiple
edges. For a graph G, we let V (G) denote the vertex set of G. If xy is an edge of G, then
x and y are said to be adjacent, and denoted by x ∼ y. Let G and H be two graphs. A
homomorphism ϕ from G to H is a mapping ϕ : V (G) → V (H) such that ϕ(x) ∼ ϕ(y)
whenever x ∼ y. If H is the complete graph Kr, then ϕ is a r-colouring of G (colouring
for short). An isomorphism from G to H is a bijection ϕ : V (G)→ V (H) such that x ∼ y
⇔ ϕ(x) ∼ ϕ(y). Graphs G and H are called isomorphic if there is an isomorphism from
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G to H , and denoted by G ∼= H . A homomorphism (resp. isomorphism) from G to itself
is called an endomorphism (resp. automorphism) of G.

Recall that a graph G is a core if every endomorphism of G is an automorphism. A
subgraph H of G is a core of G if it is a core and there exists a homomorphism from G to
H . Every graph has a core, which is an induced subgraph and is unique up to isomorphism
[5]. A graph is called core-complete if it is a core or its core is complete.

A graph G is called a pseudo-core if every endomorphism of G is either an automor-
phism or a colouring. Every core is a pseudo-core. Any pseudo-core is core-complete but
not vice versa. For more information, see [2, 6, 9].

For a graph G, an important and difficult problem is to distinguish whether G is a core
[2, 5, 6, 7, 11, 15]. If G is not a core or we don’t know whether it is a core, then we need
to judge whether it is a pseudo-core because the concept of pseudo-core is the most close
to the core. Recently, Godsil and Royle [6] discussed some properties of pseudo-cores.
Cameron and Kazanidis [2] discussed the core-complete graph and the cores of symmetric
graphs. The literature [10] showed that every bilinear forms graph is a pseudo-core which
is not a core. One of the latest result is from [9], where it was proved that every alternating
forms graph is a pseudo-core. Moreover, Orel [13, 12] proved that each symmetric bilinear
forms graph (whose diameter is greater than 2) is a core and each Hermitian forms graph
is a core.

Suppose that Fq is the finite field with q elements, where q is a power of a prime. Let V
be an n-dimensional row vector space over Fq and let

[
V
m

]
be the set of all m-dimensional

subspaces of V . The Grassmann graph Jq(n,m) has the vertex set
[
V
m

]
, and two vertices

are adjacent if their intersection is of dimension m − 1. If m = 1, we have a complete
graph and hence it is a core. Since Jq(n,m) ∼= Jq(n, n − m), we always assume that
4 ≤ 2m ≤ n in our discussion unless specified otherwise. The number of vertices of
Jq(n,m) is the Gaussian binomial coefficient:[

n

m

]
=

m∏
i=1

qn+1−i − 1

qi − 1
. (1.1)

For Jq(n,m), the distance of two vertices X and Y is d(X,Y ) := m− dim(X ∩ Y ). Any
Grassmann graph is distance-transitive [1, Theorem 9.3.3] and connected. By [6, Corol-
lary 4.2], every distance-transitive graph is core-complete, thus every Grassmann graph is
core-complete. The Grassmann graph plays an important role in geometry, graph theory,
association schemes and coding theory.

Recall that an independent set of a graph G is a set of vertices that induces an edgeless
graph. The size of the largest independent set is called the independence number of G,
denoted by α(G). The chromatic number χ(G) ofG is the least value of k for whichG can
be k-colouring. A clique of a graph G is a complete subgraph of G. A clique C is maximal
if there is no clique of G which properly contains C as a subset. A maximum clique of G
is a clique with the maximum size. The clique number of G is the number of vertices in a
maximum clique, denoted by ω(G).

By [6, p.273], if G is a distance-transitive graph and χ(G) > ω(G), then G is a core.
Unluckily, applying the eigenvalues or the known results of graph theory for Grassmann
graph, to prove the inequality χ(G) > ω(G) is difficult. Thus, it is a difficult problem to
verify a Grassmann graph being a core. However, there are some Grassmann graphs which
are not cores (see Section 4). Therefore, we need to judge whether a Grassmann graph is a
pseudo-core. So far, this is an open problem. We solve this problem as follows:
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Theorem 1.1. Every Grassmann graph Jq(n,m) is a pseudo-core.

The paper is organized as follows. In Section 2, we give some properties of the maximal
cliques of Grassmann graphs. In Section 3, we shall prove Theorem 1.1. In Section 4, we
discuss cores on Grassmann graphs. We shall show that J2(4, 2) is not a core, Jq(2k+1, 2)
(k ≥ 2) is a core.

2 Maximal cliques of Grassmann graph
In this section we shall discuss some properties of the maximal cliques of Grassmann
graphs.

We will denote by |X| the cardinal number of a set X . Suppose that V is an n-
dimensional row vector space over Fq . For two vector subspaces S and T of V , the join
S ∨ T is the minimal dimensional vector subspace containing S and T . We have the di-
mensional formula (cf. [8, Lemma 2.1] or [16]):

dim(S ∨ T ) = dim(S) + dim(T )− dim(S ∩ T ). (2.1)

Throughout this section, suppose that 4 ≤ 2m ≤ n. For every (m − 1)-dimensional
subspace P of V , let [P 〉m denote the set of all m-dimensional subspaces containing P ,
which is called a star. For every (m + 1)-dimensional subspace Q of V , let 〈Q]m denote
the set of all m-dimensional subspaces of Q, which is called a top. By [4], every maximal
clique of Jq(n,m) is a star or a top. For more information, see [14].

By [16, Corollary 1.9],

|[P 〉m| =
qn−m+1 − 1

q − 1
, |〈Q]m| =

qm+1 − 1

q − 1
. (2.2)

If n > 2m, then every maximum clique of Jq(n,m) is a star. If n = 2m, then every
maximal clique of Jq(n,m) is a maximum clique. By (2.2) we have

ω(Jq(n,m)) =
[
n−m+1

1

]
if n ≥ 2m. (2.3)

Since n ≥ 2m, we have

|[P 〉m| ≥ |〈Q]m|, and |[P 〉m| > |〈Q]m| if n > 2m. (2.4)

Lemma 2.1. If [P 〉m ∩ 〈Q]m 6= ∅, then the size of [P 〉m ∩ 〈Q]m is q + 1.

Proof. Since [P 〉m ∩ 〈Q]m 6= ∅, one gets P ⊆ Q. It follows that [P 〉m ∩ 〈Q]m consists of
all m-dimensional subspaces containing P in Q. By [16, Corollary 1.9], the desired result
follows.

Lemma 2.2. ([8, Corollary 4.4]) Let M1 and M2 be two distinct stars (tops). Then
|M1 ∩M2| ≤ 1.

Lemma 2.3. Suppose [A〉m 6= [B〉m. Then [A〉m∩ [B〉m 6= ∅ if and only if dim(A∩B) =
m− 2. In this case, [A〉m ∩ [B〉m = {A ∨B}.

Proof. Since dim(A) = dim(B) = m − 1 and A 6= B, one gets dim(A ∨ B) ≥ m. If
[A〉m∩[B〉m 6= ∅, then by Lemma 2.2, there exists a vertexC of Jq(n,m) such that {C} =
[A〉m∩[B〉m. It follows from (2.1) andA,B ⊂ C thatC = A∨B and dim(A∩B) = m−2.
Conversely, if dim(A ∩B) = m− 2, then Lemma 2.2 and (2.1) imply that C := A ∨B is
a vertex of Jq(n,m) and hence {C} = [A〉m ∩ [B〉m.
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Lemma 2.4. Suppose 〈P ]m 6= 〈Q]m. Then 〈P ]m∩〈Q]m 6= ∅ if and only if dim(P ∩Q) =
m. In this case, 〈P ]m ∩ 〈Q]m = {P ∩Q}.

Proof. By dim(P ) = dim(Q) = m + 1 and P 6= Q, we have dim(P ∩ Q) ≤ m. If
〈P ]m ∩ 〈Q]m 6= ∅, then Lemma 2.2 implies that there exists a vertex C of Jq(n,m) such
that {C} = 〈P ]m∩〈Q]m. SinceC ⊂ P ∩Q, we get thatC = P ∩Q and dim(P ∩Q) = m.
Conversely, if dim(P ∩Q) = m, then by P ∩Q ∈ 〈P ]m ∩ 〈Q]m and Lemma 2.2, we have
{P ∩Q} = 〈P ]m ∩ 〈Q]m.

In the following, let ϕ be an endomorphism of Jq(n,m) and Im(ϕ) be the image of ϕ.

Lemma 2.5. IfM is a maximal clique, then there exists a unique maximal clique contain-
ing ϕ(M).

Proof. Suppose there exist two distinct maximal cliquesM′ andM′′ containing ϕ(M).
Then ϕ(M) ⊆ M′ ∩M′′. By Lemmas 2.1 and 2.2, |M′ ∩M′′| ≤ q + 1. Since |M| =
|ϕ(M)|, by (2.2) we have |ϕ(M)| > q + 1, a contradiction.

Lemma 2.6. LetM be a star and N be a top such that |ϕ(M) ∩ ϕ(N )| > q + 1. Then
ϕ(N ) ⊆ ϕ(M).

Proof. Let N ′ be the maximal clique containing ϕ(N ). Then |ϕ(M) ∩N ′| > q + 1. One
gets ϕ(M) = N ′ by Lemmas 2.1 and 2.2.

Lemma 2.7. Suppose there exist two distinct stars [A〉m and [B〉m such that

[A〉m ∩ [B〉m = {X}, ϕ([A〉m) = ϕ([B〉m).

If ϕ([A〉m) is a star, then ϕ is a colouring of Jq(n,m).

Proof. WriteM := ϕ([A〉m). Then ϕ([B〉m) =M and ϕ(X) ∈ M. Assume thatM is
a star. If Im(ϕ) =M, then ϕ is a colouring of Jq(n,m). Now we prove Im(ϕ) =M as
follows. Suppose that Y is any vertex with Y ∼ X . Since G := Jq(n,m) is connected, it
suffices to show that there exist two distinct stars [C〉m and [D〉m such that

{Y } = [C〉m ∩ [D〉m and ϕ([C〉m) = ϕ([D〉m) =M.

In fact, if we can prove this point, then we can imply that ϕ(Z) ∈ M for all Z ∈ V (G).
We prove it as follows.

Since X ∈ 〈X ∨ Y ]m ∩ [A〉m ∩ [B〉m, using Lemma 2.2 we get |〈X ∨ Y ]m ∩ [A〉m ∩
[B〉m| = 1. By Lemma 2.1 we obtain

|〈X ∨ Y ]m ∩ [A〉m| = |〈X ∨ Y ]m ∩ [B〉m| = q + 1.

It follows that
|〈X ∨ Y ]m ∩ ([A〉m ∪ [B〉m)| = 2q + 1.

Observe that

ϕ(〈X∨Y ]m∩ ([A〉m∪ [B〉m)) ⊆ ϕ(〈X∨Y ]m)∩ϕ([A〉m∪ [B〉m) ⊆ ϕ(〈X∨Y ]m)∩M.

Since the restriction of ϕ on a clique is injective, one gets

|ϕ(〈X ∨ Y ]m) ∩M| ≥ 2q + 1 > q + 1.
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Thus, Lemma 2.6 implies that

ϕ(〈X ∨ Y ]m) ⊆M. (2.5)

So ϕ(Y ) ∈ M. Write C := X ∩ Y . Since every vertex of [C〉m \ {X} is adjacent to X ,
by our claim we have ϕ([C〉m) =M.

Pick a vertex Z such that Z ∼ Y and the distance fromX is 2. WriteD = Y ∩Z. Since
Y ∈ [D〉m ∩ 〈X ∨ Y ]m, by Lemma 2.1 we have |[D〉m ∩ 〈X ∨ Y ]m| = q + 1. It follows
from (2.5) that |ϕ([D〉m) ∩M| ≥ q + 1. Thus Lemma 2.2 implies that ϕ([D〉m) =M.
Since {Y } = [C〉m ∩ [D〉m, [C〉m and [D〉m are the desired stars.

3 Proof of Theorem 1.1
For the proof of Theorem 1.1, we only need to consider the case 4 ≤ 2m ≤ n. We divide
the proof of Theorem 1.1 into two cases: n > 2m and n = 2m.

Lemma 3.1. If n > 2m, then every Grassmann graph Jq(n,m) is a pseudo-core.

Proof. Suppose that n > 2m ≥ 4. Then by (2.4), every maximum clique of Jq(n,m) is
a star. Let ϕ be an endomorphism of Jq(n,m). Then the restriction of ϕ on any clique is
injective, so ϕ transfers stars to stars.

Suppose ϕ is not a colouring. It suffices to show that ϕ is an automorphism. Write
Gr := Jq(n, r), where 1 ≤ r ≤ m−1. By Lemma 2.7, the images under ϕ of any two dis-
tinct and intersecting stars are distinct. Hence by Lemma 2.3, ϕ induces an endomorphism
ϕm−1 of Gm−1 such that

ϕ([A〉m) = [ϕm−1(A)〉m.

Let X be any vertex of Jq(n,m). Then there exist two vertices X ′ and X ′′ of Gm−1
such thatX = X ′∨X ′′. Then [X ′〉m∩[X ′′〉m = {X} andϕ(X) ∈ ϕ([X ′〉m)∩ϕ([X ′′〉m).
Since ϕ is not a colouring, by Lemma 2.7 ϕ([X ′〉m) and ϕ([X ′′〉m) are two distinct stars.
By Lemma 2.2, [ϕm−1(X ′)〉m∩ [ϕm−1(X ′′)〉m = {ϕ(X)}. Thus Lemma 2.3 implies that

ϕ(X) = ϕm−1(X
′) ∨ ϕm−1(X ′′). (3.1)

When m = 2, G1 is a complete graph, hence it is a core. We next show that ϕm−1 is
not a colouring of Gm−1 for m ≥ 3. For any two vertices A1 and A3 of Gm−1 at distance
2, we claim that

ϕm−1(A1) 6= ϕm−1(A3).

There exists an A2 ∈ V (Gm−1) such that A1 ∼ A2 ∼ A3. Write Y1 := A1 ∨ A2 and
Y2 := A2 ∨A3. Then Y1 ∼ Y2, so ϕ(Y1) 6= ϕ(Y2). By (3.1),

ϕ(Y1) = ϕm−1(A1) ∨ ϕm−1(A2), ϕ(Y2) = ϕm−1(A2) ∨ ϕm−1(A3).

Thus our claim is valid. Otherwise, one has ϕ(Y1) = ϕ(Y2), a contradiction.
Pick a star N of Gm−1. Since the diameter of Gm−1 is at least two, there exists a

vertex A4 ∈ V (Gm−1) \ N that is adjacent to some vertex in N . If B ∈ N such that A4

is not adjacent to B, then d(A4, B) = 2. By our claim, ϕm−1(A4) 6= ϕ(B) and hence
ϕm−1(A4) 6∈ ϕm−1(N ). Therefore, ϕm−1 is not a colouring.

By induction, we may obtain induced endomorphism ϕr ofGr for each r. Furthermore,

ϕ(X) = ϕk1(Xk1) ∨ ϕk2(Xk2) ∨ · · · ∨ ϕks(Xks), (3.2)
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where X = Xk1 ∨Xk1 ∨ · · · ∨Xks ∈ V (Gm) and 1 ≤ dim(Xki) = ki ≤ m− 1.
In order to show that ϕ is an automorphism, it suffices to show that ϕ is injective.

