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To manage a system effectively,  

you might focus on the interactions of the parts  

rather than their behavior taken separately.              

Russell L. Ackoff 
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Fluid-Structure Interaction for simulations of fast transients 
 

 
Keywords:    - Arbitrarily shaped fluid-filled piping systems 
       - Fast transient (water hammer) 

- Two-phase flow (cavitation) 
- Structural dynamics 
- Fluid-Structure Interaction 
- Characteristic upwind numerical method 
 

Abstract:  The Fluid-Structure Interaction (FSI) in one-dimensional arbitrarily shaped and 
deformable piping systems of circular cross-section conveying a single or two-phase transient flow is 
being studied. The pipe wall, which represents the control volume for the fluid, exhibits significant 
deformations as the FSI evolves in considerable extent. The physical model for the thermo-fluid 
dynamics i.e. the balance equations, which originate from the Navier-Stokes system of equations, is 
derived for two-phase flows in arbitrarily shaped and deformable piping systems (Lagrangian coordinate 
system). New terms appear in the balance equations for the description of the junction coupling FSI 
mechanism at curvatures of the pipe, for the description of the pipe deformations and for the description 
of the Poisson coupling FSI mechanism. The developed physical model enables simulations of two-
phase flow transients in arbitrarily shaped piping systems. It is strongly coupled with axial structural 
dynamics and relatively weakly with lateral, rotational and torsional structural dynamics. The axial, 
lateral, rotational and torsional structural dynamics models are derived for a general arc length 
parameter and are applicable for arbitrarily shaped piping systems. Several new terms appear for the 
junction coupling between basic variables at curvatures.  

The thermo-fluid dynamics and the structural dynamics equations are grouped into several physical 
models of various complexities, applicable for various FSI problems. The applied physical models are 
nonlinear i.e. the eigenvalues and the eigenvectors of the system are changing with time and position. 
The eigensystem is then linearized for each control volume within each computational time step. The 
high-resolution characteristic upwind finite difference numerical method, which is based on Godunov 
methods for conservation laws, is applied for integration of the physical model. The method behaves as 
a second order accurate. An essentially explicit scheme applies implicit iterations when needed to solve 
the problem with stiff source terms. For stiff relaxation source terms, the two-step operator splitting 
technique is applied, where the convection with the non-stiff terms is solved by means of the 
characteristic upwind method in a first step, and the relaxation is integrated with first order explicit Euler 
method in a second, separate step.  

The isothermal quasi-two-phase flow model is applied for the description of inertially controled cavitation 
which accurately describes cavitation in systems where mass and heat exchange between phases is 
negligible. The accurate description of the elbows and any other curvatures and their stiffness and 
anchorage is crucial for accurate consideration of the FSI. The flexibility factors were incorporated into 
the physical model for description of the loss of the stiffness at the curvatures. The physical model 
further enables reinforcement of the pipe wall at the elbow, enables other kinds of geometric changes, 
and enables consideration of elastic or stiff supports, external loads, forces etc. The local stress 
situation in the pipe wall defined by the stress tensor is represented as a scalar value using the von 
Mises approach.  

The proposed advanced physical model and the characteristic upwind numerical scheme are verified by 
means of experimental data, available verified computer codes and several benchmark problems. The 
FSI and all accompanying phenomena are successfully simulated by the proposed approach and are 
discussed in detail. The procedures to control FSI are indicated. 

 

PACS:  47.10.-g, 43.40.+s, 45.20.-d, 05.70.-a, 47.55.-t, 02.60.-x, 02.70.Bf 
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Sklopitev linijske konstrukcije in dvofaznega toka tekočine 
med hitrimi prehodnimi pojavi 
 

 
Ključne besede:  - poljubno ukrivljeni cevovodi napolnjeni s tekočino 

- hitri prehodni pojav (vodni udar) 
- dvofazni tok (kavitacija) 
- dinamika konstrukcij 
- interakcija med tekočino in konstrukcijo 
- karakteristična privetrna numerična metoda 

 

Povzetek:  V disertaciji smo preučevali interakcijo med tekočino in konstrukcijo (ITK) v poljubno 
ukrivljenih linijskih cevovodih okroglega preseka napolnjenih z enofazno ali dvofazno tekočino v kateri 
poteka hitri prehodni pojav. Iz Navier-Stokesovega sistema enačb so bile izpeljane ravnovesne enačbe 
za dvofazni ali dvotekočinski tok v poljubno ukrivljenem in deformabilnem cevovodu (Lagrangejev 
koordinatni sistem). Stena cevi namreč predstavlja kontrolni volumen za tekočino; kontrolni volumen pa 
se lahko v določenih primerih ITK znatno premika in deformira. V enačbah nastopijo novi členi za opis 
lokalne vozliščne sklopitve v krivinah cevovoda, za opis deformacij cevovoda in za opis mehanizma 
Poissonove sklopitve med tlakom v tekočini in osne ter obodne deformacije v cevovodu. Izpeljane 
ravnovesne enačbe tekočine omogočajo simulacije dvofaznega toka v poljubno ukrivljenih cevovodih in 
so močno sklopljene z osno dinamiko cevovoda, medtem ko je sklopitev s prečno, rotacijsko in torzijsko 
dinamiko cevovoda razmeroma šibka. Osni, prečni, rotacijski in torzijski modeli dinamike konstrukcije so 
bili izpeljani za opis poljubno ukrivljenega cevovoda s pomočjo splošnega parametra krožnega loka. V 
enačbah nastopajo novi členi, ki opisujejo mehanizem vozliščne sklopitve osnovnih spremenljivk v 
krivinah.  

Izpeljane enačbe za termodinamiko tekočine in dinamiko konstrukcije so združene v različno 
kompleksne fizikalne modele, ki omogočajo simulacije različnih primerov ITK. Tako sestavljeni fizikalni 
modeli so nelinearni, kar pomeni, da se lastne vrednosti in lastni vektorji sistema enačb spreminjajo tako 
s časom kot s pozicijo. Pri numeričnem reševanju so enačbe znotraj enega časovnega koraka in znotraj 
posameznega kontrolnega volumna linearizirane. Za reševanje parcialnih diferencialnih enačb je 
uporabljena karakteristična privetrna shema visoke resolucije, ki izvira iz numeričnih metod Godunova 
za ohranitvene zakone. Metoda se obnaša kot metode drugega reda natančnosti. Karakteristična 
privetrna shema je eksplicitna, vendar se po potrebi uporabi implicitne iteracije za integracijo togih 
izvirov. Problem togih izvirov zaradi relaksacije med fazama je rešen z integracijo v dveh korakih, pri 
čemer je v prvem koraku uporabljena osnovna karakteristična privetrna shema, v drugem koraku za 
relaksacijo (če potrebno) pa eksplicitna Eulerjeva shema prvega reda natančnosti.  

V vsakem časovnem koraku se v vsakem računskem volumnu iz parnih tabel izračunajo prave lastnosti 
stanja tekočine. Za opis inercijsko gnane kavitacije je uporabljen poenostavljen kvazi-dvofazni model 
dvofaznega toka, ki zelo dobro opiše pojav kavitacije v sistemih kjer je izmenjava toplote in snovi med 
fazama zanemarljivo majhna. Za natančen opis ITK je potrebno točno opisati kolena in druge krivine 
cevovoda, njihovo togost in podprtost.  Izguba togosti v krivinah cevovoda je opisana s pomočjo faktorja 
fleksibilnosti. Sistem enačb skupaj z numerično metodo omogoča vključitev raznih izboljšav kot so 
ojačitve stene cevi v kolenih, druge spremembe geometrije, upoštevanje elastičnih ali togih podpor, 
zunanje obremenitve ipd. Lokalni tenzor napetosti je predstavljen kot skalarna vrednost s pomočjo 
teorije von Misesa.  

Sistem enačb in uporabljena numerična shema sta bila preverjena z različnim primerjalnimi problemi 
ITK, z različni preverjenimi programi in eksperimentalnimi podatki. ITK z vsemi spremljajočimi pojavi je 
bila uspešno simulirana in podrobneje razložena. Nakazane so možnosti preprečitve ITK oziroma 
možnosti kontrole izmenjave (kinetične) energije med tekočino in konstrukcijo. 
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Nomenclature 
 
Uppercase letters 
A   Cross-section (m2) 
CD   Drag coefficient 
Ci   Interfacial friction coefficient 
Cvm  Virtual mass coefficient (kg/m3) 
E   Young elasticity modulus (Pa) 
G   Shear modulus (Pa) 
H   Vol. heat transfer coeff. (W/m3/K) 
I    Moment of inertia (m4) 
K   Fluid bulk modulus (Pa),  

Abbreviations  
L   Pipe length (m) 
M   Bending momentum (Nm) 

Matrix dimension 
N    Axial force (N) 

Eigensystem dimension  
P   Wall surface area (m2) 
Q   Lateral force (N) 

Interface heat transfer (W/m3) 
R   Pipe inner radius (m) 
Re   Reynolds number 
Rp   Radius of curvature (m) 
S   Fluid cross-section area (m2) 
St   Pipe cross-section area (m2) 
T   Temperature (K, °C)  

Abbreviations 
Tp   Radius of torsion (m) 
V   Volume (m3) 
We  Weber number 
X   Saturation quality 
 
Lowercase letters 
agf   Interfacial area concentration 
b   Outer radius of the pipe 
c   Speed of sound 

Elements of Jacobian matrix 
d0   Average slug diameter (m) 
e   Pipe wall thickness (m) 
   Specific internal energy (J/kg) 
etot   Specific total energy (J/kg) 
f   Frequency (Hz) 

Arbitrary function 
External force per unit length (N/m) 

fCFL  Time step correction factor 
h   Specific enthalpy (J/kg) 

Elevation of the rod (m) 
i    Phase factor 
k    Flexibility factor 
m   Mass, mass of the load (kg) 
m    Mass flux (kg/s) 
p   Fluid pressure (Pa)  
s    General axial coordinate parameter 
t   Time (s) 

u   Velocity of the pipe (m/s) 
v   Fluid velocity (m/s)  
x   Axial coordinate parameter  
xSg   Distance of gravity center to the center 

of the section (m)  
w   Specific internal energy (J/kg) 

Displacement (m) 
 
Uppercase Greek letters 
Σ    Lateral surface (pipe wall) 
Γ   Vapor generation rate (kg/m3/s) 
Ψ   Arbitrary variable 
Ω    Section perimeter 
 
Lowercase Greek letters 
α   Angle change at elbow 
   Vapor volume fraction 
β   Shear transformation in lateral shear 

Damping constant 
   Compressibility (1/Pa) 
γ   Pipe inclination 
   Geometrical factor at curvatures 
ε    Unit strain 

Dissipation coefficient (numerical) 
λ   Eigenvalues 
κ   Timoshenko shear coefficient 
ν   Poisson ratio 
ϕ   Rotational velocity (rad/s) 
φ   Flux limiter 

Angle of bending rotation 
θ   Relaxation time 

Phase of oscillation 
µ   Derivative (scale factor) of s over s0 
µk   Derivative (scale factor) of s over t 
µf   Liquid dynamic viscosity (kg / m s) 
ρ   Density (kg/m3) 
σ   Stress (Pa) 
   Surface tension (kg/s2) 
ω   Angular frequency 
 
Subscripts 
0    Initial value 
1,2,3,4 Consecutive number 
1F   Single-phase flow 
2F   Two-phase flow 
AQ2F  Axial quasi-two-phase model 
AXI  Axial dynamics model 
R   Relaxation source term 
S   Enthalpy 
T   Thermal variables, Temperature 
TIM,in  In-plane Timoshenko beam model 
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TIM,out Out-of-plane Timoshenko beam model 
TOR  Torsional dynamics model 
b   Mass of the beam 
bub  Bubbly 
c   Circumferential strain 

Valve closing time 
cm   Centric mass 
con  Contraction 
d   Damped 
ecm  Eccentric mass 
ext   Extension 
f    Fluid phase 
g   Gas phase 

Gravity 
i   Interphase, interface 
k   f for fluid and g for gas 
m   Mixture 
max  Maximal value 
out   External value 
p   Index (p = 1, ..., 8) 
rod  Rod index 
sat   Saturation 
sim  Simulation 
b   Mass of the beam per unit length 
v   Yield stress 
t    Pipe 

Wall friction 
x,y,z  local coordinates 
 
Superscripts 
+, -  positive and negative direction 
*, **, m integration steps 
n   Time level 
T   Transpose 
 
Matrices and vectors 
A, B  Matrices of the system in vectorial form 
C   Jacobian matrix 
F   Correction factors (diagonal matrix) 
I   Identity tensor 
L    Eigenvectors 
Vk   Viscous part of the stress tensor 
Λ     Eigenvalues (diagonal matrix) 
F    Vector of body forces 
S , R   Source terms 

U     Displacement velocity  
n     Vector normal to the surface 
t ,n ,b  Vectors of the Fresnet frame 
v    Vector of fluid velocity 
ψ    Vector of basic variables 

ξ    Vector of characteristic variables 
ε    Vector of acceptance criterions 
Ω    Vector of Fresnet frame rotation veloc.  

ϕ    Vector of pipe rotation velocity 

w    Vector of pipe translations 
Φ    Vector of pipe rotations 
M    Vector of pipe internal moments 
 
Abbreviations 
1D   One-dimensional 
2D   Two-dimensional 
3D   Three-dimensional 
CFL  Courant-Friedrichs-Levy condition 
CIWH  Condensation-induced water hammer  
DHB  Delft Hydraulics Benchmark  
FEM  Finite element method 
MOC  Method of characteristics 
NPP  Nuclear power plant 
PDE  Partial differential equation 
SGWH  Steam generator water hammer 
TBT  Timoshenko beam theory 
USAR  Updated Safety Analysis Report 
 

Operators 

  Area average on section S 
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1. Introduction 
Fluid-Structure Interaction (FSI) is a general term that stands for a phenomenon of exchange of 
(kinetic) energy between a moving fluid and a flexible structure. The extent of the energy exchange 
strongly depends on the flexibility and/or deformability of the structure and its resistance that is governed 
by geometric properties, elasticity and anchorage. In equal extent, the energy exchange depends also 
on the fluid, with its gradient and amplitude of the induced pressure waves, compressibility and other 
fluid state properties. The FSI appears in the systems where the fluid is conducted by the structure, in 
the systems where the structure is immersed into the fluid, or both. The FSI field is very comprehensive, 
spanning from aeronautics, civil engineering, energy production, chemical and oil industry, and many 
more sciences to finally music instruments and human body. FSI surrounds us (breathing, weather, 
bottle of soda water, tap water systems, car engine, wind, air resistance, boats, pipelines, etc).  

The present thesis is focused on a small fraction of the wide FSI field: on a slender hollow arbitrarily 
shaped structures conveying and interacting with an internal fluid flow during a water hammer transient. 
Engineering examples of slender (one dimensional) hollow structures interacting with internal fluid flows 
are all fluid-filled piping systems and other flexible pipes and conduits containing a flowing fluid, 
central-heating systems, air-vent systems, oil and gas pipelines, heat exchanger tubes, thin-shell 
structures used as heat shields in aircraft engines, jet pumps, etc. Physiological examples may be found 
in the pulmonary and urinary systems and in hemodynamics. Pipelines and piping systems provide 
transport for a wide range of substances (water, chemicals, petrochemicals, etc.) and they fulfill safety 
functions (cooling systems in nuclear power plants). Pressure pulsations and mechanical vibrations 
during fast transient occurrence affect performance and safety of the piping system. Failure of the piping 
system can have disastrous effects, leading to injuries and fatalities as well as to substantial cost to 
industry and environment. Symptoms include vibrations, noise and fatigue damage to piping systems, 
supports and machinery. FSI is not a widely recognized phenomenon and it is quite possible that it is 
responsible for a significant number of unexplained piping failures and other unacceptable behaviors. 
Tijsseling [113] gave some examples: (i) failure due to the fatigue could in fact be FSI induced; (ii) failure 
due to the corrosion could again be partially attributed to the FSI. 

The FSI in piping systems is a relatively new line of research, especially multi-phase coupling although 
the roots of the water hammer research dates back in the 18th century. Svingen 1996 [108] classifies 
the work that has to be done and is being done with respect to the FSI in piping systems into four points: 

• Experimental research to give a broader basis for development of good computer programs and 
to increase the general understanding and knowledge. 

• Development of physical models and numerical schemes compiled into computer programs, 
both as a research tool and for use in engineering work. 

• Make guidelines based on experiments, on site measurements and computer programs as to 
show when the FSI is of importance through calculations of a piping system. 

• Find design criteria for piping systems that can be used for everyday engineering purposes to 
prevent unwanted FSI to occur. 

The research work presented in this dissertation directly addresses the second point, development of 
advanced physical models and numerical schemes. The first point (experimental research) is used to 
validate the developed computer program, while the third and the fourth naturally result from the 
analysis of the obtained results.   

 

1.1. Basic concepts of FSI 
Fluid dynamics. The fluid dynamics is the sub-discipline of the fluid mechanics dealing with fluids 
(liquids and gases) in motion. The solution of the fluid dynamics problems typically involves the 
calculation of various properties of the flow, such as velocity, pressure, and temperature, as functions of 
space and time. Hydrodynamics, also known as hydraulics is fluid dynamics applied to liquids, such as 
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water, alcohol, oil, and blood. Fluid dynamics concerns water hammer in single-, two-, and multi-phase 
flows. 

The single-phase water hammer, more generally fluid hammer (it can be induced in any fluid), also 
named hydraulic transient, is a pressure surge or wave caused by kinetic energy of a fluid in motion 
when it is forced to stop or to suddenly change flow velocity or direction. Pressure waves are spreading 
inside the fluid at the acoustic velocity. For example, a rapidly closed valve at an end of a piping system 
initially conveying steady state flow, generates an upstream propagating water hammer wave (example 
in Appendix C, Figure C-2). The magnitude and the traveling velocity of the pressure wave strongly 
depend on the state properties of the fluid (density, speed of sound, temperature, etc.).  

The research on single-phase water hammers has a long tradition starting with Blaise Pascal in 15th 
century. Joukowsky [66] already in 1898 developed the fundamental equation of the single-phase water 
hammer that relates pressure changes ∆p to velocity changes ∆vf in the fluid: 

f f fp c vρ∆ = ∆                          (1) 

where cf is the speed of sound and ρf is the density. The equation is known as Joukowsky equation. 
However there are several other researchers like Frizell 1898 [42], Kries 1883 [73], Rankine 1870 [5], 
and Allievi 1903 [3,4] who separately derived Eq. (1) unaware of the achievements of their 
contemporaries. According to Wylie and Streeter [150], the classical water hammer equations (continuity 
and momentum balance) for a fluid in Eulerian coordinates read: 

2
1 0f

f f

vp =
t scρ

∂∂ +
∂ ∂

   and  0f
f

v p
t s

ρ ∂ ∂+ =
∂ ∂

               (2) 

where p is the pressure, t is the time, and s is the axial coordinate parameter. The classical water 
hammer theory describes the propagation of pressure waves in single-phase liquid-filled piping systems. 
Wylie and Streeter [150] showed that the classical theory correctly predicts extreme pressures and wave 
periods, but it usually fails in accurately calculating damping and dispersion of wave fronts, since field 
measurements usually show more damping and dispersion. 

The two-phase (liquid-vapor) and two-fluid (liquid-liquid) water hammer flows are common in practice. 
During the water hammer in a liquid, the pressure can cycle between large positive and negative values. 
The magnitude of the negative values is constrained by the saturation pressure. Vapor cavities can form 
when the pressure drops to the saturation pressure. There are two relaxation phenomena alternating in 
two-phase single-fluid flow during the fast transient: vaporization and condensation. Vaporization and 
condensation of the bubbles considerably affect the transportation of the water hammer waves and 
consequently FSI and have to be described accurately. The speed of sound in two-phase flow is 
drastically reduced (from ~1450 m/s to ~10 m/s), and a section with two-phase flow can actually split the 
transient in the fluid into two independent transients/sections at the left and right side of the vapor. 
These liquid sections are re-connected after condensation of the cavities and the two colliding fluid 
columns generate an additional pressure wave that is superimposed to the existing transient. Two-
phase flow with local cavitation concentrated in a single position is usually denoted as column 
separation water hammer (one large bubble). Cavitation can be also distributed along larger sections of 
the piping system (bubbly flow region). Vapor bubbles i.e. cavities in a particular section of the pipe 
appear as a consequence of the thermodynamical state in the fluid or as a consequence of the flow 
convection.  

Ishii and Hibiki [62] stated that the two-phase flow thermo-fluid dynamics is “an order of magnitude” 
more complicated subject than that of the single-phase flow due to the existence of moving and 
deformable interfaces and the interactions with the phases. Each particular phase of the two-phase flow 
is described with a system of conservation laws derived from the Navier-Stokes equations (continuity, 
momentum and energy law of conservation), and can be found in several classical textbooks regarding 
fluid mechanics like Ishii and Hibiki [62], Moody  [89], Toro [128], Warsi [135], etc. The accuracy of the 
two-phase flow models is usually diminished by inclusion of numerous closure relationships that are 
based on engineering approximations and are introduced as a simplification for (i) informations lost 
during development of the physical model, (ii) thermal and mechanical relations between phases, and 
(iii) relations between each phase and surroundings. The closure relationships are developed and 
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validated only for a certain range within one flow regime. A flow regime is a typical distribution of the 
phases across the pipe cross-section with particular characteristic properties of the flow. There are 
several commercial and research codes that enable simulations of two-phase flows, especially in the 
field of nuclear thermal hydraulics, like RELAP5 [20], CATHARE [13], ATHLET [17], TRACE and TRAC 
[129], WAHA [126] etc. FSI models are not integrated into these codes. Various standard approaches in 
single and two-phase flow modeling are collected in Chapter 2 and Appendix C. 

 

Thermodynamics. Each fluid is composed of particles, whose average motions define its properties, 
which in turn are related to one another through the equations of state. The thermodynamics studies the 
effects of changes in temperature, pressure, and volume on physical systems at the macroscopic scale 
by analyzing the collective motion of their particles using statistics. In essence thermodynamics studies 
the movement of the energy and how the energy instills movement. The starting point for most 
thermodynamic considerations is the first law of thermodynamics, which postulates that energy is 
exchanged between the physical systems as heat or work.  

The pressure drastically changes during the water hammer transient in the fluid and the phasic 
temperature changes as a result of heat and mass exchange. Thermodynamics is applied in thermo-
fluid dynamics whenever equations of state are utilized to account for variable density or internal energy 
as a response to the change of pressure or temperature. The most frequently used FSI theory excludes 
thermodynamics and assumes constant density, temperature, compressibility and speed of sound in the 
fluid, regardless the real pressure or temperature. This theory is often called elastic water hammer 
theory due to the analogy with Young elasticity modulus and the approximation of constant speed of 
sound in solids. Thermodynamics becomes important also for cases with considerable amount of heat 
and mass interfacial exchange in two phase flow. Exact values of the thermodynamic state can be 
extracted from the equation of state functions (complex or simplified) or water properties tables. 
Although consideration of exact water properties is an important improvement for the accuracy of the 
simulation, comparisons with experimental data show that for practical cases conducted in cold water, 
simplified approaches based on constant water properties yield results with sufficient accuracy.  

 

Structural dynamics. A dynamic load is any load whose magnitude, direction, and position vary with 
time. The structural response to the dynamic load is also time varying, or dynamic. Clough and Penzien 
[25] applied the terms deterministic and nondeterministic (random dynamic) loading for the evaluation of 
the structural response to dynamic loads. Prescribed dynamic loading is any loading where temporal 
variation of loading is fully known, even though it may be highly oscillatory, and the analysis of the 
response of any specified structural system to a prescribed dynamic loading is defined as a deterministic 
analysis. The dynamic load of the fluid during the FSI is not fully known in advance, it depends also on 
the mutual dynamics between the fluid and the structure. However, the load of the fluid is attributed as a 
prescribed dynamic loading. The structural response to any prescribed dynamic loading is expressed 
basically in terms of the displacements of the structure. A deterministic analysis leads directly to 
displacement time-histories corresponding to the prescribed loading history; other related response 
quantities such as stresses, strains, internal forces, etc., are usually obtained as a secondary phase of 
the analysis. The fundamental equation of structural dynamics also known as the equation of damped 
simple harmonic motion, is defined as: 

2
2
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                      (3) 

where w is an arbitrary displacement, β is the damping constant, and ω is the angular frequency. 
Svingen [108] stressed that it is possible to extend Eq. (3) also to the pipe structures. The pipe can bend 
in two directions, stretch in one direction and obtain torsional momentum. All equations describing pipe 
dynamics are wave equations that are not coupled with differential terms but only through source terms 
at curvatures. The pipe is considered as a thin-shelled structure but for the majority of piping structures 
this simplification has literally no measurable effect, because the length-to-diameter ratio is large, so that 
all frequencies of interest are either axial or lateral. Clough and Penzien [25] stated that the beam 
equations are almost exclusively solved with the finite element method, both in frequency and time 
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domain, and many commercial programs for structural and piping calculations exist starting with 
products of the ABAQUS [1] and ANSYS [6] corporations. 

 

Multiphysics coupling. FSI analyses belong to the rapidly growing field known as multiphysics 
modeling. Multiphysics treat simulations that involve multiple physical models and typically involve 
solving a coupled systems of partial differential equations (PDEs). Standard FSI analyses couple fluid 
dynamics and structural dynamics and standard two-phase flow analyses couple thermodynamics and 
fluid dynamics. The FSI simulations considered in this study involve appropriate physical models and 
numerical methods for coupling between the fluid dynamics, structural dynamics, and thermodynamics. 

A calculation is coupled when two or more different variables affect each other mutually through one or 
more coupling mechanisms. A coupling is a mechanism that links two types of variables to each other. 
Tijsseling [115], Casadei et al. [22], and Erath et al. [38] stated that if one variable is linked to another, 
the coupling is one-way (the simulation is assigned as uncoupled), while if the other variable is linked 
back, we talk about a two-way coupling. The term FSI, as used in this thesis, is a synonym for a two-way 
coupled simulation. 

