Molecular characterization of Escherichia coli from dishwasher rubber seals Molekularna opredelitev bakterij Escherichia coli z gumijastih tesnil pomivalnih strojev Marjanca Starčič Erjavec, Jerneja Ambrožič Avguštin* Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia *Correspondence: jerneja.ambrozic@bf.uni-lj.si Abstract: In this study 35 Escherichia coli isolates obtained from sampled dishwa- shers rubber seals were analysed with polymerase chain reactions (PCR) using specific primers for phylogenetic group, multilocus sequence type (MLST) determination the presence of 43 virulence-associated genes (VAGs) linked with intestinal and extrain- testinal E. coli infections and the presence of some typical E. coli virulence plasmids’ sequences in order to assess their virulence potential and/or specific genes, associated with the adaption to a specific environment. It was found that all of the 35 E. coli isolates belonged to the commensal non-pathogenic phylogenetic group A and that the diversity of these E. coli isolates, according to MLST analysis, was relatively low. Further, the prevalence of virulence-associated genes among the dishwasher rubber seal E. coli isolates was also low. Only the following VAGs were detected: fimH, crl, fluA, picU, irp, fyuA, sitA, aslA. Of the five plasmid replication regions tested only RepFIA and RepFIIA were detected. The two sequences associated with conjugative plasmids namely traJ and traT, were detected in only one isolate. Based on the obtained results the studied isolates can be designated as commensal E. coli with low pathogenic potential. Due to the low diversity of sequence types, even among isolates obtained from dishwashers from different locations, there is a possibility that strains from certain clonal groups are more adapted to specific habitats outside warm-blooded hosts than strains of other sequence types. Keywords: dishwasher, E. coli, genes, One Health, plasmids, virulence Izvleček: V tej raziskavi smo analizirali 35 izolatov bakterije Escherichia coli, pridobljenih iz vzorčenih gumijastih tesnil kuhinjskih pomivalnih strojev, da bi oce- nili njihovo potencialno patogenost in/ali prisotnost genov povezanih z adaptacijo na specifično okolje. Z verižno reakcijo s polimerazo (PCR), ob uporabi ustreznih oligo- nukleotidov, smo vse izolate uvrstili v filogenetske skupine, določili njihov sekvenčni tip na podlagi analize multilokusnega zaporedja (MLST), ugotavljali prisotnost 43 genov, povezanih z virulenco (VAG), ki so pomembni v črevesnih in zunajčrevesnih okužbah z E. coli ter ugotavljali prisotnost nekaterih značilnih zaporedij plazmidov, povezanih z virulenco E. coli. Ugotovili smo, da je vseh 35 izolatov E. coli pripadalo komenzalni nepatogeni filogenetski skupini A in da je bila raznolikost teh izolatov, glede na analizo MLST, relativno majhna. Poleg tega je bila razširjenost genov, povezanih ACTA BIOLOGICA SLOVENICA LJUBLJANA 2022 Vol. 65, Št. 1: 18-27 19E. coli from dishwasher rubber seals z virulenco, med preučevanimi izolati E. coli nizka. Ugotovili smo le naslednje VAG: fimH, crl, fluA, picU, irp, fyuA, sitA, aslA. Od petih testiranih plazmidnih replikacij- skih regij sta bili potrjeni samo RepFIA in RepFIIA. Zaporedji traJ in traT, povezani s konjugativnimi plazmidi, smo zasledili samo v enem izolatu. Na podlagi dobljenih rezultatov lahko preučevane izolate označimo kot komenzalne E. coli z nizkim pato- genim potencialom. Glede na majhno diverziteto sekvenčnih tipov, tudi med izolati pridobljenimi iz pomivalnih strojev iz različnih krajev, pa obstaja možnost, da so sevi iz določenih klonalnih skupin bolj prilagojeni na specifične habitate izven toplokrvnih gostiteljev, kot sevi drugih sekvenčnih tipov. Ključne besede: E. coli, Eno zdravje, geni, plazmidi, pomivalni stroj, virulenca Introduction Recently, the importance of the approach, known as “One Health” has been increasingly recognized in the world. This approach is based on the awareness that microbes, animals and humans share ecosystems and that research on the diversity and complexity of interactions is needed. Further, this approach recognizes that the health of humans, domestic and wild animals, plants, and the wider environment (including ecosystems) are closely linked and interdependent (Miao et al. 2022). Escherichia coli (E. coli), which is one of the best studied