Assume that X and Y are any two distinct vertices in Gm with d(X,Y ) = s. Thus
dim(X ∩ Y ) = m − s. If s = 1, then ϕ(X) 6= ϕ(Y ). Now suppose s ≥ 2. There are
1-dimensional row vectorsXi, Yi, i = 1, . . . .s, such thatX,Y can be written asX = (X∩
Y )∨X1∨· · ·∨Xs, Y = (X∩Y )∨Y1∨· · ·∨Ys. Let Z = (X∩Y )∨X1∨· · ·∨Xs−1∨Ys ∈
V (Gm). By X ∼ Z, dim(ϕ(X) ∨ ϕ(Z)) = m+ 1. Applying (3.2), one has that ϕ(X) =
ϕm−s(X ∩Y )∨ϕ1(X1)∨ · · · ∨ϕ1(Xs), ϕ(Y ) = ϕm−s(X ∩Y )∨ϕ1(Y1)∨ · · · ∨ϕ1(Ys)
and ϕ(Z) = ϕm−s(X ∩ Y ) ∨ ϕ1(X1) ∨ · · · ∨ ϕ1(Xs−1) ∨ ϕ1(Ys). Therefore, we get
ϕ(X) ∨ ϕ(Z) ⊆ ϕ(X) ∨ ϕ(Y ). It follows that ϕ(X) 6= ϕ(Y ). Otherwise, one has
ϕ(X) ∨ ϕ(Z) ⊆ ϕ(X), a contradiction to dim(ϕ(X) ∨ ϕ(Z)) = m + 1. Hence, ϕ is an
automorphism, as desired.

By above discussion, Jq(n,m) is a pseudo-core when n > 2m.

Lemma 3.2. If n = 2m, then every Grassmann graph Jq(n,m) is a pseudo-core.

Proof. Suppose that n = 2m ≥ 4. For a subspace W of V , the dual subspace W⊥ of W
in V is defined by

W⊥ = {v ∈ V | wvt = 0, ∀ w ∈W},

where vt is the transpose of v.
For an endomorphism ϕ of Jq(2m,m), define the map

ϕ⊥ : V (Jq(2m,m)) −→ V (Jq(2m,m)), A 7−→ ϕ(A)⊥.

Then ϕ⊥ is an endomorphism of Jq(2m,m). Note that ϕ⊥ is an automorphism (resp.
colouring) whenever ϕ is an automorphism (resp. colouring). For any maximal cliqueM
of Jq(2m,m), ϕ(M) and ϕ⊥(M) are of different types.

Next we shall show that Jq(2m,m) is a pseudo-core.
Case 1. There exist [A〉m and 〈X]m such that [A〉m ∩ 〈X]m 6= ∅ and ϕ([A〉m),

ϕ(〈X]m) are of the same type.
By Lemma 2.1, the size of [A〉m∩〈X]m is q+1. Then |ϕ([A〉m)∩ϕ(〈X]m)| ≥ q+1.

Since ϕ([A〉m) and ϕ(〈X]m) are of the same type, by Lemma 2.2 one gets

ϕ([A〉m) = ϕ(〈X]m). (3.3)

Note that A ⊆ X . Pick any Y ∈
[
V

m+1

]
satisfying A ⊆ Y and dim(X ∩ Y ) = m. Then

〈Y ]m ∩ [A〉m 6= ∅. By Lemma 2.1 we have |ϕ(〈Y ]m)∩ϕ([A〉m)| ≥ q+1. By Lemma 2.2
and (3.3) we obtain either ϕ(〈Y ]m) = ϕ(〈X]m) or ϕ(〈Y ]m) and ϕ(〈X]m) are of different
types.

Case 1.1. There exists a Y ∈
[
V

m+1

]
such that ϕ(〈Y ]m) and ϕ(〈X]m) are of different

types. For any B ∈
[
X∩Y
m−1

]
, we have that B ⊆ Y and B ⊆ X . Since |[B〉m) ∩ 〈X]m| =

|[B〉m) ∩ 〈Y ]m| = q + 1, we have similarly

|ϕ([B〉m) ∩ ϕ(〈X]m)| ≥ q + 1 and |ϕ([B〉m) ∩ ϕ(〈Y ]m)| ≥ q + 1.

Since ϕ(〈Y ]m) and ϕ(〈X]m) are of different types, Lemma 2.2 implies that ϕ([B〉m) =
ϕ(〈X]m) or ϕ([B〉m) = ϕ(〈Y ]m) for any B ∈

[
X∩Y
m−1

]
.

Since the size of
[
X∩Y
m−1

]
is at least 3, by above discussion, there exist two subspaces

B1, B2 ∈
[
X∩Y
m−1

]
such that ϕ([B1〉m) = ϕ([B2〉m). Note that [B1〉m∩ [B2〉m 6= ∅ because
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X ∩ Y ∈ [Bi〉m (i = 1, 2). If ϕ([B1〉m) is a star, then ϕ is a colouring by Lemma 2.7.
Suppose ϕ([B1〉m) is a top. Then ϕ⊥([B1〉m) is a star. By Lemma 2.7 again, ϕ⊥ is a
colouring. Hence, ϕ is also a colouring.

Case 1.2. ϕ(〈Y ]m) = ϕ(〈X]m) for any Y ∈
[
V

m+1

]
. Consider a star [C〉m where C

satisfies C ⊂ X and dim(C ∩ A) = m − 2. Then (A ∨ C) ⊆ X and dim(A ∨ C) = m.
For any T ∈ [C〉m, since (A ∨ C) ⊆ (A ∨ T ) and m ≤ dim(A ∨ T ) ≤ m + 1, there
exists a subspace W ∈

[
V

m+1

]
such that (A ∨ T ) ⊆ W and dim(W ∩ X) ≥ m (because

(A ∨ C) ⊆W ∩X).
Since T ∈ 〈W ]m, ϕ(T ) ∈ ϕ(〈W ]m). By the condition, ϕ(〈W ]m) = ϕ(〈X]m). Then

ϕ(〈W ]m) = ϕ([A〉m) by (3.3). It follows that ϕ(T ) ∈ ϕ([A〉m) for all T ∈ [C〉m, and so
ϕ([C〉m) ⊆ ϕ([A〉m). Hence, ϕ([C〉m) = ϕ([A〉m). Since [C〉m ∩ [A〉m 6= ∅, similar to
the proof of Case 1.1, ϕ is a colouring.

Case 2. For any two maximal cliques of different types containing common vertices,
their images under ϕ are of different types.

In this case, ϕ maps the maximal cliques of the same type to the maximal cliques of the
same type.

Case 2.1. ϕ maps stars to stars. In this case ϕ maps tops to tops by Lemmas 2.1 and
2.2.

If there exist two distinct starsM andM′ such thatM∩M′ 6= ∅ and ϕ(M) = ϕ(M′),
then ϕ is a colouring by Lemma 2.7. Now suppose ϕ(M) 6= ϕ(M′) for any two distinct
starsM andM′ withM∩M′ 6= ∅. By Lemma 2.3, ϕ induces an endomorphism ϕm−1
of Jq(2m,m − 1) such that ϕ([A〉m) = [ϕm−1(A)〉m. By Lemma 3.1, Jq(2m,m − 1) is
a pseudo-core. Thus, ϕm−1 is an automorphism or a colouring.

We claim that ϕm−1 is an automorphism of Jq(2m,m− 1). For any C ∈
[
V
m

]
and B ∈[

C
m−1

]
, since C ∈ [B〉m and ϕ([B〉m) = [ϕm−1(B)〉m, we have ϕ(C) ∈ [ϕm−1(B)〉m.

Then ϕm−1(B) ⊆ ϕ(C), which implies that ϕm−1(〈C]m−1) is a top of Jq(2m,m − 1).
If m = 2, our claim is valid. Now suppose m ≥ 3 and ϕm−1 is a colouring. Then
Im(ϕm−1) is a star of Jq(2m,m − 1). Note that ϕm−1(〈C]m−1) ⊆ Im(ϕm−1) and
|ϕm−1(〈C]m−1)| > q + 1, contradicting to Lemma 2.1. Hence, our claim is valid. There-
fore, ϕ maps distinct stars onto distinct stars, and ϕ is an automorphism.

Case 2.2. ϕ maps stars to tops. In this case ϕ maps tops to stars by Lemmas 2.1 and
2.2.

Note that ϕ⊥ maps stars to stars. By Case 2.1, ϕ⊥ is an automorphism. Hence, ϕ is an
automorphism.

By above discussion, we have proved that every Grassmann graph Jq(2m,m) is a
pseudo-core.

By Lemmas 3.1 and 3.2, we have proved Theorem 1.1.

4 Cores on Grassmann graphs
In this section, we shall show that J2(4, 2) is not a core and Jq(2k+1, 2) (k ≥ 2) is a core.

It is well-known (cf. [3, Theorem 6.10 and Corollary 6.2]) that the chromatic number
of G satisfies the following inequality:

χ(G) ≥ max {ω(G), |V (G)|/α(G)} .
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By [15, Lemma 2.7.2], if G is a vertex-transitive graph, then

χ(G) ≥ |V (G)|
α(G)

≥ ω(G). (4.1)

Lemma 4.1. Let G be a Grassmann graph. Then G is a core if and only if χ(G) > ω(G).
In particular, if |V (G)|

ω(G) is not an integer, then G is a core.

Proof. By [6, Corollary 4.2], every distance-transitive graph is core-complete, thus G is
core-complete. Then, χ(G) > ω(G) implies that G is a core. Conversely, if G is a core,
then we must have χ(G) > ω(G). Otherwise, there exists an endomorphism f of G such
that f(G) is a maximum clique of G, a contradiction to G being a core. Thus, G is a core
if and only if χ(G) > ω(G).

By [2, p.148, Remark], if the core of G is complete, then |V (G)| = ω(G)α(G). As-
sume that |V (G)|

ω(G) is not an integer. Then |V (G)| 6= ω(G)α(G). Therefore, the core of G is
not complete and hence G is a core.

Denote by Fm×nq the set ofm×nmatrices over Fq and Fnq = F1×n
q . LetG = Jq(n,m)

where n > m. If X is a vertex of G, then X = [α1, . . . , αm] is an m-dimensional
subspace of the vector space Fnq , where {α1, . . . , αm} is a basis ofX . Thus,X has a matrix

representation

(
α1

...
αm

)
∈ Fm×nq (cf. [8, 16]). For simpleness, the matrix representation

ofX ∈ V (G) is also denoted byX . For matrix representationsX,Y of two verticesX and
Y , X ∼ Y if and only if rank

(
X
Y

)
= m + 1. Note that if X is a matrix representation

thenX = PX (as matrix representation) for anym×m invertible matrix P over Fq . Then,
V (G) has a matrix representation

V (G) =
{
X : X ∈ Fm×nq , rank(X) = m

}
.

Now, we give an example of Grassmann graph which is not a core as follows.

Example 4.2. Let G = J2(4, 2). Then G is not a core. Moreover, χ(G) = ω(G) = 7 and
α(G) = 5.

Proof. Applying the matrix representation of V (G), G = J2(4, 2) has 35 vertices as fol-
lows:

A1 =

(
1 0 0 0
0 1 0 0

)
, A2 =

(
1 0 1 0
0 1 0 0

)
, A3 =

(
1 0 0 1
0 1 0 0

)
, A4 =

(
1 0 1 1
0 1 0 0

)
,

A5 =

(
1 0 0 0
0 1 1 0

)
, A6 =

(
1 0 0 0
0 1 0 1

)
, A7 =

(
1 0 0 0
0 1 1 1

)
, A8 =

(
1 0 1 0
0 1 1 0

)
,

A9 =

(
1 0 0 1
0 1 0 1

)
, A10 =

(
1 0 1 0
0 1 0 1

)
, A11 =

(
1 0 0 1
0 1 1 0

)
, A12 =

(
1 0 0 1
0 1 1 1

)
,

A13 =

(
1 0 1 0
0 1 1 1

)
, A14 =

(
1 0 1 1
0 1 0 1

)
, A15 =

(
1 0 1 1
0 1 1 0

)
, A16 =

(
1 0 1 1
0 1 1 1

)
,

A17 =

(
0 0 1 0
0 0 0 1

)
, A18 =

(
1 0 1 0
0 0 0 1

)
, A19 =

(
0 1 1 0
0 0 0 1

)
, A20 =

(
0 0 1 0
1 0 0 1

)
,

A21 =

(
0 0 1 0
0 1 0 1

)
, A22 =

(
1 1 1 0
0 0 0 1

)
, A23 =

(
1 0 1 0
1 0 0 1

)
, A24 =

(
0 0 1 0
1 1 0 1

)
,

A25 =

(
0 1 1 0
0 1 0 1

)
, A26 =

(
1 1 1 0
1 1 0 1

)
, A27 =

(
0 1 0 0
0 0 1 0

)
, A28 =

(
1 1 0 0
0 0 1 0

)
,

A29 =

(
0 1 0 0
0 0 1 1

)
, A30 =

(
1 0 0 0
0 0 0 1

)
, A31 =

(
0 1 0 0
0 0 0 1

)
, A32 =

(
1 0 0 0
0 0 1 0

)
,

A33 =

(
1 1 0 0
0 0 0 1

)
, A34 =

(
1 1 0 0
0 0 1 1

)
, A35 =

(
1 0 0 0
0 0 1 1

)
.
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Suppose that L1 = {A1, A10, A12, A15, A17}, L2 = {A2, A6, A20, A19, A34}, L3 =
{A3, A8, A21, A22, A35}, L4 ={A5, A9, A18, A24, A29}, L5 ={A7, A14, A23, A27, A33},
L6 = {A4, A13, A25, A28, A30}, and L7 = {A11, A16, A26, A31, A32}. It is easy to see
that V (G) = L1 ∪ L2 ∪ · · · ∪ L7 and L1, . . . ,L7 are independent sets. Thus χ(G) ≤ 7.
On the other hand, (4.1) implies that χ(G) ≥ ω(G) = 7. Therefore, χ(G) = ω(G) = 7. It
follows from Lemma 4.1 that G is not a core. By (4.1) again, we have α(G) = 5.

We believe that Jq(2k, 2) (k ≥ 2) is not a core for all q (which is a power of a prime).
But this a difficult problem. Next, we give some examples of Grassmann graphs which are
cores.

Example 4.3. If k ≥ 2, then Jq(2k + 1, 2) is core.

Proof. When k ≥ 2, let G = Jq(2k + 1, 2). Applying (1.1) and (2.3) we have

|V (G)|
ω(G)

=
q2k+1 − 1

q2 − 1
=
q2k+1 − q
q2 − 1

+
1

q + 1
.

Thus |V (G)|
ω(G) is not an integer for any q (which is a power of a prime). By Lemma 4.1, G is

a core.
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Abstract

For a sequence {an}n≥0 of real numbers, we define the sequence of its arithmetic
means {a∗n}n≥0 as the sequence of averages of the first n elements of {an}n≥0. For a
parameter 0 < p < 1, we define the sequence of p-binomial means {apn}n≥0 of the se-
quence {an}n≥0 as the sequence of p-binomially weighted averages of the first n elements
of {an}n≥0. We compare the convergence of sequences {an}n≥0, {a∗n}n≥0 and {apn}n≥0

for various 0 < p < 1, i.e., we analyze when the convergence of one sequence implies the
convergence of the other.

While the sequence {a∗n}n≥0, known also as the sequence of Cesàro means of a se-
quence, is well studied in the literature, the results about {apn}n≥0 are hard to find. Our
main result shows that, if {an}n≥0 is a sequence of non-negative real numbers such that
{apn}n≥0 converges to a ∈ R ∪ {∞} for some 0 < p < 1, then {a∗n}n≥0 also converges to
a. We give an application of this result to finite Markov chains.