Tijsseling [113] stressed that it is not unusual to perform an uncoupled FSI calculation. In standard 
uncoupled water hammer analyses pipe elasticity is incorporated into the propagation speed of the 
pressure waves, while pipe inertia and pipe motion are not taken into account. Pressure histories, 
resulting from the water hammer analysis, are used as dynamic loading in the structural dynamics 
analysis and the calculation is called uncoupled since the predicted structural response does not 
influence the liquid pressures. An example of uncoupled calculation can be found in Tiselj and Cizelj 
1993 [121]. They performed an analysis of stresses in steam generator U tubes during a large loss of 
coolant accident in the Krško nuclear power plant.  

During the transient in the fluid–filled piping system the pressure waves are induced in the fluid and the 
axial, flexural, rotational, radial and torsional stress waves are induced in the piping system. According 
to interactions (couplings) between these waves it is possible to distinguish the following types of the 
coupling mechanisms [115,75,155]:  

• Poisson coupling: The pressure waves in the fluid are coupled with axial and radial stress 
waves in the structure through changes of the pipe cross-section (hoop stress). Poisson coupling 
is figuratively known as pipe breathing. Interesting and important side effects of the Poisson 
coupling are precursor waves. The origin of the precursor waves are axial and hoop stress 
waves in the pipe wall, while changes of pipe cross-section or length, through Poisson coupling, 
yield to changes in pressure in the fluid. Precursor waves travel faster than pressure waves in 
the fluid and are thus forerunners of the water hammer.  

• Junction coupling: Different waves are appropriately coupled at geometric changes like 
elbows, cross-section changes, valves, junctions, pipe ends, etc. Junction coupling is considered 
through the boundary conditions or more accurately through the closure relations derived for 
arbitrary shaped piping systems. 

• Friction coupling: Axial stress waves in the structure are initiated due to different fluid and 
structure velocities. It is often negligible compared to the intensity of the junction and Poisson 
coupling. 

The coupling forces in Poisson and friction coupling mechanisms are distributed along the pipe while the 
junction coupling forces act locally at geometric irregularities.  

The coupling between the fluid dynamics and thermodynamics is actually very frequent in (nuclear) 
thermo-fluid dynamics practice, but the corresponding community usually does not consider it as a 
coupling. As the multiphysics field is growing, for the sake of clarity, we will classify the field of thermo-
fluid dynamics as a field of coupling between the fluid dynamics and thermodynamics. The main 
characteristic of a coupled system is that the real state properties of the fluid are applied, which follow 
pressure and temperature changes of the fluid during the transient and the coupling mechanisms are 
given by the state functions of the fluid.  

For example, the steady state flow in a fluid-filled straight piping system has a downstream valve that is 
rapidly closed and a water hammer wave is induced. Then the characteristic velocity of the spreading of 
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the induced pressure wave c and the height of the pressure wave ∆p (Joukowsky equation) depend on 
the state properties of the fluid (for example pressure and temperature): 

c = f (p,T, pipe geometry and material)    See Korteweg relationship in Appendix D. 

∆p = f (ρ(p,T), c(p,T), ∆vf)        See Joukowsky relationship in Appendix C. 

It is obvious that the pressure (pressure rise) near the valve after the valve closure strongly depends on 
the state properties of the fluid (beside initial velocity), on the other hand, the state properties of the fluid 
depend on the value of that pressure. The pressure - fluid properties - pressure cycle is thus closed and 
in terminology of multiphysics one can say, that consideration of real state properties of the fluid causes 
two-way coupling of the thermodynamics and fluid dynamics. Standard simulations based on the elastic 
water hammer theory, where constant water properties and constant velocity of the spreading pressure 
waves are applied, exclude thermo-fluid dynamic coupling and are denoted as uncoupled simulations.  

 

FSI in pipelines and piping systems. Statistical data of the USA Office of Pipeline Safety [83] for the 
years 1986-2000 under column "Failed Pipe (Internal Force)" show that there have been a total of 5979 
accidents, with 357 deaths and 3494 injuries, costing over $1 billion. These accidents can be directly 
attributed to FSI. Although Wylie in 1996 [115] estimated that 98% of the piping systems are not 
subjected to significant FSI during the transient he recommended the conduction of FSI analyses for 
every piping system. Wylie was actually concerned with the fact that there was (and still is) no reliable 
criterion, which would signify whether the FSI is relevant for the particular piping system or not. There 
are some qualitative criteria based upon engineering judgement like Casadei’s [22] who recommended 
FSI analysis in flexible piping systems (lower number of supports, thin walls) with sharp pressure waves 
in less compressible single-phase liquid. Lavooij and Tijsseling [75] proposed and validated the first and 
the only reliable criterion for the inspection of the FSI in a single elbow piping system, which is based on 
natural frequency of the piping system, dynamic loading of the transient and the valve closing time. If the 
FSI effects are estimated to become important, the dynamic behavior of the liquid and piping system 
should be treated simultaneously. Calculations with FSI are always necessary in situations with high 
safety requirements, mostly encountered in nuclear and chemical industry. Appropriate FSI analysis 
followed by an appropriate design and definition of the optimal operating procedures is the best 
prevention against detrimental effects of the FSI. The FSI analyses may also be useful in post-accident 
analyses [94]. Methods and models for analysis of FSI including simulations, discussion and 
comparisons to experimental data are given in the present thesis. 

A number of ways of classifying FSI in piping systems have been proposed. Païdoussis [95,96] gave a 
very simple and logical classification in terms where the initiating force acts: (i) structure-induced 
(transient originates in the structure) and (ii) fluid-induced (transient originates in a fluid). The most 
common causes of structure-induced FSI are vibrating machinery mounted on the structure, vibrations 
transferred through supports and structure of the building (traffic, other machinery, etc.), earthquakes, 
impact of a falling objects, etc. The most common causes of the fluid-induced FSI are pressure waves 
that are generated through accelerating/decelerating flow. The initiators of the accelerating flow are 
valves (closing/opening), pumps (start up/shut down) or pipe breaks. Another possible source of the 
pressure wave generation is the condensation of vapor cavities or vapor slugs in a fluid and explosions 
in chemically active fluids. The fluid-induced transients appear more frequently and are more severe 
(Westinghouse, [138]). Generally, forces and displacements in structure-induced transients are reduced 
due to the FSI coupling mechanisms because the energy is transferred from the structure to the fluid, 
while the extreme pressures might be even increased in the fluid-induced transients.  

 

FSI in piping systems of Nuclear power plants. The most important information that characterizes the 
fluid flow in a pressurized water reactor nuclear power plant (NPP) is that pressurized (p ~ 155 bar) hot 
(T ~ 600 K) water is used as a medium for energy transfer from the reactor vessel through the steam 
generators to the turbine. Westinghouse technology advanced manual [138] recognizes the fluid-
induced water hammer as a default initiating mechanism of the FSI events in NPPs. The US Nuclear 
Regulatory Commission [138] during the early 1970s detected the increasing frequency of water 
hammer events in piping systems of the NPPs. For pressurized water reactors, the major contributor to 
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the potential challenges to the system integrity and operability was the steam generator water hammer 
(SGWH). The Updated Safety Analysis Report (USAR) for Krško NPP states that water hammer in the 
reactor coolant system primary loop piping is precluded because of the system design, testing, and 
operational considerations. Nevertheless, the water hammer with FSI can appear in all remaining non-
safety related piping systems of NPPs. Westinghouse technology advanced manual [138] classifies the 
following major types of water hammer: 

• Classical water hammer (column separation) is usually the result of a sudden, nearly 
instantaneous flow change of a moving fluid (unexpected valve closures, backflow against a 
check valve, pump startup into voided lines where valves are closed downstream, etc.). 

• Condensation-induced water hammer (CIWH) appears when cold water (such as auxiliary 
feedwater) comes in contact with hot steam. Conditions conductive to this type of water hammer 
are an abundant steam source and a long empty horizontal pipeline being refilled slowly with 
cold water. As the steam condenses, the countercurrent flow of steam and cold water is 
established. As the pipe fills up, the steam velocity increases, setting up waves on the surface of 
the water, and eventually causing a fluid slug. Slugs entrap steam pockets, that rapidly 
condense. Condensation is extremely fast and when the water slug suddenly strikes the water in 
a previously filled pipe, it produces a traveling pressure wave which imposes loads of the 
magnitude that would be similar to the load induced by classical water hammer in the piping 
network. This CIWH phenomenon occurred at San Onofre Nuclear Generating Station Unit 1 
(SONGS-1) in 1985. The CIWH occurred also in NPP Krško in 1979, where the water-hammer 
extended back into the feedwater piping. 

• Steam generator water hammer (SGWH) can occur following a reactor trip when the steam 
generator top feedring drains and refills with cold auxiliary feedwater. The mechanism of SGWH 
is similar to CIWH but it had occurred principally in pressurized water reactors with the steam 
generators having top feedrings for feedwater injection. The significance of this event varied 
from plant to plant, but it is concernable that the SGWH could cause a complete loss of 
feedwater and affects the ability of a plant to remove decay heat after a reactor trip. Damage 
from the SGWH has been generally confined to the feedring and its supports and to the steam 
generator feedwater nozzle region. In 1978, the generic subject of water hammer was classified 
as an unresolved safety issue (USI A-1). The SGWH resulted in a fractured weld in a feedwater 
line at Indian Point Nuclear Power Plant Unit 2 in 1972. The SGWH was later precluded by 
redesign of the feedwater inlet. 

Stadke and Bestion [105] stressed that nuclear technology strongly depends on numerical simulations of 
processes. There are two major reasons: (i) the impracticality of executing full-scale experiments and (ii) 
the absence of simplified scaling laws for the governing processes (transfer of results from small scale 
test facilities to the full size plant). The most challenging task for nuclear thermo-fluid dynamics codes is 
related to the modeling of transient two-phase flow processes including boiling and condensation heat 
transfer. The development of reliable two-fluid models is largely attributable to the work of Ishii [61], 
Boure [15], Delhaye and Achard [31] and Drew and Lahey [36]. The models are coded in various 
programs as RELAP5 [20], ATHLET [17], CATHARE [13], TRAC and TRACE [129], WAHA [126], etc. 

 

1.2. Literature review 
Since 1970's a substantial amount of research in the FSI field has been focused on understanding and 
quantifying interactions between the transient flow in the fluid and the resulting vibrations of the piping 
system. A short overview of the FSI field in this section excludes very comprehensive fields of the pure 
thermo-fluid dynamics and pure structural dynamics. Textbooks like Ishii and Hibiki 2006 [62], Moody 
1990 [89], Toro 1999 [128], Warsi 1998 [135], Mills 1999 [88], and many others for thermo-fluid 
dynamics, and Clough and Penzien 2003 [25], and others [1,6] for structural dynamics are 
recommended. Models for thermo-fluid dynamics and models for structural dynamics have been coded 
and verified in countless computer codes developed for scientific or commercial purposes.  

The main stream of the FSI research in fluid-filled piping systems is currently based upon the principle of 
coupling between the fluid and the structure at the level of a physical model represented with a set of 
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one-dimensional partial differential equations. The equations are then solved with a numerical method 
and coded in a single computer code. There are two main branches of investigation: (i) steady state 
induced vibrations and (ii) transient induced FSI. Representative for the first are publications of 
Païdoussis 1998 [95,96] who performed an exhaustive summary over the FSI field with a special 
emphasis on a steady state flow induced flutter, vibration and resonance. Representatives of the second 
are publications of Wiggert and Tijsseling [113, 115, 144] who performed several systematic reviews of 
the experimental and theoretical research in the field of the fluid-filled piping systems. Their work is very 
valuable and exhaustive and represents a fundamental reading for everyone working in the field of 
transient pipe flow. Although the majority of the work of Tijsseling and Wiggert is dedicated to a single 
phase transient pipe flow, they applied and discussed also the quasi-two-phase flow model known as 
the concentrated cavity model. The theory and the numerical procedure described and discussed in this 
dissertation contribute to the latter branch i.e. to the field of transient induced FSI. 

1.2.1. Physical models for FSI 
In 1960 Regetz [99] investigated the pressure and velocity fluctuations in a straight pipe filled with rocket 
fuel. He incorporated velocity measurements recorded at the free end in classical water-hammer theory 
in the frequency domain. He proved that the axial dynamics of the pipe influences the behavior of the 
fluid. In 1967 Holomboe and Rouleau [58] reported about the problems with FSI encountered in their 
spiral experimental apparatus. The problems were not eliminated until their spiral pipe was embedded in 
concrete. Wood 1968 [147,148] presented conclusions of his work where the liquid was subjected to 
periodic disturbances and where disturbances were excited with a rapid valve closure. He proved that 
the pressure defined by Youkovsky equation is significantly exceeded if axial pipe deformations are 
allowed. Wood and Chao 1971 [149] performed parametric investigations on 30°, 60°, 90°, 120° and 
150° bends and a perpendicular T junction. They did not model the structure; they just used measured 
junction velocities as input to the structural analysis. They proved that FSI is negligible if the pipe elbows 
are rigidly supported; meanwhile unrestrained elbows are considerably affected by FSI. Jones and 
Wood 1972 [65] gave an analytically derived expression for the oscillations of the pressure around 
Joukowsky value in the case of a rapid valve closure. 

In 1956 Skalak [104] defined a set of four linear first order partial differential equations (PDEs) for  the 
simulations of interactions between the transient in the fluid and the axial movement of the straight 
section of the pipe. Skalak derived the FSI four equation model as an extension of Joukowsky’s method 
and as the low-frequency limit of two-dimensional fluid and shell representations. He showed that this 
model permits solutions that are waves of arbitrary shape traveling without dispersion at the phase 
velocity of either liquid or pipe, but he made no attempt to solve the four equations in general [117]. 
Vardy and Fan 1986 [132], Tijsseling 1996 [115], Tijsseling and Lavooij 1996 [116], Tijsseling 2003 
[117], Gale and Tiselj 2005 [44], and many other researchers proved the validity and effectiveness of 
this model by both theoretical and experimental studies in the time and frequency domains. The linear 
constant coefficient model, mostly solved with the Method of Characteristics (MOC), was so widely 
used, discussed and verified in practice, that it became the fundamental model in the FSI field [19, 116, 
143]. The models that came out from the Skalak’s model are based upon essentially the same 
assumptions; they differ in the number of equations i.e. in the number of the tracked waves that travel 
along the pipe and interact with each other. These waves are axial, flexural, rotational, radial and 
torsional stress waves in the piping system and pressure waves in the fluid. The models based on 
Skalak’s model are summarized by Wiggert and Tijsseling [113, 115, 144]. All models have continuity 
and momentum balance equations for the description of the water hammer in the fluid. Elansary and 
Contractor 1993 [37] used Skalak’s model and added gravity and friction to the water hammer part of the 
equations to solve the problem of the rapid valve closure in a tank-pipe-valve system. They prescribed a 
procedure for the optimum closure of a valve in a given time interval to minimize the reaction forces and 
verified it with experiments. Walker and Phillips 1977 [134] used Skalak’s model and added two 
equations for radial forces and inertia in a theoretical study of the propagation of a short-duration 
pressure pulses in a straight elastic pipe. Schwarz 1978 [101] performed a similar approach in a 
numerical study of coupled axial liquid and pipe motion in a single straight pipe, but afterwards he 
neglected relatively unimportant radial inertia terms and solved the four-equation model.  

Valentin, Phillips and Walker in 1979 [131] studied the reflection and transmission of the fluid transients 
at an elbow of a liquid-filled pipe with constant radius of curvature in a single plane. Valentin, Phillips 
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and Walker solved the eight-equation model with four generalized constitutive equations and four 
equations of motion for fluid, axial, lateral and rotational forces. With other words, Valentin, Phillips and 
Walker used Skalak’s four-equation model and added four equations of the Timoshenko beam (see 
Appendix F, and Taylor and Yau 2003 [110], Menez et al. 2005 [87]). Hu and Phillips 1981 [59] used 
similar model and validated results with experimental data, Tijsseling, Vardy and Fan 1996 [114] added 
a concentrated cavity model and analyzed FSI in water hammer transient with two-phase flow. All these 
physical models were derived in ‘stiff’ Eulerian coordinate system. Gale in 2007 [45] derived a nonlinear 
eight-equation model for simulation of deformable arbitrarily shaped piping systems and simulated rod 
impact experiment. He developed the physical model in ‘deformable’ Lagrangian coordinate system. 
Gale compared results and validated his model with experimental results.  

Joung and Shin 1985 [67] presented a nine-equation model. Fourteen-equation model (axial, flexural, 
rotational and torsional motion in 3D space) was presented and solved in the frequency domain by 
Wilkinson 1978 [145]. Wiggert, Hatfield and Stuckenbruck 1987 [143], Tijsseling and Lavooij 1996 [116] 
and also Obradovič 1990 [94] who performed the simulation of an accident in a nuclear power plant by 
using the method of characteristics to solve a fourteen-equation model in the time domain.  

Forces of friction coupling are usually negligible compared to the forces of junction and Poisson 
coupling. Tentarelli 1990 [111] is one of the few that performed an analysis with friction coupling in the 
time domain. Zhang et al. 1999 [155] considered the friction coupling in analyses performed in the 
frequency domain. 

Two mathematical properties of the above mentioned physical models are very important, and these 
properties are actually properties of all physical models derived and discussed in the present thesis. 
Every physical model can be written in the following vectorial form (see Chapter 4 for details): 

 0R
t s
ψ ψ∂ ∂+ + =
∂ ∂

C                       (4) 

and the physical model is addressed as hyperbolic (and thus diagonalizable) if the Jacobian matrix C 
with dimension M has M unique real eigenvalues and has a corresponding set of M independent 
eigenvectors. Hyperbolicity is not inherited in every physical model (six-equation two-phase flow model) 
however, it can be introduced by appropriate additional differential terms (virtual mass). A hyperbolic 
physical model together with initial and boundary conditions represents a well-posed mathematical 
problem (Trapp and Ransom [130]), which means that the solution exists, is unique, and depends on 
initial and boundary conditions. 

1.2.2. Numerical methods for FSI 
Mathematical models from Skalak’s four-equation (Skalak 1956 [104]) to Wilkinson’s fourteen-equation  
model (Wilkinson 1978 [145]) were mainly solved with the Method of Characteristics (MOC). Wylie and 
Streeter 1978 [150] described the MOC method as convenient for hyperbolic systems of equations with 
constant eigensystem where the characteristic speeds of the traveling waves are constant with time and 
position irrespective to the current fluid state and pipe properties. The method enables an (almost) exact 
treatment of the steep gradients. It is exact within the rough assumption of the physical model. This 
approach has been applied in the FLUSTRIN FSI code [40]. Tijsseling and Fan 1991 [112], Heinsbroek 
and Tijsseling 1993 [54], Tijsseling and Lavooij 1996 [116], and Heinsbroek 1997 [55] compared two 
techniques to solve the basic equations in the time domain: the mixed MOC-FEM (method of 
characteristics - finite element method) procedure and the MOC method. The main concern of the 
researchers was the comparison of two completely different procedures. Their linear eight-equation 
model was made up of two uncoupled sets of equations. The first set was the four-equation linear axial 
model and it was in both cases solved with method of characteristics (MOC). The second set of 
equations was the four-equation model for lateral and rotational dynamics (Timoshenko beam 
equations) which was solved with the MOC method in the first case and with the finite element method 
(FEM) in the second case. Heinsbroek 1993 [53] concluded that for axial waves the MOC procedure is 
preferred, since it leads to almost exact solutions. For lateral waves, the MOC requires very fine 
computational grids compared to the MOC-FEM (because of the stiff source terms – discussion in 
Section 5.4). Heinsbroek and Tijsseling reported that solutions obtained with MOC-FEM procedure are 
adequate for the computation of FSI occurrences in practical piping systems. The MOC-FEM, that 
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includes Poisson coupling, corresponds to the component-synthesis method of Wiggert, Otwell and 
Hatfield 1985 [141] where the standard water hammer procedure was coupled to a modal representation 
of the structural motion. They conducted laboratory tests on a large test rig consisted of a 77.5 m long 
and 0.11 m diameter steel pipeline with six miter bends (45°) allowing significant FSI in order to validate 
their numerical approaches. Heinsbroek 1997 [55] performed FSI analyses of a pipeline in a nuclear 
power plant with the MOC-FEM. Lee and Kim 1999 [79] performed several FSI analyses with the MOC. 
Casadei et al. 2001 [22] combined the Finite Element Method for the structure and the Finite Volume 
Method for the fluid and confirmed that the presented method is very applicable for simulations of large 
industrial components thanks to its robustness and generality. The weaker side of his method is the 
fluid-structure interface where it is necessary to define boundary conditions for accurate coupling of the 
nodal forces of the finite element and volumetric forces of the finite volume. The fluid is described with 
the Euler equations. This method was applied in the EUROPLEXUS code [22]. Tijsseling 2003 [117] 
presented exact solution of the Skalak’s four-equation model obtained with improved MOC. Gale 2007 
[45] developed a nonlinear eight-equation model for FSI in arbitrarily shaped piping systems and solved 
the model with a high resolution characteristic upwind finite difference numerical method, which is based 
on Godunov methods for conservation laws. The method is second order accurate for smooth solutions 
and becomes first order accurate at discontinuities. The characteristic upwind method is essentially an 
explicit scheme but in some rare cases applies implicit iterations to solve problems with the stiff source 
terms.  

1.2.3. Two-phase flow and cavitation models for FSI 
Most of the researchers in the field of FSI neglect two-phase flow. As in Skalak's model, they 
conservatively assume constant fluid density and single-phase flow. Youngdahl et al. 1980 [154] and 
Wiedermann 1982 [140] applied the concentrated cavity model where the FSI mechanisms were taken 
into account only when the pipe was plastically deformed. Fan and Tijsseling 1992 [39] described and 
applied the concentrated cavity model, also referred to as discrete vapor cavity model, for simulations of 
the cavitating transient pipe flow. The concentrated cavity model treats the flow as single phase, cavities 
can appear at limited number of certain positions along the pipe. The appearance of the cavity triggers 
splitting of the piping system into two independent calculational sections with single-phase flows. The 
cavitation is considered only as an inertially controlled process, where heat and mass transfers are 
assumed as infinitely fast whereas the amount of heat and mass transfer is assumed to be negligible. 
Muller 1987 [91] simulated HDR experiments [115] with the aid of a CFD computer code including 
thermo hydrodynamic effects. He coupled the code to a structural dynamics FEM code to include FSI, 
but he did not describe the coupling mechanism. He concluded that FSI is unimportant as long as the 
two-phase conditions prevail, since the compressibility of the fluid is then essentially greater than the 
elasticity of the pipes. Tijsseling 1996 [115] agrees with Muller's conclusions but only with respect to the 
Poisson coupling while disregards with respect to the junction coupling. Tijsseling furthermore warns 
that in some cases of two-phase flows, shock waves may develop, which are stronger than in a single-
phase flows and can impose severe loads on the pipelines. Tijsseling, Vardy and Fan 1996 [114] 
presented experimental and numerical results on a one-elbow pipe system, where the concentrated 
cavity model was incorporated in the FSI eight-equation model. They stressed that the use of the 
concentrated cavity model is legitimate only if no distributed cavitation is present. Tijsseling and Lavooij 
1996 [116] presented the results of the calculations of a column separation water hammer with FSI in a 
tank-pipe-valve system. Cavitation in their model could appear at only one position corresponding to the 
specified grid point, justifying the denomination one column separation model. Tijsseling and Fan 1991 
[112] presented similar results obtained with column separation model, where cavitation can appear at 
two (and more) positions along the pipe simultaneously. They obtained excellent agreement with 
experimental data of Vardy and Fan 1986 [132]. Bettinali et al. 1991 [14] used the concentrated cavity 
model in their FSI computer code.  

1.2.4. Code coupling approach for FSI 
The FSI simulations based on the code coupling principle became quite attractive recently. For end-
users as well as commercial code developers it is desirable to avoid a redevelopment of new simulation 
codes for coupled problems and to maintain the knowledge and experience of well accepted and verified 
highly standardized mono disciplinary codes. The main idea behind is to create a universal platform that 
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manipulates with inputs and outputs of two different commercial codes within each time step (for thermo-
fluid dynamics and structural dynamics). The platform implies a standardized and portable library for 
solving coupled problems even with codes that are provided by independent software vendors with no 
access to the source codes. The most comprehensive code interface is MpCCI (Mesh based Code 
Coupling Interface) [90] that currently enables coupling of about 10 codes (number depends on version 
and platform). The MpCCI 3.0.6. for Microsoft Windows XP platform on Intel x86 supports the structural 
dynamics codes (FEM applications) ABAQUS 6.7 [1] and ANSYS 11.0 [6], and thermo-fluid dynamics 
codes (CFD applications) like FLUENT 6.3.26, RadTherm 8.1.1, and Flux 9.3.2 (see MpCCI manual [90] 
for more details on supported codes). Interactions between the independent thermo-fluid dynamics code 
and the independent structural dynamics code are based on Newton's third law of action and reaction 
and second law where force acting on a body gives acceleration in the direction of the force with a 
magnitude inversely proportional to the mass of the body. The same approach was used also in 
coupling of the EASYPIPE and KEDRU [38]. The EUROPLEXUS [22] code used similar code-coupling 
approach, the difference is that the fluid and the structural part of the code were developed with the 
purpose to be coupled, and therefore some coupling steps and interpolations are simplified and realized 
with a higher order of accuracy. These essentially three dimensional approaches are currently too 
processor demanding for analyses of piping systems and are used only for analyses of local FSI effects 
in small parts like elbows, valves, T-connections, branches etc. 