microorganisms in the world and a well-known genetic model organism, is a typical example of a bacterium that can be found in the environment, in water, soil, as well as in animal and human hosts (Jang et al. 2017). It usually lives in a mutualistic relationship with the host, but can also be pathogenic and cause serious, even fatal, intestinal and extra-intestinal infections (Allocati at al. 2013). E. coli is excreted from the host by faeces into the environment, where it can spread and then be reintroduced into different animal and human hosts by different routes (Jang et al. 2017). It is known for its pronounced genetic diversity, reflected in many different strains (Chaudhuri and Henderson 2012). The E. coli pathogenic strains carry many different virulence factors genes including colonization and fitness factors, toxins, and other effectors intertwin- ing with the host’s physiology (Kaper et al. 2004). Furthermore, it is known that certain phylogenetic groups are associated with pathotypes, for example the B2 phylogenetic group is associated with E. coli strains causing extraintestinal infections (Čurová et al. 2020). On the other hand, commensal strains isolated from France and Sweden in the 2000s and from North America (USA), Japan, and Australia also mainly belong to the B2 group (43%), while commensal strains isolated from France and Croatia in the 1980s and from Africa (Mali and Benin), Asia (Pakistan), and South America (French Guiana, Colombia, and Bolivia) belong mainly to the A group (55%) (Tenaillon et al. 2010). The genetic diversity of E. coli is also reflected in the presence of different mobile genetic elements, among which plasmids, especially the conjugative ones, are notorious for their effect on the genetic diversity and for carriage of virulence-associated genes (Kaper et al. 2004). Although E. coli can exhibit host-associated and free-living/environmental state, the data on environ- mental E. coli strains are particularly scarce as there is a huge bias towards data on pathogenic strains (Starčič Erjavec and Žgur-Bertok 2015). In order to understand the heterogeneity of E. coli strains, their ability to adapt and spread within and outside hosts and the interactions between these strains, including gene exchange with horizontal transfers, it is necessary to obtain more data on characteristics of strains from specific human-associated environ- ments such as household dishwashers. Zupančič et al. (2019) found that E. coli are relatively frequent members of dishwasher rubber seal bacterial communities. In their study 35 E. coli isolates were obtained from eight out of 30 sampled dishwashers rubber seals. The aim of the present study was to conduct molecular characterisation of these 35 isolates, including the determination of phylogenetic group and multilocus sequence type (MLST) and screening of virulence-associated genes and typical replications regions associated with E. coli virulence plasmids. Acta Biologica Slovenica, 2022, 65 (1), 18-27 20 Materials and methods Bacterial isolates and growth conditions A total of 35 E. coli isolated in six out of 30 dishwashers randomly selected in kitchens inside private dwellings located in seven Slovenian cities (i.e., Ljubljana, Velenje, Žalec, Celje, Mislinja, Sežana, and Portorož) were obtained from the Mycosmo Microbial Culture Collection Ex at the Biotechnical Faculty in Ljubljana (more informations about the dishwashers are available in Zupančič et al. 2019, additional file S1). All isolates were grown in liquid LB or on LB plates at 37 °C. Liquid cultures were vigorously aerated by shaking at 180 rpm. Determination of phylogenetic groups of E. coli isolates The phylogenetic groups for all of the E. coli isolates were determined by PCR, as described by Clermont et al. (2000) and improved by Clermont et al. (2013). The phylogenetic groups obtained by the method of Clermont et al. (2000) were assigned to their phylogenetic (sub)groups, according to the interpretation of Escobar-Páramo et al. (2006). Multilocus sequence typing of E. coli isolates Multilocus sequence typing was carried out according to Wirth et al. (2006) using PCR primers and protocols specified on the E. coli MLST web- site (http://mlst.warwick.ac.uk/mlst/dbs/Ecoli) to amplify housekeeping genes adk, fumC, gyrB, icd, mdh, purA and recA. The purified PCR products were