Keywords: Sequence, convergence, Cesàro mean, binomial mean, finite Markov chain.

Math. Subj. Class.: 00A05

1 Introduction
For a sequence {an}n≥0 of real numbers and for a parameter 0 < p < 1, define the se-
quence of its arithmetic means {a∗n}n≥0 and the sequence of its p-binomial means {apn}n≥0

as

a∗n =
1

n+ 1

n∑
i=0

ai and apn =

n∑
i=0

(
n

i

)
piqn−iai,

∗This work is partially funded by the Slovenian Research Agency, Research Program P1-0297.
E-mail address: david.gajser@fmf.uni-lj.si (David Gajser)

cb This work is licensed under http://creativecommons.org/licenses/by/3.0/
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where q = 1 − p. We see that a∗n is a uniformly weighted average of the numbers
a0, a1, . . . , an and apn is a binomially weighted average of the numbers a0, a1, . . . , an.

In this article, we will analyse the relationship between the convergence of sequences
{an}n≥0, {apn}n≥0 and {a∗n}n≥0. Our results are presented in the following table.

{an}n≥0 {ap1n }n≥0 {ap2n }n≥0 {a∗n}n≥0

{an}n≥0 =⇒ =⇒ =⇒
{ap1n }n≥0 6=⇒ ? an≥0

=⇒ an≥0
=⇒

{ap2n }n≥0 6=⇒ =⇒ an≥0
=⇒

{a∗n}n≥0 6=⇒ 6=⇒ 6=⇒
Table 1: The table shows whether the convergence of a sequence in the leftmost column
implies the convergence of a sequence in the first row, for 0 < p1 < p2 < 1. The sym-
bol =⇒ means that the implication holds, and the symbol 6=⇒ means that there is a
counterexample with an ∈ {0, 1}, for all n ∈ N. If there is a condition above =⇒ , then
the implication does not hold in general, but it holds if the condition is true. If there is a
? before the condition, we do not know whether the condition is the right one (an open
problem), but the implication does not hold in general.

The sequence {a∗n}n≥0 is also known as the sequence of Cesàro means and is well
studied in the literature [1, 4]. On the other hand, information about the convergence of p-
binomial means is hard to find. Also, the notion of p-binomial means is coined especially
for the purpose of this article. However, there are a few definitions that are close to ours [1,
4, 5]. First, we have to mention the Hausdorff means [1, 4]: the p-binomial means as well
as the arithmetic mean are its special cases. Unfortunately, the Hausdorff means are a bit
too general for our purposes in the sense that the known results that are useful for this paper
can be quite easily proven in our special cases.

One of the closest notions to the k-binomial mean is the one of k-binomial trans-
form [5]:

ãkn =

n∑
i=0

(
n

i

)
knai,

which coincides with {apn}n≥0 for k = p = 0.5, but is different for other p and k. Another
similar definition is given with Euler means [4, pages 70, 71]:

an =
1

2n+1

n∑
i=0

(
n+ 1

i+ 1

)
ai.

Some results, like the first row and the first column of Table 1, are not hard to prove
(Section 3). Other results (Sections 4 and 5) require more careful ideas. This is true espe-
cially for the main result of this paper, Theorem 5.1, which proves, using the notation from
Table 1, that

{apn}n≥0
an≥0
=⇒ {a∗n}n≥0.

In Section 6 we give an application of this theorem to finite Markov chains.
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2 Preliminaries
Let N, R+ and R+

0 be the sets of non-negative integers, positive real numbers and non-
negative real numbers, respectively. For a ∈ R, let bac be the greatest integer not greater
than a and let dae be the smallest integer not smaller than a. We will allow a limit of
a sequence to be infinite and we will write a < ∞ (which means exactly a ∈ R) to
emphasize that a is finite.

For functions f, g : N→ R+
0 we say that

• f(n) = O(g(n)) if there is some C > 0 such that f(n) ≤ Cg(n) for all sufficiently
large n,

• f(n) = Θ(g(n)) if there are some C1, C2 > 0 such that C1g(n) ≤ f(n) ≤ C2g(n)
for all sufficiently large n,

• f(n) = o(g(n)) if g(n) is non-zero for all large enough n and lim
n→∞

f(n)

g(n)
= 0.

The following lemma will be useful later.

Lemma 2.1. Let u : N→ R\{0} and k : N→ R be functions such that lim
n→∞

u(n)k(n) =

lim
n→∞

u(n) = 0. Then

lim
n→∞

(
1 + u(n)

)k(n)/u(n)

ek(n)
= 1.

Proof. Because ex =
∑

xi

i! and ex ≥ 1 + x, there is an analytic function g : R → R+

such that ex = 1 + x + g(x)x2 and g(0) = 1
2 . Hence, if we omit writing the argument of

functions u and k,

lim
n→∞

(1 + u)k/u

ek
= lim
n→∞

(
eu − g(u)u2

eu

)k/u
= lim
n→∞

(1− g(u)u2

eu

) eu

g(u)u2


ukg(u)
eu

.

Because lim
n→∞

g(u)u2

eu
= 0 and because lim

x→0
(1− x)1/x = e−1, we have

lim
n→∞

(
1− g(u)u2

eu

) eu

g(u)u2

= e−1.

From

lim
n→∞

ukg(u)

eu
= 0,

the result follows.

Some properties of probability mass function of binomial distribution

Let X be a random variable having a binomial distribution with parameters p ∈ (0, 1) and
n ∈ N. For q = 1− p and i ∈ Z, we have by definition

Pr[X = i] = Bin(p) =

{ (
n
i

)
piqn−i if 0 ≤ i ≤ n

0 else.
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In this subsection, we state and mathematically ground some properties that can be seen
from a graph of binomial distribution (see Fig. 1). The results will be nice, some of them
folklore, but the proofs will be technical.

0 50 100 150 200 250 300
0.00

0.02

0.04

0.06

0.08

0.10

i

Bi300(0.2)

Bi300(0.5)
Bi300(0.7)

Figure 1: Binomial distribution with n = 300 and p = 0.2 (red), p = 0.5 (green), p = 0.7
(blue). The graphs show Bin(p) with respect to i.

It is well known (see some basic probability book) that the expected value of X is
E(X) = pn. First, we will prove that also the “peak” of the probability mass function is
roughly at pn.

Lemma 2.2. For p ∈ (0, 1), n ∈ N and for 0 ≤ i ≤ n,

Bin(p) ≥ Bi−1
n (p) ⇐⇒ i ≤ (n+ 1)p.

Proof. The expression

Bin(p)

Bi−1
n (p)

=
(n− i+ 1)p

i(1− p)

is at least 1 iff i ≤ p(n+ 1).

Next, we state a Chernoff bound proven in [3, inequalities (6) and (7)], which explains
why the probability mass function for binomial distribution “disappears” (see Fig. 1), when
i is far enough from pn.

Theorem 2.3. Let X be a binomially distributed random variable with parameters p ∈
(0, 1) and n ∈ N. Then for each δ ∈ (0, 1),

Pr
[
|X− np| ≥ npδ

]
≤ 2e−δ

2np/3.

We will only use the following corollary of the theorem. It is not difficult to prove and
the proof is omitted.

Corollary 2.4. For p ∈ (0, 1), let α : N → R+ be some function such that α(n) < p
√
n

for all n. Then, for all n ∈ N, it holds∑
i: |i−np|≥

√
nα(n)

Bin(p) ≤ 2e−α
2(n)/(3p).
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This corollary also tells us that, for large n, roughly everything is gathered in an O(
√
n)

neighborhood of np. What is more, the next lemma implies that in o(
√
n) neighborhood of

np, Bin(p) does not change a lot.

Lemma 2.5. Let p ∈ (0, 1) be a parameter and let β(n) : N → R be a function such that
|β(n)| = O(

√
n) and lim

n→∞
|β(n)| =∞. Then, for all large enough n, it holds

B
bnpc
n (p)

B
bnpc−bβ(n)c
n (p)

≤ e
1

p(1−p) ·
bβ(n)c2

n .

Proof. For all large enough n for which β(n) ≥ 0, we have

B
bnpc
n (p)

B
bnpc−bβ(n)c
n (p)

=

(
n
bnpc

)
pbβ(n)c(

n
bnpc−bβ(n)c

)
(1− p)bβ(n)c

=

bβ(n)c−1∏
i=0

(n− bnpc+ bβ(n)c − i)p
(bnpc − i)(1− p)

(2.1)

≤
bβ(n)c−1∏
i=0

(
1 +

1

p(1− p)
· bβ(n)c

n

)
.

In the last inequality we used the fact that

(n− bnpc+ bβ(n)c − i)p
(bnpc − i)(1− p)

≤ 1 +
1

p(1− p)
· bβ(n)c

n

holds for large enough n, which is true because it is equivalent to

(np− bnpc) + (bβ(n)c − i)p+ i(1− p) +
ibβ(n)c
pn

≤ bnpc
np
bβ(n)c,

where

• np− bnpc ≤ 1,

• (bβ(n)c − i)p+ i(1− p) ≤ bβ(n)c ·max{p, 1− p}, since i < bβ(n)c and

• ibβ(n)c
pn = O(1), since β(n) = O(

√
n).

Using the fact that (1 + x) ≤ ex for all x ∈ R, we see that

B
bnpc
n (p)

B
bnpc−bβ(n)c
n (p)

≤
bβ(n)c−1∏
i=0

(
1 +

1

p(1− p)
· bβ(n)c

n

)

≤
bβ(n)c−1∏
i=0

e
1

p(1−p) ·
bβ(n)c
n

= e
1

p(1−p) ·
bβ(n)c2

n .
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For all large enough n for which β(n) < 0, we write b(n) = |bβ(n)c| and we have

B
bnpc
n (p)

B
bnpc−bβ(n)c
n (p)

=

(
n
bnpc

)
(1− p)b(n)(
n

bnpc+b(n)

)
pb(n)

=

b(n)−1∏
i=0

(bnpc+ b(n)− i)(1− p)
(n− bnpc − i)p

≤
b(n)−1∏
i=0

(np+ b(n)− i)(1− p)
(n(1− p)− i)p

≤
b(n)−1∏
i=0

(n− bn(1− p)c+ b(n)− i)(1− p)
(bn(1− p)c − i)p

,

which is the same as (2.1) in the case β(n) ≥ 0, only that p and (1 − p) are interchanged.

Now we know that the values of Bin(p) around the peaks in Fig. 1 are close to the
value of the peak. The next lemma will tell us that the peak of Bin(p) is asymptotically

1√
2πp(1−p)n

.

Lemma 2.6. For 0 < p < 1, it holds

lim
n→∞

√
2πp(1− p)nBbnpcn (p) = 1.

Proof. Using Stirling’s approximation

lim
n→∞

n!√
2πn

(
n
e

)n = 1,

we see that

lim
n→∞

√
2πp(1− p)nBbnpcn (p)

= lim
n→∞

√
2πp(1− p)n ·

√
2πn

(
n
e

)n
pbnpc(1− p)n−bnpc√

2πbnpc
(
bnpc
e

)bnpc
·
√

2π(n− bnpc)
(
n−bnpc

e

)n−bnpc
= lim
n→∞

nnpbnpc(1− p)n−bnpc

bnpcbnpc · (n− bnpc)n−bnpc

= lim
n→∞

(
np

bnpc

)bnpc
·
(
n− np
n− bnpc

)n−bnpc
= lim
n→∞

(
1 +

np− bnpc
bnpc

)bnpc
·
(

1− np− bnpc
n− bnpc

)n−bnpc
= lim
n→∞

enp−bnpc · e−(np−bnpc) = 1,

where the last line follows by Lemma 2.1.
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3 Comparing convergence of {an}n≥0 with convergence of {apn}n≥0

and {a∗n}n≥0

In this section we show that the convergence of {an}n≥0 implies the convergence of
{apn}n≥0 and {a∗n}n≥0 to the same limit. It is well known [4] that if {an}n≥0 converges to
a ∈ R ∪ {∞}, then so does {a∗n}n≥0. The next theorem tells us that in this case, {apn}n≥0

also converges to the same limit.

Theorem 3.1. If {an}n≥0 converges to a ∈ R ∪ {∞}, then {a∗n}n≥0 and {apn}n≥0 con-
verge to a for all 0 < p < 1.

Proof. The case a = ∞ is straightforward to handle, so suppose a < ∞. Take any ε > 0
and such N that |an − a| < ε for all n ≥ N . Then, for n ≥ N ,

|a∗n − a| =
1

n+ 1

∣∣∣∣∣
n∑
i=0

(ai − a)

∣∣∣∣∣
≤ 1

n+ 1

n∑
i=0

|ai − a|

≤ 1

n+ 1

N∑
i=0

|ai − a|+
1

n+ 1
· ε(n−N).

The last line converges to ε when n goes to infinity, which implies that {a∗n}n≥0 converges
to a.

To prove the convergence of binomial means, denote q = 1− p. For n ≥ N , we get

|apn − a| =

∣∣∣∣∣
n∑
i=0

(
n

i

)
piqn−i(ai − a)

∣∣∣∣∣
≤

N∑
i=0

(
n

i

)
piqn−i|ai − a|+ ε

n∑
i=N+1

(
n

i

)
piqn−i

≤
N∑
i=0

(
n

i

)
piqn−i|ai − a|+ ε.

The last line converges to ε because
(
n
i

)
grows as a polynomial in n for each fixed value

i ≤ N and piqn−i decreases exponentially. This implies that {apn}n≥0 also converges to
a.

One does not need to go searching for strange examples to see that convergence of
{a∗n}n≥0 or {apn}n≥0 does not imply the convergence of {an}n≥0. We state this as a
proposition.

Proposition 3.2. There exists a sequence {an}n≥0 of zeros and ones that does not con-
verge, whereas {a∗n}n≥0 and {apn}n≥0 converge for all 0 < p < 1.

Proof. Define

an =

{
0 if n is odd,
1 if n is even.
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Then {an}n≥0 does not converge and {a∗n}n≥0 converges to 1
2 , as can easily be verified.

Next, we will prove that {apn}n≥0 converges to 1
2 . First, we see that, for 0 < p < 1 and

q = 1 − p, the value of q − p is strictly between −1 and 1, thus (q − p)n converges to 0
when n goes to infinity. Hence,

n∑
i is even

(
n

i

)
piqn−i −

n∑
i is odd

(
n

i

)
piqn−i = (q − p)n

converges to 0. Because
n∑

i is even

(
n

i

)
piqn−i +

n∑
i is odd

(
n

i

)
piqn−i = 1,

we have that {apn}n≥0 converges to 1
2 .

4 Comparing convergence of binomial means
In this section we compare convergence of sequences {apn}n≥0 for different parameters
p ∈ (0, 1). We will see that if 0 < p1 < p2 < 1, then the convergence of {ap2n }n≥0 implies
the convergence of {ap1n }n≥0 to the same limit, while the convergence of {ap1n }n≥0 does
not imply the convergence of {ap2n }n≥0 in general. We leave as an open problem whether
for an ≥ 0 it does.

First, let us prove the main lemma in this section, which tells us that the sequence of p2-
binomial means of the sequence of p1-binomial means of some sequence is the sequence
of (p1p2)-binomial means of the starting sequence.

Lemma 4.1. For 0 < p1, p2 < 1 and for a sequence {an}n≥0, let {bn}n≥0 be the sequence
of p1-binomial means of {an}n≥0, i.e., bn = ap1n for all n. Then bp2n = ap1p2n for all n.