 

1.3. Objectives and achievements of the thesis 
The present thesis is directed towards the modeling of the fluid-structure interaction (FSI) during single 
or two-phase transient flows in piping systems. The extensive research and scientific opus of prof. 
Tijsseling [112 - 118] represents a state-of-the-art of the simulations of the FSI during transient flow in 
piping systems with numerically solved hyperbolic physical models i.e. systems of coupled partial 
differential equations. Tijsseling and other members of the FSI community almost exclusively use the 
method of characteristics (MOC) for the numerical solution of the physical models. The MOC enforces 
the application of linear hyperbolic physical models with constant coefficients and systematically 
excludes the application of more accurate nonlinear and nonlinear physical models. The linear constant 
coefficient models exclude coupling between thermodynamics and fluid dynamics, they exclude 
consideration of basic elements of the piping system that affect local junction and distributed Poisson 
coupling like elbows and curvatures, variable thickness, radius and other variable geometric and 
material properties. The identification of the limiting part of the current MOC-based approach yields the 
main objective of the present thesis which is to overcome the limitations of the MOC by utilization of the 
high resolution characteristic upwind finite difference numerical method. The objective was founded in 
our experiences gained during development of the computer code WAHA [126], which is used for 
simulations of the two-phase transient flow, and in the fact that variations of the characteristic upwind 
numerical methods for conservation laws have been successfully applied in various engineering 
problems worldwide during the last decade [44,45,125,127]. The application of the characteristic upwind 
numerical method enables the establishment of other important objectives of the present thesis which 
are (i) to derive nonlinear balance equations for two-phase flow in deformable and arbitrarily shaped 
Lagrangian coordinates, (ii) to derive equations for description of structural dynamics of arbitrarily 
shaped piping systems, (iii) to assemble appropriate FSI physical models and (iv) to compile these 
physical models into an effective computer code for simulations of the FSI transient pipe flow. 

The present thesis represents an original contribution in the field of the fluid-structure interaction in 
piping systems conveying single-phase or two-phase transient flows. Our research yields the following 
original achievements: 

1. Development of appropriate nonlinear physical models for advanced simulations of the FSI 
during two-phase transient flow in arbitrarily shaped piping systems: 

o The general balance equation is derived in deformable and arbitrarily shaped 
Lagrangian coordinates and utilized for establishment of mass, momentum and energy 
balance equations. The two-fluid model of the two-phase flow, the quasi-two-phase flow 
and the homogeneous equilibrium two-phase flow physical models for thermo-fluid 
dynamics are established. 
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o The physical models for axial, lateral, rotational, and torsional structural dynamics of 
arbitrarily shaped fluid-filled piping systems are derived. 

o Physical models of thermo-fluid dynamics are coupled with models for structural 
dynamics into various FSI (multi) physical models of various complexity. 

2. Application of the high resolution characteristic upwind numerical method for the numerical 
solution of nonlinear physical models and derivation of procedure for integration of stiff source 
terms in Timoshenko beam equation through implicit iterations.  

3. Development and validation of the computer code for simulations of the cavitating transient pipe 
flow with significant FSI. Additional sub-models and improvements are coded and are available 
for utilization (consideration of real water properties, flexibility factor, thick-walled model, external 
load and forces, elastic and stiff supports, von Mises stress, valve, tank and closed end pipe 
elements, etc.) 

Some results of our research were published in the Journal of Pressure Vessel Technology (Gale and 
Tiselj [45]), namely the nonlinear eight-equation physical model for the description of single-phase flow 
transients coupled with axial, lateral and rotational dynamics of the piping system lying in 2D plane was 
solved with the characteristic upwind numerical method and successfully applied for the simulation of 
single phase transients in the single-elbow rod impact experiments.  

  

1.4. Overview of the thesis 
The introductory chapter is followed by Chapter 2 where the derivation of the balance equations for the 
fluid dynamics in arbitrarily shaped and deformable piping systems is given. Chapter 3 gives the 
derivation of the structural dynamics equations expressed with a general parameter for arbitrary shaped 
piping systems. All fundamentals for the understanding of the derivations in Chapters 2 and 3 and 
comparison with standard approaches are collected in the appendices. The balance equations for the 
fluid with the FSI and then, the two-phase flow, the homogeneous equilibrium two-phase flow, and the 
quasi-two-phase flow models for thermo-fluid dynamics are described in Chapter 4. All available 
combinations of physical models that that can be used for simulations of the FSI are collected further. 
The models are grouped according to the physics of the phenomenon into the following groups: thermo-
fluid dynamics, structural dynamics and FSI physical models. Each set of partial differential equations is 
made up of the equations developed in Chapters 2 and 3; each physical model is described and when 
possible, the eigensystem is evaluated analytically. The most comprehensive physical models are 
described schematically. The high resolution characteristic upwind numerical method is described and 
discussed in Chapter 5. Chapter 6 contains a review of results with validation and discussion of the FSI 
phenomenon itself and discussion on applied physical models and numerical method. The results are 
compared to the analytical solutions, to the results of the computer codes based on the MOC method 
and to experimental results. Concluding remarks are given in Chapter 7. 
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2. Balance equations for a fluid in Lagrangian coordinates 
Eulerian coordinates are fixed in space while Lagrangian coordinates are fixed to a given parcel of the 
deformable pipe and move in space. Lemonnier [82] states that derivation of the system of equations 
from Eulerian coordinates into Lagrangian coordinates is necessary for an accurate description of the 
thermo-fluid dynamics in moving and deforming piping systems. This chapter gives the derivation of the 
general balance equation of thermo-fluid dynamics in deformable and arbitrarily shaped Lagrangian 
coordinates and then the application of the general balance equation for derivation of mass, momentum 
and energy balances. The derived balance equations, closure relations and solution procedures are 
strongly correlated with the standard balance equations derived in Eulerian coordinates (fundamentals 
of the standard thermo-fluid dynamics are given in Appendix C). The derivation of the equations in 
deformable and arbitrarily shaped Lagrangian coordinates introduces several new terms that enable FSI 
coupling with the piping system. Therefore, there are new terms that belong to the pipe structure (axial 
pipe velocity, lateral pipe velocity, axial force). These terms cannot be evaluated without coupled 
consideration of the pipe dynamics.  

Although the theory derived and discussed in this Chapter refers to any fluid, note that the fundamental 
fluid applied in this thesis is water.  

2.1. Introduction 
Coutris [26] and Lemonnier [82] gave an obvious generalization of the typical six-equation two-phase 
equations for the fixed, straight and undeformable pipe (Eulerian coordinates), which is mostly used in 
thermo-fluid dynamics, to a general form of the 1D averaged two-fluid model equations in a deformable 
pipe of arbitrary shape undergoing arbitrary motions (Lagrangian coordinates). The crucial step toward 
their model is the area averaging of the balance equations and then the derivation and application of the 
Gauss (divergence) theorem for the spatial derivatives and the Leibniz integral rule for temporal 
derivatives for averaged quantities on the section (Appendix A). The derivation and then the application 
of the general form of the 1D averaged two-fluid model equations for a deformable pipe of arbitrary 
shape undergoing arbitrary motions is unique in the field of thermo-fluid dynamics and especially in the 
considered fast transient FSI field and is thus described in detail in the next sections. 

A natural way to describe a pipeline or the fluid domain inside that pipeline consists in considering a line 
such as the neutral fiber of the pipe and a section sliding on this line (see Figure 1). The sliding section 
on the line generates a domain that Coutris [26] denominates as a fluid filament. Mathematically, the 
neutral fiber of the pipe is described by a parameter arc length s0. Lemonnier [82] states that the arc 
length is appropriate for purely fluid structures, but it may become useless for FSI problems. The 
sections of interest are physically attached to the pipe, but due to the compression or stretching of the 
pipe (Figure 2), measuring sections, boundaries or any kind of hydraulic singularity are never located at 
a constant arc length measured from one end of the pipe. The values of the arc length vary with time; 
therefore, quantities of interest should be referenced by a more general parameter s that relates the 
section of interest to that of the reference state of the pipe.  

X

Y

Z

t

n

b

P

S
C

Σ
Ω

 
Fig. 1: A fluid filament generated by the motion of the section S limited by circle Ω,  

the center of which is P and lies on the curve C. 
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2.2. Development of general balance equation 
General arc length parameter and coordinate system. The fluid filament shown in Figure 1 is defined 
by the inner space of a moving and deforming pipe of circular cross-section. With a general arc length 
coordinate s instead of s0, the pipe singularities, ends and measuring sections are at a fixed coordinate 
s, moreover, the normalized length of the calculation domain is fixed. The general parameter s is related 
to the arc length s0 with relationship: 

( ) ( ) ( )0 ,s t s y s tt= +                        (5) 

where y is the displacement of the section (see Figure 2). At any time t, the position s along C can be 
calculated as a function of the arc length s0. Under undistorted conditions, the parameter s is equal to 
the reference state s0(t=0). The derivative of s0 is defined as: 

0 1
t

ys
ss

∂∂⎛ ⎞ = −⎜ ⎟ ∂∂⎝ ⎠
                         (6) 

 

A curve C, determined by a single parameter s and a circular plane section S sliding with its normal 
tangent to the C, generates the inner surface of the pipe. The center point P of the section S is located 
on C and it is defined as: P = P(s,t). It is clear that the motion of the point P attached to C defined by: 

C
P

st
∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠

U                           (7)  

depends on the choice of parameter s. The cross-section is assumed to remain perpendicular to C at 
any time and the radius R of the cross-section is assumed to depend on the arc length.  

Figure 1 shows that section S on the curve C is described by the local basis built upon the Lagrangian 
reference frame also known as Fresnet frame ( ), ,t n b , the vectors of which are respectively the tangent 

to the curve, the normal to the curve and the binormal (Appendix B). The local basis at the cross-section 
S at position of the point P is therefore ( ), ,P n b , and the corresponding coordinates of a point located on 

the section S are (P,y,z). The vector tangent to C, the vector normal to C (points towards the center of 
curvature), and the binormal of the Fresnet frame are defined as: 

0

P
s

∂=
∂

t   and  
0 0s s

∂ ∂=
∂ ∂

t tn   and  = ×b t n            (8) 

The vectors of the Fresnet frame obey the following derivation rules: 

0 0 0
, ,

p p p p

d d d
ds R ds R T ds T

= = − − =t n n t b b n                (9) 

where Rp is the radius of curvature of the pipe and Tp  is the radius of torsion of the pipe. 

The following relationships hold for any function f, considering the relation between s and s0 in Eq. (5): 

( ) ( )( ) ( )00 , ,,,f f fs t s ts ts t = =                     (10) 

The derivatives of f and f  are then defined by: 

00 t

sf f f
ss s s

µ
∂⎛ ⎞∂ ∂ ∂= =⎜ ⎟∂∂ ∂ ∂⎝ ⎠

   and  
0

t
s

f f f f fs
t t s t st

µ∂ ∂ ∂ ∂ ∂∂⎛ ⎞= + = +⎜ ⎟∂ ∂ ∂ ∂ ∂∂⎝ ⎠
      (11) 
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where µ is the scale factor close to 1 if the deformation of the pipe is small and µt is recognized as 
velocity of the point P on C ( CU ) projected onto tangential direction t . The parameters µ  and µt are 
given as [82]: 

20 0

1

1 2 ' 't

s
s y y

µ
∂⎛ ⎞

= =⎜ ⎟∂⎝ ⎠ + ⋅ +t
  and  

0

t C x
s

s u
t

µ ∂⎛ ⎞= = ⋅ =⎜ ⎟∂⎝ ⎠
U t         (12) 

 

 

Pipe section at t = t0

Pipe section at t = tn

s0(t0)

s0(tn)
s(tn)

s(t0)

P1 P2 P3

P1 P2 P3

 
Fig. 2: Initial and deformed shape of the pipe. Differences between the arc length parameter s0 and 

the general arc length parameter s are indicated. 
 

 

 

 

General balance equation. Each particular phase of the single or multi-phase flow can be described 
with the Navier-Stokes system of equations. The Navier-Stokes system, which contains the continuity, 
momentum and energy equation and an additional equation of state, is defined for the space exclusively 
filled with one phase and bounded with the wall and/or the other phase. There are numerous textbooks 
describing the Navier-Stokes system (see Moody [89], Ishii and Hibiki [62], Davis [28], Warsi [135], etc.). 
According to Ishii and Hibiki [62] the general balance equation yields: 

( ) 0k k k k kk k kt
ρ ψ ρ φρ ψ∂ + ∇ ⋅ + ∇ ⋅ − =

∂
Jv                  (13) 

where ρk is the density of the phase k (k = f for fluid and k = g for gas phase, see also Figure 3), and kv  
is the fluid velocity vector. The appropriate mass, momentum and energy balance equations are 
obtained by application of variable definitions given in Table 1. 
 

Table 1:  Variables for the application of the generalized balance equation for the phase k, where ek is 
the specific internal energy, etot,k is the specific total energy, gF  are the body forces, kq  is the heat flux, 

I is the identity vector, and Vk is the viscous part of the stress tensor. 
Balance kψ  kJ  kφ  

Mass 1 0 0 
Momentum kv  kp −I V  gF  

Total energy 2
, 0.5tot k k ke e v= + ( )k kkp+ ⋅−q vI V  g kF ⋅ v  

 

 

Area averaged general balance equation. The cross-section area averaged general balance equation 
is obtained by integration of the general balance equation (13) over the considered section Sk of the 
filament filled with the phase k (see Fig. 3): 

( )
( ),

0
k

k k k k kk k k
S P t

dSv
t

λρ ψ ρ φρ ψ∂⎛ ⎞ =+ ∇ ⋅ + ∇ ⋅ −⎜ ⎟∂⎝ ⎠∫ J               (14) 
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where λ is the geometrical factor, generally very close to 1, accounting for the lesser weight of points of 
the section Sk lying closer to the center of curvature of the neutral fiber C at curvatures: 

 1
p

x
Rλ = −                          (15) 

In the 1D approach adopted in the present thesis, evolution equations for averaged quantities on the 
section are needed while the averaging of the local balance equations yields integrals of time or space 
derivative terms. For transformation of the latter type of terms into the former, the Leibniz integral rule for 
the time derivatives and the Gauss (divergence) theorem for the spatial derivatives are applied. 
Lemonnier [82] noted that the derivation of the two-fluid balance equations is possible if these theorems 
are valid for an arbitrary section, while Coutris [26] proved that the Gauss theorem and the Leibniz 
integral rule preserve the same form when the section of the filament has an arbitrary shape. The 
Leibniz integral rule and the Gauss theorem are defined in Appendix A.  

S Ω Sg

Sf

Ωf

Ωg

 
Fig. 3: A filament cross-section showing the domain Sk occupied by the 
phase k = f or g. Each phase is limited by the phasic interface  Ω, and 

the fraction of the perimeter of S pertaining to the phase k is Ωk. 
 

Using the Gauss theorem and the Leibniz rule and by further assuming that the wall of the filament Ωk is 
impermeable (no mass transfer through the pipe wall): 

( ) 0 konΣ Σ− ⋅ = Ωv U n                      (16) 

the following area averaged general balance equation for phase k (k = g or f) yields: 

( )( )
( )( )

0 0 0

0

k k k k

k k

C
k k k k C k k k k k S k

S S S S

k k k i k k
k k

k k
k k k k S

dS dS dS dS
t s s s

d d dS

ρ ψ λ ρ ψ λ ρ ψ λ ρ ψ

ρ ψ
λ λ ρ φ λ

Ω ΩΩ Ω

∂∂ ∂ ∂+ ⋅ + ⋅ + − + ⋅
∂ ∂ ∂ ∂

− + ⋅ ⋅+ Ω + Ω − =
⋅ ⋅

∫ ∫ ∫ ∫

∫ ∫ ∫

U t U t v U J t

v U J n J n
n n n n

 (17) 

where kn  is the vector normal to the surface of phase k, Σn  is the vector normal to the pipe wall, kΩn  is 

the unit vector normal to the interface between the phases, iU  is the displacement velocity of the 

interface, ΣU  is the displacement velocity of the lateral surface (pipe wall),  SU  is the displacement 

velocity of the section S, and CU  is the velocity vector of a point P attached to the line C.  

The average on the section is introduced and has a special form suggested by the limiting forms of the 
Leibniz rule and the Gauss theorem. This procedure closely follows that of Delhaye [32] for the straight 
pipe and that of Coutris [26]: 

k k

k

S S

k
S

f dS f dS

f
dS S

λ λ

λ
= =
∫ ∫

∫
    ⇒    

k

k k
S

f dS S fλ =∫          (18) 
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where kS  is the volume occupied by phase k per unit length of the pipe. This definition for any constant 
value a satisfies condition: aa ≡ , but the relationship can not be satisfied if the factor λ is omitted in 
the denominator of Eq. (18). The integrals of variables across Sk can be substituted with the area-
averaged quantities in accordance with Eq. (18), and the area averaged general balance equation 
yields: 

( )( )
0 0 0

0
k

C
k k k k k k C k k k k k k k S k

k k k k k k
k k k

k k k k

S S S S
t s s s

m d d S

ρ ψ ρ ψ ρ ψ ρ ψ
λ

ψ λ λ ρ φ
Ω ΩΩ Ω

∂∂ ∂ ∂+ ⋅ + ⋅ + − + ⋅ +
∂ ∂ ∂ ∂

+ ⋅ ⋅Ω + Ω − =
⋅ ⋅∫ ∫

U tt U t v U J

J n J n
n n n n

  (19) 

where km  is the mass flux density through the phasic interface Ω (Fig. 3) and is defined as: 

( )k k k i km ρ= − ⋅v U n                        (20) 

The velocity of any point on surface S, SU  is related to the velocity of the point P on curve C, CU  by: 

S C Cy z
t t

∂ ∂= + + = + Ω ×
∂ ∂
n bU U U r                    (21) 

where Ω  is the angular velocity of rotation of the Fresnet frame (see Appendix B). In practice it 
represents the convection induced by the rotation of the section S around its center P - this term is small 
and it is neglected, then SU  = CU .  

The fourth term in Eq. (19) is the convective term. Introduction of the relationship between the velocities 
of the section S and point P attached to the curve C yields the convective term in expanded form: 

( )( )( ) ( )C
0 0

0

0

0

term 1

1 term 2

1 term 3

1 term 4

k k k k k k k k k k

C
k k k

C k k k

C k k k

S S
s s

S
s

S
s

S
s

ρ ψ ρ ψλ λ

ρ ψ
λ

ρ ψ
λ

ρ ψ
λ

∂ ∂− + Ω × + ⋅ = ⋅+∂ ∂
∂

− ⋅
∂

∂− ⋅
∂

∂− ⋅
∂

t tv U r J v J

U t

U t

tU

     (22) 

where the first term is the convective term in the absence of section motion. The second term resembles 
the stretching term. The third term resembles the tangential displacement induced convective term with 
the scale factor λ included and the fourth term represents the contribution of the displacement to the 
convection at curvatures of the pipe. The balance Eq. (19) rewritten with the expanded convective term 
given in Eq. (22) then yields: 

( )

0 0

0 0

1 11 1

1 0
k

C k k k k
k k k k k k C k k k

k k

k k
k C k k k kk kk k k k

k k

mS S S d
t s s

S S d S
s s

ψρ ψ ρ ψ ρ ψ λ
λ λ

λ ρ φρ ψρ ψ λλ

ΩΩ

ΩΩ

∂ + ⋅∂ ∂⎛ ⎞ ⎛ ⎞+ ⋅ + ⋅ + Ω +− −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⋅⎝ ⎠ ⎝ ⎠

⋅∂ ∂− ⋅ + Ω − =⋅+∂ ∂ ⋅

∫

∫

U J nt U t
n n

J ntt Uv J n n

 (23) 

Equation (23) is particularly complicated for use and understanding, therefore several assumptions were 
made to get simplified form of the area averaged general balance equation. Table 2 collects all 
approximations and definitions applied for simplification of the one dimensional form of the area 
averaged general balance equation. The introduction of the flat profile assumption, the relationship for 
the void fraction and geometrical factor, the replacement for the phase surface fraction etc. then yield: 
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( )

( )
0 0

0

y
k k k k k k k k k k k k i k k k k

p

k k k kk k

u
S S v S S P m

t s s R

P S

α ρ ψ α ρ ψ α α ρ ψ ψ

α ρ φ

∂ ∂ ∂+ + ⋅ − + ++ ⋅
∂ ∂ ∂

− =⋅

J t J n

J n
     (24) 

 

Table 2:  Approximations and definitions for derivation of the simplified equation (24). 
Description of the approximation Equation 

Flat profile approximation f and f gf gf = =  

The void fraction and phase surface  
fraction approximations 

( )1 Sg pk x Rα α α α −= ≈ =  * 

kS Sα =  

1
k k

k k

S S f S ff

S S f S ff

α α

α α
λ

= =

= =
 

The geometrical factor approximation  λ ≈ 1    ⇒    11 0
λ

⎛ ⎞− ≈⎜ ⎟
⎝ ⎠

 

Description of the definition Equation 
The fluid velocity vector (lateral velocities are  

equal to the pipe wall velocity) k k y zv u u= + +v t n b  

The velocity vector of a point P at  curve C C x y zu u u= + +U t n b  

The interfacial area per unit length of the pipe i
k k

dP λ
ΩΩ

Ω=
⋅∫ n n

 

The wall surface area wetted by phase k per unit length of 
the pipe 

k

k
k k

dP λ
ΩΩ

Ω=
⋅∫ n n

 

Derivation rule for tangential vector Eq. (9) 
0 p

d
ds R

=t n  

* XSg is the distance of the centre of gravity of Sk to the centre of the section. The error may be small if the radius of the curvature 
of the pipe is large with respect to the pipe, or if the phases are evenly distributed in the pipe section  
 

 

 

 

General area averaged balance equation in Lagrangian coordinates. Using the rules for the 
transformation of the balance equations from the parameter arc length s0 to the general parameter s that 
are defined in Eq. (11), the area averaged balance equation (24) expressed in the Lagrangian 
coordinates gives: 

( ) ( ) 0

y
k k k x k k k k k k k k k k k k

p

i k k k kk k k k k k

u
S u S S v S S

t s s s R

P P Sm

α ρ ψ α ρ ψ µ α ρ ψ µ α α ρ ψ

α ρ φψ

∂ ∂ ∂ ∂+ + + ⋅ − +
∂ ∂ ∂ ∂

+ − =+ ⋅ ⋅

J t

J n J n
      (25) 

The general area averaged balance equation in Lagrangian coordinates is applicable for any phase k, 
namely fluid f or gas g, and Table 3 collects appropriate indices for the application of the equation for the 
fluid and gas phase of the two-phase flow. 

 

Table 3:  Application of the area averaged general balance equation fluid and gas phase. 
Property index k vapor volume fraction αk phase factor i 

Fluid f 1 - α 1 
Gas g α -1 
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2.3. Mass, momentum and energy balance equations 
Mass balance. The mass balance equation is derived from the area averaged general balance equation 
in Lagrangian coordinates Eq. (25) by inserting definitions 1; 0; 0k k kψ φ= = =J  from Table 1, and 
using the relationship for vapor generation rate Γg: 

{ 1 for fluid phasewhere  1 for gas phasei k gPm iS i= Γ = −                (26) 

Then the mass balance equation (continuity) is written as a first order partial differential equation:  

y
k k x k k k k k k k g

p

u
S u S S v S iS

t s s R
α ρ α ρ µ α ρ α ρ∂ ∂ ∂+ + = − Γ

∂ ∂ ∂
           (27) 

where all differential terms are collected on the left hand side and nondifferential terms (source terms) 
are collected on the right hand side. 

 

Momentum balance. The momentum balance equation is obtained by inserting definitions:  k kψ = v , 

k kp= −J I V , and k kFφ =  from Table 1 into the general balance equation in Lagrangian coordinates, Eq. 

(25). Projection of the general balance equation in tangential direction t  gives: 

( )
( ) ( ) ( )

( ) ( ) 0

k k k x k k k k k k k k

y
k k k k k i k k i k i k k

p

k k k k k k k k

S u S S v S p
t s s s

u
S S P m P p P

s R

P p P S F

α ρ α ρ µ α ρ µ α

µ α α ρ

α ρ

∂ ∂ ∂ ∂⋅ + ⋅ + ⋅ + ⋅ ⋅ −
∂ ∂ ∂ ∂

∂ ⋅ ⋅ − ⋅ + ⋅ + ⋅ ⋅ − ⋅ ⋅ +
∂

⋅ ⋅ − ⋅ ⋅ − ⋅ =

v t v t v t I t t

V t t v t v t I n t V n t

I n t V n t t

      (28) 

The following relationships are applied to simplify Eq. (28): 
• Normal and binormal velocities of the fluid velocity vector defined in Table 2 are usually 

negligible compared to the axial fluid velocity in the pipe: 

k kv≈v t   therefore (see also Eq. (B-13)):      k kv
t t

∂ ∂⋅ =
∂ ∂
v t        (29) 

• The following pressure identity can be derived by applying the Gauss theorem on the diagonal 
tensor pI  (see Appendix A, Eq. (A-6) and Table  2): 

( ) ( ) ( ) ( )k i k k kk k
pS P P S Sp p pps s

µ α µα µα∂ ∂⋅ + ⋅ + ⋅ = ⋅ =⋅ ⋅ ∇ ⋅⋅∂ ∂
t t t tI n I n II t        (30) 

• The classical assumption of the two-fluid modeling states that the tangential viscous stress and 
the tangential heat flux are negligible (Delhaye, Giot and Riethmuller [32]) compared to the 
convective terms. It is known that this assumption is violated in some rare cases like shocks 
waves, but it is reasonable in most of the other situations: 

( ) 0k ⋅ ≈⋅ tV t    and also  0k ⋅ ≈q t                  (31) 

• The interface vapor generation term gives (vi is the velocity of the interfacial area): 

0
0

f g
i k k i k k g i i

g g

v
Pm Pm v iS v v v

Γ ≥⎧
⋅ = = Γ = ⎨ Γ <⎩

v t              (32) 

• The interface friction force Fi is defined as: 

( )i ik kP iSF⋅ =⋅ tV n                         (33) 
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• The wall friction term for each phase with wall friction force Fk,t is defined as: 

( ) ,k k tk kP SF⋅ = −⋅ tV n                        (34) 

• The body force per unit volume due to gravity in a pipe with inclination angle γ is written as: 

g gxF F⋅ =t                            (35) 

Then the first order partial differential equation for momentum balance yields:  

, ,

k k k x k k k k k k k k

y
k k k g i i k gx k t

p

pS v u S v S v v S
t s s s

u
S v iS v iSF SF SF

R

α ρ α ρ µ α ρ µα

α ρ

∂ ∂ ∂ ∂+ + + =
∂ ∂ ∂ ∂

− Γ + + −
           (36) 

where all differential terms are collected on the left hand side and all non-differential terms (source 
terms) are collected on the right hand side of the equation. Appendix C shows that some of the empirical 
correlations used for description of the source terms may sometimes contain also differential terms.  