sent to Microsynth AG (Switzerland) for DNA sequencing. The sequences were analysed for allelic profiles and sequence types through the E. coli MLST website. Detection of virulence-associated genes (VAGs) and plasmid replication regions of the E. coli isolates The presence of 43 VAGs, including adhesins (fimH, crl, eae, bmaE, gaf, aaf, papGI, papGII, papGIII, matA, sfa/foc, iha, afa/dra, and hra), autotransporters (sat, vat, hbp (tsh), picU, and fluA (Ag43)), iron acquisition systems (fyuA, irp, sitA, iutA, iucD, and iroN), genes involved in increased serum survival and protectins (iss, ompTAPEC, kpsMTII, neuCS, cvi), toxins (stx1, stx2, astA, eltA, cnf2, hlyA), invasins (aslA, ibeA, gimB, tia), and uropathogenic specific protein usp, was tested in all isolates. This was achieved using amplification procedures as described previously (Dozois et al. 1992, Yamamoto et al. 1996, Yamamoto and Echeverria 1996, Maurer et al. 1998, Paton and Paton 1998, Schubert et al. 1998, Hoffman et al. 2000, Johnson and Stell 2000, Vila et al. 2000, Janβen et al. 2001, Ruiz et al. 2002, Ewers et al. 2007, Runyen-Janecky et al. 2003, Starčič et al. 2003, Tóth et al. 2003, Watt et al. 2003, Parham et al. 2005, Vidal et al. 2005) and the instructions for the ‘DEC Primer Mix’[Statens Serum Institut, Denmark]. FluA was amplified using the primer pair FluAF 5’-GCGGTGTACTGCTGGCCG-3’ and FluAR 5’-CGTTGTGGCTGCCCAGAC-3’, under the following cycling conditions: initial denaturation for 5 min at 95 °C, 30 cycles of 30 s at 94 °C and 30 s at 60 °C, followed by extension for 90 s at 72 °C. Likewise for usp, using UspDe-F 5’-ATGCTACTGTTTCCGGGTAGTGTGT-3’ / UspDe-R 5’-CRTGTAGTCKGGGSGTAACAAT-3’: initial denaturation for 5 min at 95 °C, 30 cycles of 30 s at 94 °C and 30 s at 55 °C, followed by extension for 2 min at 72 °C. Both final extensions were performed at 72 °C for 10 min. The plasmid replication regions were determined by PCR as described previously for RepFIA, RepFIIA (Starčič Erjavec et al. 2003), RepFIC (Carattoli et al. 2005) and IncP (Sobecky et al. 1997). For RepFIB, the following protocol was used: initial denaturation at 94 °C for 4.5 min, followed by 30 cycles, each consisting of 30 s of denaturation at 94 °C, 30 s of annealing at 63 °C, and 1.5 min of elongation at 72 °C. Additionally, the E. coli isolates were screened for F-like plasmid conjugative transfer genes traJ (the main positive regulator of conjugal transfer) and traT (surface exclusion and serum resistance), as described previously (Starčič Erjavec et al. 2003, Johnson and Stell 2000). 21E. coli from dishwasher rubber seals Results All tested dishwasher E. coli isolates belong to the non-pathogenic phylogenetic group A Phylotyping revealed, that all of the 35 E. coli isolates from the dishwasher rubber seals belonged to the commensal non-pathogenic phylogenetic subgroup A0 according to Clermont et al. (2000) and Escobar-Páramo et al. (2006), and to phyloge- netic group A according to Clermont et al. (2013). Multilocus sequence typing analysis of E. coli dishwasher isolates reveals low strain diversity The diversity of the E. coli isolates according to MLST analysis was relatively low. Twenty-seven (77%) of the 35 E. coli isolates were assigned to four known sequence types: ST189 (12 isolates, 44%), ST216 (7 isolates, 26%), ST399 (7 isolates, 26%), and ST1316 (1 isolate, 4%). The remaining eight isolates belonged to a new sequence type (Tab. 1). Prevalence of virulence-associated genes among the E. coli isolates from dishwasher rubber seals is low The prevalence of virulence-associated genes among the dishwasher rubber seal E. coli isolates was low (Tab. 1, Fig. 1). All isolates carried the curli fimbriae regulator gene crl and, except for strain L-436, the type 1 fimbrial adhesion gene fimH. Isolates L-687 and L-748 were positive for the autotransporter gene picU. PicU has mucinolytic activity through which colonisation of the host intestine is facilitated, by helping the pathogenic enteric bacteria to penetrate the mucus layer that coats the intestinal epithelium (Bhullar et al. 2015). Among the genes associated with iron acquisition, sitA was detected in isolate L-436, and irp and fyuA in isolates L-595 and L-1071. Further, 14 isolates (L-439, L-437, L-591, L-1101, L-778, L-781, L-785, L-786, L-790, L-808, L-814, L-815, L-821, L-836) were positive for