Proof. Denote q1 = 1− p1 and q2 = 1− p2. We change the order of summation, consider(
j
i

)(
n
j

)
=
(
n
i

)(
n−i
j−i
)

for i ≤ j and replace j by k = j − i:

bp2n =

n∑
j=0

ap1j

(
n

j

)
pj2q

n−j
2

=

n∑
j=0

j∑
i=0

ai

(
j

i

)(
n

j

)
pi1q

j−i
1 pj2q

n−j
2

=

n∑
i=0

ai

(
n

i

)
pi1p

i
2

n∑
j=i

(
n− i
j − i

)
qj−i1 pj−i2 qn−j2

=

n∑
i=0

ai

(
n

i

)
pi1p

i
2

n−i∑
k=0

(
n− i
k

)
(q1p2)kqn−i−k2

=

n∑
i=0

ai

(
n

i

)
pi1p

i
2(q1p2 + q2)n−i

=

n∑
i=0

ai

(
n

i

)
(p1p2)i(1− p1p2)n−i.

The last line equals ap1p2n .
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The next theorem will now be trivial to prove.

Theorem 4.2. For 0 < p1 < p2 < 1 and for a sequence {an}n≥0, if {ap2n }n≥0 converges
to a ∈ R ∪ {∞}, then {ap1n }n≥0 also converges to a.

Proof. From Lemma 4.1 we know that {ap1n }n≥0 is the sequence of p1p2 -binomial means of
the sequence {ap2n }n≥0. By Theorem 3.1, it converges to a.

The next proposition tells us that the condition 0 < p1 < p2 < 1 in the above theorem
cannot be left out in general.

Proposition 4.3. For 0 < p1 < p2 < 1, there exists a sequence {an}n≥0, such that
{ap1n }n≥0 converges to 0, but {ap2n }n≥0 does not converge.

Proof. Denote q1 = 1− p1 and define {an}n≥0 as an = an for some parameter a ∈ R. If
a > −1, {an}n≥0 converges (possibly to∞), so let us examine the case when a ≤ −1. In
this case we have

ap1n =

n∑
i=0

(
n

i

)
aipi1q

n−i
1 = (ap1 + q1)n = (p1(a− 1) + 1)n,

which converges iff p1 < 2
1−a . So we can choose such an a that p1 < 2

1−a < p2, i.e.,
1 − 2

p1
< a < 1 − 2

p2
. It follows that {ap1n }n≥0 converges to 0, but {ap2n }n≥0 does not

converge.

The sequence {an}n≥0 in the above proof is growing very rapidly in absolute value
and the sign of its elements alternates. We think that this is not a coincidence and we state
the following open problem.

Open problem 4.4. Let {an}n≥0 be a sequence of non-negative real numbers. Is it true
that, for all 0 < p1, p2 < 1, the sequence {ap1n }n≥0 converges to a iff {ap2n }n≥0 converges
to a? If the answer is no, is there a counterexample where an ∈ {0, 1}?

Note that the condition an ≥ 0 is also required for the main result of the paper, Theo-
rem 5.1. If the answer on 4.4 were yes, then we would only have to prove Theorem 5.1 in
a special case, e.g. for p = 1

2 . The (possibly negative) answer would also make this paper
more complete (see Table 1). In the rest of this section we will try to give some insight into
this problem and we will present some reasons for why we think it is hard.

Suppose we have 0 < p1 < p2 < 1 and a sequence {an}n≥0 of non-negative real
numbers such that {ap1n }n≥0 converges to a ∈ R (the case when {ap2n }n≥0 converges is
covered by Theorem 4.2). The next lemma implies that {an}n≥0 has a relatively low upper
bound on how fast its elements can increase, ruling out too large local extremes.

Lemma 4.5. Let {an}n≥0 be a sequence of non-negative real numbers and let 0 < p < 1.
If {apn}n≥0 converges to a <∞, then an = O(

√
n).

Proof. We know that apn ≥ abnpcB
bnpc
n (p), whereBbnpcn (p) ≈ 1√

2πp(1−p)n
by Lemma 2.6

and apn ≈ a for large n. Hence, abnpc = O(
√
n).
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To see whether {ap2n }n≥0 converges, it makes sense to compare ap1bn/p1c with ap2bn/p2c,
since the peaks of the “weights” Bibn/p1c(p1) and Bibn/p2c(p2) (roughly) coincide at n (see
Fig 2). Now the troublesome thing is that, for large n, the peaks are not of the same height,
but rather they differ by a factor √

1− p2

1− p1

by Lemma 2.6. Because the weights Bibn/p1c(p1) and Bibn/p2c(p2) are (really) influen-
tial only in the O(

√
n) neighborhood of n (Corollary 2.4 and Lemma 2.5), where the

p1-weights are only a bit “downtrodden” p2-weights, it seems that the convergence of
{ap1n }n≥0 could imply the convergence of {ap2n }n≥0.

200 250 300 350 400
0.00

0.01

0.02

0.03

0.04

0.05

0.06

i

Bib300/0.7c(0.7)

Bib300/0.4c(0.4)

Figure 2: The graphs show Bibn/p1c(p1) and Bibn/p2c(p2) with respect to i in the neighbor-
hood of n for n = 300, p1 = 0.4 (red) and p2 = 0.7 (green).

On the other hand, one could take an = 0 for all except for some n where there would
be outliers of heights Θ(

√
n). Those outliers would be so far away from each other that

the weights Bin(p1) could “notice” two consecutive outliers, while the weights Bin(p2),
which are slimmer, could not (in Fig. 2, the two outliers could be at 280 and 320). Then
{ap1n }n≥0 could converge because there would be a small difference between [when the
weights Bin(p1) amplify one outlier] and [when they “notice” two outliers] (these two
events seem to be the most opposite). On the other hand, {ap2n }n≥0 would not converge.
From Chernoff bound (Corollary 2.4) and from Lemma 2.5 it follows that the (horizontal)
distance between outliers should be roughly C

√
n for some C. What C would be the most

appropriate?

5 Comparing convergence of {apn}n≥0 with convergence of {a∗n}n≥0

This section contains the main result of this paper, which is formulated in the next theorem.
The proof will be given later.

Theorem 5.1. Let {an}n≥0 be a sequence of non-negative real numbers such that {apn}n≥0

converges to a ∈ R ∪ {∞} for some 0 < p < 1. Then {a∗n}n≥0 converges to a.

An example of how this theorem can be used is given in Section 6.1. Here we give an
example where {apn}n≥0 converges to a ∈ R ∪ {∞} for all 0 < p < 1, but {a∗n}n≥0 does
not converge.
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Proposition 5.2. For the sequence {an}n≥0 given by an = (−1)nn, {apn}n≥0 converges
to 0 for all 0 < p < 1 and {a∗n}n≥0 does not converge.

Proof. Take 0 < p < 1 and denote q = 1− p. It holds

apn =

n∑
i=0

(−1)ii

(
n

i

)
piqn−i

= −np
n∑
i=1

(−1)i−1

(
n− 1

i− 1

)
pi−1qn−1−(i−1)

= −np(−p+ q)n−1.

Because q − p is strictly between −1 and 1, {apn}n≥0 converges to 0.
However, the induction shows that a∗2n+1 = − 1

2 and a∗2n = n
2n+1 , which implies that

{a∗n}n≥0 does not converge.

Next, we show that we cannot interchange {apn}n≥0 and {a∗n}n≥0 in Theorem 5.1.

Proposition 5.3. There exists a sequence {an}n≥0 of zeros and ones such that {a∗n}n≥0

converges to 0 and {apn}n≥0 diverges for all 0 < p < 1.

Proof. Define

an =

{
1 if there is some k ∈ N such that

∣∣n− 22k
∣∣ < 2kk

0 else.

So {an}n≥0 has islets of ones in the sea of zeros. The size of an islet at position N is
Θ(
√
N log(N)) and the distance between two islets near position N is Θ(N). It is easy to

see that the sequence a∗n converges to zero.
Now let 0 < p < 1. By Chernoff bound (Corollary 2.4) we see that Bin(p) is con-

centrated around i = bnpc and that, for |i − np| ≥
√
n log(n), we have roughly nothing

left. It is easy (but tedious) to show formally that
{
apb22k/pc

}
k≥0

converges to 1 and that{
apb22k−1/pc

}
k≥0

converges to 0, which implies that {apn}n≥0 diverges.

Now we go for the proof of Theorem 5.1. First, for a sequence {an}n≥0 and 0 < p < 1,
we define {ap∗n }n≥0 as a sequence of arithmetic means of the sequence {apn}n≥0. We get

ap∗n =
1

n+ 1

n∑
j=0

apj

=
1

n+ 1

n∑
j=0

j∑
i=0

ai

(
j

i

)
piqj−i

=
1

n+ 1

n∑
i=0

ai

n∑
j=i

(
j

i

)
piqj−i,

where q = 1− p.



404 Ars Math. Contemp. 10 (2016) 393–410

It makes sense to define weights win(p) =
∑n
j=i

(
j
i

)
piqj−i, so that it holds

ap∗n =
1

n+ 1

n∑
i=0

win(p)ai.
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Figure 3: The graph shows wi300(0.3) with respect to i. We see a steep slope at i = 90
plunging from height approximately 1

0.3 to 0.

We can see in Fig. 3 that the weights win(p) have a very specific shape. They are very
close to 1

p for i < np − ε(n) and very close to 0 for i > np + ε(n), for some small ε(n).
Such a shape can be well described using the next lemma (and its corollary), which gives
another way to compute win(p).

Lemma 5.4. For 0 < p < 1, q = 1− p, n ∈ N and 0 ≤ i ≤ n, it holds

win(p) =
1

p

1−
i∑

j=0

(
n+ 1

j

)
pjqn+1−j

 .

Proof. The idea is to use power series centered at q. For a function f : R → R, we will
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write f (i) : R→ R for its i-th derivative.

win(p) =

n∑
j=i

(
j

i

)
piqj−i

=
pi

i!

 n∑
j=0

xj

(i)
∣∣∣∣∣∣∣
x=q

=
pi

i!

(
1− xn+1

1− x

)(i)
∣∣∣∣∣
x=q

=
pi−1

i!

(
1−

(
x− q + q

)n+1

1− 1
p (x− q)

)(i)
∣∣∣∣∣∣
x=q

=
pi−1

i!

[(
1−

n+1∑
k=0

(
n+ 1

k

)
(x− q)kqn+1−k

)
·

( ∞∑
k=0

(x− q)kp−k
)](i)

∣∣∣∣∣∣
x=q

=
pi−1i!

i!

p−i − i∑
j=0

(
n+ 1

j

)
qn+1−jpj−i


=

1

p

1−
i∑

j=0

(
n+ 1

j

)
pjqn+1−j

 .

Define the function ε : N→ R+ as

ε(n) =

{ √
n log(n) if n ≥ 2

1 else.

Now the following corollary holds.

Corollary 5.5. For 0 < p < 1, n ∈ N and 0 ≤ i ≤ n, it holds

wbnp−ε(n)c
n (p) ≥ 1

p
− n−Θ(log(n)),

wbnp+ε(n)c
n (p) ≤ n−Θ(log(n)).

Proof. Use the Chernoff bound (Corollary 2.4) on the expression for win(p) from
Lemma 5.4.

For 0 < p < 1 and for a sequence {an}n≥0, define sequences {axn(p)}n≥0, {ayn(p)}n≥0
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and {azn(p)}n≥0 as

axn(p) =

bpn−ε(n)c∑
i=0

win(p)ai

ayn(p) =

bpn+ε(n)c−1∑
i=bpn−ε(n)c+1

win(p)ai

azn(p) =

n∑
i=bpn+ε(n)c

win(p)ai.

Hence, we have

ap∗n =
1

n+ 1

(
axn(p) + ayn(p) + azn(p)

)
.

From Corollary 5.5 we see that the weights in axn(p) are very close to 1
p , which suggests

that 1
n+1a

x
n(p) can be very close to a∗bnpc (see Lemma 5.8 below). From the same corollary

we see that 1
n+1a

z
n(p) can be very close to 0 (see Lemma 5.7 below). And because we

have a sum of only Θ(ε(n)) elements in ayn(p), 1
n+1a

y
n(p) could also be very close to 0

(see Lemma 5.6 below).
We have just described the main idea for the proof of the main theorem, which we give

next. It will use three lemmas just mentioned (one about axn(p), one about ayn(p) and one
about azn(p)), that will be proven later.

Proof of Theorem 5.1. Suppose that an ≥ 0 for all n and suppose that {apn}n≥0 converges
to a ∈ R ∪ {∞} for some 0 < p < 1. We know that this implies the convergence of
{ap∗n }n≥0 to a (Theorem 3.1).

First, we deal with the case a = ∞. We can use the fact that win(p) ≤ 1
p for all i (see

Lemma 5.4), which gives

ap∗n =
1

n+ 1

n∑
i=0

win(p)ai

≤ 1

n+ 1

n∑
i=0

1

p
ai

=
a∗n
p
.

Hence, {a∗n}n≥0 converges to a =∞.

In the case a <∞, we can use Lemma 5.6 and Lemma 5.7 to see that
{

1
n+1a

y
n(p)

}
n≥0

and
{

1
n+1a

z
n(p)

}
n≥0

converge to 0. Hence,
{

1
n+1a

x
n(p)

}
n≥0

converges to a. Lemma 5.8

tells us that in this case {a∗n}n≥0 also converges to a.

Now we state and prove the remaining lemmas.

Lemma 5.6. Let 0 < p < 1 and let {an}n≥0 be a sequence of non-negative real numbers

such that {apn}n≥0 converges to a <∞. Then
{

1
n+1a

y
n(p)

}
n≥0

converges to 0.
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Proof. Fix ε̃ > 0, define δ(n) = blog2(n)c and let k : N → N be such that pn − ε(n) ≤
k(n) ≤ pn+ ε(n)− δ(n) holds for all n. We claim that

k(n)+δ(n)∑
i=k(n)

ai = O(
√
n),

where the constant behind the O is independent of k. To prove this, define N = N(n) =⌊
k(n)
p

⌋
. It follows that N = n±Θ(ε(n)). Note that, for large enough n,

k(n)+δ(n)∑
i=k(n)

aiB
i
N (p) ≤

N∑
i=0

aiB
i
N (p) < a+ ε̃,

because {apn}n≥0 converges to a. From Lemma 2.5 which bounds the coefficients BiN (p)
around i = pN it follows that, for all k(n) ≤ i ≤ k(n) + δ(n),

BiN (p) ≥ e− o(1)B
bNpc
N (p).

Using N = n±Θ(ε(n)) and the bound

B
bNpc
N (p) =

1

Θ(
√
N)

from Lemma 2.6, we get

k(n)+δ(n)∑
i=k(n)

ai < (a+ ε̃)eo(1) Θ(
√
n) = O(

√
n).

Next, we can see that

bpn+ε(n)c−1∑
i=bpn−ε(n)c+1

ai = O

(
n

log n

)
.

Just partition the sum on the left-hand side into
⌈

2ε(n)
δ(n)

⌉
sums of at most δ(n) elements.

Then we have
bpn+ε(n)c−1∑
i=bpn−ε(n)c+1

ai = O

(
ε(n)

δ(n)

√
n

)
= O

(
n

log n

)
.

Now using win(p) ≤ 1
p from Lemma 5.4, we get

1

n+ 1
ayn(p) ≤ 1

(n+ 1)p

bpn+ε(n)c−1∑
i=bpn−ε(n)c+1

ai =
1

(n+ 1)p
O

(
n

log n

)
,

which implies the convergence of
{

1
n+1a

y
n(p)

}
n≥0

to 0.
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Lemma 5.7. Let 0 < p < 1 and let {an}n≥0 be a sequence of non-negative real numbers

such that {apn}n≥0 converges to a <∞. Then
{

1
n+1a

z
n(p)

}
n≥0

converges to 0.