 

Energy balance. The energy balance equation is obtained by inserting definitions: ,k tot keψ = , where 
2

, / 2tot k k ke e v= + , ( )k k kkp= + ⋅−J q vI V , and k k kFφ = ⋅ v  from Table 1 into the general balance 
equation in Lagrangian coordinates, Eq. (25): 

( )

( ) ( ) ( )

( ) ( )

, , ,

, ,

k k tot k x k k tot k k k k tot k k k k k

y
k k k k k tot k i k tot k i k k i k k i k k k

p

k k k k k k k k k k

S e u S e S v e S S p
t s s s s

u
S S e Pm e P P p P

s R

P P p P S

α ρ α ρ µ α ρ µ α µ α

µ α α ρ

α

∂ ∂ ∂ ∂ ∂+ + + ⋅ + ⋅ ⋅ −
∂ ∂ ∂ ∂ ∂

∂ ⋅ ⋅ − + + ⋅ + ⋅ ⋅ − ⋅ ⋅ +
∂

⋅ + ⋅ ⋅ − ⋅ ⋅ −

q t I v t

V v t q n I v n V v n

q n I v n V v n 0k k k kFρ ⋅ =v

  (37) 

The following approximations and relationships are considered in derivation of the Eq. (37): 
• Tangential viscous stress and tangential heat flux are negligible (see Eq. (31)) and because 

k kv≈v t , then as a consequence:  

( ) ( ) 0k k kk k kS S v
s s

µ α µ α∂ ∂⋅ ≈ ⋅ ≈⋅ ⋅
∂ ∂

t tV v V t                (38) 

• The pI  is a diagonal tensor of the uniform pressure and kv  is the fluid velocity vector, then: 

k kp p⋅ =I v v    and consequently  ( ) ( )k kk kS Spp
s s

µ α µ α∂ ∂⋅ =⋅ ⋅
∂ ∂

tI v v t     (39) 

• The vapor generation rate Γg is given in Eq. (26). 
• The interfacial volumetric heat flux is defined as: 

i k k ikP SQ⋅ = −q n                          (40) 

• Considering the flux density through the interface given by equation (20) it is possible to get: 

( ) ( ) ( )i k i i k ik kk k i k
k

pP P p Pm P pp
ρ

⋅ = = +⋅ ⋅ ⋅nI v v n U n               (41) 

where the first term on the right-hand side represents the pressure driven interface mass transfer 
and the second term represents the pressure driven dynamic effect of the moving interface. 

• Because the viscous stress tensor is symmetric: 
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( ) ( ) ( )i k i k k i k ik k k k k kP P v P iv SF⋅ = ⋅ ≈ ⋅ =⋅ ⋅ ⋅n v tV v V n V n              (42) 

• The wall-to-fluid heat transfer is neglected (fast transient assumption) or the wall is adiabatic: 

0k k kP ⋅ ≈q n                           (43) 

• With the flux density equation given by equation (20) it is possible to yield: 

( ) ( ) ( )k k k k k kk kk k k
k

pP P p P m P pp
ρ Σ⋅ = = +⋅ ⋅ ⋅nI v v n U n               (44) 

where the first term on the right hand side represents the pressure driven mass flow rate through 
the pipe wall (equal to zero) and the second term represent pressure changes due to the 
deformation of the pipe wall. Deformations of the pipe cross-section are negligible for straight 
sections while ovalization at the elbow shall be considered (usually through a flexibility factor). 

• Because the viscous stress tensor is symmetric, and because k kv≈v t : 

( ) ( ) ( ) ,k k k k k k k k tk k k k k kP P v P v SF⋅ = ⋅ ≈ ⋅ = −⋅ ⋅ ⋅n v tV v V n V n             (45) 

• Because k kv≈v t , then:  

k k k k k k k k k k k gxS F S v F S v Fα ρ α ρ α ρ⋅ ≈ ⋅ =v t                  (46) 

Then the first order partial differential equation for energy balance becomes:  

, , ,

2

, , ,
2

k k tot k x k k tot k k k k tot k k k

y k
k k tot k g ik k i k k gx k k t

p

S e u S e S v e Sv p
t s s s

u vS e iS SQ iSv F Sv F v SFhR

α ρ α ρ µ α ρ µ α

α ρ

∂ ∂ ∂ ∂+ + + =
∂ ∂ ∂ ∂

⎛ ⎞− Γ + + + −+⎜ ⎟
⎝ ⎠

        (47) 

All differential terms are collected on the left hand side and all non-differential terms (source terms) are 
collected on the right hand side. 

 

Application of the fluid balance equations for a straight and stiff piping system. If one assumes 
that deformations of the piping system are small, then the axial and lateral pipe velocities are zero (ux → 
0, uy → 0), the stretching rate becomes equal to one (µ → 1). It is further possible to assume that the 
piping system is straight, then the Junction coupling term becomes infinitesimal (uy / Rp  → 0). The 
Equation (27) for mass balance, the Eq. (36) for momentum balance and the Eq. (47) for energy balance 
then become: 

k k k k k gS S v iS
t s

α ρ α ρ∂ ∂+ = − Γ
∂ ∂

                    (48) 

, ,k k k k k k k k g i i k gx k t
pS v S v v S iS v iSF SF SF

t s s
α ρ α ρ α∂ ∂ ∂+ + = − Γ + + −

∂ ∂ ∂
        (49) 

2

, , , ,2
k

k k tot k k k k tot k k k g ik k i k k gx k k t
vS e S v e Sv p iS SQ iSv F Sv F v SFht s s

α ρ α ρ α∂ ∂ ∂ ⎛ ⎞+ + = − Γ + + + −+⎜ ⎟∂ ∂ ∂ ⎝ ⎠
 (50) 

The system of equations written above is essentially the same system of equations as the one described 
in Appendix C (Eqs. (C-4) - (C-6)) as a standard two-fluid system of equations in Eulerian coordinate 
system applied in the WAHA code (Tiselj et al. [126]) and other codes like RELAP5, CATHARE, TRAC, 
TRACE, etc. There are only minor differences between the WAHA equations and Eqs. (27), (36), and 
(47): 
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• The WAHA momentum equation contains a virtual mass term CVM and an interfacial pressure 
term pi. Both terms are differential and are added as auxiliary closure laws in the WAHA code to 
ensure hyperbolicity of the system in various flow regimes.  

• The energy balance equation in the WAHA code contains the term kp S
t

α∂
∂

. The origin of the 

term in the energy balance equations has been a topic of numerous debates in the past. 
However, the term is not important for our type of simulations and we proved that influence of 
this term on the results is negligible. Some textbooks like Toro [128] included this term (without 
given derivation), the other like Ishii and Hibiki [62] or Lemonier [82] not. According to our 
experiences, the term theoretically appears only in the energy equation if the existing equation is 
transformed into an equation with the enthalpy as basic variable instead of the total energy. The 
inclusion of this term simplifies the vectorial form of the system and thus simplifies the evaluation 
of the eigensystem.  

• The source terms are the same (some terms in the energy balance equation are neglected later 
by analogously with the same terms in the WAHA code) 

We have shown that the equations derived in Lagrangian coordinates under the assumption of a stiff 
and undeformable piping system naturally degenerate into standard equations derived in Eulerian 
coordinate system. We analyzed the differences between the standard model and the model derived 
with our approach and we realized that there is only one different term in the energy balance equation 
with negligible influence on the eigensystem. The other terms are either introduced as auxiliary closure 
laws or are neglected later being recognized as negligible (for instance change of the kinetic energy due 
to the interface mass exchange).  

 

New terms in the balance equations. A discussion on the improvements that appear in the derivation 
of the balance equations in a Lagrangian coordinate system is given in this paragraph. The comparison 
of equations (27), (36), and (47) derived in deformable and arbitrarily shaped Lagrangian coordinates 
and equations (48), (49), and (50) applicable for simulations of FSI transients in stiff and fixed piping 
systems gives the following conclusions: 

• There are two types of  improvements: there are new variables introduced in standard terms and 
there are new terms.  

• Every balance equation has a new differential term in the form ...xu
s
∂

∂
 which can be understood 

as a correction of the convective term resulting from the axial pipe movement. The new 
convective term is important for cases where the pipe motions are large. Rearrangement of 
the equations  (27), (36), and (47) yields the following form of the convective terms: 

( ) ...x ku v
s

µ ∂+
∂

.  

• All spatial derivatives in equations (27), (36), and (47) are multiplied by a scale factor µ, which 
accounts for axial deformations (stretching) of the pipe. The scale factor is defined by equation 
(12). The axial deformations of the piping systems are usually very small compared to the lateral 
movement (several orders of magnitude), and the stretching correction is expected to be 
very small. Therefore, the value of the scale factor is expected to be close to one. 

• The junction coupling term uy / Rp came in during the derivation of the convective term in the 
general balance equation. This term actually represents the contribution of the lateral pipe 
movement uy at curvatures, which is in FSI practice called the junction coupling. The Junction 
coupling term is very important at curvatures, but it is equal to zero for straight sections of 
pipe. 

There are three major improvements that affect: (i) convection due to axial pipe motion, (ii) space 
derivatives due to stretching (axial pipe deformations), and (iii) source terms due to junction coupling at 
curvatures. All these terms become important only for some special conditions. However, for accurate 
description of the FSI at curvatures it is necessary to account junction coupling term only. The other two 
terms represent a minor improvement and are negligible for FSI in most practical cases.  
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3. Dynamics of arbitrarily shaped piping system  
The piping systems considered in this dissertation are one dimensional structures (R << L), which are 
deformable and are arbitrarily shaped in the three dimensional space. The best parameter for the 
mathematical description of such structures is the general arc length parameter s, introduced and 
described in the previous Chapter (see Figure 2). The derivation of the appropriate partial differential 
equations for axial, lateral and rotational (in-plane and out-of-plane), radial and torsional dynamics is 
given in this Chapter. This derivation is based upon the constitutive laws and force/momentum balance 
equations. The wave equations and Timoshenko beam equations (for straight piping systems only) are 
easily obtainable by coupling of the constitutive law and force/momentum balance equations. The 
equations derived in the present section for a general arc length parameter s yield several new terms 
compared to the standard approach to simulate FSI transient flows described by Wiggert, Hatfield and 
Stuckenbruck [143] and Tijsseling  [115]. The new terms are not differential and describe local coupling 
mechanisms appearing at curvatures known as junction couplings. The standard approach is based 
upon the appropriate coupling of straight sections of the pipe, where the junction coupling is given with 
additional coupling relations at elbows and curvatures that act as  boundary conditions. 

An improvement of the new equations with respect to the standard approach is that the junction coupling 
at elbows and curvatures is described within the physical model, so the curvatures and elbows can be 
smooth, small (even due to deformations of the pipe), and arbitrary (regardless the boundary 
conditions). The piping systems applied in this thesis are assumed to obey the linear Hooke’s law of 
elasticity (see Appendix E). Valentin, Phillips and Walker [131] applied a physical model with similar 
source terms for piping systems with constant curvature. 

The considered physical models are essentially developed for simulations of the transient FSI, but they 
can be used also for consideration of oscillatory motions of piping systems (see for instance Section 
6.1). The natural frequency of oscillations is discussed at the end of this Chapter, as it was proved by 
Lavooij and Tijsseling [75] that natural frequencies of oscillation indicate potential vulnerability of the 
piping system by the FSI transient occurrence. 
 

3.1. Introduction 
Recall that the natural set of parameters to describe an arbitrarily shaped and deformable piping system 
is a curve C such as the neutral fiber of the pipe that can be described mathematically by a general 
parameter s (Figures 1 & 2). The position of the point P on a neutral fiber C of the pipe represented with 
parameter s is defined as P = P(s,t). The local coordinate basis for any point P on the curve is built upon 
the Fresnet frame ( ), ,t n b . The vectors of the Fresnet frame are respectively the tangent to the curve, 

the normal to the curve and the binormal. The vectors representing the physical state of the pipe at point 
P written with the vectors of the Fresnet frame are given in Table 4. 

Table 4: Vectors representing physical state of the pipe at point P. 

Description of vector Mathematical notation 

Fluid velocity k k y zv u u= + +v t n b  

Pipe translations x y zw w w= + +w t n b  

Displacement velocity C x y zu u u= + +U t n b  

Pipe rotations x y zφ φ φ= + +Φ t n b  

Rotation velocity x y zϕ ϕ ϕ= + +φ t n b  

Internal forces x y zN Q Q= + +F t n b  

Internal moments x y zM M M= + +M t n b  
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3.2. Axial dynamics 
Constitutive equation of axial motion. Spreading of the stress waves in the arbitrarily shaped piping 
system is described with two equations. The first equation is derived form the stress-strain Hooke’s law 
of elasticity. The constitutive equation for the axial direction relates the axial unit strain εxx to the axial 
stress σxx and the lateral stress σyy, and is derived in Appendix E in Eq. (E-10): 

 ( )1
xx yyxxε =

E
σ νσ−                       (51) 

Where E denotes elasticity modulus and ν the Poisson ratio. The relationship is known as the 
approximation of the three-dimensional Hooke's law for two-dimensional shell structures. The axial 
strain εxx is related to the tangential projection of the vector of displacements w  by the following 
relationship (see Appendix B for derivative rules):  

yx
xx

p

ww
s s R

ε ∂∂= ⋅ = −
∂ ∂
w t                      (52) 

where the term y pw R  describes the contribution of the lateral deformation to the axial strain at 

curvatures. The equation for the circumferential stress σyy is derived as Eq. (E-13) in Appendix E: 

 yy
R p
e

σ =                          (53) 

The relationship between the axial stress σxx and the axial force Nx is given as: 

x
xx

t t

N
S S

σ = ⋅ =F t                        (54) 

Putting equations (52), (53), and (54) into Eq. (51) yields the constitutive equation for axial motion:  

1y xx

tp

w N Rpw
S es R E

ν⎛ ⎞∂ −− = ⎜ ⎟∂ ⎝ ⎠
                    (55) 

Differentiation of the above equation with respect to the time yields the constitutive equation for axial 
motion of the arbitrarily shaped and deformable piping system (with / x xu = w t∂ ∂  and / y yu = w t∂ ∂ ): 

1 yx x

t p

uN uR p
ES t Ee t s R

ν∂ ∂∂− − = −
∂ ∂ ∂

                   (56) 

For straight piping sections, the radius of curvature approaches infinity and Eq. (56) gets the form that is 
used in standard models for FSI simulations (Eq. (14) in Wiggert, Hatfield and Stuckenbruck [143]): 

1 0x x

t

N uR p
ES t Ee t s

ν∂ ∂∂− − =
∂ ∂ ∂

                     (57) 

 

Equation of axial motion. The second equation for the description of the axial motion of the pipe is 
defined as equilibrium of all forces acting on a control volume (Fig. 4) and uses the second Newton’s law 
of motion, which states that the inertial force is equal to the product of the mass and acceleration. 
Summation of all forces in tangential direction on a differential element gives: 

2

2 ( , )sm s = s s t s
st

δ δ δ∂ ∂⋅ ⋅ + ⋅
∂∂

w Ft t f t                  (58) 
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where F  is the vector of the internal forces, ( ),s tf  stands for the friction, body and external forces per 
unit length, and ms stands for total mass of the pipe per unit of length (including eventual load). The 
tangential projection of the differential of the internal forces yields:  

yx

p

QN
s s R

∂∂ ⋅ = −
∂ ∂
F t                        (59) 

In accordance with Appendix B, the projection of the temporal derivative of translations in tangential 
direction yields: 

( )xw
t t

∂∂ ⋅ = + ⋅Ω ×∂ ∂
w t tw                      (60) 

where the term with the rotation of the Fresnet frame Ω is considered to be small and is neglected (it 
becomes important only for spiral piping systems). Projection of the friction, body, and external forces in 
the tangential direction yields: 

( ) ( ) , ,, , x
x k t t t gx

Ff SF S Fs t s t
s

⋅ = = + +
∆

f t                  (61) 

where an example of wall friction force Fk,t correlation is given with Eq. (C-24) and an example of body 
force Ft,gx with Eq. (C-15). Introduction of the above relationships into Eq. (58) then yields the second 
first order partial differential equation for axial motion of a deformable arbitrarily shaped piping system: 

, ,
yx x x

s k t t t gx
p

Qu N Fm = SF S F
t s R s

∂ ∂− − + + +
∂ ∂ ∆

               (62) 

Compared to the forces induced by the water hammer pressure waves and through the Poisson forces 
or junction coupling mechanisms, the friction and body forces usually play a minor (negligible) role and 
are thus neglected in most practical applications [115, 144]. Additionally, for straight piping sections, the 
radius of curvature approaches infinity and Eq. (62) gets the form that is used in standard FSI models 
(Eq. (13) in Wiggert, Hatfield and Stuckenbruck [143]): 

0x x
s

u Nm =
t s

∂ ∂−
∂ ∂

                        (63) 
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Fig. 4: Pipe section of length δs with force and mass balance in 3D space. 

 

3.3. Lateral and rotational dynamics 
The lateral and rotational dynamics of the piping system are usually treated together because the 
standard approach in FSI computational practice is based on the general Timoshenko beam theory, 
which is described in Appendix F. The Timoshenko beam equation of the Timoshenko beam theory 
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decays into a set of four partial differential equations, two for lateral and two for rotational dynamics. The 
Timoshenko beam theory is well established and frequently used in civil and mechanical engineering for 
the evaluation of dynamics of beams. Improvement of the standard Timoshenko beam theory developed 
for straight sections yields equations applicable for the description of deformable piping systems of 
arbitrary shape. Regarding the vectors of the Fresnet frame, the term in-plane dynamics refers to the 
dynamics within the plane defined by vectors t  and n , with vector b  as normal to the plane. For 
general piping systems spanning in the three dimensional space, the orientation of the vector b  varies. 
However for the planar piping systems, the orientation of the vector normal to the plane becomes 
constant, and if defined so, also conform with the coordinate Z  of the general coordinate system (Fig. 
4). For planar piping systems the term in-plane corresponds to the term curvature plane. Term out-of-
plane dynamics refers to dynamics within the plane spanned with vectors t  and b , and with vector n  
as normal to that plane. The out-of-plane dynamics becomes negligible for planar piping systems, while 
for three dimensional piping systems, the in-plane and out-of-plane dynamics are equally important. 

 

3.3.1. In-plane dynamics 
Constitutive equation of in-plane lateral motion. The first equation of the improved system of four 
Timoshenko beam partial differential equations (Appendix F) is obtained from the elementary Euler-
Bernoulli theory of bending that gives the linear shear stress-strain relationship between the shear force 
Qy and the shear strain β: 

y

t

Q
= β

S Gκ
−                          (64) 

where G = E / 2(1 + ν) stands for the shear modulus and κ for the Timoshenko shear coefficient 
(Appendix F). Due to the effect of the shear, the original rectangular element changes its shape to 
somewhat like a parallelogram with slightly curved sides. The total slope of the displacement of the 
beam differential element is defined as an angle of the bending rotation φz  of the beam element minus 
the increase in the slope of the element due to the shear strain β: 

z= β
s

φ∂ ⋅ −
∂
w n                         (65) 

Using the derivative rules for the vectors of the Fresnet frame, the slope of the displacement is related to 
the vector of the displacements by the following relationship:  

y x z

p p

w w w
s s R T

∂∂ ⋅ = + +
∂ ∂
w n                      (66) 

where Rp is the radius of curvature and Tp  is the radius of torsion of the pipe, the term wx / Rp describes 
contribution of the axial deformation to the change of the slope and the term wz / Tp describes  the 
contribution of the torsional deformation to the change of the slope of the pipe. The combination of 
equations (64), (65), and (66), and then differentiation with the time yields the constitutive equation for 
the lateral direction: 

1 y y x z
z

t p p

Q u u u
S G t s R T

ϕ
κ

∂ ∂
− = + −

∂ ∂
                   (67) 

where  / x xu = w t∂ ∂ ,  / y yu = w t∂ ∂  and / z z= tϕ φ∂ ∂  are the velocity-displacement relations. All 
torsional terms are neglected for planar piping systems. Additionally, for straight piping sections, the 
radius of curvature approaches infinity and Eq. (67) gets the standard form for simulations of the FSI 
(Eq. (6) in Wiggert, Hatfield and Stuckenbruck [143]): 
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1 y y
z

t

Q u
S G t s

ϕ
κ

∂ ∂
− = −

∂ ∂
                      (68) 

 

Equation of in-plane lateral motion. The equation of lateral motion is defined as the equilibrium of all 
forces acting on a control volume (Fig. 4) and using the second Newton’s law of motion, which states 
that inertial force is equal to the product of the mass and acceleration. Summation of all forces in the 
lateral (normal) direction on a differential element gives:  

2

2 ( , )Tm s = s s t s
st

δ δ δ∂ ∂⋅ ⋅ + ⋅
∂∂

w Fn n f n                  (69) 

In accordance with Appendix B, the projection of the temporal derivative of translations in normal 
direction yields: 

( )yw
t t

∂∂ ⋅ = + ⋅Ω ×∂ ∂
w n nw                     (70) 

where the term with the rotation of the Fresnet frame Ω is again small and it is neglected since it is 
important only for spiral piping systems. The normal projection of the differential of the forces yields:  

y x z

p p

Q N Sp Q
s s R T

∂ −∂ ⋅ = + +
∂ ∂
F n                     (71) 

The body and external forces in the lateral direction are defined as:  

( ) ( ) ( )cos, , y
y T

F
f m gs t s t

s
γ⋅ = = −

∆
f n                  (72) 

Finally, the equation of lateral motion yields (with / y yu = w t∂ ∂ ): 

( )cosy y yx z
T T

p p

u Q FN Sp Qm = m g
t s R T s

γ
∂ ∂ −− + + −
∂ ∂ ∆

             (73) 

For straight piping sections, the radiuses of curvature and torsion approach infinity, body forces for in-
plane oscillation become negligible and if there is no external load, then Eq. (73) gets the form of the 
standard physical model utilized in FSI studies (Eq. (5) in Wiggert, Hatfield and Stuckenbruck [143]): 

0y y
T

u Q
m =

t s
∂ ∂

−
∂ ∂

                        (74) 

  

Constitutive equation for in-plane rotational motion. The constitutive equation for the rotational 
motion is conducted from the elementary theory of bending that gives a relationship between the 
bending momentum and the angle of rotation bending: 

z tM = EI
s

∂ ⋅
∂
φ b , where yz

ps s T
φφ∂∂ ⋅ = −

∂ ∂
φ b                (75) 

Combination of the above definitions and then differentiation over the time yields the constitutive 
equation for in-plane rotational motion: 

1 yz z

t p

M =
EI t s T

ϕϕ∂ ∂− −
∂ ∂

                      (76) 
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For straight piping sections, the radius of torsion approaches infinity and Eq. (76) gets the form that is 
used in standard FSI simulations (Eq. (4) in Wiggert, Hatfield and Stuckenbruck [143]): 

1 0z z

t

M =
EI t s

ϕ∂ ∂−
∂ ∂

                       (77) 

 

Equation of in-plane rotational motion. Summation of the moments in binormal direction on a 
differential element in Fig. 4 gives: 

2

2 2t tI s = s sst s
ρ δ δ δ

⎛ ⎞⎛ ⎞∂ ∂ ∂⋅ ⋅ + × ⋅+⎜ ⎟⎜ ⎟∂∂ ∂⎝ ⎠⎝ ⎠

φ M Fb b r bF               (78) 

where { }2,0,0sδ=r  is the vector length from the center of the differential element to the vector force 

F . It is perpendicular to the force vector. The last term of the above equation yields: 

21
2 2y

QQ s ss ss
δ δδ

⎛ ⎞⎛ ⎞ ∂∂× ⋅ = ++⎜ ⎟⎜ ⎟ ∂∂⎝ ⎠⎝ ⎠

Fr bF                 (79) 

The differential of the lateral force (the second term on the right hand side) in Eq. (79) is usually 
infinitesimal and small compared to the size of the force and it is neglected.   