aslA, a gene that is associated with invasion of the blood–brain barrier (Hoffman et al. 2000). Figure 1: Prevalence of virulence-associated genes and plasmid replication regions in all E. coli, isolated from dishwasher rubber seals. Slika 1: Prevalenca genov, povezanih z virulenco in plazmidnimi regijami za podvojevanje, v vseh izolatih E. coli z gumijastih tesnil pomivalnih strojev. Acta Biologica Slovenica, 2022, 65 (1), 18-27 22 Prevalence of virulence plasmid associated sequences among the E. coli isolates from dishwasher rubber seals is low In E. coli, plasmids can encode virulence fac- tors and antibiotic resistance genes. Therefore, all of the isolates were analysed for plasmid-related characteristics; namely, the replication region and the tra region associated with conjugation. Of the five plasmid replication regions tested, only two were detected: RepFIA in eight isolates (L-396, L-434, L-431, L-433, L-594, L-736, L-983, L-982), and RepFIIA in one isolate (L-436) (Tab. 1). One isolate (L-429) was shown to have F-like plasmid tra region genes, traJ and traT (Tab. 1). Table 1: MLST sequence type, virulence-associated genes and virulence plasmid associated sequences among the E. coli isolates from the dishwasher rubber seals. The following genes were not detected and are not included in the table: Adhesins: eae, bmaE, gaf, aaf, papGI, papGII, papGIII, matA, sfa/foc, iha, afa/ dra and hra, Protectins: ompT, kpsMTII, neuCS, cvi and iss, Autotransporters: sat, vat and hpb/tsh, Iron acquisition genes: iutA, iucD and iroN, Toxins: stx1, stx2, astA, , cnf2, hlyA and elt, Invasins: ibeA, gimB and tia, Uropathogenic specific protein: usp. The RepFIC, RepFIB and IncP plasmid replication regions were not present, and are not included in the table. Tabela 1: Sekvenčni tip MLST, z virulenco povezani geni in zaporedja, značilna za plazmide, povezanih z virulenco pri izolatih E. coli z gumijastih tesnil kuhinjskih pomivalnih strojev. Naslednjih genov nismo zasledili pri preučevanih izolatih in zato niso vključeni v tabelo: Adhezini: eae, bmaE, gaf, aaf, papGI, papGII, papGIII, matA, sfa/foc, iha, afa/dra in hra, Protektini: ompT, kpsMTII, neuCS, cvi in iss, Avtotransporterji: sat, vat in hpb/tsh, Sistemi za privzem železa: iutA, iucD in iroN, Toksini: stx1, stx2, astA, , cnf2, hlyA in elt, Invazini: ibeA, gimB in tia, Uropatogeni specifični protein: usp. Plazmidnih replikacijskih regij RepFIC, RepFIB in IncP prav tako nismo zasledili in niso vključene v tabelo. Dish- washer E. coli isolate Sequence type Adhesins Autotrans- porters Iron acquisition Invasin Plasmid replication regions Plasmid conjugation regions fimH crl fluA picU irp fyuA sitA aslA RepFIA RepFIIA traT traJ 1 L-429 ST 399 + + + – – – – – – – + + L-595 ST 399 + + + – + + – – – – – – L-1071 ST 399 + + + – + + – – – – – – 6 L-1101 ST 189 + + – + – – – + – – – – L-790 ST 189 + + – – – – – + – – – – L-396 ST 399 + + – – – – – – + – – – 10 L-431 UN + + – – – – – – + – – – L-433 UN + + – – – – – – + – – – L-594 UN + + – – – – – – + – – – L-736 UN + + – – – – – – + – – – L-983 UN + + – – – – – – + – – – L-982 UN + + – – – – – – + – – – 13 L-434 ST 216 + + – – – – – – + – – – 23E. coli from dishwasher rubber seals L-589 ST 216 + + – – – – – – – – – – L-590 ST 216 + + – – – – – – – – – – L-592 ST 216 + + – – – – – – – – – – L-745 ST 216 + + – – – – – – – – – – L-747 ST 216 + + – – – – – – – – – – L-748 ST 216 + + – + – – – – – – – – 22 L-436 ST 1316 – + – – – – + – – + – – 25 L-591 ST 189 + + – – – – – + – – – – L-778 ST 189 + + – – – – – + – – – – L-781 ST 189 + + – – – – – + – – – – L-785 ST 189 + + – – – – – + – – – – L-786 ST 189 + + – – – – – + – – – – L-808 ST 189 + + – – – – – + – – – – L-814 ST 189 + + – – – – – + – – – – L-815 ST 189 + + – – – – – + – – – – L-821 ST 189 + + – – – – – + – – – – L-593 ST 399 + + – – – – – – – – – – L-940 ST 399 + + – – – – – – – – – – L-687 ST 399 + + – + – – – – – – – – L-439 ST189 + + – + – – – + – – – – L-437 UN + + – – – – – + – – – – L-836 UN + + – – – – – + – – – – UN, unknown. Discussion The primary source of the studied dishwasher as- sociated E. coli isolates might be both the household water supply system connected to the dishwasher and the contaminated vessels (Zupančič et al. 2019). In either case, it can be expected that studied E. coli strains are mainly commensal. Indeed, all of the E. coli