Proof. From Lemma 5.4 we see that the weights win(p) decrease with i, so

1

n+ 1
azn(p) ≤ w

bnp+ε(n)c
n (p)

(n+ 1)

n∑
bpn+ε(n)c

ai.

Corollary 5.5 gives us wbnp+ε(n)c
n (p) ≤ n−Θ(log(n)), while Lemma 4.5 implies ai =

O(
√
i). Hence,

{
1

n+1a
z
n(p)

}
n≥0

converges to 0.

Lemma 5.8. Let 0 < p < 1 and let {an}n≥0 be a sequence of non-negative real numbers

such that
{

1
n+1a

x
n(p)

}
n≥0

converges to a <∞. Then {a∗n}n≥0 converges to a.

Proof. Because the weights win(p) are bounded from above by 1
p (Lemma 5.4), we have

axn(p)

n+ 1
· (n+ 1)p

bpn− ε(n)c+ 1
≤ a∗bpn−ε(n)c,

where the left side converges to a.
Because the weights win(p) decrease with i (Lemma 5.4) and because wbnp−ε(n)c

n (p) ≥
1
p − n

−Θ(log(n)) (Corollary 5.5), we have

a∗bpn−ε(n)c ≤
axn(p)

n+ 1
· n+ 1

( 1
p − n−Θ(log(n))) · (bpn− ε(n)c+ 1)

,

where the right side converges to a. Hence, a∗bpn−ε(n)c is sandwiched between two se-
quences that converge to a. It follows that {a∗n}n≥0 converges to a.

6 Application of Theorem 5.1: a limit theorem for finite Markov
chains

For a stochastic matrix1 P , define the sequence {Pn}n≥0 as Pn = Pn. As in the one-
dimensional case, we define the sequence {P ∗n}n≥0 as P ∗n = 1

n+1

∑n
i=0 Pn. We say that

{Pn}n≥0 converges to A if, for all possible pairs (i, j), the sequence of (i, j)-th elements
of Pn converges to (i, j)-th element of A. In this section, we will prove the following
theorem.

Theorem 6.1. For any finite stochastic matrix P , the sequence {P ∗n}n≥0 converges to some
stochastic matrix A, such that AP = PA = A.

This theorem is nothing new in the theory of Markov chains. Actually, it also holds for
(countably) infinite transition matrices P . Although we did not find it formulated this way
in literature, it can be easily deduced from the known results. The hardest thing to show

1A stochastic matrix is a (possibly infinite) square matrix that has non-negative real entries and for which all
rows sum to 1. Each stochastic matrix represents transition probabilities of some discrete Markov chain. No prior
knowledge of Markov chains is needed for this paper.
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is the convergence of {P ∗n}n≥0 [2, page 32]. After we have it, we can continue as in the
proof of Theorem 6.1 below.

We will give a short proof of Theorem 6.1, using only linear algebra and Theorem 5.1.
First, we prove a result from linear algebra.

Lemma 6.2. Let P be a finite stochastic matrix and let P̃ = 1
2

(
P + I

)
. Then

a) for all eigenvalues λ of P̃ , it holds |λ| ≤ 1,

b) for all eigenvalues λ of P̃ for which |λ| = 1, it holds λ = 1,

c) the algebraic and geometric multiplicity of eigenvalue 1 of P̃ are the same.

Proof. Since the product and convex combination of stochastic matrices is a stochastic
matrix, Pn and P̃n are stochastic matrices for each n ∈ N. First, we will prove by con-
tradiction that, for all eigenvalues λ for P , it holds |λ| ≤ 1. Suppose that there is some
eigenvalue λ for P such that |λ| > 1. Let w be the corresponding eigenvector and let its
i-th component be non-zero. Then |(Pnw)i| = |λn| · |wi|, where the right side converges to
∞ and the left side is bounded by maxj |wj | (since Pn is a stochastic matrix). This gives
a contradiction. Hence, for all eigenvalues λ for P , it holds |λ| ≤ 1. Because P̃ is also
stochastic, the same holds for P̃ .

We see that we can get all eigenvalues of P̃ by adding 1 and dividing by 2 the eigen-
values of P . Because P has all eigenvalues in the unit disc around 0, P̃ has all eigenvalues
in a disc centered in 1

2 of radius 1
2 . Hence, for all eigenvalues λ of P̃ , for which |λ| = 1, it

holds λ = 1.
For the last claim of the lemma, suppose that the algebraic and geometric multiplicity of

eigenvalue 1 of P̃ are not the same. Then, by Jordan decomposition, there is an eigenvector
v for eigenvalue 1 and a vector w, such that P̃w = v + w. Then, for each n ∈ N,
we have P̃nw = nv + w. Because v has at least one non-zero component and because
all components of P̃nw are bounded in absolute value by maxj |wj |, we have come to
contradiction. Hence, the algebraic and geometric multiplicity of eigenvalue 1 of P̃ are the
same.

Proof of Theorem 6.1. For the matrix P̃ = 1
2

(
P + I

)
, let P̃ = XJX−1 be its Jordan

decomposition. From Lemma 6.2 a) and b) it follows that the diagonal of J consists only
of ones and entries of absolute value strictly less than one. From Lemma 6.2 c) it follows
that the Jordan blocks for eigenvalue 1 are all 1 × 1. It follows that Jn converges to some
matrix J0 with only zero entries and some ones on the diagonal. Hence, P̃n converges to
A = XJ0X

−1. Since P̃n is a stochastic matrix for all n, the same is true for A. Using
P̃n = P̃n, we see that {P̃n}n≥0 is just a sequence of 0.5-binomial means of the sequence
{Pn}n≥0, hence by Theorem 5.1 {P ∗n}n≥0 also converges to A. Thus, we have

AP =

(
lim
n→∞

1

n+ 1

n∑
i=0

P i

)
P

= lim
n→∞

n+ 2

n+ 1

(
1

n+ 2

n+1∑
i=0

P i − 1

n+ 2
I

)
= A.

The same argument shows also PA = A.
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An application of Theorem 6.1 in formal language theory. The following application
was suggested by an anonymous reviewer. To each formal language L ⊆ Σ∗ where Σ is a
finite alphabet, we can assign the sequence

fn(L) =
|Σn ∩ L|
|Σn|

of relative frequencies of words of length n in L. If this sequence is convergent, then
its limit can be taken as a measure for the size of L, which provides interesting informa-
tion about L. Unfortunately, the sequence fn(L) can be divergent even if L is a regular
language, such as, for example, the language E of all words of even length. But using
Theorem 6.1 we can show that f∗n(L) converges for every regular L as follows. If L
is regular, it is recognised by some deterministic finite automaton (Q, q0, F,Σ, δ) where
Q = {q0, q1, . . . , qm−1} is the set of states, q0 ∈ Q is the starting state, F ⊆ Q is the set
of final states, and δ : Q×Σ→ Q is the transition function. Define the matrix T ∈ Qm×m
with elements

ti,j =
|{a ∈ Σ; δ(qi, a) = qj}|

|Σ|
, i, j = 0, 1, . . . ,m− 1.

Then T is stochastic and fn(L) =
∑
qj∈F (Tn)0,j , so by Theorem 6.1, f∗n(L) is convergent

and we can define µ(L) = limn→∞ f∗n(L) to be the (finitely additive) measure of L. For
example, returning to the language E of words of even length, we find that µ(E) = 0.5.
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Abstract

A geometric 5-configuration is a collection of points and straight lines, typically in the Eu-
clidean plane, in which every point has 5 lines passing through it and every line has 5 points
lying on it; that is, it is an (n5) configuration for some number n of points and lines. Using
reduced Levi graphs and two elementary geometric lemmas, we develop a construction that
produces infinitely many new 5-configurations which are movable; in particular, we pro-
duce infinitely many 5-configurations with one continuous degree of freedom, and we pro-
duce 5-configurations with k− 2 continuous degrees of freedom for all odd k > 2.

Keywords: Configurations, incidence geometry.

Math. Subj. Class.: 51A20, 51A45, 51E30, 05B30

A geometric k-configuration is a collection of points and straight lines, typically in the
Euclidean plane, where every point lies on k lines and every line passes through k points.
Geometric 3-configurations have been studied since the mid-1800s, and geometric 4-con-
figurations since the late 1900s, with the first intelligible drawing of a 4-configuration ap-
pearing in a 1990 paper by Grünbaum and Rigby [15]. However, the situation for more
highly incident configurations, that is, for (pq, nk) configurations with at least one of q,
k ≥ 4, is poorly understood in general.

Two constructions that produce infinite families of 5-configurations with a reasonably small
number of points and lines are known [7, 9]. The (485) configuration shown in Figure 1a
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is the smallest known geometric 5-configuration and is the smallest example of the con-
struction in [9]; a reasonably small example of the construction discussed in [7] is shown
in Figure 1b (the smallest example is not intelligible at small scale). In his monograph
on configurations [14, Section 4.1], Grünbaum spends only 5 pages (mostly pictures) dis-
cussing the little that is known about 5-configurations.

(a) A (485) configuration with 4 symmetry classes of
points and lines

(b) A (645) configuration with 8 symmetry classes of
points and lines

Figure 1: Examples of known small 5-configurations

In this paper, we present a new construction that produces infinitely many new geomet-
ric 5-configurations which are movable: that is, there is at least one continuous degree of
freedom in the construction while fixing 4 points in general position. This construction sig-
nificantly generalizes the construction presented in [9] and removes the need to complete
the construction via a continuity argument, instead providing an entirely ruler-and-compass
construction for those configurations, given an initial m-gon. The new construction tech-
nique uses two elementary geometric lemmas, the Circumcircle Construction Lemma and
the Crossing Spans Lemma, which previously have been used separately in other configu-
ration construction techniques.

1 Definitions; Levi and reduced Levi graphs

Given any (pq, nk) configuration, whether geometrically realizable or not, it is possible to
construct a corresponding bipartite graph, called a Levi graph, which has one white vertex
for each point of the configuration and one black vertex for each line of the configuration,
with two vertices in the graph incident if and only if the corresponding point and line are
incident in the configuration. More details on Levi graphs and configurations may be found
in Grünbaum [14, Section 1.4] and Coxeter [12].

We say that a geometric k-configuration is symmetric if there exist non-trivial isometries
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of the Euclidean plane that map the configuration to itself. Note that in other places in
the literature, the word ‘symmetric’ has been used to mean (pq, nk) configurations where
q = k (and thus p = n), i.e., k-configurations. Since we are interested in emphasizing
the geometric nature of the configuration, we—following Grünbaum [14, p. 16]—refer to
k-configurations as balanced, and reserve the word ‘symmetric’ to refer to the geometric
structure. The symmetry class of an element (point or line) is the orbit of the element under
the symmetry group of the configuration. If a geometric configuration has the property
that every symmetry class under some fixed cyclic subgroup of the geometric symmetry
group contains the same number of elements, then the configuration is called polycyclic;
polycyclic configurations were first described by Boben and Pisanski [11].

Given a polycyclic geometric configuration with cyclic symmetry group Zm, it is possible
to construct an edge-labelled bipartite graph, called the reduced Levi graph, by associating
one vertex of the graph to each symmetry class of points and of lines in the configuration,
and connecting two vertices of the graph with an edge precisely when the corresponding
elements of the configuration are incident. Suppose the elements of each symmetry class
of elements are labelled cyclically counterclockwise, beginning from some chosen 0th ele-
ment in each class; for example, line class L is labelled (L)0, . . . , (L)m−1 and vertex class
v is labelled (v)0, . . . , (v)m−1. If for each i, line Li and vertex vi+a are incident (with
indices computed modulo m), the corresponding directed edge in the reduced Levi graph
from vertex L to vertex v is labelled a; in the case where Li and vertex vi are incident (that
is, where a = 0), then we use an undirected thick edge. When vertices vi and vi+a both lie
on line Li, or from an alternate point of view, when lines Li and Li−a intersect at point vi,

then the reduced Levi graph contains a double arc
vL

a

.

If p and q are any two points, we denote the line L passing through p and q as p ∨ q. Simi-
larly, if L andM are any two lines, we denote their point of intersection as L∧M (possibly
at infinity if L‖M ). Given points v0, . . . , vm−1 that form the vertices of a regular m-gon
centered at O, we say that a line is span b if it passes through vi and vi+b for some i, with

all indices computed modulo m; span b lines correspond to double arcs
vL

b

in the reduced Levi graph. A circle C is a circumcircle of span b if it passes through vi,O,
and vi−b for some i; to specify which i, we say that C is a circumcircle of span b through
vd. (Note that span b lines are constructed by moving counterclockwise from the initial
point, and span b circumcircles by moving clockwise!)

2 Two construction lemmas

In 2006, one of the authors (LWB) discovered the Crossing Spans Lemma [3] (somewhat
restated here):
Lemma 2.1 (Crossing Spans Lemma (CSL)). Given a regular m-gon with vertices cycli-
cally labelled as u0, u1, . . . , um−1 and lines Li = ui∨ui+a of span a andMi = ui∨ui+b
of span b, where 1 ≤ a 6= b < m

2 , suppose that v0 is an arbitrary point on M0 (different
from u0, ub to avoid degeneracies), and construct other points vi to be the rotations of v0
through 2πi

m . Let Ni = vi ∨ vi+a and let wi = Ni ∧Ni−b. Then wi also lies on Li.

Although easy to state and prove, the Crossing Spans Lemma has been used to produce a
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L0

M0

N0N-b

w0

v6
v5

v4
v3v2

v1

u6u5

u4

u3

u2

u1

u0

v0

(a) Illustrating the Crossing Spans Lemma; m =
7, a = 2, b = 3. Only point w0 in class w has been
shown, to better illustrate that the three lines Li,Ni−b,
and Ni really do intersect three at a time (that is, no
almost-incidences are covered by points).

L u M

vNw

2 3

23

Z7

(b) The reduced Levi graph corresponding to Figure 2;
the dashed edge corresponds to the forced incidence.

Figure 2: Illustrating the Crossing Spans Lemma

number of novel constructions for configurations [3, 5, 8, 9]. The Crossing Spans Lemma
and its associated reduced Levi graph “gadget” are shown in Figure 2.

In fact, it is straightforward to show (by relabelling symmetry classes and applying duality
arguments) that given either of the labelled subgraphs in a reduced Levi graph that are
shown in Figure 3, the incidence given by the dashed line is induced, where white nodes
correspond to point classes and gray nodes to line classes. These subgraphs, with various
choices of labels, are used extensively in the proof of Theorem 4.1.

a+ x

x

b+ y

y

c
a+ x

x

b+ y

y

c

a+ x

x

b+ y

y

c

a+ x

x

b+ y

y

c

Figure 3: In either of these subgraphs in a reduced Levi graph (over Zm), the dashed line
corresponds to a forced incidence via the CSL; , c, x, y are integers between 0 and m − 1,
and 1 ≤ a 6= b < m

2 . Gray vertices correspond to line classes and white vertices to point
classes. In the construction in Section 4, we typically take c = 0, x = 0, and y = 0 or δ.