The binormal projection of the differential of the momentum vector yields (see Appendix B):  

yz

p

MM
s s T

∂∂ ⋅ = −
∂ ∂
M b                       (80) 

According to Appendix B, the projection of the temporal derivative of translations in binormal direction 
yields: 

( )z

t t
φ∂∂ ⋅ = + ⋅Ω ×∂ ∂

φ b bw                      (81) 

where the term with the rotation of the Fresnet frame Ω is negligible for piping systems in plane. 
Rearrangement yields the first order partial differential equation known as the equation of rotational 
motion of the arbitrarily shaped deformable piping system: 

yz z
t t y

p

MMI ρ = Q
t s T

ϕ∂ ∂− − +
∂ ∂

                    (82) 

Again, for straight piping sections, the radius of  torsion approaches infinity and Eq. (82) gets the form 
that is utilized in standard FSI physical models (Eq. (3) in Wiggert, Hatfield and Stuckenbruck [143]): 

z z
t t y

MI ρ = Q
t s

ϕ∂ ∂−
∂ ∂

                       (83) 

 

3.3.2. Out-of-plane dynamics 
This section gives a brief derivation of the four partial differential equations for the description of the 
arbitrarily shaped 3D deformable piping system that moves out-of-curvature plane. The derivation is very 
similar to the derivation of equations for in-plane lateral and rotational dynamics. Major differences are 
stressed only, for details see analogy with the previous section. An extrapolation for the straight piping 
systems can be performed analogously to the previous section. An example of standard equations 
applied for FSI simulations can be found in Wiggert, Hatfield and Stuckenbruck [143]. 
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Constitutive equation of out-of-plane lateral motion. The following relationships are applied:  

z

t

Q = β
S Gκ

− ,  yz

p

ww
s s T

∂∂ ⋅ = −
∂ ∂
w b , and y= β

s
φ∂ ⋅ −

∂
w b             (84) 

where Qz stands for the lateral force. The constitutive equation for out-of-plane lateral direction gives: 

1 yz z
y

t p

uQ u
S G t s T

ϕ
κ
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                    (85) 

 

Equation of out-of-plane lateral motion. Summation of all forces in the lateral (binormal) direction on a 
differential element in Fig. 4 gives:  

2

2 ( , )Tm s = s s t s
st

δ δ δ∂ ∂⋅ ⋅ + ⋅
∂∂

w Fb b f b                  (86) 

Using relationships: 
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p
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The equation of out-of-plane lateral motion yields: 

( )cosyz z z
T T

p

Qu T Fm m g
t s T s
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                (88) 

 

Constitutive equation for out-of-plane rotational motion. Using relationships: 

y tM = EI
s

∂ ⋅
∂
φ n , and y x z

p ps s R T
φ φ φ∂∂ ⋅ = + +

∂ ∂
φ n               (89) 

and differentiation over the time yields the following constitutive equation for out-of-plane rotational 
motion: 

1 y y x z

t p p

M
EI t s R T

ϕ ϕ ϕ∂ ∂
− = −

∂ ∂
                    (90) 

 

Equation of out-of-plane rotational motion. Summation of the moments in normal direction n  on a 
differential element in Fig. 4 gives: 

2

2 2t tI s s sst s
ρ δ δ δ

⎛ ⎞⎛ ⎞∂ ∂ ∂⋅ = ⋅ + × ⋅+⎜ ⎟⎜ ⎟∂∂ ∂⎝ ⎠⎝ ⎠

φ M Fn n r nF               (91) 

The following relationships are applied: 
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φ
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And the equation for out-of-plane rotational motion yields: 
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y y x z
t t z

p p

M M MI ρ = Q
t s R T

ϕ∂ ∂
− + +

∂ ∂
                   (93) 

 

3.4. Radial dynamics 
Walker and Phillips [134] presented a theoretical study of the propagation of a short-duration pressure 
pulse in a straight elastic pipe, including Poisson and junction coupling. They applied the four-equation 
single-phase linear FSI model for axial dynamics in straight piping systems, known as Skalak’s four-
equation model (see Section 4.2.1 and Skalak [104]), and introduced the following two additional 
equations for radial inertia forces in the pipe wall: 

1 0
2

y
t f

u e pe R
t R ϕσρ ρ

∂⎛ ⎞ + − =+⎜ ⎟ ∂⎝ ⎠
                  (94) 

( )21 x
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νν
∂ ∂− −− ∂ ∂

                    (95) 

Derivation of radial dynamics equations can be found also in Tijsseling [115]. Schwarz [101] performed 
an extensive numerical study of coupled axial liquid and pipe motion in a single straight pipe with similar 
model to that of Walker and Phillips [115] and solved it with the Method of Characteristics. Schwarz 
proved that radial inertia is relatively unimportant for piping systems (high frequencies) and is thus not 
further considered in the present thesis.  

 

3.5. Torsional dynamics 
Constitutive equation of torsional motion. Torsional waves (around central axis of the pipe) become 
important at elbows in 3D structures where lateral waves via junction coupling mechanisms activate 
torsional and/or perpendicular lateral waves in accordance to the elbow properties like curvature and 
direction. Torsional waves are independent from the other equations of the physical model, the only 
interaction (coupling) occurs locally at geometric changes and elbows. The Euler-Bernoulli theory gives 
constitutive relationship between the torsional momentum Mx and the angle of torsional rotation φ : 

x tM = GJ
s

∂ ⋅
∂
φ t , where yx

ps s R
φφ∂∂ ⋅ = −

∂ ∂
φ t                (96) 

Combination of the above definitions, differentiation over the time, and introduction of the relationships 
 / x x= tϕ φ∂ ∂ , and  / y y= tϕ φ∂ ∂  give the constitutive equation for torsional motion: 

1 yx x

t p

M
GJ t s R

ϕϕ∂ ∂− = −
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                     (97) 

For straight piping sections, the radius of curvature approaches infinity and Eq. (97) gets the standard 
form (Eq. (2) in Wiggert, Hatfield and Stuckenbruck [143]): 

1 0x x
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GJ t s
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                       (98) 

Equation of torsional motion. Momentum balance in axial (torsional) direction on a differential element 
in Fig. 4 gives: 
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2

2 2t tJ s = s sst s
ρ δ δ δ
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where r  is the perpendicular vector from the differential element center to the force F : 
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The tangential projection of the differential of the momentum vector yields (see Appendix B):  

yx

p

MM
s s R

∂∂ ⋅ = −
∂ ∂
M t                        (101) 

In accordance with Appendix B, the projection of the temporal derivative of translations in the tangential 
direction yields: 

( )x

t t
φ∂∂ ⋅ = + ⋅Ω ×∂ ∂

φ t tw                      (102) 

where the term with the rotation of the Fresnet frame Ω is small and neglected (relevant only for spiral 
systems). Rearrangement yields the equation of torsional motion of the arbitrarily shaped piping system: 

yx x
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MMρ J =
t s R

ϕ∂ ∂− −
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                     (103) 

For the straight piping sections, the radius of curvature approaches infinity and Eq. (103) gets the form 
that is utilized in standard FSI simulations (Eq. (1) in Wiggert, Hatfield and Stuckenbruck [143]): 

0x x
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                      (104) 

 

3.6. Natural frequency of an arbitrarily shaped piping system 
FSI analyses have been very complicated, costly, time and processor consuming, therefore, there was 
always a wish to obtain reliable and generally accepted criteria for a quick estimation of the importance 
of the FSI. The only reliable criterion since, was proposed by Lavooij and Tijsseling [75] who discussed 
natural frequencies of oscillations and found a criterion valid for the case of rapid valve closure in a 
single elbow piping system. The criterion is based upon the natural frequencies of the structure, valve 
closure time and main time scale of the water hammer (pressure and/or stress) waves, i.e. the 
frequency of the dynamic load. Lavooij and Tijsseling have shown that FSI is intense if the 
frequency of the dynamic load is close to the natural frequency of the pipe and if the valve 
closing time is shorter than the period of the dynamic load. The natural frequency of the structure 
was then assigned as a potentially important indicator that points out the intensity and availability of the 
structure for a significant FSI.  

Oscillations are actually more common in practice than dynamic transient motions during FSI 
occurrence, but consequences are less important and the phenomenon itself does not represent 
significant danger for integrity of the piping system (except fatigue of the material). Oscillatory motion is 
damped because it is not possible to eliminate energy losses due to the non-conservation forces like 
friction, viscosity, resistance etc. The theory of oscillating beams is well established, solutions are mostly 
based on finite element numerical method. The frequency f is given in terms of the angular frequency ω  
(f = ω  / 2π) or in terms of the period T (f = 1 / T). Natural frequency fn is a characteristic property of the 
structure and it is defined as a frequency of oscillation of the structure in the case, when the load is 
rapidly removed from the structure. The natural frequency is a periodic sinusoidal oscillation of an object 
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or quantity with constant amplitude, sometimes referred to also as a simple harmonic motion. Many 
physical systems undergoing small displacements, including any objects obeying Hooke's law, exhibit 
almost simple harmonic motion. The fundamental equation of structural dynamics is the equation of 
damped simple harmonic motion: 

2
2

2 0w w w
tt

β ω∂ ∂+ + =
∂∂

                     (105) 

where β is the damping constant, w is the displacement, and ω is the angular frequency. The general 
solution of the equation of the damped simple harmonic motion gives: 

( ) ( )sint
dw t ae tβ ω θ−= −                      (106) 

where a stands for the amplitude of the oscillation, θ stands for the phase of oscillation, and ωd is the 
frequency of the damped simple harmonic motion. Kladnik [70] gave the relationship between simple 
harmonic motion and damping, and the definition for the logarithmic decrement (amplitude decrease due 
to damping):  
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dω ω β= −   and  ( )ln
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t

dt T

e T
e

β

β β
−

− +
Λ = =              (107) 

where Td is a period of damped simple harmonic motion.  

Harris and Crede [51] discussed natural frequencies in their Shock and vibration handbook. Table 5 
shows a compilation of frequently used expressions for the natural frequencies of common simple empty 
piping systems (or beams), where m stands for a concentrated mass or load, mb stands for the total 
mass of the pipe and mu stands for the pipe mass per unit length. The cross-section shape in 
considered cases is not relevant, therefore the equations in Table 5 hold also for empty piping systems. 
The presence of a fluid inside the pipe influences the natural frequency in a way that is not trivially 
predictable and differs from case to case. 

Table 5: Angular natural frequency for some standard simple piping systems (beams) [51, 8]. 
Angular natural frequency 

Description Geometry Massless 
beam with load

Massive beam with 
load 

Massive beam 
without load 

Fixed-free 
cantilever (axial) 

mb,mu
m

L n
SE
mL

ω =  ( )0.333n
b

SE
Lm m

ω =
+

 1
4n

t

E
L

ω
ρ

=  

Fixed-free 
cantilever 
(lateral) 

mb,mu
m

L 3
3

n
EI

mL
ω =  ( ) 3

3
0.23n

b

EI
Lm m

ω =
+

 
43.52n

u

EI
m L

ω =

Pinned-pinned 
beam (lateral) 

mb,mu
m

L/2 L/2 3
34n
EI

mL
ω =  ( ) 3

48
0.5n

b

EI
Lm m

ω =
+

 
49.87n

u

EI
m L

ω =

Fixed-fixed beam 
(lateral) 

mb,mu
m

L/2 L/2 3
38n
EI

mL
ω =  ( ) 3

196
0.375n

b

EI
Lm m

ω =
+

 422.4n
u

EI
m L

ω =

 

 

Systems of equations described in Sections from 3.1 to 3.5 implicitly describe harmonic oscillations and 
can be used for the study of appropriate oscillations. Axial and lateral oscillations are simulated in 
Section 6.1, and equations from Table 5 are used for the validation of the physical model and numerical 
scheme. The theory of damped simple harmonic motion is used also for description of difficulties that 
arise due to the stiff source terms of the Timoshenko beam equations described in Section 5.4. 
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4. Physical models 
The mass, momentum and energy balance equations of fluid flow derived in Section 2.3 have to be 
further rearranged to be applicable for implementation into the FSI physical models. First, one needs to 
define a set of basic variables and then, the balance equations need to be rearranged to correspond to 
the chosen set of basic variables. The first section of this chapter describes the conversion of the fluid 
balance equations into the form suitable for FSI simulation, then some fundamental thermo-fluid 
dynamics physical models with terms for the FSI are established. The equations of thermo-fluid and 
structural dynamics are then joined together into physical models that enable simulations of the FSI 
coupling during transient pipe flows in arbitrarily shaped deformable piping systems. Several physical 
models for the simulation of the thermo-fluid dynamics, structural dynamics and FSI dynamics in piping 
systems conveying transient flows of various complexities are presented. Some of the ‘small’ physical 
models are used as sub-models of ‘larger’ physical models; models that are pieced together from the 
sub-models are schematically indicated. The most general physical models are nonlinear. However, 
some test cases are calculated also with linearized systems of partial differential equations. Real water 
properties are applied, some of the models enable simulations of single-phase, the other imply two-
phase flow models. The initial conditions are discussed at the end of this Chapter. 

The following non-conservative basic variables are adopted in the present dissertation: 
• 6 basic variables for the fluid: the phasic fluid velocities vg and vf, the pressure p, the vapor 

volume fraction α, and the phasic specific internal energies eg and ef.  
• 12 basic variables for the structure: the axial pipe velocity ux and the axial internal force Nx, the 

lateral pipe velocities uy and uz and the shear forces Qy and Qz, the rotational velocities ϕz and ϕy 
and the bending moments Mz and My, and the torsional rotation velocity ϕx and the torsional 
momentum Mx. 

The applied set of basic variables turned out to be the most practical and effective for the simulations of 
the FSI coupling. The basic variables are non-conservative, therefore, the balance equations written with 
the basic variables are written in the so-called non-conservative form. With appropriate set of variables 
and elimination of the source terms, the system becomes conservative. For more details on differences 
between conservative, non-conservative, and characteristic variables see Tiselj [122] and Hirsch [57]. 

A physical model is a closed system of first order partial differential equations developed to simulate 
the physics of a particular phenomenon. All physical models considered in the present thesis can be 
essentially written as a set of first order partial differential equations: 

 S
t s
ψ ψ∂ ∂+ =
∂ ∂

A B                        (108) 

where A and B are matrices of the vectorial system, S  is vector of the sources, and ψ  is vector of the 
basic variables. The system in vectorial form can be rewritten into diagonalized vectorial form using 
trivial matrix operations through the following steps: 

• step 1:  Equation S
t s
ψ ψ∂ ∂+ =
∂ ∂

A B   is multiplied by A-1 from the left    

• step 2:  Equation 1 1 0S
t s
ψ ψ− −∂ ∂+ − =
∂ ∂

A B A  is rewritten as 0R
t s
ψ ψ∂ ∂+ + =
∂ ∂

C  

• step 3:  Matrix C is diagonalized:   C   →   LΛ L-1 
where C is the Jacobian matrix of the system, Λ  is the diagonal matrix of the eigenvalues and L is the 
matrix of the eigenvectors. The physical model in diagonalized vectorial form yields: 

0R
t s
ψ ψ∂ ∂+ + =
∂ ∂

-1LΛL                      (109) 

The Jacobian matrix C of the hyperbolic physical model is diagonalizable with real eigenvalues. The 
eigenvalues represent a propagation velocities of pressure and stress waves in the considered system. 
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Diagonalization of the Jacobian matrix is a fundamental step toward numerical solution of the physical 
model.   

 

4.1. Fluid balance equations with FSI 
Equations (27), (36), and (47) for mass, momentum and energy balance have to be rearranged to get 
partial differential equations in applicable form in terms of the basic variables. The structural dynamics 
equations described in Chapter 3 are already given in the applicable form.  

4.1.1. Two-phase flow with FSI 
The six-equation two-fluid model of two-phase flow is made up of mass, momentum and energy balance 
equations for each phase. Appropriate balance equations with terms for FSI are derived below. 

 

Mass balance equation with FSI. Rearrangement of the mass balance equation derived for deformable 
and arbitrarily shaped Lagrangian coordinates given in Eq. (27): 
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t s s R
α ρ α ρ µ α ρ α ρ∂ ∂ ∂+ + = − Γ

∂ ∂ ∂
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demands introduction of some auxiliary relationships:  
• Equation of state - according to the applied set of basic variables, the density is given as function 

of pressure and internal energy ρk = ρk (p, ek). The differential of the density then yields (see also 
Appendix D and Eq. (D-1)): 
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                    (111) 

• The change in the cross-section area is a result of the total circumferential strain defined by the 
following relationship (see Appendix E for the theoretical background): 
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After rearrangement, the two-phase mass balance equation with FSI terms, and written with the basic 
variables, yields: 
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   (113) 

The mass balance equation in the extended form expressed with the basic variables gives several new 
terms compared to the standard mass balance equation without FSI: these are terms with the pipe axial 
and lateral velocities ux and uy, the pipe axial force Nx, terms with the scale factor µ, and the radius of 
curvature Rp. Equation (113) is applicable only in combination with equations for axial and lateral 
dynamics of the piping system. For the pure fluid problems without consideration of the FSI effects, the 
new terms automatically fall out and the Equation (113) becomes equal to the corresponding equation in 
Eulerian coordinate system. 
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Momentum balance equation with FSI. The general momentum balance Eq. (36) is given as: 
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The continuity Eq. (27) is multiplied by fluid velocity vk and subtracted from the general momentum 
balance equation. Rearrangement yield the momentum balance equation in the non-conservative form: 
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      (115) 

Equation (115) lost several terms compared to the same equation in the form of Eq. (36). The most 
important is elimination of the junction coupling source term describing coupling between the fluid 
dynamics and the lateral pipe dynamics at curvatures. The momentum balance equation in non-
conservative form is therefore weakly affected by the FSI terms. The FSI coupling is described with 
terms containing scale factor µ and axial pipe velocity ux. 

 

Internal energy balance equation with FSI. The general energy balance equation (47) is written in 
terms of total energy etot,k: 
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       (116) 

The total energy and the internal energy are related through the expression etot,k = ek + vk
2 / 2, therefore, 

to transform Eq. (116) into the basic set of variables, the kinematic part must be eliminated from the 
general total energy balance equation. The kinetic energy balance equation is obtained by subtracting 
Eq. (115) from the Eq. (36) (both equations are appropriately multiplied by the fluid velocity). The kinetic 
energy balance equation is then subtracted from the energy balance equation (116). Some source terms 
for interface exchange of kinetic energy and the contribution of the kinetic energy are partially neglected 
in the internal energy balance equation, because the contribution of the kinetic energy to the total energy 
is much smaller than the contribution of the internal energy. Then the general internal energy balance 
equation becomes: 
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Equation (117) is further rearranged. The mass balance Eq. (113) is multiplied by the internal energy 
and subtracted from the Eq. (117). Then the internal energy balance equation in basic variables yields: 

( ) ( )
( )

22 1

2

k k k k
k k k k k k k kx k

x
k k ik g k k

t

e e v R pp pv v p νu v
t s s s Ee s

Nv p Q i h e
ES s

αα ρ α ρ µα µ µαµ

νµα

∂ ∂ ∂ ∂ ∂+ + + + − −+
∂ ∂ ∂ ∂ ∂

∂ = − Γ −
∂

    (118) 

The Eq. (118) is applicable for both, the fluid and vapor phase using definitions from Table 3.  
Comparing Eq. (118) to the same equation in the form of Eq. (117) shows that the junction coupling 
source term describing coupling between fluid dynamics and lateral pipe dynamics at curvatures is 
eliminated. The FSI coupling is described with terms with stretching scale factor µ and with additional 
axial pipe velocity ux in convective terms. 
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4.1.2. Homogeneous equilibrium two-phase flow with FSI 
The homogeneous equilibrium model (HEM) neglects the slip between phases (homogeneous model) 
and assumes instantaneous thermal relaxation (equilibrium model). In the HEM both phases are in 
thermal and mechanical equilibrium. The HEM represents an interesting improvement of the frequently 
used isothermal single or quasi two-phase flow model, which are limited for simulations of transients in 
cold water. The model includes an energy balance equation and can be used for fluids with arbitrary 
temperature. The model consists of three equations and excludes source terms for mass, momentum 
and energy non-equilibrium as relaxation is instantaneous. Equaion (113) for mass, Eq. (115) for 
momentum, and Eq. (118) for internal energy balance are modified by adding balance equations for both 
phases (example: the mass balance for the liquid is added to the mass balance equation for the gas). 
The following mixture variables are introduced: 
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where ρm is the mixture density, vm is the mixture velocity and em is the mixture internal energy. Then the 
HEM model with terms for FSI coupling yields: 
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where cm is the mixture speed of sound. Values for the vapor volume fraction α are from the interval 
[0,1]. At α = 1 single phase vapor flow is present in the system, and for α = 0, the pipe contains single-
phase liquid flow.  

 

4.1.3. Isothermal single-phase liquid flow with FSI 
The assumption of isothermal liquid flow is a very natural and important assumption for simulations of 
transients in single-phase water performed at room temperature. Due to the low compressibility of the 
liquid water the isothermal flow assumption is more or less equivalent to the adiabatic flow assumption. 
The flow is assumed single-phase (index k = f, and liquid volume fraction αk = 1), no interface exchange 
of heat, mass, and momentum. The internal energy is constant δek = 0; the internal energy balance 
equation is not needed. The physical model consists of two equations for mass and momentum balance. 
Transients with liquid of under such conditions are mainly considered by the FSI community and are 
also addressed in this thesis.  

The speed of sound c0,k that is given in Eq. (D-5): 
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and according to the Korteweg’s equation (D-4): 

( )2
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0,

1 2 1
1f

f f

R
Eec c

ρ ν+ =−                       (124) 

Then Eq. (113) becomes the single-phase mass balance equation in deformable Lagrangian 
coordinates for isothermal single-phase water hammer transient: 
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     (125) 

Similarly, Eq. (115) yields the single-phase momentum balance equation: 
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f f

f f f gx f tx f
v v p F Fu v
t s s
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               (126) 

where Ff,gx are the body forces and Ff,t are the wall friction terms.  

 

Balance equations of classical water hammer. Further simplifications of Eqs. (125) and (126) for 
arbitrarily shaped piping systems in Lagrangian coordinates are possible. Allievi [3,4] showed in 1903 
that the convective term in the balance equations are often negligible. The convective terms, in form of 
( )x f su vµ ∂ ∂+ , make equations nonlinear and thus make them difficult to solve numerically, i.e. the 
presence of the convective term enforces the use of complex numerical methods. In single-phase flows 
the fluid velocity vf is usually much smaller than the characteristic velocity of the traveling pressure 
waves in the fluid (approx. the speed of sound), and the convective terms are often negligible. Wylie and 
Streeter [150] denominate this assumption as the acoustic approximation. The body forces and the wall 
friction forces are usually much smaller than the forces of the pressure waves and can be easily 
neglected. If one further assumes that the pipe deformations are small, that the pipe is straight (no 
junction coupling) and that the pipe wall is stiff and undeformable (no Poisson coupling) then Eq. (125) 
becomes: 
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f f
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∂∂ +
∂ ∂

                       (127) 

and the Eq. (126) becomes: 

0f
f

v p
t s

ρ ∂ ∂+ =
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                        (128) 

which are actually the continuity and the momentum equations of the classical water hammer theory 
written in the introduction chapter - Eq. (2).  

 

4.1.4. Isothermal quasi two-phase flow with FSI.  
The isothermal quasi two-phase flow model represents a simplified upgrade of the isothermal single-
phase flow for simulations of the two-phase flow transients at room temperature liquid-filled piping 
systems where thermal relaxation plays a negligible role. Equations (125) and (126) are essentially used 
for simulation of the single-phase transient. In case of cavitation, an auxiliary two-phase continuity 
equation for vapor volume fraction balance is considered additionally to the basic single-phase physical 
model. The model was developed by Kalkwijk and Kranenburg [68], Kranenburg [72] and extended by 
Wylie and Streeter [151], Streeter [107], Simpson [103], and Tijsseling [113]. The cavitation model is 
assigned as a quasi two-phase because it is based on the strong physical constraint that the absolute 
fluid pressure equals the saturation pressure of the vapor psat during the cavitation. This is true only for 
isothermal systems because the vapor saturation pressure is a function of the temperature: 



 

                    - 37 -

satp p=                            (129) 

According to Simpson [103] it is possible to apply the following two-phase continuity equation: 

0fv
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∂ ∂ ∂
              (130) 

where vf is the fluid velocity, and α is the vapor volume fraction. Equation (130) simply states that the 
void fraction follows the bulk velocity motion i.e. changes in vapor volume fraction are considered as 
inertial instabilities in liquid columns. No thermal effects are considered. An alternative derivation of the 
continuity equation (130) for the vapor volume fraction can be conducted also by introduction of some 
trivial assumption into Eq (27). 

The quasi two-phase flow cavitation model is implemented through the following steps: 
• Inception of cavitation: 

o Cavitation starts at the instant the liquid pressure reaches the saturation pressure. The 
two-phase continuity Eq. (130) is activated. 

o The pressure is fixed at saturation pressure in the two-phase flow. 
• During the two-phase flow: 

o The density and the speed of sound are evaluated for two-phase mixture: 
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o The vapor volume fraction is evaluated through the two-phase flow continuity Eq. (130). 
• End of cavitation: 

o Cavitation ends when all cavities have vanished α = 0. 
o The two-phase continuity equation is eliminated. 

 

4.2. Physical models in matrix form 

4.2.1. Thermo-fluid dynamics physical models 
This section contains physical models applicable for simulations of the thermo-fluid dynamics without 
consideration of the FSI. The equations are written in vectorial form given by Eq. (108): 

 S
t s
ψ ψ∂ ∂+ =
∂ ∂

A B                        (133) 

Recall that balance equations derived in a Lagrangian coordinate system degenerate into standard 
equations derived under assumption of Eulerian coordinates for stiff and undeformable piping system.  

 

Nonlinear isothermal single-phase flow model. The two coupled isothermal single-phase flow 
equations in a Lagrangian coordinate system are given by Eqs. (125) and (126). The model is used for 
simulations of single-phase flow fluid dynamics. Considering only fluid dynamics, all terms related to the 
pipe axial force, pipe axial and lateral velocity, pipe deformations and curvature becomes zero and the 
system in vectorial form yields: 
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where the vector of the basic variables is { },T
fv pψ = . Matrices of the diagonalized vectorial form read:  
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Linear isothermal single-phase flow model (classical water hammer model).  If FSI coupling terms, 
convective terms, friction and body forces in isothermal single-phase flow model are neglected, the 
model becomes equal to the physical model given by the classical single-phase water hammer theory 
derived in Eulerian coordinates (Eqs. (127) and (128)). The vector of the basic variables is { },T

fv pψ = . 

The matrices A and B and the source term vector S  of the vectorial form read: 
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where the vector of the basic variables is { },T
fv pψ = . Matrices of the diagonalized vectorial form read: 
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Nonlinear quasi-two-phase flow model. The quasi-two-phase flow equations in the Lagrangian 
coordinate system are given by the isothermal single-phase Eqs. (125) and (126) and the third vapor 
balance Eq. (130): 
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where the vector of the basic variables is { }, ,T
fv pψ α= . The model is used for simulations of quasi-two-

phase flow fluid dynamics. The model is applied only in two-phase flow and according to the Allievi’s 
[3,4] definition, the convection becomes negligible and the vapor balance equation becomes decoupled 
of the first two equations and does not affect the speed of sound (eigenvalues). Matrices of the 
diagonalized vectorial form are then the same as for nonlinear isothermal single-phase flow model, and 
the vapor balance equation is integrated with a separate explicit Eulerian numerical scheme. 

 

Linear quasi-two-phase flow model. Analogously, the linear quasi-two-phase flow model is given with 
Eqs. (127), (128), and (130). The vector of the basic variables is { }, ,T

fv pψ α= , and the matrices of the 
vectorial form yield: 
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Matrices of the diagonalized vectorial form are the same as for linear isothermal single-phase flow 
model, and the vapor balance equation is integrated with a separate explicit Eulerian numerical scheme. 
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Homogeneous equilibrium two-phase flow model. The three-equation model consists of equations 
(120), (121), and (122). The model is used for simulations of two-phase flow fluid dynamics with the 
homogeneous equilibrium model. Considering only the fluid dynamics, all terms related to pipe axial 
force, pipe axial and lateral velocity, pipe deformations and curvature becomes zero and the matrices of 
the vectorial form read: 
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The vector of the basic variables is { }, ,T
m mp v eψ = . The system is analytically diagonalizable.  