isolates were assigned to phylogenetic group A0, which is associated primarily with non- pathogenic commensal strains (Stoppe et al. 2017). This phylogenetic placement agrees with their low virulence potential and environmental adaptability. All of these isolates carried genes involved in adhesion; crl, and except one, fimH, the key fac- tors in adhesion and biofilm formation on abiotic surfaces (Pratt and Kolter 1999). Furthermore, 14 isolates carried genes for AslA, a member of the arylsulphatase family of enzymes. In bacteria, the asl genes are expressed under conditions of sulphur starvation, in order to scavenge sulphate from exogenous substrates. In human meningitis Acta Biologica Slovenica, 2022, 65 (1), 18-27 24 strains of E. coli K1, AslA contributes to invasion of the blood–brain barrier (Hoffman et al. 2000). The prevalence of other tested virulence-associated genes was very low. Only three isolates carried one or two genes involved in iron acquisition. Three isolates carried fluA for autotransporter Ag43a, which mediates diffuse adherence and bacterial intercellular aggregation, thus promoting biofilm formation and persistence (Zude et al. 2013). flu genes are predominantly found in clinical isolates, although Restieri et al. (2007) reported that 56% of commensal isolates screened in their study were positive for Ag43 coding genes. Furthermore, four isolates carried the autotransporter gene picU, which has been associated with phylogenetic group B2 isolates. Pic has mucinolytic activity, promotes species-specific haemagglutination, host colonisa- tion, and immune evasion, by direct cleavage of complement proteins. The potential role of Pic in commensal strains is unknown (Abreu et al. 2015, Bhullar et al. 2015). Contrary to our initial expectations related to tap water as the environmental inoculum, MLST analysis indicated low diversity of E. coli isolates on dishwasher rubber seals. This might be partly due to isolation of the same strain from individual dishwashers, although isolates with the same se- quence type isolated from the same dishwasher often carried different tested genes, e.g.: dishwasher 1 isolate L-429 (traJ, traT) and isolates L-595 and L-1071 (irp, fyuA) all belong to ST399. From dishwasher 25, isolates of three different sequence types were detected, namely ST189, ST399 and an as yet unknown sequence type. Again, isolates from the same ST also differed; e.g., ST189 strain L-439 was positive for picU and aslA, and isolate L-778 was positive only for aslA. The same applied to dishwasher 6, with isolates L-1101 (picU, aslA) and L-790 (aslA); both ST189. The same sequence type of isolated bacterial strain was found in different dishwashers (different time in use) with different frequency of use, which were even geographically located in different cities (e.g. Ljubljana and Celje), thus indicating the strong selective pressure for certain sequence type genetic background in such specific extreme environments. Analysis of the traits characteristic for horizontal gene transfer (traT, traJ and IncP-replication region) showed that vast majority of the studied isolates does not possess conjugative F-like and IncP plasmids. In the light of the knowledge that virulence factor genes can be spread in bacterial populations via conjugative plasmids, the studied isolates are po- tential recipients which could have high acceptance for conjugative IncF or IncP group plasmids and hence might obtain additional virulence-associated genes via conjugation. Therefore, further stud- ies revealing the ability of acquiring conjugative plasmids are needed. Conclusion To the best of our knowledge, this is the first molecular characterization of E. coli isolates from Slovenian dishwasher rubber seals. Based on the obtained results the studied isolates can be desig- nated as commensal E. coli with low pathogenic potential. However, further studies should shed light on the genome traits enabling specific adapta- tion of some clonal linages to harsh environments such as the studied dishwasher rubber seals and the potential of horizontal gene exchange in such bacterial communities. Povzetek Koncept Enega zdravja vse bolj pridobiva na pomenu, saj smo spoznali, da je zdravje ljudi, domačih in divjih živali, rastlin in širšega okolja (vključno z ekosistemi) tesno povezano in soodvisno. Escherichia