In [14, p. 116–118], Branko Grünbaum described a geometric technique to constructing
a certain class of 3-configurations. This technique was extended in [7] to the Circumcir-
cle Construction Lemma. Although the lemma can be stated as a more general incidence
theorem [8], we state it as follows in order to facilitate the main construction in Section
4.
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Lemma 2.2 (Circumcircle Construction Lemma (CCL)). Let v0, v1, . . . , vm−1 and
w0, w1, . . . , wm−1 form the vertices, labelled cyclically counterclockwise, of two regular
convex m-gons centered at O. The point w0 lies on the circle passing through vd, vd−b,O
if and only if the points w0, wb, vd are collinear.

That is, if w0 lies on the circumcircle of span b through vd, then the line L0 of span b
through w0 passes through vd, and conversely. By symmetry, the line L−d will also pass
through the point w0, and in general, if w0 is defined to also lie on some other line M0,
then each rotated image wi will lie on the three lines Li, Li−d and Mi. The Circumcircle
Construction Lemma, along with its reduced Levi graph structure, is illustrated in Figure
4.

w6
w5

w4

w3
w2

w1

v6v5

v4

v3

v2

v1

O v0w0

(a) Illustrating the Circumcircle Construction Lemma;
m = 7, b = 2, d = 3. The green line is L0, and the
dashed gray line is a possible other line M0 passing
through w0 (i.e., w0 could be defined as the intersec-
tion ofM0 andC); other elements of line classesL and
M have been suppressed for clarity.

wL

v M

2

3 3

Z7

(b) The “gadget” in a reduced Levi graph correspond-
ing to Figure 4a. (The connection between w and M
is optional, depending on whether there happens to be
a line M0 passing through w0; this is the typical situa-
tion in applications of the CCL.)

Figure 4: The Circumcircle Construction Lemma.

3 Celestial 4-configurations

The building blocks for the new construction of 5-configurations presented in Section 4 are
the celestial 4-configurations, which are configurations that have the property that every
point has two lines from each of two symmetry classes of lines passing through it, and
every line has two points from each of two symmetry classes of points lying on it. An
example of such a configuration is shown in Figure 5, along with a general reduced Levi
graph. Celestial 4-configurations were first described in detail (aside from a handful of
examples, e.g., [15, 16]) in Boben and Pisanski’s article Polycyclic Configurations [11], as
the main class of 4-configurations analyzed in that paper. Their description was expanded
in Grünbaum’s monograph Configurations of Points and Lines [14, Sections 3.5–3.8], al-
though in that chapter, he unfortunately called them k-astral configurations (even though
as he defined previously [14, p. 34], a k-astral configuration is simply a configuration with
k symmetry classes of points and of lines, and there exist k-astral 4-configurations that are
not k-celestial [13]).
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Every k-celestial 4-configuration can be described by a celestial symbol

m#(s1, t1; . . . ; sk, tk)

that satisfies four axioms:

Axiom 1: (order condition) si 6= ti 6= si+1 (with indices taken modulo m)

Axiom 2: (even condition)
k∑
i=1

(si − ti) = 2δ for some integer δ

Axiom 3: (cosine condition)
k∏
i=1

cos
(siπ
m

)
=

k∏
i=1

cos

(
tiπ

m

)
Axiom 4: (substring condition) no substring si, ti; . . . ; sj , tj or ti; si+1, . . . , tj ; sj+1 sat-

isfies the previous axioms.

A symbol satisfying the 4 axioms is said to be valid. Although celestial 4-configurations are
probably the most well-understood class of 4-configuration, they are still poorly understood
in general. The collection of 2-celestial configurations is completely classified ([2], with a
clearer proof in [14, p. 210-211]), but general k-celestial configurations are not completely
classified, and the problem appears to be non-tractable (since it depends on being able to
solve certain trigonometric diophantine equations). However, some known families of valid
k-celestial configurations, primarily for k = 3, 4, were presented in [1].

Given a valid symbol, there is a corresponding cohort m#S;T , where S = {s1, . . . , sk}
and T = {t1, . . . , tk} (as sets), which corresponds to a collection of valid symbols; in
particular, the sets in a cohort must satisfy the even and cosine conditions, and it must be
possible to find an ordering of the si and ti that satisfies the order condition.

To construct a k-celestial 4-configuration m#(s1, t1; . . . ; sk, tk) with k point classes
v1, . . . , vk and k line classes L1, . . . , Lk, do the following:

Algorithm 1 (Constructing a celestial 4-configuration).

Input: A valid celestial symbol m#(s1, t1; . . . ; sk, tk).

1. Construct the vertices of a regular m-gon centered atO, labelled (v1)0, . . . (v1)m−1.

2. Let L1 be the collection of lines of span s1 with respect to point class v1: that is, let
(L1)i = (v1)i ∨ (v1)i+s1 .

3. Construct point class v2 to be the set of t1-st intersection points of the lines L1: that
is, (v2)i = (L1)i ∧ (L1)i−t1 .

4. Continue in this fashion; line class L2 is the set of lines of span s2 with respect to
point class v2, point class v3 is the set of t2-nd intersection points of the lines L2,
etc., stopping after the construction of line class Lk.

Because the symbol m#(s1, t1; . . . ; sk, tk) is valid, the point class vk+1 corresponds, as a
set, to point class v1, and in particular, (vk+1)0 = (v1)δ , where 2δ =

∑k
i=1(si−ti).

The general reduced Levi graph for the configuration m#(s1, t1; . . . ; sk, tk) is shown in
Figure 5b; δ, the “twist” [11], is guaranteed to be an integer by the even condition. In
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general, the underlying graph for every reduced Levi graph of a celestial 4-configuration is
a double cycle of even length; that is, an even cycle in which every edge is replaced by a
pair of parallel edges.

(a) The celestial 4-configuration 9#(4, 3; 2, 3; 1, 3).
The 0th element of each symmetry class is shown larger
(points) or thicker (lines), and elements in different
symmetry classes are distinguished by color (class 1 is
red, class 2 is blue, and class 3 is green).

v1

L1

v2L2

v3

L3

vk

Lk

s1

t1

s2

t2

s3

sk

t k
+
δ

δ

Zm
(b) The reduced Levi graph, a double cycle, for
a general celestial 4-configuration, where δ =
1
2

∑k
i=1(si − ti).

Figure 5: Celestial 4-configurations

4 Constructing movable 5-configurations

The general idea of the construction is to produce a 5-configuration whose reduced Levi
graph consists of concentric double cycles, each of which corresponds to a particular ce-
lestial 4-configuration, where the double cycles are successively linked by single edges by
applying the CSL, and finally, the innermost cycle is linked to the outermost cycle using
the CCL; if k > 2 the construction will produce a movable 5-configuration. The reduced
Levi graph is shown in Figure 6.

More specifically, the reduced Levi graph contains k concentric double cycles, each of
which corresponds to a k-celestial 4-configuration with cohort m#S;T where S∩T = ∅.
If the outermost cycle corresponds to the configuration with symbol

m#(s1, t1; s2, t2; . . . ; sk−1, tk−1; sk, tk),

then each successive cycle has the si’s permuted cyclically one step while the ti’s remain
fixed: that is, the second cycle has symbol

m#(s2, t1; s3, t2; . . . ; sk, tk−1; s1, tk),

the third has symbol
m#(s3, t1; s4, t2; . . . ; s1, tk−1; s2, tk),
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and so on, so that the innermost cycle has symbol

m#(sk, t1; s1, t2; . . . ; sk−2, tk−1; sk−1, tk).

The point classes of the celestial configuration corresponding to cycle j are labelled vj1, . . .
vjk and the line classes Lj1, . . . L

j
k; that is, the superscript indicates the cycle, and the sub-

script the symmetry class in the celestial configuration. In Figure 6, the first point class of
each celestial configuration is highlighted.

Given a valid configuration symbol m#(s1, t1; . . . ; sk, tk) with cohort m#S;T with the
property that S∩T = ∅, the geometric construction algorithm to produce a 5-configuration
with k−2 continuous degrees of freedom is given in Algorithm 2. If k = 2 the configuration
is static and has been described previously in [9]; however, the construction algorithm given
here, which uses the CCL to complete the construction, eliminates the need for completing
the configuration via a continuity argument as described in that paper.

Algorithm 2 (Constructing a 5-configuration).

Input: A valid celestial symbol m#(s1, t1; . . . ; sk, tk) with the property that S ∩ T = ∅.

1. Construct the first k-celestial 4-configuration with symbol m#(s1, t1; . . . ; sk, tk),
with point classes v11 , . . . , v

1
k and line classes L1

1, . . . , L
1
k.

2. If k > 2, for j = 2, . . . , k − 1:

(a) Place a new point (vj1)0 arbitrarily on line (Lj−1
1 )0, and construct the rest of

the points (vj1)i in point class v21 by rotating (v11)0 by 2πi
m for i = 0, . . .m− 1.

(b) Using the point class vj1 as the starting m-gon, construct the configuration

m#(sj , t1; sj+1, t2; . . . ; sj−2, tk−1; sj−1, tk)

(where the sequence s1, s2, . . . , sk−1, sk has been cyclically permuted j steps
but the sequence t1, . . . , tk remains fixed).

3. To construct the k-th celestial configuration:

(a) Construct a circumcircle C of span sk through (v11)c, choosing c (and varying
continuous parameters if possible/necessary) so that C intersects line (Lk−1

1 )0.

(b) Let (vk1 )0 be the intersection of C with line (Lk−1
1 )0, and let (vk1 )i be the rota-

tion of (vk1 )0 through 2πi
m about O.

(c) Construct configuration

m#(sk, t1; s1, t2; . . . ; sk−2, tk−1; sk−1, tk)

using the points (vk1 )i as the initial set of points.

Theorem 4.1. Algorithm 2, beginning with m#(s1, t1; . . . ; sk, tk), creates a valid
5-configuration with mk2 points, mk2 lines and k − 2 continuous degrees of freedom.
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Figure 6: The reduced Levi graph, over Zm, for a movable 5-configuration with k2 point
classes and k2 line classes. It consists of k concentric double cycles, each corresponding to
a particular celestial 4-configuration, with the double cycles linked by arcs. The arcs shown
red and dashed are induced by the Crossing Spans Lemma, with example CSL gadgets
inducing the dashed edges highlighted in yellow and green, while the structure shown in
blue is constructed via the Circumcircle Construction Lemma.
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Proof. First, note that Algorithm 2 constructs k celestial configurations; each celestial con-
fguration contains k symmetry classes of points and of lines, and each symmetry class
contains m elements, for a total of mk2 points and mk2 lines.

Second, for j = 2, . . . , k − 1, the point (vj1)0 is placed arbitrarily on line (Lj−1
1 )0, for

(k − 1)− 2 + 1 = k − 2 continuous degrees of freedom.

Thus, the nontrivial part of the proof is to show that every point lies on 5 lines, and every
line passes through 5 points.

Recall that the symbol for celestial configuration j is

m#(sj , t1; sj+1, t2; . . . ; sj+`, t`; . . . ; sj−1, tk).

By construction, for each j = 1, . . . , k − 1, each line (Lj1)i passes through the point
(vj+1

1 )i (that is, the first symmetry class of points in celestial configuration j+1 lies on the
first symmetry class of lines in celestial configuration j), as well as through points (vj1)i,
(vj1)i+sj , (v

j
2)i, and (vj2)i+t1 from celestial configuration j.

By careful choice of labels and the Crossing Spans Lemma, it follows that for all ` =
2, . . . , k − 1 (with ` indexing the symmetry classes in the celestial configuration j), each
line (Lj`)i passes through point (vj+1

` )i, as well as through points (vj` )i, (v
j
` )i+sj+` , (v

j
`+1)i

and (vj`+1)i+t` from celestial configuration j.

A CSL gadget showing that points v22 are incident with lines L1
2 (dashed red line) beginning

with the input that points v21 are constructed incident with lines L1
2 (solid black line) is

highlighted in Figure 6 in yellow.

Finally, again by the CSL, line (Ljk)i passes through point (vj+1
k )i, as well as through

points (vjk)i, (v
j
k)i+sj−1

, (vj1)i+δ and (vj1)i+δ+tk from the completion of the celestial con-
figuration j.

Thus, for j = 1, . . . , k− 1 (indexing the celestial configuration), ` = 1, . . . k (indexing the
symmetry class in the celestial configuration) and i = 0, . . .m−1 (indexing the elements of
the symmetry class) each line (Lj`)i has 5 points lying on it. By inspection of the previous
incidences, for j = 2, . . . , k − 1, each point (vj` )i has 5 lines passing through it; however,
points (v1` )i only have 4 lines passing through them so far.

However, in step 3, we constructed (vk1 )0 be the intersection of C with line (Lk−1
1 )0, where

C is a circle of span sk through (v11)c. By the Circumcircle Construction Lemma it follows
that points (vk1 )0, (vk1 )sk and (v11)c are collinear; that is line (Lk1)0, which is span sk with
respect to the points vk1 by construction, passes through point (v11)c. By symmetry, it
follows that line (Lk1)i passes through (v11)i+c for i = 0, . . . ,m − 1. (This is represented
by the thick blue line connecting the inner and outer rings in Figure 6.) By construction of
the kth celestial configuration, it follows that line (Lk1)i also passes through points (vk1 )i,
(vk1 )i+sk , (vk2 )i and (vk2 )i+tk .

A final application of the Crossing Spans Lemma on gadgets connecting the inner and
outer ring shows that symmetry class Lk` in the k-th celestial configuration is incident with
symmetry class v1` in the first celestial configuration. The CSL gadget showing that Lk2
is incident with v12 (dashed red curve), beginning with the fact that Lk1 is incident with v11
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(thick blue curve) is highlighted in green in Figure 6. Specifically, for ` = 2, . . . k−1, (Lk` )i
passes through (v1` )i, (v

k
` )i, (v

k
` )i+s`−1

, (vk` )i, (v
k
` )i+t` . Finally, (Lkk)i passes through

(v1k)i, (v
k
k)i, (v

k
k)i+sk−1

, (vk1 )i+δ , and (vk1 )i+δ+tk . Thus, every point lies on 5 lines, and
every line passes through 5 points.

5 Some valid inputs for Algorithm 2

Proposition 5.1. The smallest movable 5-configuration produced by Algorithm 2 uses
9#(4, 3; 2, 3; 1, 3) (or another configuration with the same cohort) as its input and has 81
points and lines.

Proof. If k = 2, Algorithm 2 produces static configurations. Inspection of a list of all
valid symbols for small 3-celestial configurations (e.g., from [14, Table 3.7.1] or from the
personal list of one of the the authors (LWB)) shows that the cohort 9#{4, 2, 1}; {3, 3, 3}
is the smallest cohort with disjoint sets.

This configuration is shown in Figure 7.

Theorem 5.2. There exist infinitely many 5-configurations with one continuous degree of
freedom.

Proof. From [1] we know that

2q#{q − p, p, q − 2r}; {q − r, r, q − 2p}, for q ≥ 4 and 0 < p, r < q

is a valid family of celestial 4-configuration cohorts.

Suppose that r 6= p, r 6= q
3 , p 6= q

3 and p+ r 6= q. Under these conditions, the sets S and T
will always be disjoint. To see this, first note that q− p 6= q− r, because p 6= r; q− p 6= r,
because p+ r 6= q; and q− p 6= q− 2p because p 6= 0. Next, p 6= q− r because p+ r 6= q;
p 6= r by hypothesis; and p 6= q − 2p since p 6= q/3. Finally, q − 2r 6= q − r because
r 6= 0; q − 2r 6= r since r 6= q/3; and q − 2r 6= q − 2p because r 6= p. Thus, the sets are
disjoint. Hence the cohort is valid as input for Algorithm 2.

In particular, p = 1 and r = 2 produces the valid input cohort 2q#{q − 1, 1, q − 4}; {q −
2, 2, q − 2} for any q ≥ 4.