 

Six-equation two-fluid model of two-phase flow. The two-phase flow balance equations defined by 
Equations (113), (115), and (118) for each of the phases yield a six-equation nonlinear two-phase flow 
physical model for simulations of two-phase flow thermo-fluid dynamics. Considering only thermo-fluid 
dynamics, all terms related to the pipe axial force, pipe axial and lateral velocity, pipe deformations and 
curvature becomes zero. The system can be written in the following vectorial form: 

 RS S
t s
ψ ψ∂ ∂+ = +
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A B                      (141) 

where the additional vector of the source terms RS  was introduced to separate the relaxation source 
terms from other, non-relaxation source terms. Matrices of the system A and B are given: 
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where Cvm is the virtual mass coefficient defined in Eq. (C-22). The vector { }, , , , ,T
f g f gp v v e eαψ =  is 

vector of the six independent basic non-conservative variables, where α is the vapor volume fraction, p 
is the fluid pressure, vk are the phasic fluid velocities, and ek are the phasic internal energies. The 
relaxation source terms demand a special numerical treatment and are thus written separately from the 
other (non-relaxation) source terms. The vectors of the relaxation and non-relaxation source terms read: 
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The relationships for the evaluation of the terms in the source term vector are given in Appendix C. The 
Jacobian matrix C = A-1B of the physical model is not analytically diagonalizable, and the eigensystem is 
then evaluated in a special numerical procedure (EISPACK numerical library for FORTRAN - 
www.netlib.org).  

 

4.2.2. Structural dynamics physical models 
The structural dynamics physical models without FSI coupling are applied for simulations of structural 
oscillations, and are briefly described in the following sections. 

 

Axial pipe dynamics model. Equations (56) and (62) for the straight pipe axial motion without fluid 
pressure term (Poisson coupling) can be written in a vectorial form as: 
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The vector of the independent variables is { },T
x xu Nψ = . The model is utilized for simulations of the 

axial dynamics of straight piping systems. The matrices of the diagonalized vectorial form are given by: 
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In-plane Timoshenko beam model. The lateral and rotational motion of the straight piping section in 
plane is described with Timoshenko beam equations (67), (73), (76), and (82). The vector 

{ }, , ,T
y y z zu Q Mϕψ =  is a vector of four independent variables (lateral velocity and force and rotational 

velocity and bending momentum). Then the matrices of the system A and B and the vector of the 
sources S  yield: 
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The Timoshenko beam equations rewritten in diagonalized vectorial form is: 
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Out-of-plane Timoshenko beam model. The out-of-plane lateral and rotational motion of the straight 
piping section can be described by the Timoshenko beam equations (85), (88), (90), and (93). Due to 
the symmetry of the pipe cross-section, the matrices of the system ATIM,in = ATIM,out and  BTIM,in = BTIM,out 
are actually the same as for the in-plane Timoshenko beam equations. New are the vector of four 
independent basic variables (binormal velocity and force and normal rotational velocity and bending 
momentum) { }, , ,T

z z y yu Q Mϕψ = , and the vector of the sources for out-of-plane bending: 
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The corresponding vector in diagonalized vectorial form is given by: 
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Torsional pipe dynamics model. Equations (97) and (103) for the pipe torsional motion, written in 
vectorial form, read: 
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The vector { },T
x xMψ ϕ=  is the vector of the independent variables. The model is used for simulations of 

torsional dynamics of the piping system. The matrices of the diagonalized vectorial form read: 
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The torsional pipe dynamics equations are added and discussed. However, they are actually not applied 
in the present dissertation as torsion is not important for planar structures. Similar conclusion is valid 
also for out-of-plane Timoshenko beam equations. These models are prepared for possible application 
in 3D simulations of the FSI in piping systems. 
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4.2.3. FSI physical models 
The equations of thermo-fluid and structural dynamics are joined together into several physical models 
for the simulation of the FSI coupling in arbitrarily shaped deformable piping systems conveying 
transient fluid flow. Several physical models of various complexities are presented. 

 

Nonlinear axial quasi-two-phase FSI model. The axial quasi-two-phase FSI model is assembled from 
coupled equations of isothermal single-phase liquid flow (125), (126), and equations of axial beam 
motion (56) and (62). The model describes coupling between two-phase flow transient and axial (1D) 
dynamics of the straight piping systems conveying room temperature water. The matrices of the physical 
model are given by: 
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The vector of the basic variables is { }, , ,T
f x xv p u Nψ = , and the vector of the source terms is: 

( ){ }, ,0, , , 0,T
f gx f t xF F fS s t−=                   (155) 

The additional equation (130) for the vapor volume fraction balance is added in two-phase flow as 
described in Section 4.1.4. The physical model given with Eq. (154) is utilized independently or as a 
sub-model of larger models defined for piping systems in 2D plane or 3D space. The Jacobian matrix C 
and the vector of the basic variables remain the same, while the source terms for 2D and 3D piping 
systems become: 
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             (156) 

The axial FSI coupling model, defined by equation (154), source terms (156) and real water properties, 
is the most accurate quasi-two-phase flow FSI model for the axial movement.  

 

Linear axial quasi-two-phase FSI model. Allievi [3,4] showed that the convective terms in form of 
fv s∂ ∂  are negligible. Without convective terms, the axial FSI coupling model becomes linear. In 

addition, the assumption of small deformations (~ stiff pipe) gives ux → 0, and µ → 1, and assumption of 
straight section of the pipe gives 1/Rp → 0. Further, the body forces and the wall friction forces are 
usually small compared to the forces of the pressure and stress waves, and are also frequently 
neglected. Taking into account the above assumptions, the linear axial FSI coupling model becomes: 
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The additional equation for vapor volume fraction balance appears in two-phase flow. When needed, the 
vector of the source terms is replaced by the vector of the source terms that considers the external 
forces given in Eq. (155), or by the vector of the source terms that considers the curvature of the piping 
system given in Eq. (156). The physical model in Eq. (157) is essentially similar to the model developed 
by Skalak [104] in 1956 and extensively used by Tijsseling [117]. The Skalak’s system of Equations 
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(157) is unconditionally hyperbolic and thus diagonalizable. Tijsseling [118] and Zhang et al. [155] 
obtained eigenvalues from the bi-quadratic dispersion relation. They replaced the axial force differential 
term by the axial pipe velocity differential term in fluid continuity Equation (157): 
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                  (158) 

because x
xx xx

t

N E
S

σ ε= = , x
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w
s

ε ∂=
∂

, and x
x

wu
t

∂=
∂

. This replacement simplifies the evaluation of the 

eigenvalues.  

 

Linear thick-walled model. Tijsseling [118] introduced two corrections into Skalak’s model for the 
description of the acoustic behavior of the thick-walled liquid-filled pipes. The corrected equations were 
defined by the cross-section integration of the axisymmetric two-dimensional basic equations. The 
system of equations represents an interesting improvement of the classical Skalak’s theory although 
Tijsseling proved that these corrections are important only for very thick pipes (R/e < 2). The corrections 
affect only matrix A in Eq. (157), which becomes: 
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Axial HEM FSI model. The five-equation model consists of three equations of the HEM flow model 
(Eqs. (120), (121), and (122)) that are coupled with two equations for axial movement (Eqs. (56) and 
(62)). The model is used for simulations of the coupling between the two-phase flow thermo-fluid 
dynamics and axial dynamics of the piping system. The matrices of the vectorial form give: 
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( ){ }, ,0, , 0, , 0,
T

m gx m t xS F F f s t= −                   (162) 

where ms = S ρm + St ρt, and cm is the mixture speed of sound. The vector of the basic variables is 

{ }, , , ,T
m m x xp v e u Nψ = . The physical model is not analytically diagonalizable. This physical model is 
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utilized independently or as a sub-model of larger models defined for piping systems in 2D plane or 3D 
space. The source terms then are: 
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Axial two-fluid model for FSI. The balance equations defined by Equations (113), (115), and (118) for 
each of the phases yield six-equation physical model for simulations of two-phase fluid dynamics, which 
together with two equations for axial movement (Eqs. (56) and (62)) yield physical model for simulations 
of the coupling between two-phase flow thermo-fluid dynamics and axial dynamics of the piping system. 
The system can be written in the following slightly modified vectorial form: 
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where RS  stands for all relaxation source terms. The matrices of the vectorial form are: 
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where αf = (1 – α) is the liquid volume fraction, Cvm is the virtual mass coefficient defined in Eq. (C-22), 
and the terms Ki,k for phase k are defined in Table 6.  
 

Table 6:  Applied connotations; K1 is elastic correction in effective speed of sound, K2 is  
contribution of the axial force and K3 and K4 originate in equation of state. 

Short form 1K  2K  3,kK  4,kK  5,kK  6,kK  
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The vector { }, , , , , , ,T
f g f g x xp v v e e u Nαψ =  is the vector of the eight independent basic non-conservative 

variables, where α is the vapor volume fraction, p is the fluid pressure, vk are the phasic fluid velocities, 
ek are the phasic internal energies, and ux and Nx are the axial velocity and force. The relaxation source 
terms require a special numerical treatment and are thus written separately from the other (non-
relaxation) source terms. The vectors of non-relaxation source terms and relaxation source terms are 
given by: 



 

                    - 45 -

( )

, ,

, ,
2

0
0

0
0

,
0

f gx f t

g gx g t
A F

x

F F
F FS

f s t

⎧ ⎫
⎪ ⎪
⎪ ⎪−
⎪ ⎪⎪ ⎪−=⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

, and    

( )
( )

( )
( )

, 2

0
0

g

g

g i rf i r

g ig i rr
R A F

if g f f

ig g g g

C vv v v
v v C vv

S
Q h e
Q h e

−Γ⎧ ⎫
⎪ ⎪Γ
⎪ ⎪

Γ +−⎪ ⎪
⎪ ⎪−−Γ −⎪ ⎪=⎨ ⎬− Γ −⎪ ⎪
⎪ ⎪+ Γ −
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

        (167) 

This physical model is utilized independently for axial dynamics with FSI or it is used in larger models as 
a sub-model (if lateral force and lateral pipe velocity are considered). The source terms in 3D yield: 
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Nonlinear planar quasi-two-phase flow FSI model. The nonlinear model for simulations of FSI in 
planar arbitrarily shaped piping systems is the fundamental model in this dissertation. The model 
consists of two sub models; the axial quasi-two-phase flow FSI model given with Eq. (154), and the in-
plane Timoshenko beam equations (147). The model in the vectorial form is schematically written as: 
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where M = 8  is the dimension of the matrices, matrices AAQ2F, BAQ2F and 2AQ FS  assemble axial quasi-

two-phase flow FSI model and matrices ,TIM inS , ATIM,in, and BTIM,in assemble the Timoshenko beam 
model for in-plane bending. The matrices of the vectorial form yield the following system: 
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with the vector of the basic variables { }, , , , , , ,T
x x y y z zv p u N u Q Mϕψ =  and the vapor volume fraction α as 

the independent variables in two-phase flow (additional balance equation for α). The vector of the 
source terms for a straight piping section that oscillates in axial, lateral and rotational directions 
simplifies into: 

{ }0, 0, 0, 0, , 0, 0,T
z yQS ϕ−=                     (173) 

The nonlinear model is not analytically diagonalizable. The physical model consists of two decoupled 
sub models; therefore, the eigensystem is also decoupled and can be schematically written as: 
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The first four equations have to be diagonalized numerically; the eigensystem of the last four 
Timoshenko beam equations is evaluated analytically using Equations (148). 

 

Linear planar quasi-two-phase flow FSI model. Introduction of the linear axial FSI coupling model 
(157) instead of the nonlinear model given with Eq. (154) yields the linear planar quasi two-phase flow 
physical model: 
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where the vector of the source terms and the vector of the basic variables remain the same as for 
nonlinear model of FSI in planar arbitrarily shaped piping systems given by Eq. (172).  

Equation (175), together with the source terms (173) represent the model discussed and utilized by 
Tijsseling, Vardy and Fan [114]. Tijsseling, Vardy and Fan presented the eight-equation system that 
enables simulations of the FSI in two straight sections with constant properties appropriately connected 
at an elbow. The sections of constant properties are connected together with additional relationships 
(boundary conditions). Hu and Philips [59] and De Jong [29] analyzed a system similar to the one of 
Tijsseling, Vardy and Fan [114] in the frequency domain. The variation of the equation (175) and source 
terms was discussed by Valentin, Philips and Walker [131] who applied the model for a liquid-filled 
constantly curved pipe.  

 

Eigenvalues and characteristic velocities. Diagonalization is a crucial step towards the numerical 
solution of the physical problem. The diagonalized matrix of eigenvalues Λ  actually represents a matrix 
of characteristic velocities at which the pressure, stress or other waves travel along the pipe or fluid. 
These values are generally very close to the speed of sound in the medium. For example, the 
characteristic velocity of the pressure wave in the midpoint of the pipe in rod impact experiment 
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considered in Section 6.4 is cf = 1361.6 (1362.5) m/s. The value in brackets is the corresponding speed 
of sound. Similarly, the characteristic velocity of the axial stress wave in the pipe is ct,x = 4617.9 (4586.9) 
m/s. Typical values for characteristic velocities of the pressure waves in single-phase liquid flow lie 
between 1300 and 1500 m/s, while eigenvalues in two-phase flow drops to some 10 m/s. Typical 
characteristic velocities of stress waves in the piping system are: 

• Axial characteristic velocities:    4500 – 5000 m/s. 
• Lateral characteristic velocities:   1700 – 1900 m/s. 
• Rotational characteristic velocities: 4400 – 4800 m/s. 
• Torsional characteristic velocities:  2800 – 3100 m/s. 

 

4.2.4. Schematic FSI physical models 
Schematic models for planar FSI. The complex large models can be assembled from the independent 
sub-models, which were introduced in previous sections of this chapter. There is no need to rewrite 
these complex matrices. Models are given schematically and can be composed in the same way as 
already indicated for the nonlinear planar quasi-two-phase flow FSI model. All non-written terms in the 
related matrices are equal to zero. This simple approach with assembling of sub-models is possible, 
because the sub models are ‘coupled’ between each other only through nondifferential source terms and 
not with differential terms. The same reason enables that a diagonalized vectorial form is assembled 
from the sub-models. In practice that means, that some parts of the eigensystem can be evaluated 
numerically, while the other parts of the same physical model, can be evaluated analytically if analytical 
solution exists. The schematic record indicates how different models can be assembled to get the most 
efficient model for the particular problem. 

The models of FSI in planar arbitrarily shaped piping systems can describe axial, rotational and lateral 
stress waves in the pipe, pressure and other waves in the fluid (according to the number of the 
equations for fluid). The model can be schematically written in the vectorial form as: 
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where AAXI, BAXI and AXIS  belong to any of models for axial FSI and ,TIM inS , ATIM,in, and BTIM,in belong to 
the Timoshenko beam equations for in-plane bending. The eigensystem is also decoupled and can be 
schematically written as: 
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where AXIΛ , LAXI, and AXIR  belong to corresponding eigensystem for axial movement and  ,TIM inΛ , 

LTIM,in, and ,TIM inR  belong to the eigensystem of in-plane Timoshenko beam equations. If M is the 
dimension of the matrices, then one can make up the following physical models according to the number 
of equations: 

• M = 8 and index AXI = AQ2F. The eight equation nonlinear physical model of FSI in planar 
arbitrarily shaped piping systems is the fundamental model in this thesis. It has been presented 
in details in section 4.2.3. The vector of the basic variables is: { }, , , , , , ,T

x x y y z zv p u N u Q Mϕψ = .  

• M = 9 and index AXI = AHEM. Improvement of the quasi-two-phase nonlinear four-equation 
model for FSI in arbitrarily shaped piping systems with the five-equation nonlinear axial 
Homogeneous Equilibrium Model (HEM) for two-phase flow, which is defined by Eqs. (160), 
(161), and (163), gives a system of nine partial differential equations where the vector of the 
basic variables is: { }, , , , , , , ,T

m m x x y y z zv p e u N u Q Mϕψ = . 
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• M = 12 and index AXI = A2F. Further improvement with the eight-equation nonlinear axial model 
for two-phase flow, which is defined by Eqs. (165), (166), (167), and (168), gives a system of 
twelve partial differential equations with the following vector of the basic variables:  

{ }, , , , , , , , , , ,T
f g f g x x y y z zp v v e e u N u Q Mα ϕψ = . 

 

 

 

Schematic models for spatial FSI. The models of FSI for arbitrarily shaped piping systems located in 
the 3D space can describe axial, rotational (in-plane and out-of-plane), lateral (in-plane and out-of-
plane), and torsional stress waves in the pipe and pressure and other waves in the fluid. The number of 
waves in the fluid depends on the number of equations for the description of the transient in the fluid. 
The model can be assembled from the model for axial FSI coupling, two sets of Timoshenko beam 
equations (for in-plane and out-of-plane), and two torsional equations for torsion in tangential axis. The 
model can be schematically written in the vectorial form as: 
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The most challenging part of the model is the appropriate application of the junction coupling terms at 
pipe elbows especially source terms for simulations of arbitrarily shaped piping systems.  

The model is made up of four independent sub models; therefore, the eigensystem is also independent 
and can be schematically written as: 
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If M is the dimension of the matrices, then one can assemble the following physical models according to 
the number of equations: 

• M = 14 and index AXI = AQ2F.  The quasi two-phase flow model is used for axial FSI 
simulations in arbitrarily shaped piping systems in 3D space. The vector of the basic variables is: 

{ }, , , , , , , , , , , , ,T
x x y y z z z z y y x xv p u N u Q M u Q M Mϕ ϕ ϕψ = . By inserting any of the derived four-

equation models for axial FSI coupling and various source terms one can get various fourteen-
equation models. The linearization of the model yields the fourteen-equation model, which is 
equal to the models used by Wiggert, Hatfield and Stuckenbruck [143], Tijsseling and Lavooij 
[116] and Obradovič [94]. They applied the model and solved it in the time domain with the MOC 
method. The model was coded in FLUSTRIN FSI code [40]. Wilkinson [145] solved the same 
model in the frequency domain. 

• M = 15 and index AXI = AHEM. Improvement of the quasi-two-phase nonlinear four-equation 
model for FSI in arbitrarily shaped piping system with the five-equation nonlinear axial model for 
the two-phase flow, which is defined by Equations (160), (161), and (163), gives a system of 
fifteen partial differential equations where the vector of the basic variables is: 

{ }, , , , , , , , , , , , , ,T
m m x x y y z z z z y y x xv p e u N u Q M u Q M Mϕ ϕ ϕψ = . 

• M = 18 and index AXI = A2F.  Further improvement with the eight-equation nonlinear axial model 
for two-phase flow, which is defined by Equations (165), (166), (168), and (167), gives a system 
of eighteen partial differential equations. This is the most advanced two-phase flow model for 
simulations of transients in 3D piping systems. The vector of the basic variables is: 

{ }, , , , , , , , , , , , , , , , ,T
f g f g x x y y z z z z y y x xp v v e e u N u Q M u Q M Mα ϕ ϕ ϕψ = . 
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4.3. Initial conditions 
Initial (and boundary) conditions have to be appropriately defined to reflect real conditions at the 
beginning of the transient, and not to introduce additional transients/errors into the simulation. Tijsseling 
[118] introduced the following fundamental assumption: the liquid-filled piping system shall be 
initially always in equilibrium before a transient event starts. The system is in equilibrium if both, 
initial and boundary conditions are in mutual equilibrium, otherwise, an additional transient in the liquid-
filled piping system can be excited. To achieve equilibrium between initial and boundary conditions it is 
necessary to appropriately consider basic and some non-basic variables at boundaries and geometric 
changes. An example of basic variable non-equilibrium at a geometric change is the axial pipe velocity 
at the elbow that generates new pressure and stress waves through junction coupling. An example of 
non-basic variable non-equilibrium initial condition is the mass of the system or the additional mass like 
the mass of the valve, if gravity is included into the simulation (additional flexure of the pipe/beam).  

It is necessary to appropriately distinguish between relative and absolute values of basic variables. The 
differential equations treat relative values and the basic variables used in the differential equations are 
(usually) relative. To obtain absolute values of basic variables it is necessary to add the initial extension, 
flexure, stresses, pressures, etc. In combination with the assumption of equilibrium before the transient, 
the relative consideration of the basic variables exactly corresponds to the measurement. The transient 
in a real experimental device starts from equilibrium and therefore, the measurement gives only relative 
variations of basic variables, regardless the initial pressure, stress or strain distribution. The 
measurements are directly comparable to results obtained with simulation. Proof for the pipe and liquid: 

• All stress-strain relationships used in the FSI analyses rely on the linear elastic Hooke’s law and 
the assumption of relativeness enables exact simulations of stresses and strains if the (absolute) 
stresses in the pipe are below the yield stress limit. The initial stress-strain values can be set to 
zero. 

• The initial fluid pressure (basic variable), and the external pressure are in standard FSI 
simulations initially equal to zero. The standard ‘elastic’ theory of water hammer assumes 
constant fluid properties and differential equations in fact follow relative pressure gradients. The 
solutions are sufficiently accurate within assumptions and purposes of this single-phase 
approach. The pressure is relative, the initial pressure is not important; the pressure 
history/profile can be shifted to match the measured initial pressure. 

• The advanced two-phase flow water hammer theory presented and discussed in this study, rely 
on exact water and steam properties that depend on absolute pressure and temperature/internal 
energy. Because the absolute fluid pressure is usually different than the external pressure, this 
difference causes additional distributed and locally generated transients due to the initial non-
equilibrium in the pipe wall. Distributed transient appears due to the circumferential stress that 
generates axial and pressure waves and locally generated transients at elbows, abrupt area 
changes or boundaries of the piping system. There are three options to solve this problem: 

o The initial pressure is zero; add real initial pressure to get the correct state of the fluid 
when water and steam properties are calculated. 

o The initial pressure is absolute; define the appropriate external pressure at elbows and 
boundaries of the piping system to hold the system initially in equilibrium. 

o The external and internal initial pressures are absolute; evaluate the exact initial 
conditions or perform steady state simulation. 

The second solution was applied in our models. Regarding the distributed transient due to the 
circumferential stress, note that the external pressure is almost always constant during the transient and 
the differential of the external pressure is zero. Thus, this term vanishes from the differential equations. 
The external pressure term remains only at nondifferential boundary conditions and source terms.  

There are four options for prescription of the equilibrium initial state: 
• Steady state initial conditions: Tijsseling [118] derived exact definition for the initial values of the 

basic variables from the one-dimensional partial differential equations omitting the non-stationary 
terms. The relationship in compact vectorial form is known also as steady-state initial condition: 

S
s
ψ∂ =

∂
B                          (180) 
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• Constant initial conditions: For short piping systems, and piping systems with large cross-section 
the friction forces are statically and/or dynamically negligible. It is assumed that phases are 
initially in thermal equilibrium (no heat and mass exchange). For piping systems in a horizontal 
plane, the gravity is omitted. Thus, the influence of the source terms is negligible in compared to 
the influence of the pressure and stress waves and the source terms are omitted without 
significant influence on the result. It is assumed (as default option in this dissertation) that the 
basic variables are initially constant along the pipe: 

0
s
ψ∂ =

∂
B                          (181) 

• Manually prescribed initial conditions: Each simulated piping system is divided into N 
computational volumes. It is possible to prescribe initial values for each basic variable and other 
parameters in each computational volume separately. The additional transient due to the 
artificially prescribed initial state is not always negligible. 

• Initial conditions from steady state simulation: It is possible to conduct simulation with absolute 
values of the basic variables and the exact external pressure (pout ~ 1 bar). In this case, steady 
state simulation must be conducted with maximized damping to reach equilibrium faster. The 
calculated steady state results are then used as initial conditions for transients. This two-step 
procedure demands some dummy manual output/input processing, but the basic variables are 
absolute and exact. An alternative is to analytically evaluate the absolute initial steady state 
conditions with Eq. (180), but evaluation of each equilibrium variable in each computational 
volume can be quite demanding and time consuming, especially for piping systems with non-
trivial geometry and distribution of the supports. 
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5. Numerical scheme 
A general first order partial differential equation or a system of general first order partial differential 
equations described in Chapter 4 (physical model), together with initial conditions and boundary 
conditions represents an initial boundary value problem for a considered space-time computational 
domain: 

( ) ( )
( ) ( ) ( ) ( )

0

0

,0
,0, ,l r

c
t x
x x

t L tt t

ψ ψ

ψ ψ
ψ ψ ψ ψ

∂ ∂ ⎫+ = ⎪∂ ∂ ⎪
⎬= ⎪
⎪= = ⎭

 = Initial boundary value problem       (182) 

This Chapter introduces the characteristic upwind finite difference numerical method for the numerical 
treatment of the initial boundary value problem. The characteristic approach was used because it is 
based upon the propagation of the acoustic waves, which is the principal mechanism in the considered 
physical models for description of the transient pipe flows. The characteristic upwind numerical method 
has large similarities with the group of the finite volume methods for hyperbolic conservation laws. Due 
to consideration of the equation of state, phase changes, geometry changes etc., the characteristic 
velocities of the initial boundary problem are not constant with time and space. The advantage of the 
characteristic upwind numerical method is that it is capable to account these non-constant 
characteristics. The characteristic upwind method is a second order accurate high resolution total 
variation diminishing explicit scheme. The stiff source terms of the physical models complicate the 
essentially simple explicit numerical treatment and are discussed in the continuation of this Chapter. The 
stiff thermal or mechanical relaxation source terms in two-phase flow are treated separately from the 
characteristic upwind numerical method using operator splitting while the problems with the stiff source 
terms of Timoshenko beam equations are solved with reduced time step and additional implicit 
numerical iterations. Numerical errors and difficulties related to the application of the characteristic 
upwind numerical method for simulations of the FSI are discussed. The boundary conditions are 
discussed at the end. 

Several numerical methods have been applied in the past for the solution of the FSI initial boundary 
problems, where the method of characteristics (MOC) or MOC-based methods (component synthesis, 
MOC-FEM) took the leading part (see Section 1.2.2). Compared to the characteristic upwind numerical 
method, the standard MOC is applicable for all transients where the characteristic velocities (pressure or 
stress wave propagation velocities) are constant or are approximated as constant in space and time.  