coli (E. coli), ki je eden najbolje razis- kanih mikroorganizmov na svetu in dobro poznan genetski modelni organizem, je tipičen primer bakterije, ki jo najdemo v okolju, v vodi, zemlji, pa tudi v živalskih in človeških gostiteljih. E. coli sicer velja za komenzalno, nepatogeno bakterijo, ki s svojim gostiteljem živi v mutualističnem odnosu, a obstajajo sevi, ki zaradi nabora virulentnih dejavni- kov lahko povzročajo okužbe. Za patogene seve E. coli so značilni številni različni dejavniki virulence, vključno z dejavniki, ki omogočajo kolonizacijo, sintezo toksinov in efektorskih molekul, ki se vpletajo v fiziologijo gostitelja. Nadalje je znano, da so dolo- čene filogenetske skupine povezane s patogenostjo sevov. Podatkov o okoljskih sevih E. coli in njihovih lastnostih je v literaturi malo. Namen te raziskave je 25E. coli from dishwasher rubber seals tako bil opredeliti molekularne značilnosti izolatov E. coli z gumijastih tesnil pomivalnih strojev in oceniti njihov patogeni potencial. V tej raziskavi smo 35 izolatov bakterije E. coli, osamljenih iz osmih vzorčenih gumijastih tesnil kuhinjskih pomivalnih strojev, analizirali z verižno reakcijo s polimerazo (PCR) z uporabo specifičnih začetnih oligonukleo- tidov za njihovo filogenetsko skupino in sekvenčni tip na osnovi multilokusnega zaporedja (MLST), za prisotnost 43 genov, povezanih z virulenco (VAG) E. coli pri črevesnih in zunajčrevesnih okužbah (geni adhezinov fimH, crl, eae, bmaE, gaf, aaf, papGI, papGII, papGIII, matA, sfa/foc, iha, afa/ dra, in hra; avtotransporterjev sat, vat, hbp (tsh), picU, in fluA (Ag43); sistemov za privzem železa fyuA, irp, sitA, iutA, iucD, in iroN; protektinov iss, ompTAPEC, kpsMTII, neuCS, cvi; toksinov stx1, stx2, astA, eltA, cnf2, hlyA; invazinov aslA, ibeA, gimB, tia, in uropatogenega specifičnega proteina usp) ter za prisotnost nekaterih značilnih zaporedij plazmidov, tudi povezanih z virulenco E. coli (zapo- redja plazmidnih replikacijih regij RepFIA, RepFIB, RepFIIA, RepFIC, IncP ter zaporedji, povezani s konjugacijo, traJ in traT). Ugotovili smo, da je vseh 35 izolatov E. coli pripadalo komenzalni, nepatogeni filogenetski skupini A po Clermontu in sod. (2013) in da je bila raznolikost teh izolatov glede na analizo MLST relativno majhna. Sedemindvajset izolatov smo uvrstili v enega izmed štirih sekvenčnih tipov: ST189 (12 izolatov), ST216 (7 izolatov), ST399 (7 izolatov), in ST1316 (1 izolat). Tudi razširjenost VAG med preučevanimi izolati E. coli je bila nizka. Potrdili smo le naslednje VAG: fimH, crl, fluA, picU, irp, fyuA, sitA, aslA. Vsi izolati so imeli genski zapis crl, fimH pa smo našli pri vseh, razen pri enem izolatu. Pri 14 izolatih smo potrdili prisotnost aslA, pri štirih izolatih picU, pri treh izolatih fluA ter pri dveh izolatih irp in fyuA (Tab. 1, Sl. 1). Od petih testiranih plazmidnih replikacijskih regij sta bili odkriti samo RepFIA in RepFIIA. Zaporedji traJ in traT, povezani s konjugativnimi plazmidi, sta bili odkriti samo pri enem izolatu (Tab. 1, Sl. 1). Majhna raznolikost sekvenčnih skupin (ST) ter podatka, da so bili iz istega pomivalnega stroja izolirani sevi iste ST z nekoliko drugačim naborom genov za dejavnike virulence, ter prisotnost sevov iz enake ST iz strojev na različnih lokacijah, bi lahko bila posledica na specifično okolje prilago- jenih klonalnih skupin. Kolikor vemo, je to prva študija molekularne opredelitve izolatov E. coli z gumijastih tesnil pomivalnih strojev v Sloveniji. Na podlagi dobljenih rezultatov lahko preučevane izolate označimo kot komenzalne E. coli z nizkim patogenim potencialom. Acknowledgements The study was financially supported by Slovenian Research Agency (grant P1-0198). Our acknowledgements also go to Katja Molan for her technical assistance. References Abreu, A.G., Fraga, T.R., Granados Martínez, A.P., Kondo, M.Y., Juliano, M.A., Juliano, L., Navarro-Garcia, F., Isaac, L., Barbosa, A.S., Elias, W.P., 2015. The serine protease Pic from enteroaggregative Esche- richia coli mediates immune evasion by the direct cleavage of complement. The Journal of Infectious Diseases, 212, 106-115. Allocati, N., Masulli, M., Alexeyev, M.F., Di Ilio, C., 2013. Escherichia coli in Europe: an overview. Inter- national Journal of Environmental Research and Public Health, 10(12), 6235-6254. Bhullar, K., Zarepour, M., Yu, H., Yang, H., Croxen, M., Stahl, M., Finlay, B.B., Turvey, S.E., Vallance, B.A., 2015. The serine protease autotransporter Pic modulates Citrobacter rodentium pathogenesis and its innate recognition by the host. Infection and Immunity, 83, 2636-2650. Carattoli, A., Bertini, A., Villa, L., Falbo, V., Hopkins, K.L., Threlfall, E.J., 2005. Identification of plasmids by PCR-based replicon typing. Journal of Microbiological Methods, 63, 219-228. Chaudhuri, R.R., Henderson, I.R., 2012. The evolution of the Escherichia coli phylogeny. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, Acta Biologica Slovenica, 2022, 65 (1), 18-27 26 12(2), 214-226. Clermont, O., Bonacorsi, S., Bingen, E., 2000. Rapid and simple determination of the Escherichia coli phylogenetic group. Applied and Environmental Microbiology, 66, 4555-4558. Clermont, O., Christenson, J.K., Denamur, E., Gordon, D.M., 2013. The Clermont Escherichia coli phylo- typing method revisited: improvement of specificity and detection of new phylo-groups. Environmental Microbiology Reports, 5, 58-65. Čurová, K., Slebodníková, R., Kmeťová, M., Hrabovský, V., Maruniak, M., Liptáková, E., Siegfried, L., 2020. Virulence, phylogenetic background and antimicrobial resistance in Escherichia coli associated with extraintestinal infections. Journal of Infection and Public Health, 13(10), 1537-1543. Dozois, C.M., Fairbrother, J.M., Harel, J., Bossé, M., 1992. Pap-and pil-related DNA sequences and other virulence determinants associated with Escherichia coli isolated from septicemic chickens and turkeys. Infection and Immunity, 60, 2648-2656. Escobar-Páramo, P., Le Menac’h, A., Le Gall, T., Amorin, C., Gouriou, S., Picard, B., Skurnik, D., Denamur E., 2006. Identification of forces shaping the commensal Escherichia coli genetic structure by comparing animal and human isolates. Environmental Microbiology, 11, 1975-1984. Ewers, C., Li, G., Wilking, H., Kiessling, S., Alt, K., Antáo, E.M., Laturnus, C., Diehl, I., Glodde, S., Home- ier, T., Böhnke, U., Steinrück, H., Philipp, H.C., Wieler. L.H., 2007. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they? International Journal of Medical Microbiology : IJMM, 297, 163-176. Hoffman, J., Badger, J.L., Zhang, Y., Huang, S., Kim, K.S., 2000. Escherichia coli K1 aslA contributes to invasion of brain microvascular endothelial cells in vitro and in vivo. Infection and Immunity, 68, 5062-5067. Jang, J., Hur, H.G., Sadowsky, M.J., Byappanahalli, M.N., Yan, T., Ishii, S., 2017. Environmental Escherichia coli: ecology and public health implications-a review. Journal of Applied Microbiology, 123(3), 570-581. Janβen, T., Schwarz, C., Preikschat, P., Voss, M., Phillip, H.C., Wieler, L.H., 2001. Virulence associated genes in avian pathogenic Escherichia coli (APEC) isolated from internal organs of poultry having died from colibacillosis. International Journal of Medical Microbiology : IJMM, 291, 371-378. Johnson, J.R., Stell, A.L., 2000. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. The Journal of Infectious Diseases, 181, 261-272. Kaper, J.B., Nataro, J.P., Mobley, H.L., 2004. Pathogenic Escherichia coli. Nature reviews. Microbiology, 2(2), 123-140. Maurer, J.J., Brown, T.P., Steffens, W.L., Thayer, S.G., 1998. The occurrence of ambient temperature-re- gulated adhesins, curli, and the temperature-sensitive hemagglutinin tsh among avian Escherichia coli. Avian Diseases, 42, 106-118. Miao, L., Li, H., Ding, W., Lu, S., Pan, S., Guo, X., Zhou, X., Wang, D., 2022. Research priorities on One Health: A bibliometric analysis. Frontiers in Public Health, 10, 889854. Parham, N.J., Pollard, S.J., Chaudhuri, R.R., Beatson, S.A., Desvaux, M., Russell, M.A., Ruiz, J., Fivian, A., Vila, J., Henderson, I.R., 2005. Prevalence of pathogenicity island IICFT073 genes among extraintestinal clinical isolates of Escherichia coli. Journal of Clinical Microbiology, 43, 2425-2434. Paton, A.W., Paton, J.C., 1998. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. Journal of Clinical Microbiology, 36, 598-602. Pratt, L.A., Kolter, R., 1999. Genetic analyses of bacterial biofilm formation. Current Opinion in Micro- biology, 2, 598-603. Restieri, C., Garriss, G., Locas, M.C., Dozois, C.M., 2007. Autotransporter-encoding sequences are phylo- genetically distributed among Escherichia coli clinical isolates and reference strains. Applied and Environmental Microbiology, 73, 1553-1562. Ruiz, J., Simon, K., Horcajada, J.P., Velasco, M., Barranco, M., Roig, G., Moreno-Martínez, A., Martínez, 27E. coli from dishwasher rubber seals J.A., Jiménez de Anta, T., Mensa, J., Vila, J., 2002. Differences in virulence factors among clinical is- olates of Escherichia coli causing cystitis and pyelonephritis in women and prostatitis in men. Journal of Clinical Microbiology, 40, 4445-4449. Runyen-Janecky, L.J., Reeves, S.A., Gonzales, E.G., Payne, S.M., 2003. Contribution of the Shigella flexneri Sit, Iuc, and Feo iron acquisition systems to iron acquisition in vitro and in cultured cells. Infection and Immunity, 71, 1919-1928. Schubert, S., Rakin, A., Karch, H., Carniel, E., Heesemann, J., 1998. Prevalence of the „high-pathogenicity island“ of Yersinia species among Escherichia coli strains that are pathogenic to humans. Infection and Immunity, 66, 480-485. Sobecky, P.A., Mincer, T.J., Chang, M.C., Helinski, D.R., 1997. Plasmids isolated from marine sediment microbial communities contain replication and incompatibility regions unrelated to those of known plasmid groups. Applied and Environmental Microbiology, 63, 888-895. Starčič, M., Žgur-Bertok, D., Jordi, B.J., Wösten, M.M., Gaastra, W., van Putten, J.P., 2003. The cyclic AMP-cyclic AMP receptor protein complex regulates activity of the traJ promoter of the Escherichia coli conjugative plasmid pRK100. Journal of Bacteriology, 185, 1616-1623. Starčič Erjavec, M., Gaastra, W., van Putten, J., Žgur-Bertok, D., 2003. Identification of the origin of repli- cations and partial characterization of plasmid pRK100. Plasmid, 50, 102-112. Starčič Erjavec, M., Žgur-Bertok, D., 2015. Virulence potential for extraintestinal infections among commensal Escherichia coli isolated from healthy humans-the Trojan horse within our gut. FEMS Microbiology Letters, 362(5), fnu061. Stoppe, N.C., Silva, J.S., Carlos, C., Sato, M.I.Z., Saraiva, A.M., Ottoboni, L.M.M., Torres, T.T., 2017. Worldwide phylogenetic group patterns of Escherichia coli from commensal human and wastewater treatment plant isolates. Frontiers in Microbiology, 8, 2512. Tenaillon, O., Skurnik, D., Picard, B., Denamur, E., 2010. The population genetics of commensal Escherichia coli. Nature Reviews. Microbiology, 8, 207-217. Tóth, I., Hérault, F., Beutin, L., Oswald E., 2003. Production of cytolethal distending toxins by pathogenic Escherichia coli strains isolated from human and animal sources: establishment of the existence of a new cdt variant (Type IV). Journal of Clinical Microbiology, 41, 4285-4291. Vidal, M., Kruger, E., Durán, C., Lagos, R., Levine, M., Prado, V., Toro, C., Vidal, R., 2005. Single multiplex PCR assay to identify simultaneously the six categories of diarrheagenic Escherichia coli associated with enteric infections. Journal of Clinical Microbiology, 43, 5362-5365. Vila, J., Vargas, M., Henderson, I.R., Gascón, J., Nataro, J.P., 2000. Enteroaggregative Escherichia coli virulence factors in traveler‘s diarrhea strains. The Journal of Infectious Diseases, 182, 1780-1783. Watt, S., Lanotte, P., Mereghetti, L., Moulin-Schouleur, M., Picard, B., Quentin, R., 2003. Escherichia coli strains from pregnant women and neonates: intraspecies genetic distribution and prevalence of virulence factors. Journal of Clinical Microbiology, 41, 1929-1935. Wirth, T., Falush, D., Lan, R., Colles, F., Mensa, P., Wieler, L.H., Karch, H., Reeves, P.R., Maiden, M.C., Ochman, H., Achtman, M., 2006. Sex and virulence in Escherichia coli: an evolutionary perspective. Molecular Microbiology, 60, 1136-1151. Yamamoto, S., Terai, A., Yuri, K., Kurazono, H., Takeda, Y., Yoshida, O., 1995. Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunology and Medical Microbiology, 12, 85-90. Yamamoto, T., Echeverria, P., 1996. Detection of the enteroaggregative Escherichia coli heat-stable en- terotoxin 1 gene sequences in enterotoxigenic E. coli strains pathogenic for humans. Infection and Immunity, 64, 1441-1445. Zude, I., Leimbach, A., Dobrindt, U., 2013. Prevalence of autotransporters in Escherichia coli: what is the im- pact of phylogeny and pathotype? International Journal of Medical Microbiology : IJMM, 304, 243-256. Zupančič, J., Turk, M., Črnigoj, M., Ambrožič Avguštin, J., Gunde-Cimerman, N., 2019. The dishwasher rubber seal acts as a reservoir of bacteria in the home environment. BMC Microbiology, 19(1), 300.