Lemma 5.3. The cohort 3q#{1, 2, . . . , 2k−1}; {q, q, . . . , q︸ ︷︷ ︸
k

} for q =
2k + 1

3
, k odd and

k > 2 is a valid celestial cohort.

Proof. Note that the cohort 9#{1, 2, 4}; {3, 3, 3} can be viewed as the case k = 3 of this
cohort.

To show the cohort is valid, we need to show that q =
2k + 1

3
is an integer and that the

cohort satisfies the cosine and even conditions.
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Figure 7: The smallest movable 5-configuration produced by Algorithm 2, an (815) con-
figuration, with initial celestial configuration 9#(4, 3; 2, 3; 1, 3) shown in red, second ce-
lestial configuration 9#(2, 3; 1, 3; 4, 3) shown in blue, and final celestial configuration
9#(1, 3; 4, 3; 2, 3) shown in green. The point (v11)0 is highlighted in red, the line (L1

1)0
is the thickest red line, the point (v21)0 is highlighted in blue, and the line (L2

1)0 is the
thickest blue line. The point (v31)0, which was constructed via the intersection of (L2

1)0
with the black circumcircle of span 1 through (v11)0, is highlighted in green, and (L3

1)0
is the thickest green line. Other 0th elements of symmetry classes are shown at medium
weights. Already we have reached the limits of intelligibility of a small-scale diagram.
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If k = 2j + 1 for some integer j, it is straightforward to show that

2k + 1 = 22j+1 + 1 = (2 + 1)

2j∑
i=0

(−1)i2i,

so 22j + 1 is clearly divisible by 3, and q =
∑2j
i=0(−1)i2i, which is odd.

Moreover, if si = 2i−1, then
∑k
i=1 2

i−1 = 2k + 1. Thus, if ti = q for i = 1, . . . , k, then

k∑
i=1

(si − ti) =
(
2k + 1

)
− (2j + 1)q

is even, since both terms are odd.

It remains to show the cosine condition is fulfilled: that is, we need to show that for q =
2k+1

3 ,
k∏
i=1

cos

(
2i−1π

3q

)
=

k∏
i=1

cos

(
qπ

3q

)
. (5.1)

The right-hand side of equation (5.1) clearly evaluates to 1
2k

. To see the left-hand side also
evaluates to 1

2k
, we use the following trigonometric identity, which can be proved using the

identity sin(2θ) = 2 sin(θ) cos(θ) and induction (see [10]):

2k
k−1∏
j=0

cos
(
2ja
)
=

sin
(
2ja
)

sin(a)
. (5.2)

Applying this identity to the left-hand side of (5.1), we see that

k∏
i=1

cos

(
2i−1π

3q

)
=

k∏
i=1

cos

(
2i−1π

2k + 1

)
=

1

2k

 sin
(

2kπ
2k+1

)
sin
(

π
2k+1

)


=
1

2k
sin

(
π − π

2k + 1

)
csc

(
π

2k + 1

)
=

1

2k

(
sin(π) cos

(
π

2k + 1

)
− cos(π) sin

(
π

2k + 1

))
csc

(
π

2k + 1

)
=

1

2k

(
0− (−1) sin

(
π

2k + 1

))
csc

(
π

2k + 1

)
=

1

2k
,

so the cosine condition is satisfied.

Theorem 5.4. There exists at least one 5-configuration with s continuous degrees of free-
dom, for infinitely many values of s.
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Proof. Use the cohort 3q#{1, 2, . . . , 2k−1}; {q, q, . . . , q︸ ︷︷ ︸
k

} for q = 2k+1
3 , k odd and k >

2 from Lemma 5.3; clearly, the sets S and T are disjoint. This produces a movable 5-
configuration with k − 2 degrees of freedom for all odd k ≥ 3.

6 Open Questions

Question 1. In [8], the Crossing Spans Lemma is generalized to allow larger and differ-
ently labelled subgraphs, as the Extended Crossing Spans Lemma. Are there interesting
movable configurations that can be constructed from this generalization?
Question 2. This construction depends on two very simple geometric lemmas, which are
straightforward to prove using basic Euclidean geometry. Are there other such useful lem-
mas? What techniques can be used, and which incidence theorems, to construct new con-
figurations from known configurations while retaining useful symmetry properties?
Question 3. Finding movable 3-configurations is easy [6], and there are a number of known
classes of movable 4-configurations [3, 4, 8, 14]. This paper presents a class of movable
5-configurations. Are there movable k-configurations for any k > 5? For all k > 5? In
particular, are there movable 6-configurations?
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Abstract

An automorphism of a graph is said to be even/odd if it acts on the set of vertices
as an even/odd permutation. In this article we pose the problem of determining which
vertex-transitive graphs admit odd automorphisms. Partial results for certain classes of
vertex-transitive graphs, in particular for Cayley graphs, are given. As a consequence, a
characterization of arc-transitive circulants without odd automorphisms is obtained.

Keywords: Graph, vertex-transitive, automorphism group, even permutation, odd permutation.
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1 Introduction
Apart from being a rich source of interesting mathematical objects in their own right,

vertex-transitive graphs provide a perfect platform for investigating structural properties of
transitive permutation groups from a purely combinatorial viewpoint. The recent outburst
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of research papers on this topic should therefore come as no surprise. Most of these papers
have arisen as direct attempts - by developing consistent theories and strategies – to solve
open problems in vertex-transitive graphs; the hamiltonicity problem [17], for example,
being perhaps the most popular among them.

In this context knowing the full (or as near as possible) automorphism group of a vertex-
transitive graph is important because it provides the most complete description of its struc-
ture. While some automorphisms are obvious, often part of the defining properties, there
are others, not so obvious and hence more difficult to find.

Consider for example bicirculants, more precisely, n-bicirculants, that is, graphs ad-
mitting an automorphism ρ with two orbits of size n ≥ 2 and no other orbits. There are
three essentially different possibilities for such a graph to be vertex-transitive depending
on whether its automorphism group contains a swap and/or a mixer, where a swap is an
automorphism interchanging the two orbits of ρ, and a mixer is an automorphism which
neither fixes nor interchanges the two orbits of ρ. For example, the Petersen graph has
swaps and mixers, prisms (except for the cube) have only swaps, while the dodecahedron
has only mixers. Clearly, swaps are the “obvious” automorphisms and mixers are “not so
obvious” ones (see Figure 1).

Figure 1: The Petersen graph, the 5-prism and the dodecahedron – the first two admit a swap, while the third
one does not.

In this paper we propose to approach the sometimes elusive separation line between
the obvious and not so obvious automorphisms via the even/odd permutations dichotomy.
Let us call an automorphism of a graph even/odd if it acts on the vertex set as an even/odd
permutation. Further, a graph is said to be even-closed if all of its automorphisms are
even. The Petersen graph and odd prisms have odd automorphisms, the swaps being such
automorphisms. On the other hand, the dodecahedron has only even automorphisms [13].
Furthermore, consider the two cubic 2k-bicirculants, k > 1, shown in Figure 2 for k = 4.
Both have swaps which are even automorphisms. More precisely, all of the automorphisms
of the 2k-prism on the left-hand side are even. As for the graph on the right-hand side
– the Cayley graph Cay(Z4k, {±1, 2k}) on the cyclic group Z4k = 〈1〉 – any generator
of the left regular representation of Z4k is an odd automorphism (note that the bicirculant
structure of this graph arises from the action of the square of any generator of the left
regular representation of Z4k).

This brings us to the following natural question: Given a transitive group of even auto-
morphisms H of a graph X , is there a group G ≤ Aut(X) containing odd automorphisms
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Figure 2: Two examples of cubic 2k-bicirculants for k = 4, one with and one without odd automorphisms.

of X and H as a subgroup? In particular, we would like to focus on the following problem.

Problem 1.1. Which vertex-transitive graphs admit odd automorphisms?

Of course, in some cases, the answer to the above problem will be purely arithmetic.
Such is for example the case with cycles. Clearly, all cycles of even length admit odd
automorphisms, while cycles of odd length 2k + 1 admit odd automorphisms if and only
if k is odd. The answer for some of the well studied classes of graphs, however, suggest
that the above even/odd question goes beyond simple arithmetic conditions and is likely
to uncover certain more complex structural properties. For example, while the general
distinguishing feature for cubic symmetric graphs (with respect to the above question) is
their order 2n, n even/odd, there are exceptions on both sides. Namely, there exist cubic
symmetric graphs without odd automorphisms for n odd, and with odd automorphisms for
n even, see [13].

In this paper a special emphasis is given to certain classes of Cayley graphs (see Sec-
tion 3), such as circulants for example. Theorem 3.15 gives a necessary and sufficient
condition for a normal circulant to be even-closed. This result combined together with cer-
tain other results of this section then leads to a characterization of even-closed arc-transitive
circulants, see Theorem 3.16. In Section 4 the even/odd question is discussed in the more
general context of vertex-transitive graphs.

2 Preliminaries
Here we bring together definitions, notation and some results that will be needed in the

remaining sections.
For a finite simple graph X let V (X), E(X), A(X) and Aut(X) be its vertex set,

its edge set, its arc set and its automorphism group, respectively. A graph is said to be
vertex-transitive, edge-transitive and/or arc-transitive (also symmetric) if its automorphism
group acts transitively on the set of vertices, the set of edges, and/or the set of arcs of the
graph, respectively. A non-identity automorphism is semiregular, in particular (m,n)-
semiregular if it has m cycles of equal length n in its cycle decomposition, in other words
m orbits of equal length n. An n-circulant (circulant, in short) is a graph admitting a
(1, n)-semiregular automorphism, and an n-bicirculant (bicirculant, in short) is a graph
admitting a (2, n)-semiregular automorphism.
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Given a group G and a symmetric subset S = S−1 of G \ {1}, the Cayley graph X =
Cay(G,S) has vertex set G and edges of the form {g, gs} for all g ∈ G and s ∈ S. Every
Cayley graph is vertex-transitive but there exist vertex-transitive graphs that are not Cayley,
the Petersen graph being the smallest such graph. Cayley graphs are characterized in the
following way. A graph is a Cayley graph of a group G if and only if its automorphism
group contains a regular subgroup GL, referred to as the left regular representation of G,
isomorphic to G, see [19]. Using the terminology and notation of Cayley graphs, note that
an n-circulant is a Cayley graph Cay(G,S) on a cyclic group G of order n relative to some
symmetric subset S of G \ {id}, usually denoted by Circ(n, S).

The first of the two group-theoretic observations below reduces the question of exis-
tence of odd automorphisms to Sylow 2-subgroups of the automorphism group.

Proposition 2.1. A permutation group G contains an odd permutation if and only if its
Sylow 2-subgroups contain an odd permutation.

Proof. Since any odd permutation α is of even order, we can conclude that αk, where k is
the largest odd number dividing the order of α, is a non-trivial odd permutation belonging
to a Sylow 2-subgroup of G.

Proposition 2.2. A permutation groupG acting semiregularly with an odd number of orbits
admits odd permutations if and only if its Sylow 2-subgroups are cyclic and non-trivial.

Proof. Note that any Sylow 2-subgroup of G must also have an odd number of orbits.
Thus if a Sylow 2-subgroup is cyclic and non-trivial, the corresponding generators are odd
permutations. On the other hand, if a Sylow 2-subgroup J is not cyclic (or is trivial) then
the semiregularity of G implies that all of the elements of J must be even permutations.
By Proposition 2.1 G itself consists solely of even permutations.

As a consequence of Proposition 2.2, for some classes of graphs the existence of odd
automorphisms is easy to establish. For instance, in Cayley graphs the corresponding reg-
ular subgroup contains odd automorphisms if and only if its Sylow 2-subgroup is cyclic
and non-trivial. When a Sylow 2-subgroup is not cyclic, however, the search for odd au-
tomorphisms has to be done outside this regular subgroup, raising the complexity of the
problem.

3 Cayley graphs
In this section we give some general results about the existence of odd automorphisms

in Cayley graphs and discuss the problem in detail for circulants. The first proposition,
a corollary of Proposition 2.2, gathers straightforward facts about the existence of odd
automorphisms in Cayley graphs. (A graph is said to be a graphical regular representation,
or a GRR, for a group G if its automorphism group is isomorphic to G and acts regularly
on the vertex set of the graph.)

Proposition 3.1. A Cayley graph on a group G admits an odd automorphism in GL if and
only if G has cyclic Sylow 2-subgroups. In particular,

• a Cayley graph of order 2 (mod 4) admits odd automorphisms,

• a GRR admits an odd automorphism if and only if the Sylow 2-subgroups of G are
cyclic.
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By Proposition 3.1, Cayley graphs of order twice an odd number admit odd automor-
phisms (they exist in a regular subgroup of the automorphism group). As for Cayley graphs
whose order is odd or divisible by 4 the answer is not so simple. The next proposition
answers the question of existence of odd automorphisms in particular subgroups of auto-
morphisms of Cayley graphs on abelian groups.

Proposition 3.2. Let X = Cay(G,S) be a Cayley graph on an abelian group G and let
τ ∈ Aut(G) be such that τ(i) = −i. Then 〈GL, τ〉 ≤ Aut(X), and there exists an odd
automorphism in 〈GL, τ〉 if and only if one of the following holds:

(i) |G| ≡ 3 (mod 4) (in which case τ is an odd automorphism),

(ii) |G| ≡ 2 (mod 4),

(iii) |G| ≡ 0 (mod 4) and a Sylow 2-subgroup of G is cyclic.

Proof. First recall that the mapping τ : G → G defined by τ(i) = −i is an automorphism
of the group G if and only if G is abelian. Moreover, since S = −S it is easy to see that
τ ∈ Aut(X).

Clearly, when |G| ≡ 1 (mod 4) there are no odd automorphisms in 〈GL, τ〉. Suppose
now that |G| 6≡ 1 (mod 4). If |G| ≡ 3 (mod 4) then the involution τ has 2k + 1 cycles
of length 2 and one fixed vertex in its cyclic decomposition, and so it is an odd automor-
phism. If |G| ≡ 2 (mod 4) then there exist odd automorphisms in GL ≤ 〈GL, τ〉 by
Proposition 3.1.

We are therefore left with the case |G| ≡ 0 (mod 4). Hence suppose that G is of such
order. If a Sylow 2-subgroup J of GL is cyclic then a generator of J is a product of an odd
number |G|/|J | of cycles of length |J |, and is thus an odd automorphism. On the other
hand, if J is not cyclic then every element of J has an even number of cycles in its cyclic
decomposition. As for τ , an element of G is fixed by τ if and only if it is an involution. In
other words, it fixes the largest elementary abelian 2-group T inside the Sylow 2-subgroup
J , say of order 2k. Consequently, the number of transpositions in the cyclic decomposition
of τ equals |G|/2 − 2k, which is an even number if and only if k ≥ 1. Consequently, τ is
an odd automorphism if and only if T ∼= Z2 and hence J is cyclic.

Corollary 3.3. Let X = Circ(n, S), where S is a symmetric subset of Zn, and either n is
even or n ≡ 3 (mod 4). Then X admits odd automorphisms.

When n ≡ 1 (mod 4) the situation is more complex. For example, cycles C4k+1 =
Circ(4k + 1, {±1}) admit only even automorphisms. On the other hand, the circulant
Circ(13, {±1,±5}) is an example of a (4k + 1)-circulant admitting odd automorphisms.
Namely, one can easily check that the permutation (0)(1, 5, 12, 8)(2, 10, 11, 3)(4, 7, 9, 6)
arising from the action of 5 ∈ Z∗13 is one of its odd automorphisms. (For a positive integer
n we use Z∗n to denote the multiplicative group of units of Zn.) We therefore propose the
following problem.