 

5.1. Characteristic form of the physical model 
Hirsch [57] and LeVeque [77, 78] recommended the explicit characteristic numerical methods for 
numerical solution of the hyperbolic physical models, which are based on conservation laws. The 
characteristic numerical methods are based upon the characteristic form of the physical model. Every 
hyperbolic system of partial differential equations in vectorial form, which is given schematically in Eq. 
(109), can be transformed into the characteristic form through multiplication by the inverse of the 
eigenvectors L-1 from the left to yield: 

 0R
t s
ψ ψ∂ ∂+ + =
∂ ∂

-1 -1 -1L ΛL L                     (183) 

Then the modified characteristic variables are introduced [126]: 

1 1R sδξ δψ δ− −= +-1L Λ L                      (184) 

which gives the characteristic form of Eq. (109): 
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0ξ ξ+ =
t s

∂ ∂
∂ ∂

Λ                         (185) 

Note that ξδ  represents an arbitrary variation / ξ t∂ ∂  and / ξ s∂ ∂ , and that 1s s =∂ ∂ . The stream wise 
component s is a function of the time but time differential is assumed to be negligible 0s t∂ ∂ ≈ . Exact 
value of the time differential term s t∂ ∂  is given with Eq. (12). 

 

5.2. Basic finite difference methods 
The discretisation of the differential equation by finite differences gives a finite difference method, where 
each discrete point in the finite difference grid represents averaged values within the computational 
volume (pointwise approximation). This approach often gives difference methods that look very similar to 
the related finite volume methods (finite volume methods operate with cell averages and integral form of 
the conservation laws). Consequently, the extensive theory developed for finite volume methods applies 
also for the finite difference methods. Finite volume methods are a class of discretisation schemes that 
were proven as highly successful in approximating the solution of a wide variety of conservation law 
systems. They are extensively used in fluid mechanics, meteorology, electromagnetism, semi-conductor 
device simulation, models of biological processes and many other engineering areas governed by 
conservative systems that can be written in integral form. Barth and Ohlberger [10] analyzed and 
reviewed the finite volume methods. Other, more detailed description of the finite volume methods and 
especially characteristic upwind finite difference method and high order accurate total variation 
diminishing schemes are given in textbooks of LeVeque [77,78,76], Hirsch [57] and Toro [128]. The 
main purpose for the application of the finite difference method (instead of finite volume) in this thesis is 
the fact, that the physical models derived in Chapters 2, 3, and 4 cannot be written in the so-called 
conservative form: 

( ) 0f  +     R
t x
ψ ψ∂ ∂ − =
∂ ∂

                      (186) 

which means that one cannot impose the Rankine-Hugoniot [77] conditions for the discontinuous 
solutions (shock waves) of the hyperbolic conservation laws and use them when discontinuity is 
encountered in the numerical solution of the equations. Thus, the direct application of the finite volume 
numerical methods based on the method of Godunov is not possible. However, as shown during the 
development of the WAHA code [126], the non-conservative hyperbolic systems can be solved quite 
accurately with a similar characteristic upwind finite difference numerical method that relies on less 
accurate treatment of the discontinuities. Numerical tests with the WAHA code have shown that shock 
waves in a nearly incompressible liquid obtained with a non-conservative characteristic upwind 
numerical scheme are extremely similar to the shock waves calculated from the Godunov-type methods 
that rely on the exact Rankine-Hugoniot conditions. Tiselj and Petelin [123, 124] applied the 
characteristic upwind finite difference method to solve the six partial differential equations of the two-
phase flow and described it as an optimal scheme for the simulation of the fast transients in two-phase 
flow.  

 

First order upwind scheme. There is a wide variety of finite difference methods that can be used to 
solve the characteristic equation or system of equations defined by Eq. (185). Many of the difference 
schemes are derived by replacing the derivatives occurring in the partial differential equations by 
appropriate finite difference approximation. For instance, the temporal derivative can be replaced by the 
first order forward-in-time approximation: 

n+1 n
j jj

t t
ξ ξξ −∂

=
∂ ∆

                        (187) 

and the spatial derivative by the first order one-sided approximation. There are two choices: 
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n n
j j-1j

x x
ξ ξξ −∂

=
∂ ∆

  or  
n n
j+1 jj

x x
ξ ξξ −∂

=
∂ ∆

                (188) 

Only one one-sided approximation for spatial derivative yields a useful numerical scheme. The correct 
choice depends on the sign of the wave propagation characteristic velocity λ of the corresponding 
characteristic partial differential equation. If the eigenvalue λ is positive, the first choice is used and the 
final difference scheme is called an explicit first order upwind method: 

( )n+1 n n n
j j j j-1

t
x

ξ ξ λ ξ ξ∆= − −
∆

                     (189) 

If λ is negative, then the analogous first order upwind difference scheme yields: 

( )n+1 n n n
j j j+1 j

t
x

ξ ξ λ ξ ξ∆= − −
∆

                     (190) 

All values at the time level n are known data values (prescribed or evaluated in previous time step) so 
the value in new time level n+1 is evaluated explicitly.  

In finite difference schemes appears a term of the form (λ ∆x / ∆t). This is a dimensionless quantity 
known as the Courant number; it is also known as the Courant-Friedrichs-Levy number, or a CFL 
number. This number represents the ratio of two speeds, namely the wave propagation speed λ and the 
grid speed ∆x / ∆t defined by the discretisation of the domain. The von-Neumann stability analysis (Toro, 
[128, p.167]) shows that an explicit upwind difference scheme applied for a simple hyperbolic partial 
differential equation is conditionally stable for: 

0 1x
t

λ≤ ≤
∆

∆
   ⇒      ∆x∆t

λ
≤               (191) 

This is the so-called CFL condition for stability of the explicit difference scheme (not sufficient for all 
explicit difference schemes) and as λ is prescribed as external parameter, ∆x is defined by number of 
computational volumes and pipe length (desired accuracy), it follows that stability restriction suggests 
the maximal possible time step ∆t. LeVeque [78] showed that the Courant-Friedrichs-Levy condition is a 
necessary and sufficient condition for the stability of the characteristic upwind difference scheme.   

 

First order upwind scheme for systems with mixed sign characteristics. The characteristic partial 
differential Eq. (185) refers to the physical model (set of partial differential equations), where the sign of 
the characteristic velocities varies with position and time. It is necessary to perform the appropriate 
spatial differencing according to the sign of the characteristic speed λ of the partial differential equation 
in order to obtain a useful one-sided scheme. An improvement of the upwind scheme with upwinding 
principle for systems of equations with characteristics of a mixed sign [49] enables appropriate splitting 
between the characteristics propagating to the left and to the right (superscripts – and +, respectively): 

( ) ( ) ( ) ( )1
1 11/ 2 1/ 2

n nn n n n n n
j j j j j jj j

t t
x x

ξ ξ ξ ξ ξ ξ+ + −
− +− +

∆ ∆= − −− −
∆ ∆Λ Λ           (192) 

where ( )+ +
1 M= ...diag λ , ,λ+Λ , ( )- -

1 M= ...diag λ , ,λ-Λ . Subscripts j, j+1 and j-1 denote the grid points of the 

spatial discretisation defined in the middle of the each computational volume. Subscripts j+1/2 and j-1/2 
denote the values in the midpoint of two computational volumes, ∆x denotes the length of one 
computational volume, superscripts n and n+1 denote the time levels and ∆t denotes the time step 
interval between time levels n and n+1. The appropriate splitting between positive and negative waves is 
given through the application of the correction factors fp: 

+ += pp pλλ f⋅    and - -= pp pλλ f⋅                   (193) 
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where index p is running over M eigenvalues of the system. The correction factors fp read: 

+= 0, p
p

p
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f max
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⎛ ⎞
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 and -= 0, p
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p

λ
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⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

                (194) 

The matrix +Λ  assembles all characteristics with the positive sign that travel to the right (positive 
characteristics) and the matrix −Λ  assembles all characteristics with negative sign that travel to the left 
(negative characteristics). The full matrix of characteristics Λ  is correlated to partial matrices +Λ  and 

−Λ  at position j-1/2 and time n through the relationship:  

( ) ( )n n
1/ 2 1/2 1/2

n
j j j

= ++ −
− − −

Λ Λ Λ                     (195) 

 

Second order Lax-Wendroff scheme. The upwind scheme is first-order accurate and introduces 
numerical diffusion, yielding poor accuracy and smeared results. The method can be improved by 
approximating derivatives with 2nd order differences [77,78]. The basic form of these correction terms is 
motivated by the standard second order accurate Lax-Wendroff method. The Lax-Wendroff method for a 
system of partial differential equations is based upon the Taylor series expansion [78, p.100]. The first 
three terms (only) on the right-hand side of the Taylor series expansion where the spatial derivatives are 
replaced by central finite difference approximations gives the Lax-Wendroff finite difference scheme: 

( ) ( ) ( )( ) ( )
22
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1 1 1 11/ 2 1/ 2 2

2 2
n nn n n n n n n

j j j j j j jj j
t t
x x
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∆ ∆⎛ ⎞= − +− − + ⎜ ⎟∆ ∆⎝ ⎠
Λ Λ      (196) 

However, the second (and higher) order methods are also not acceptable for shock wave simulations 
because they yield oscillations near discontinuities. 

 

5.3. High resolution finite difference schemes 
The term “high resolution” applies to methods that are at least second order accurate on smooth 
solutions and yet give well resolved, non-oscillatory discontinuities. The idea behind is to use a high 
order method, but to modify the method in the neighborhood of discontinuities to the monotone first 
order method that behaves well near discontinuities. For precise theory and derivation of the high 
resolution method see LeVeque [77,78], Hirsch [57] or Toro [128]. Here, a brief overview is given. 

 

Total variation diminishing schemes. Hirsch [57] showed that the total variation of the nonlinear 
conservation law in Eq. (186), that is defined as: 

2

1

x

x

TV dx
x
ξ∂=

∂∫
                        (197) 

is not increasing with time. The total variation of a discrete solution at time level n is defined as: 

( ) 1
1

N
n nn
j j

j
TV ξ ξξ +

=
= −∑                       (198) 

Total variation diminishing schemes are numerical schemes for which the total variation of the numerical 
solutions is not increasing (LeVeque [77,78]). Finite difference scheme to be TVD: 

( ) ( )1
1/ 2 1/ 21 1

n n n n n n
j j j jj j j jC Dξ ξ ξ ξ ξ ξ+

− +− += − +− −               (199) 
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is total variation diminishing if the following condition holds for each j: 

1/ 2 0jC − ≥  and  1/ 2 0jD + ≥   and  1/ 2 1/ 2 1j jC D− ++ ≤            (200) 

The first order upwind scheme can be written in the form of Eq. (199): 

( ) ( )1
1 12 2

n n n n n n
j j j j j j

t t
x x

λ λλ λξ ξ ξ ξ ξ ξ+
− +

+ ∆ − ∆= − +− −
∆ ∆

            (201) 

It is obvious that the upwind scheme is total variation diminishing. Analogously, the Lax-Wendroff 
scheme Eq. (196) written in the form of Eq. (199) yields: 
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1 1

1 1
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n n n n n n
j j j j j j

t tt tx x
x x

λ λλ λ
ξ ξ ξ ξ ξ ξ+
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∆ ∆+ −∆ ∆∆ ∆= − +− −
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       (202) 

The Lax-Wendroff scheme is not total variation diminishing because the CFL condition gives 1/ 2 0jD + < .  

Hirsch [57] showed that: 
• The linear total variation diminishing scheme can be only first order accurate. 
• The total variation diminishing scheme for which the new value in point j at time level n+1 is 

evaluated from three discrete points defined at time level n, can be only first order accurate.  
Hirsch therefore showed that second order total variation diminishing schemes are only schemes where 
more than three points defined at time level n are nonlinearly applied. The possible solution is a 
combination of the first order upwind scheme and the Lax-Wendroff scheme: 
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        (203) 

where parameters φ  are flux or slope limiters. The difference scheme in Eq. (203) is total variation 
diminishing only if the slope limiters are appropriately defined to conform to LeVeque’s conditions. In 
addition, only an appropriate definition of the slope limiters gives a high resolution scheme with 
minimized numerical dissipation and minimized oscillations. 

 

Slope limiters. The slope limiters define the share of the first and second order difference schemes. 
The slope limiters depend on smoothness and gradient of the characteristic variable ξ  at considered 
point (volume). The slope limiter is close to 1 if the solution at time level n in the vicinity of the 
considered point is smooth and a larger part of the second order Lax-Wendroff difference scheme is 
applied. In vicinity of the discontinuous solutions, the slope limiter is close to 0 and a larger part of the 
first order upwind difference scheme is applied. 

LeVeque [77,78], Hirsch [57] and Toro [128] gave several functions for the evaluation of the slope 
limiters and some of the most frequently used slope limiters are defined as: 

• Minmod:   ( )( )max 0,min 1,φ θ=  

• Van Leer:  ( ) /( 1)φ θθ θ= + +  

• MC:    ( )( )max 0,min (1 ) / 2,2,2φ θ θ= +  

• Superbee:  ( ) ( )( )max 0,min 2 ,1 ,min ,2φ θ θ=  

Parameter θ measures the smoothness of the characteristic variable ξ  near the considered point. The 
steepest solutions are obtained with the superbee limiter, while the most 'smeared' solutions but still 
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second-order accurate, are obtained with the minmod limiter. Solutions obtained with the van Leer and 
MC limiter are between (for example see Figures 27 and 28). 

The slope limiter fixed to a constant value transforms the difference scheme in Eq. (203) into one of the 
following basic linear difference schemes:  

• first order upwind scheme:     0φ =  
• second order Lax-Wendroff scheme:  1φ =  

The smoothness of the solution can be measured in various ways. The most commonly used measure is 
a ratio of the gradients in consecutive points: 

1 1/ 2
1/ 2

1 1/ 2

-
=  = 

-
j + m j m j+ m

j+
j+ j j+

ξ ξ ξ
θ

ξ ξ ξ
− − −∆

∆
   where   /m λ λ=           (204) 

The sign m of the characteristic λ defines which of the adjoining gradient is chosen. The applied 
smoothness measure gives the difference scheme in Eq. (203) total variation diminishing property and 
gives second order accuracy on smooth solutions.  

 

High resolution characteristic upwind scheme. The high-resolution characteristic upwind finite 
difference numerical method is based upon solution given by Eq. (203). Equation (203) can be rewritten 
in form of Eq. (192), where ( )+ +

1 M= ...diag λ , ,λ+Λ  and ( )- -
1 M= ...diag λ , ,λ-Λ  are matrices with corrected 

positive and negative characteristics. Each characteristic velocity is multiplied by the correction factors: 

+ += pp pλλ f⋅         and - -= pp pλλ f⋅              (205) 

where the correction factors fp are defined as: 

+= 0, + -1
2

p p
pp

p

λ ∆tλf max
λ ∆x

φ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 and -= 0, - -1

2
p p

pp
p

λ ∆tλf min
λ ∆x

φ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
      (206) 

The first term of the correction factor is the already known first-order upwind discretisation, and the 
second term with the slope limiter parameter φp is the second-order correction. The high-resolution slope 
limiters φp are calculated using one of the functions defined in the previous section and are based upon 
the gradients at adjoining points. If the solution is smooth, larger part of the second-order discretisation 
is used; otherwise larger part of the first-order discretisation is used.  

It is necessary to stress that the total variation diminishing high resolution schemes are based upon the 
finite volume numerical method given by the integral form of the nonlinear characteristic laws and not as 
may be understood here, upon the finite difference scheme given by differential form of the balance 
equations. Nevertheless, the difference schemes for the finite volume approach and the finite difference 
approach are the same, and Tiselj [122] showed that less accurate and non-conservative balance 
equations yield results of the same accuracy as results obtained with ‘exact’ nonlinear conservation 
laws. For differences between conservative and non-conservative equations see Tiselj [122]). Despite 
the large differences in theoretical background of the finite volume methods and the finite difference 
methods, the practical appearance of both is essentially the same. LeVeque, for instance, in his 
textbooks [77, 78] mentions differences between methods. However in practical examples he makes no 
distinction between the methods. Applicability of the total variation diminishing and the high resolution 
for characteristic upwind difference method was extensively proved also during the development of the 
WAHA code [126].   

The transformation of the characteristic Eq. (192) back into the basic variables yields the following finite 
difference scheme that was applied for simulations in the current thesis: 

( ) ( )1
1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 21 1

n n n nn n n n
j j j j j j j jj j j j

t t R t R t
x x

ψ ψ ψ ψ ψ ψ+ + − + −
− + − − + +− +

∆ ∆= − − − ∆ − ∆− −
∆ ∆

C C D D   (207) 



 

                    - 57 -

The difference scheme is explicit and the time step ∆t is defined by CFL condition defined in Eq. (191). 

The construction of the matrices C+, C-, D+, D- and source term vector R  is described below. First, the 
Jacobian matrix C is defined as a product of the basic matrices of the system A and B as: C =  A-1B. 
The Jacobian matrix C is a function of the basic variables and is defined at both boundaries of the j-th 
computational volume (boundary is midpoint of two contiguous computational volumes and is marked as 
position j±1/2):  

( )1/ 2 1/ 2
n

j jψ− −=C C   and  ( )1/ 2 1/ 2
n

j jψ+ +=C C              (208) 

A simple average of the basic variables is used at midpoint: 

1
1/ 2 2

n n
j jn

j
ψ ψ

ψ −
−

+
=   and  1

1/ 2 2

n n
j jn

j
ψ ψ

ψ +
+

+
=               (209) 

Gallouet and Masella [46] used this type of averaging and showed that it gives very accurate results for 
Euler equations. This is actually the most important property of the proposed numerical method – the 
properties and thus characteristic of the each PDE that describe a wave traveling along the pipe or fluid 
can change with time and position. That means that the proposed numerical method enables the 
introduction of the nonlinearities like pressure dependent density, two-phase flow, convective terms, 
ovalization effects, variable geometry properties etc.  

An analogous simple averaging approach is used for the evaluation of the source terms and other 
geometric properties at midpoints: 

1
1/2 2

n n
j jn

j
R + R

R = −
−   and   1

1/2 2

n n
j j+n

j+
R + R

R =              (210) 

Then eigensystem is evaluated at midpoint j±1/2 from the matrix C as: 

( ) 1/ 2-1/ 2 jj −=-1LΛL C  and  ( ) ( )1/ 2 11/ 21/ 2 j + jj+ +−= ≡-1LΛL C C          (211) 

Some of the applied eigensystems are calculated analytically, the others are evaluated numerically 
during simulation using subroutines from the EISPACK numerical library (FORTRAN programming 
language). Numerical errors and difficulties encountered during the numerical evaluation of the 
eigensystem are discussed in Section 5.5. The eigenvalues are then multiplied by the correction factors 
given in Eq. (206) and positive and negative Jacobian matrices are reconstructed: 

( )+
1/ 2 -1/ 2j j− = + -1C LΛ L  and   ( )-

1/ 2 1/ 2j+ j+
= - -1C LΛ L             (212) 

The positive Jacobian matrix C+ corresponds to the high resolution waves that travel to the right with the 
positive characteristics and the negative Jacobian matrix C- corresponds to the high resolution waves 
that travel to the left with the negative characteristics. The reconstructed positive and negative high 
resolution Jacobian matrices at position j-1/2 are related with the original Jacobian matrix through the 
relationship: 

+ -
1/2 1/2 1/2j j j+− − −≅C C C                       (213) 

where almost equal sign ≅  is used because numerical evaluation of the eigensystem gives approximate 
values. The elements of the matrices D are defined as: 

( )+
1/2 1/2j j

=− −

+ -1D LF L   and  ( )-
1/2 1/2j+ j+

= - -1D LF L              (214) 

where the diagonal matrices +F  and -F  contain correction factors defined by Eq. (206): 
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( )+ +
1 N= ...diag f , ,f+F   and ( )- -

1 N= ...diag f , ,f-F               (215) 

 

5.4. Source terms 
The source terms can be stiff, which means that the characteristic time scale of the source terms can be 
much smaller than the characteristic time scale of the convective waves given by the time step defined 
by the CFL condition in Eq. (191). Chalabi and Qiu [23] showed that a stable finite difference method 
may fail to produce reasonable numerical results and may produce non-physical solutions when stiff 
source terms are present. Stiffness is a numerical problem and to avoid unreasonably small time steps 
in the default explicit characteristic upwind given by Eq. (207), additional special numerical procedures 
are applied. Chalabi [24], Jin and Levermore [64], LeVeque and Yee [76], Tang, Teng and Wang [109], 
and Papalexandris, Leonard and Dimotakis [97] used different numerical methods that are based on 
asymptotic or splitting techniques, while studying solutions of the systems with stiff source terms. 
Researchers agree that there is no generally accepted numerical approach. It has been shown that 
explicit schemes are less appropriate for the numerical treatment of the stiff source terms than implicit or 
semi-implicit methods. Tiselj and Horvat [125] used an explicit operator splitting method for integration of 
the stiff source terms in their six-equation two-fluid model of the two-phase flow. Their explicit procedure 
is stable, because the relaxation time step adapts to the stiffness of the source terms.  

Stiffness of the source terms in Eq. (207) is arbitrary and varies with time and position. There are two 
main reasons for stiffness of the source terms in FSI simulations: 

• Stiffness of the relaxation terms that appears in unrelaxed two-phase flow.  
• Stiffness of the Timoshenko beam equation that appears for relatively small second moment of 

inertia It (Section 3.3, Eqs. (76) and (82)). 
 

Operator splitting for the stiff relaxation source terms. Stiffness of the thermal or mechanical 
relaxation source terms is typical problem of the two-phase flow systems. The problem is well 
understood, it is manageable and also practically successfully solved. In general two-phase flow up to 
four types of non-equilibrium can be present, each with different relaxation time and corresponding time 
step of relaxation: 

• Different phasic pressures, 
• Vapor temperature not at saturation, 
• Liquid temperature not at saturation, 
• Different phasic velocities (mechanical non-equilibrium). 

Generally, the smallest time step of relaxation is applied. The operator splitting is formally first order 
accurate, but Tiselj et al. [126] reported that numerical tests showed operator splitting results are 
practically the same to results obtained with second order Strang splitting numerical procedure. The 
relaxation source terms and operator splitting numerical technique applied in this dissertation are directly 
adopted from the WAHA code developed by Tiselj et al. [126]. The convection with non-relaxation 
source terms S  is treated separately from the relaxation source terms RS  in the two-step operator 
splitting: 

 step 1: S
t s
ψ ψ∂ ∂+ =
∂ ∂

A B                     (216) 

step 2: RS
t
ψ∂ =
∂

A                       (217) 

where ψ  is a vector of the basic variables, and A is the corresponding matrix. The operator splitting is 
applied because step 1 with convective terms and non-relaxation source terms are carried out directly 
with the explicit characteristic upwind finite difference method given with Eq. (207). The step 2 is carried 
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out only if two-phase flow is simulated and phases are in thermal or mechanical non-equilibrium. The 
step 2 of the operator splitting scheme is integrated over the convective time step ∆t with first order 
explicit Euler method, which allows variations of the integration time step ∆ts (see reference [126] for 
details): 

1 1m m
R sS tψ ψ+ −= + ∆A                       (218) 

After integration 1m
jψ +  is added to 1n

jψ + .  

 

Implicit iterations for the stiff source terms in Timoshenko beam equations. Tijsseling [113] 
reported occasional problems with dominating source terms that impair hyperbolic character of his basic 
system of equations, so that MOC becomes less attractive. His numerical tests showed that trapezoidal 
rule is sufficient (but not the best) way for integration of the source terms. The problem was encountered 
also in the characteristic upwind numerical method in all systems of equations with Timoshenko beam 
equations. The problem of the Timoshenko beam equations can be understood if Eqs. (68) and (83) 
from the system of four Timoshenko beam equations for in-plane (or out-of-plane) lateral and rotational 
motion are rewritten without spatial derivatives: 

1 y
z

t

Q
S G t

ϕ
κ

∂
= −

∂
    and  z

t t yI ρ = Q
t

ϕ∂
∂

             (219) 

Combination of both give one of the following equations: 

2

2 0tz
z

t t

S G
I ρt

κϕ ϕ∂ + =
∂

  or   
2

2 0y t
y

t t

Q S G Q
I ρt

κ∂
+ =

∂
           (220) 

which can be recognized as the equation of simple harmonic motion (without damping) defined already 
by Eq. (105). We are not able to describe the physical meaning of this harmonic motion interlaced into 
Timoshenko beam equations. However, solving Eq. (220) with characteristic upwind numerical method 
in case of stiff source terms causes nonphysical amplification of the oscillations and the numerical 
method becomes unstable. The following general solutions are possible for stiff source terms: (i) 
significant reduction of the time step below the time step given with CFL condition in Eq. (191) or (ii) 
moderate time step reduction with introduction of implicit iterations.  

The angular frequency ω  in Eq. (220) is defined by the term: 

t

t t

S G
I ρ

κω =                          (221) 

Considering the frequency of the oscillation (f = ω  / 2π), the period of oscillation (T = 1 / f), and the fact 
that every oscillation should be divided into at least 10 time steps for successful description, the 
computational time step enforced by stiff source terms in Timoshenko beam equations yields: 

2
10

t t
TIM

t

I ρt
S G

π
κ

∆ ≤                        (222) 

Equation (222) shows, that source terms in the Timoshenko beam equations become stiff for piping 
systems with small moment of inertia It. According to the relations between the time step ∆tTIM defined by 
Eq. (222) and the time step ∆t defined by CFL condition in Eq. (191) one can find the following three 
characteristic cases that are applied in our code: 

• ∆tTIM > ∆t:  The source terms are not stiff, the CFL time step ∆t is applied, and the applied 
difference scheme is explicit given with Eq. (207).  

• ∆t  >  ∆tTIM > 0.1 ∆t:  The source terms are stiff (moderate), the time step ∆tTIM is applied, and 
the applied difference scheme is explicit given with Eq. (207). 
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• ∆tTIM < 0.1 ∆t:  The source terms are stiff (significantly), the time step is smaller than 0.1 ∆t and is 
defined manually according to previous numerical trials. An additional implicit iterations are 
applied. 