Problem 3.4. Classify even-closed circulants of order n ≡ 1 (mod 4).

A partial answer to this problem is given at the end of this section, see Corollary 3.11
and Theorem 3.16. We start with the class of connected arc-transitive circulants. The
classification of such circulants, obtained independently by Kovács [12] and Li [16], is
essential to this end. In order to state the classification let us recall the concept of normal
Cayley graphs and certain graph products.
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Let X and Y be graphs. The wreath (lexicographic) product X[Y ] of X by Y is
the graph with vertex set V (X) × V (Y ) and edge set {{(x1, y1), (x2, y2)} : {x1, x2} ∈
E(X), or x1 = x2 and {y1, y2} ∈ E(Y )}. The deleted wreath (deleted lexicographic)
product X od Y of X by Y is the graph with vertex set V (X) × V (Y ) and edge set
{{(x1, y1), (x2, y2)} : {x1, x2} ∈ E(X) and y1 6= y2, or x1 = x2 and {y1, y2} ∈
E(Y )}. If Y = Kb = bK1 then the deleted lexicographic product X od Y is denoted
by X[Kb]− bX .

Let X = Cay(G,S) be a Cayley graph on a group G. Denote by Aut(G,S) the set of
all automorphisms of G which fix S setwise, that is,

Aut(G,S) = {σ ∈ Aut(G)|Sσ = S}.

It is easy to check that Aut(G,S) is a subgroup of Aut(X) and that it is contained in the
stabilizer of the identity element id ∈ G. Following Xu [25], X = Cay(G,S) is called
a normal Cayley graph if GL is normal in Aut(X), that is, if Aut(G,S) coincides with
the vertex stabilizer id ∈ G. Moreover, if X is a normal Cayley graph, then Aut(X) =
GL o Aut(G,S) (see [11]).

Proposition 3.5. [12, 16] Let X be a connected arc-transitive circulant of order n. Then
one of the following holds:

(i) X ∼= Kn;

(ii) X = Y [Kd], where n = md, m, d > 1 and Y is a connected arc-transitive circulant
of order m;

(iii) X = Y [Kd] − dY, where n = md, d > 3, gcd(d,m) = 1 and Y is a connected
arc-transitive circulant of order m;

(iv) X is a normal circulant.

The proof of the next proposition is straightforward.

Proposition 3.6. Complete graphs Kn and their complements Kn, n ≥ 2, admit odd
automorphisms.

Propositions 3.7, 3.8, 3.9, and 3.10 deal with the existence of odd automorphisms in the
framework of (deleted) lexicographic products of graphs.

Proposition 3.7. Let Z be a graph admitting an odd automorphism. Then a lexicographic
product Y [Z] of the graph Z by a graph Y admits odd automorphisms. In particular,
Y [Kd], d > 1, admits odd automorphisms.

Proof. An odd automorphism is constructed by taking a map that acts trivially on all blocks
(that is, copies of the graph Z) but one, where it acts as an odd automorphism of the
graph Z. By Proposition 3.6, Kd admits an odd automorphism, so such a map exists when
Z = Kd.

Proposition 3.8. Let X be the deleted lexicographic product X = Y od Z of a graph Y by
a graph Z, where Z has odd automorphisms and Y is of odd order. Then X admits odd
automorphisms.

Proof. An odd automorphism is constructed by taking a map that acts as the same odd
automorphism on each of the odd number of copies of the graph Z.
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Proposition 3.9. Let X be the deleted lexicographic product X = Y od Z of a graph Y by
a graph Z, where Z is of odd order and Y has odd automorphisms. Then X admits odd
automorphisms.

Proof. Let α′ be an odd automorphism of Y . Let α : V (X) → V (X) be defined with
α((y, z)) = (α′(y), z). It is easy to see that α ∈ Aut(X), and the fact that |V (Z)| is odd
implies that α is an odd automorphism of X .

Propositions 3.8 and 3.9 combined together imply existence of odd automorphisms in
arc-transitive circulants belonging to the family given in Proposition 3.5(iii).

Proposition 3.10. Let X be an arc-transitive circulant isomorphic to the deleted lexico-
graphic product Y [dK1] − dY , where Y is an arc-transitive circulant of order coprime
with d > 1. Then X has an odd automorphism.

Proof. Suppose first that Y is of odd order. Then, since, by Proposition 3.6, dK1 admits
odd automorphisms, the existence of odd automorphisms in Aut(X) follows from Propo-
sition 3.8. Suppose now that Y is of even order. Then any generator of a regular cyclic
subgroup of Aut(Y ) is an odd automorphism. Since in this case d is odd the existence of
odd automorphisms in Aut(X) follows from Proposition 3.9.

Corollary 3.3 and Propositions 3.6, 3.7 and 3.10 combined together imply that even-
closed arc-transitive circulants may only exist amongst normal arc-transitive circulants of
order 1 (mod 4). In all other cases an arc-transitive circulant admits an odd automorphism.

Corollary 3.11. An even-closed arc-transitive circulant is normal and has order
1 (mod 4).

For the rest of this section we may, in our search for odd automorphisms, therefore
restrict ourselves to normal circulants. Let X = Circ(n, S) be a normal arc-transitive
circulant of order order 1 (mod 4) and let s ∈ S. Then for any s′ ∈ S there must be
an automorphism α of G such that α(s) = s′, and so s and s′ are of the same order.
Thus if s is not of order n then Circ(n, S) is not connected. Hence it has at least three
components (since n is not even), and has an automorphism that fixes all but one component
while rotating that component, but this automorphism does not normalize the regular cyclic
subgroup of Aut(X). This shows that we may assume that 1 ∈ S (note that additive
notation is used for Zn). This fact is used throughout this section.

The following lemma about the action of the multiplicative group of units is needed in
this respect. For a positive integer n we use np to denote the highest power of p dividing n.

Lemma 3.12. Let p be an odd prime, and let k ≥ 1 be a positive integer. Then Z∗pk , in its
natural action on Zpk , admits an odd permutation if and only if k is odd.

Proof. By Proposition 2.1 it suffices to consider the Sylow 2-subgroup J of Z∗pk . Since
Z∗pk is a cyclic group, J is cyclic too. Let α be a generator of J . We claim that 〈α〉 acts
semiregularly on Zpk \ {0}. Suppose on the contrary that this is not the case. Then there
exist m ∈ N such that αm 6= 1 and αm(x) = x for some x ∈ Zpk \ {0}. This is equivalent
to

(αm − 1)x ≡ 0 (mod pk).
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The above equation admits a non-trivial solution if and only if αm − 1 is divisible by p.
Suppose that j < k is such that pj ‖ αm − 1. There exists A ∈ Z such that αm = Apj +1
and (A, p) = 1. Since αm ∈ J there exists s ∈ N such that (αm)2

s ≡ 1 (mod pk). It
follows that (Apj + 1)2

s ≡ 1 (mod pk), and so

2s∑
i=1

(
2s

i

)
(Apj)i ≡ 0 (mod pk).

For each i > 1 the number
(
2s

i

)
(Apj)i is divisible by pj+1. Consequently, 2sApj is

divisible by pj+1, and so we conclude that p divides 2sA, a contradiction.
As claimed above, this shows that α acts semiregularly on Zpk \ {0} with

p− 1

(pk − pk−1)2
· p

k − 1

p− 1
= (1 + p+ . . .+ pk−1)

p− 1

(pk − pk−1)2

cycles of even length (pk − pk−1)2 = (p − 1)2 in its cycle decomposition (since α is a
generator of J). Since the parity of 1 + p + . . . + pk−1 depends on whether k is even or
odd, it follows that α is an odd permutation if and only if k is odd. The result follows.

Corollary 3.13. Let p be an odd prime, and let k ≥ 1 be a positive integer such that
pk ≡ 1 (mod 4). Then a normal arc-transitive circulant X = Cay(Zpk , S) admits an odd
automorphism if and only if k is odd and S contains the Sylow 2-subgroup of Z∗pk .

Proof. Recall that Aut(X) ∼= Zpk o S, and thus X admits odd automorphisms if and only
if S contains an element giving rise to an odd permutation on Zpk (generators of Sylow 2-
subgroups of Z∗pk are odd permutations on Zpk ). The result is thus obtained by combining
together Proposition 2.1 and Lemma 3.12.

Lemma 3.14. Let n = p2k1+1
1 · · · p2ka+1

a q2l11 . . . q2lbb be a prime decomposition of an odd
integer n, and let Zn ∼= P1⊕· · ·⊕Pa⊕Q1⊕· · ·⊕Qb, where Pi ∼= Z

p
2ki+1

i

, i ∈ {1, . . . , a},
and Qi ∼= Z

q
2li
i

, i ∈ {1, . . . , b}. Further, let αi and βi, respectively, be generators of the
Sylow 2-subgroup of P ∗i and the Sylow 2-subgroup of Q∗i . Then, for each i, we have that
αi is an odd permutation on Zn, and βi is an even permutation on Zn.

Proof. Observe that each cycle in the cycle decomposition of αi ∈ Pi (considered as a
permutation of Z

p
2ki+1

i

) is lifted to n/p2ki+1
i cycles of the same length in the cycle decom-

position of αi (when considered as a permutation of Zn). By Lemma 3.12, αi is an odd
permutation on Z

p
2ki+1

i

for each i. Similarly, βi is an even permutation on Z
q
2li
i

for each i.
Since n is odd, the result follows.

We introduce the following notation. Let n = pk11 · · · pkaa be a prime decomposition of
a positive integer n, let

Zn ∼= ⊕ai=1Pi, where Pi ∼= Z
p
ki
i

,

and let J(pi) be the Sylow 2-subgroup of P ∗i . In the next theorem a necessary and suf-
ficient condition for a normal circulant to be even-closed is given. One of the immediate
consequences is, for example, that a normal circulant of order n2, n odd, is even-closed.
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Theorem 3.15. Let n = pk11 · · · pkaa be a prime decomposition of a positive integer n, and
let X = Circ(n, S) be a normal arc-transitive circulant on Zn ∼= ⊕ai=1Pi. Then X is
even-closed if and only if n ≡ 1 (mod 4) and for every α = ⊕ai=1αi ∈ S we have

a∑
i=1

θi(α) ≡ 0 (mod 2), where θi(α) =
{

1; if J(pi) ≤ 〈αi〉 and ki is odd
0; otherwise .

Proof. By Corollary 3.3 for n 6≡ 1 (mod 4) the graph X admits odd automorphisms.
We may therefore assume that n ≡ 1 (mod 4). By Lemma 3.14, the existence of odd
automorphisms in X depends solely on the parity of the exponents ki and the containment
of the generators of the corresponding Sylow 2-subgroups in S, and the result follows.
(Recall, that we are using the assumption that 1 ∈ S and the fact that in a normal arc-
transitive circulant, every element of S is conjugate, so every α ∈ S is odd if and only if
X has an odd automorphism.)

Combined together with Corollary 3.11 and Theorem 3.15 we have the following char-
acterization of even-closed arc-transitive circulants.

Theorem 3.16. Let X be an even-closed arc-transitive circulant of order n and let n =
pk11 · · · pkaa be a prime decomposition of n. Then X is a normal circulant X = Circ(n, S)
on Zn ∼= ⊕ai=1Pi, n ≡ 1 (mod 4) and for every α = ⊕ai=1αi ∈ S we have

a∑
i=1

θi(α) ≡ 0 (mod 2), where θi(α) =
{

1; if J(pi) ≤ 〈αi〉 and ki is odd
0; otherwise .

4 Vertex-transitive graphs
It is known that every finite transitive permutation group contains a fixed-point-free

element of prime power order (see [9, Theorem 1]), but not necessarily a fixed-point-free
element of prime order and, hence, a semiregular element (see for instance [3, 9]). In 1981
the third author asked if every vertex-transitive digraph with at least two vertices admits a
semiregular automorphism (see [20, Problem 2.4]).

Despite considerable efforts by various mathematicians the problem remains open, with
the class of vertex-transitive graphs having a solvable automorphism group being the main
obstacle. The most recent result on the subject is due to Verret [24] who proved that every
arc-transitive graph of valency 8 has a semiregular automorphism, which was the smallest
open valency for arc-transitive graphs (see [7, 10, 23] and [15] for an overview of the status
of this problem). While the existence of such automorphisms in certain vertex-transitive
graphs has proved to be an important building block in obtaining at least partial solutions
in many open problems in algebraic graph theory, such as for example the hamiltonicity
problem (see [14, 2, 17]), the connection to the even/odd problem is straightforward.

Proposition 4.1. An even-closed vertex-transitive graph does not have even order semireg-
ular automorphisms with an odd number of orbits.

This suggest that in a search for odd automorphisms a special attention should be given
to semiregular automoprhisms of even order.

Furthermore, for those classes of vertex-transitive graphs for which a complete clas-
sification (together with the corresponding automorphism groups) exists, the answer to
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Problem 1.1 is, at least implicitly, available right there – in the classification. Such is,
for example, the case of vertex-transitive graphs of order a product of two primes, see
[6, 8, 21, 22, 18], and the case of vertex-transitive graphs which are graph truncations,
see [1]. The hard work needed to complete these classifications suggest that the even/odd
question is by no means an easy one. Let us consider, for example, the class of all vertex-
transitive graphs of order 2p, p a prime. In the completion of the classification of these
graphs, the classification of finite simple groups is an essential ingredient in handling the
case of primitive automorphism groups. We know, by this classification, that the Petersen
graph and its complement are the only such graphs with a primitive automorphism group.
Of course, they both admit odd automorphisms. As for imprimitive automorphism groups,
it all depends on the arithmetic of p. When p ≡ 3 (mod 4), the graphs are necessarily
Cayley graphs (of dihedral groups) and hence must admit odd automorphisms. (Namely,
reflections interchanging the two orbits of the rotation in the dihedral group are odd auto-
morphisms.) When p ≡ 1 (mod 4), then it follows by the classification of these graphs
[20] that there is an automorphism of order 2k, k ≥ 1, interchanging the two blocks of
imprimitivity of size p, having one orbit of size 2 and 2(p − 1)/2k orbits of size 2k, thus
an odd number of orbits in total (since 2k divides p − 1). We have thus shown that every
vertex-transitive graph of order twice a prime number admits an odd automorphism. How-
ever, no “classification of finite simple groups free” proof of the above fact is known to
us.

In conclusion we would like to make the following comment with regards to cubic
vertex-transitive graphs. Recall that the class of cubic vertex-transitive graphs decomposes
into three subclasses depending on the number of orbits of the vertex-stabilizer on the set
of neighbors of a vertex. These subclasses are arc-transitive graphs (one orbit), graphs with
vertex-stabilizers being 2-groups (two orbits) and GRR graphs (three orbits), see [4]. (Note
that there are two types of cubic GRR graphs, those with connecting set consisting of three
involutions and those with connecting set consisting of an involution, a non-involution and
its inverse, see [5].) For the first and third subclass the answer to Problem 1.1 is given
in [13] and Proposition 3.1, respectively, while the problem is still open for the second
subclass. Examples given in Section 1 (see also Figure 2) show, however, that this second
subclass contains infinitely many even-closed graphs as well as infinitely many graphs
admitting odd automorphisms.

Problem 4.2. Classify cubic vertex-transitive graphs with vertex-stabilizers being 2-groups
that admit odd automorphisms.
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[12] I. Kovács, Classifying arc-transitive circulants, J. Algebr. Combin 20 (2004), 353–358.
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