 

Implicit iterations. For piping systems with very small cross-section (small moment of inertia It), or for 
long piping systems (large ∆x) the oscillation time step becomes much smaller than the time step 
defined by the CFL condition. Implicit iterations are introduced to avoid unreasonable small time steps 
and therefore long simulation times. For only one iteration, the minimal time step given with ∆tTIM can be 
more than ten times larger. The best-on-test and therefore applied numerical procedure for implicit 
iterations due to stiff source terms is implicit iterative method with upwind averaged source terms. The 
explicit difference scheme given in Eq. (207) is then rewritten in the form: 

( ) ( )** * ** * * *
1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 21 1 0n

j j j j j j j jj j j j
t t R t R t
x x

ψ ψ ψ ψ ψ ψ+ − + −
− + − − + +− +

∆ ∆= − − − ∆ − ∆ =− −
∆ ∆

C C D D  (223) 

The first iteration starts with: * n
j j=ψ ψ . The predicted variables **

jψ  are accepted and 1 **n+
j j=ψ ψ  if: 

* **

*
j j

j

ε
ψ ψ

ψ
−

≤                         (224) 

Otherwise, the solutions are corrected/re-predicted with another iteration, using the relationship 
* **
j j=ψ ψ . Matrices C and D are updated for new variables *

jψ  after each iteration within the time step. 

The acceptance criterion ε  for variables of the Timoshenko beam at the end of each time step checks if 
the critical variable changes for given value within one time step (currently ε  = 2). If so, then the time 
step is repeated. Maximal number of iterations is limited, because it turned out that if the number of 
iterations exceeds 10, the solution usually diverges. The solution becomes convergent for smaller 
computational time steps, and for sufficiently small time steps the implicit iterations would not be 
necessary anymore. 

 

5.5. Numerical errors and difficulties 
Numerical dissipation. Tiselj and Petelin [123, 124] stated that the weak side of the first order 
numerical methods is the numerical dissipation, which tends to smear discontinuities on coarse grids. 
The numerical dissipation (also numerical diffusion, dispersion) is a consequence of the discretisation of 
the pure advection equation (which, by definition, is free of dissipation) with spatial and temporal 
difference schemes that are first order accurate. Numerical dissipation is similar to the physical diffusion 
(viscosity friction, heat conduction, etc.). It tends to smooth sharp gradients and it stabilizes oscillations 
of the numerical method. The first error term (also local truncation error) is defined as the difference 
between the approximate and the true solutions. The leading error term is not included in the upwind 
difference scheme, therefore, the explicit upwind difference scheme for positive characteristic with the 
leading error term can be written as: 

( ) ( )
2

n+1 n n n
j j j+1 j 22

n
jt t

x tx x
ξ

ξ ξ ξ ξ
∂∆ ∆= − −− ∆ − ∆∆ ∂

Λ Λ Λ              (225) 

The error term is essentially similar to the dissipation term (second order derivative) with numerical 
dissipation coefficient ε: 

( )
2 x tε = ∆ − ∆
Λ

Λ                        (226) 
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A positive dissipation coefficient yields a stable difference scheme. A negative dissipation coefficient 
increases oscillations and sharpen gradients, thus small disturbances increase. Diffusivity becomes 
negative if the characteristic λ is negative (not possible - upwind) or if the time step is too big, hence, the 
time step must be defined according to the CFL condition in Eq. (191). The dissipation coefficient in Eq. 
(226) is made up of two terms (∆x and ∆t); the first with stabilizing and the second with destabilizing 
effect. Both of them summon and minimal numerical dissipation are obtained if the CFL time step ∆t is 
as close as possible to the ratio ∆x / λ. For very small time steps the stabilizing term prevails and larger 
numerical dissipation is introduced into the solution. 

 

Stiff source terms of the Timoshenko beam equations. Simulations show that an increasing number 
of implicit iterations within one time step introduces additional numerical error, which behaves like 
numerical dissipation. The number of implicit iterations can be controlled by application of smaller time 
steps. However, there is an optimal time step for which the numerical dissipation due to small time step 
in explicit scheme and due to the number of implicit iterations is minimal.  

 

Operator splitting. The operator splitting is a source of a specific non-accuracy that behaves like 
numerical dissipation, and was discussed by Burman and Sainsaulieu [18], Bereux [11] and Tiselj and 
Horvat [125]. The problem arises for small relaxation times, where the relaxation time is a time period in 
which the relaxation quantity approaches to its equilibrium value. With special transformation of the 
equations and with appropriate complex numerical schemes described by Burman and Sainsaulieu [18], 
and Bereux [11], the numerical dissipation of the operator splitting method can be avoided. However, 
these complex procedures are not applied in this thesis. 

 

Numerical evaluation of the eigensystem. A very important step in the characteristic upwind 
numerical procedure is the diagonalization i.e., the evaluation of the eigenvalues and eigenvectors. The 
eigensystem is evaluated at each time step for each computational volume. Some simple physical 
models are analytically solvable, but most of the physical systems discussed in this dissertation are 
solved numerically. The numerical evaluation of the eigensystem is introduced through the application of 
the subroutines from EISPACK numerical library. The simulations showed that the results obtained with 
the same physical model, once solved analytically and then numerically, are identical, which in turn 
validates the numerical approach to evaluate the eigensystem.  

The numerical evaluation of the eigensystem has only one weak side: the eigenvalues and eigenvectors 
are sorted at output, but for the characteristic upwind numerical method, each characteristics needs to 
be at the same position in the diagonalized Jacobian matrix C. Eigensystem re-sorting is thus conducted 
always. Re-sorting is simple when eigenvalues are almost constant with time and position and when the 
eigenvalues are roughly predictable in advance. However, in two-phase flow, the eigensystem 
significantly changes during the simulation and the re-sorting becomes very pretentious.  

 

Other sources of numerical errors and difficulties. Various numerical tests performed showed that 
the influence of other types of numerical errors and difficulties emerging in the code during the 
simulation is negligibly small: 

• The basic variables in fluid equations are written in a non-conservative form. Several tests 
showed that non-conservation is negligible for simulations of fast transients with short duration. 

• The eigensystem is partially evaluated numerically – only slight differences to analytical values 
are found. 

• Artificially introduced relative velocities between phasic velocities and pipe axial velocity in two-
phase system enable appropriate sorting of eigenvalues and cause that the system is initially not 
at rest. The error is small. 

• Application of various techniques of extrapolation of the boundary condition influence the 
solution and stability of the simulation. 
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5.6. Outlook of the code 
The physical model with numerical discretisation was compiled into the computer code using FORTRAN 
programming language. The FORTRAN files contain over 9000 lines of code. The scheme below 
describes the basic steps of the algorithm:  

 

Calculate initial values (read input datafile, set initial values (see Section 4.3), set basic parameters) 

Time step loop 

 Calculate boundary conditions (set values in blind volumes, see Section 5.7) 

 Calculate averaged basic variables in accordance with Eq. (209) 

 Calculate characteristic variables and slope limiters (see Section 5.3) 

 Calculate basic matrices and vectors (A, B, C, S , R , etc.) 

 Calculate eigensystem (Λ , L) numerically and/or analytically 

 Calculate matrices C+, C-, D+ and D-   

 Evaluate variables at new time level t with Eq. (223) 

 Check for stiff source terms of the Timoshenko beam equation (accept solution or iterate Basic loop) 

 Check for stiff source terms due to the relaxation (two-phase flow only, relax if necessary) 

 Conclude time step (accept new variables, define new additional variables, outputs, etc.) 

End of time step loop  

 

5.7. Boundary conditions 
Each simulated piping system or section is divided into N computational volumes. There are two blind 
volumes at the beginning and at the end of the piping system or section (Figure 5) used for prescription 
of the boundary conditions. The most important is the first blind volume, while the second blind volume 
is used only for evaluation of the gradients for calculation of the slope limiters for the second order 
correction. All boundary conditions fall into one of two fundamental groups of boundary conditions: 

• Fixed value; the value at the boundary is fixed at a certain value due to boundary condition 
(constant tank pressure, closed end) or is prescribed through the junction coupling mechanisms. 

• Extrapolation; the value at the boundary is extrapolated from the last few computational 
volumes near the boundary. Figure 6 shows principles of various techniques. 

Transients are generated by time-varying boundary conditions [118]. Table 7 shows boundary conditions 
for some frequently used types of supports for up to eight equation models.  
 

...

PIPE

BLIND VOLUMES BLIND VOLUMES

COMPUTATIONAL VOLUMES

i i+1 i+2 i+3 NN-1N-2N-3 N+1 N+2i-1i-2

        

straight
linear

exponential

NN-1N-2N-3 N+1 N+2

Fig. 5: Each pipe is divided into N computational 
volumes with two blind volumes at both sides of 
the pipe for definition of the boundary conditions. 

Fig. 6: Various types of extrapolation of the basic 
variables into blind volumes. 
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Valve. Boundary conditions in real experimental setups are not abrupt and sharp; the valve closure for 
example is not instantaneous. Each valve has its own closing function and time. In characteristic upwind 
numerical method where volume averaged values are used, the flow change function during the valve 
closure can be described by varying flow, fluid velocity or cross-section. The fluid velocity variation is 
chosen in the present dissertation and it can change according to the relationship: 

( ) ( )0 0x xv u v u tτ= ± −                      (227) 

where ux is the axial velocity of the pipe, ux0 is the initial velocity of the pipe, vf is the fluid velocity, vf0 is 
the initial fluid velocity, ± sign depends on the pipe orientation and flow direction, and τ(t) is a given 
empirical closing function of time. Each type of valve has its own closing function. Tijsseling [118] 
presented the following equation, based on experimental measurements, for non-instantaneous ball 
valve closing in his experiment: 
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              (228) 

with tc as the valve closing time.  
 

Table 7: Boundary conditions for frequently used types of supports. Values represent fixed boundary 
condition; label E stands for boundary condition based on extrapolation. 

Boundary condition for basic variables Description of the BC  
v p ux Nx uy Qy ϕz Mz

Open pipe, fixed pressure 
(tank), no support E ptank or pout E S(p-pout) E 0 E 0 

Open pipe, fixed pressure 
(tank),  roller support E ptank or pout E S(p-pout) 0 E E 0 

Open pipe, fixed pressure 
(tank),  pinned support E ptank or pout 0 E 0 E E 0 

Open pipe, fixed pressure 
(tank), clamped support E ptank or pout 0. E 0 E 0 E 

Closed pipe (valve), 
no support ux E E S(p-pout) E 0 E 0 

Closed pipe (valve), 
roller support ux E E S(p-pout) 0 E E 0 

Closed pipe (valve), 
pinned support 0 E 0 E 0 E E 0 

Closed pipe (valve), 
clamped support 0 E 0. E 0 E 0 E 

Closed pipe (valve), 
no FSI (junction coupling) 0 E 0 0 0 0 0 0 

Closed pipe (valve), 
no support, rod impact ux E E S(p-pout)+Yrod(ux-v0,rod) 

Yrod = Arod (Erodρrod)1/2 E 0 E 0 
 

 

 

Additional mass. All measuring equipment and other objects mounted on the piping system (valve, end 
plug, or end cap, support accessory, etc.) influence pipe inertia. These objects can be simply included 
into simulation by adding their mass to the mass term in axial ms or lateral mT direction. It is possible to 
specify additional mass for each computational volume. 

 

Forces. External forces and bending momentum at the boundary are not necessarily equal to zero. It is 
possible to introduce additional values through an external force term or by fixing a boundary condition 
in Table 7 at a certain value that is different than zero.  
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Elastic support. None of the supports is absolutely stiff. The first approximation of the elastic support is 
support reaction force that depends on extension or flexure of the pipe w and stiffness of the 
corresponding support k: 

andx x x y y yF k w F k w= =                 (229) 

The elastic support is introduced in a similar way like external force and mass. The elastic support can 
be defined at any position of the piping system. 

 

Piping systems splitted into two or more sections. An additional option for the boundary condition 
was implemented to enable splitting of the piping system into two or more straight sections with constant 
parameters. These constant straight sections are then coupled through appropriate boundary conditions. 
This option is important for comparison of our results with results obtained with standard approaches 
presented by Tijsseling [114]. There are two possible connections: 

• Straight connection (Figure 7). The connection is used when there is a change of one parameter 
(for instance pipe wall thickness) of the piping system that causes change of the constant 
eigensystem. The values of the basic variables in two blind volumes at the beginning of the 
second pipe are copied from the last two computational volumes of the first pipe. Similarly the 
blind volumes at the end of the first pipe are copied from the first two volumes of the second 
pipe. 

• Elbow connection (Figure 8). The connection is used to model coupling relations (junction 
coupling) at sharp elbow with curvature radius α , that are given by the relationships (index 1 
stands for pipe 1 and index 2 stands for pipe 2): 

( ) ( )

( ) ( )
( ) ( ) ( )

1 1 1 2 2 2

1 2

1 2 2

1 1 1 2 2 2 2
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Q = Q α S p N α

=
M = M
ϕ ϕ

− −
  (230) 

These models of the splitting were introduced only for comparisons with verified computer codes 
developed in the past, which use exclusively this type of coupling to describe any variation of any 
parameter of calculation (variable geometry, elasticity, elbow flexibility, pipe orientation (elbows), cross-
section, etc.). The standard numerical methods are applicable only for linear physical models describing 
straight sections with constant parameters. Therefore, appropriate models were applied at straight 
connection to account for these variations. The characteristic upwind numerical method introduced in 
this thesis, enables simulations of nonlinear physical models without additional coupling models.  

... N-3

i i+1 i+2 i+3i-1i-2

NN-1N-2 N+1 N+2
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N-3 NN-1N-2
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PIPE 1 ...
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Coupling relations

Fig. 7: Straight connection. Fig. 8: Elbow connection. 
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6. Numerical examples 
This Chapter describes the application and validation of the developed FSI computer codes with 
discussion of accompanying phenomena. Axial and lateral oscillations of a straight pipe (beam) are 
studied first; the results are compared to available analytical solutions. Special attention is given to the 
study of the natural frequency of oscillation of empty pipe and the influence of the fluid inside the pipe on 
the axial or lateral dynamics. Several benchmark problems for the numerical verification of the FSI 
codes were developed at the Delft hydraulics laboratory. Some of these benchmarks are simulated and 
discussed with special emphasis on the characteristic upwind numerical method and its properties. The 
results are compared to the MOC-based verified computer code developed by Tijsseling. At the end of 
this Chapter simulations of three different experiments with two-phase flow FSI are presented. The 
Simpson pipe experiment is essentially used to validate the quasi-two-phase flow model. The 
mechanisms that can be used to prevent FSI effects at elbows and pipe ends (valve) are studied. The 
rod impact experiment (Vardy and Fan [132]) in a straight pipe hanging on wires was used to study the 
single-phase flow FSI. The experimental apparatus isolates the FSI and enables the advanced study of 
mutual dynamics of the fluid and structure. At the end some simulations of the rod impact experiment in 
a hanging single-elbow piping system conveying two-phase flow are presented and discussed. Both, 
cavitation and the FSI are very strong. The code effectively and accurately simulates all considered 
experiments. 

 

6.1. Axial and lateral oscillations of a pipe 
Axial oscillation of an empty pipe. The problem of the axially oscillating empty pipe was used for 
verification of the structural part of the code without fluid flow. A simple straight cantilever piping system 
is schematically presented in Figure 9. It is simulated with axial pipe dynamics model described in 
Section 4.2.2. At time zero, steady axial force Fx = 10 kN starts to act on the pipe endpoint and the pipe 
endpoint extends and starts to oscillate around new equilibrium. The pipe is horizontal, gravity effects 
are excluded, the system can move in the axial direction only.  

Fx

L

x

St  E

 
St = 5.938E-4 m2, E = 200 GPa, 

ρt = 7980 kg/m3, L = 2 m 
Fig. 9: Geometry of an empty pipe loaded with axial force Fx. 

 

There is a difference between two types of loads: force and mass. The force is applied as initiator of 
oscillations and affects the amplitude of the oscillation, while the mass affects system’s inertia and 
consequently affects amplitude and frequency. The mass can initiate movement only if gravity is 
included into simulation. The piping system loaded with the force oscillates at the natural frequency of 
the unloaded pipe regardless the size of the force. 

A point mass, hanging on a massless spring, oscillates with sinusoidal trajectory in position/time plane. 
The question that arises is what would be the trajectory of the endpoint if the spring is not massless and 
there is no point mass? This is actually the case of the axial oscillation of a straight empty cantilever 
pipe loaded with an axial force. Figure 10 shows that axial oscillations of the pipe are sharp with ‘saw’ 
trace. This behavior is a consequence of the fact that each disturbance in the piping system travels 
along the medium with the characteristic velocity, which is very close to the speed of sound in the  
current medium. Precisely, the pipe endpoint starts to extend from the initial position immediately after 
the axial force starts to act. It moves constantly with constant velocity. At the same time, the axial stress 
wave is induced at the endpoint and the head of the axial stress wave travels along the pipe from the 
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endpoint to the support with its characteristic velocity. Each section along the pipe starts to extend only 
when it is reached by the axial stress wave. The pipe is fixed at support, therefore the axial stress wave 
reflects at the support and when traveling back to the endpoint, it turns sign of the movement (extension 
turns to contraction). This is an effect of the boundary condition. If the speed of sound in the pipe in axial 
direction is ct = 5006.3 m/s, and the length of the pipe is L = 2 m, then the pipe’s endpoint extends 
constantly with constant velocity for the period text = 2 L / ct = 0.7989 ms. Afterwards, the pipe’s endpoint 
starts to contract for the same period, tcont = text. This behavior is repeating, therefore adding tcont to the 
text gives a period of one oscillation or inversely, a frequency of oscillation f = 625.9 and 625.8 Hz  
obtained with simulation and from analytical solution (Table 5), respectively. 

Figure 10 shows oscillations of the pipe endpoint obtained with three different approaches: (i) with our 
code where the pipe is divided into N = 640 computational volumes, (ii) with the commercial structural 
dynamics code Abaqus/Explicit [1] based on Finite Element Method where the pipe is divided into N = 
80 computational finite elements, and (iii) with Arscott’s analytical solution. Arscott [8] gave exact 
solution of the problem of axial oscillation without damping for the unloaded heavy spring. The solution 
is valid also for axially oscillating empty piping systems loaded with an axial force. The point at position s 
oscillates with amplitude a around equilibrium due to some initial disturbance in accordance with 
equation: 
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Generally, the differences between the solutions in Figure 10 are very small although detail shows small 
discrepancies between various results at the discontinuity in the solution. The discrepancies depend on 
the assumptions of the calculation. An example, how calculation assumptions affect numerical results of 
our code is shown in Figure 11, which shows that numerical dissipation decreases and accuracy of the 
solution increases for denser computational grids. The analytical solutions are usually exact, but the 
Arscott’s analytical solution is an infinite sum, which means that the accuracy of the analytical solution 
depends on a number of accounted summands. The dashed blue line in Figure 10 was obtained as a 
sum of the first 100 summands. The sum of the first 10 summands gives much more smeared solution, 
comparable to the result of our code. Finally, the Abaqus/Explicit solution will be sharper (i.e. more 
accurate), if a larger number of finite elements is applied. 
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Fig. 10: Axial oscillations of the endpoint: 
comparison between our code,  

Abaqus/Explicit and analytical solution. 

Fig. 11: Axial oscillations of the endpoint:  
influence of the grid refinement. 

 

Every real natural oscillatory motion is damped as it is not possible to eliminate energy losses due to 
non-conservative forces. Thus, oscillations of the cantilever piping system slowly become sinusoidal as 
time evolves because of damping. On the other hand, there are several mechanisms that introduce 
numerical errors into simulation, which is known as numerical dissipation (see Section 5.5). The 
governing effects of the numerical dissipation and natural damping are the same – smoothened solution, 
damping of motion and finally equilibrium. Figure 11 shows, that one of the mechanisms that affect 
numerical dissipation is the number of computational volumes. As natural damping, also numerical 
dissipation finally stops any movement of the piping system. From basic equations of statics of 
structures, it is possible to evaluate the pipe endpoint equilibrium extension due to an imposed axial 



 

                    - 67 -

force. Analytically evaluated extension is wx = 0.168 mm, which is 0.004 mm (2.3 %) more than 
simulated wx,sim = 0.164 mm. 

 

Axial oscillation of a fluid-filled pipe. The considered transient in a closed fluid-filled piping system is 
an extension of the empty pipe transient. The two-equation axial structural dynamics model applied in 
the previous section is upgraded with the fluid dynamics model into a four-equation axial quasi-two-
phase flow FSI physical model described in Section 4.2.3. Various fluids with constant fluid properties 
are applied to verify the influence of the fluid on axial dynamics of the pipe. Figure 12 schematically 
shows geometry and properties of the pipe, and Table 8 shows properties for all applied fluids (air, 
water, methanol, and dichlorodifluoromethane R12). The properties are valid for fluids at room pressure 
(p = 1 bar, except R12 where p = 7 bar) and room temperature (T = 293 K). The thermodynamic 
properties of the fluid are constant during simulation, and the flow is single-phase. The closed fluid-filled 
cantilever pipe at rest is instantaneously loaded in axial direction with axial force Fx  = 10 kN. The 
transient is controlled with properties of the both, the pipe and the fluid.  

Fx

L

x

St  E

St = 5.938E-4 m2, E = 200 GPa,  
ρt = 7980 kg/m3, L = 2 m, S = 5.938E-4 m2 

 
Fig. 12: Geometry of the closed fluid-filled 

pipe loaded with axial force Fx. 

Table 8: Properties of the state for the applied  
fluids. T = 293 K and p = 1 (7*) bar 

Fluid ρ [kg/m3] K [Pa] c0 [m/s] 
Water 998.2 2.009E9 1418.9 

Methanol 791.1 0.987E9 1116.7 
R12* 1330. 0.379E9 533.6 
Air 1.204 1.418E5 343.2  

 

Figure 13 shows the relative pressure history near the unsupported right end for the first 5 milliseconds 
of the transient and Figure 14 shows pipe unsupported endpoint extension history for the same period. 
The stress waves in the structure travel several times faster than the pressure waves in the fluid, thus, at 
the beginning, all changes in the pressure appear as a consequence of the pipe movement. This is the 
influence of the pipe on the fluid due to the FSI coupling. If the pipe is extending, the pressure is 
reduced below and if the pipe is contracting, the pressure is increased above the initial ‘Joukowsky’ 
pressure. The changes in the pressure appear at the same time for all fluids because properties of the 
pipe are the same regardless the conveying fluid. The pressure waves in the fluid are few times slower 
than the stress waves in the pipe. The pressure wave in the water is the fastest among the pressure 
waves in applied fluids (Table 8). It travels with characteristic velocity cf = 1304 m/s and comes back to 
the unsupported right end after t = 3.07 ms. This can be observed in water pressure history as 
disturbance. Similarly, the pressure wave in methanol travels with characteristic velocity cf = 1069 m/s 
and reaches the remote end at time t = 3.74 ms. The transient shows strong coupling between the fluid 
and the structure.  

The time history results presented in Figures 13 and 14 and equilibrium extension wx and pressure p 
collected in Table 9 with comparison of simulation and analytical results indicate that: 

• The energy from the loaded pipe is transported through FSI effects into the fluid. The fluid 
pressure and the amplitude of the endpoint oscillations are affected. 

• The pressure rise/drop is stronger for systems with less compressible fluid. 
• The endpoint oscillations are smaller for systems with less compressible fluid 
• The inertia effects of the mass of the fluid (density) are not trivially related to effects of the FSI. 

Proof: the heaviest fluid (R12) is not the most influential.  
• The intensity of the FSI in the axial direction depends on stiffness (bulk modulus) as recognized 

already by Casadei [22], who recommended FSI analysis if the fluid is incompressible. Several 
properties affect FSI transient. However, the compressibility of the fluid is the most 
important. The effects of the FSI are most evident and intense in low compressible water-filled 
piping system and less evident in a very compressible air-filled piping system. 

• Less compressible fluids exhibit higher numerical damping (not evident from the Figures). 



 

                    - 68 -

• Equilibrium extension is smaller in less compressible fluid. 
• Equilibrium pressure change is larger in less compressible fluid. 
• Comparison of simulated equilibrium to analytical solution shows high accuracy and reliability of 

the applied mathematical model and numerical technique.  
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Fig. 13: Pressure history near the right end of  
the fluid-filled cantilever pipe due to axial force. 

Fig. 14: Endpoint oscillation history near the  
right end of the fluid-filled cantilever pipe. 

Table 9: Equilibrium pipe extension and fluid pressure due to axial force. 
Simulation Analytical Relative difference Fluid 

wx [mm] p [Pa] wx [mm] p [Pa] ∆wx [%] ∆p [%] 
Water 0,16635 -56942 0,16658 -56864 -0,14 0,14 

Methanol 0,16691 -30280 0,16704 -30405 -0,08 -0,41 
R12 0,16709 -12105 0,16736 -12323 -0,16 -1,77 
Air 0,16715 -4,5 0,16758 -4,8 -0,25 -5,77 

 

 

 

Lateral oscillations of an empty pipe. The response of the structure (piping system) to the lateral load, 
i.e. lateral oscillations of the structure, are a complicated function of the pipe stiffness, inertia, mass, 
distribution of the load and supports, etc. Stokey in a handbook of Harris and Crede [51] gave 
analytically equations for the frequencies of lateral oscillations that were developed with an exact 
method, with a lumped parameter solution and with a solution using Rayleigh’s method (Table 5). The 
analytical solutions are valid for numerous combinations of vibrating beams (empty pipes), plates, 
masses and supports. Derivation of these analytical solutions is usually based on assumption of 
symmetric load and symmetric supports, which in turn actually enables analytical solution. 
Consequently, tables in the literature that collect natural lateral frequencies refer to idealized symmetric 
cases with centralized masses and are thus useless for the majority of the real structures. The 
simulations of cases in this section point out that our approach, where four in-plane Timoshenko beam 
equations are applied, give an elegant numerical way for the study of the natural frequencies of 
arbitrarily loaded and asymmetrically supported piping systems. All pipes in Figures from 15 to 20 are 
empty and have the same properties: cross-section area St = 5.938E-4 m2, moment of inertia (second 
moment of area) It = 2.952E-5 m4, Young elasticity modulus E = 200 GPa, density ρt = 7980 kg/m3 and 
length L = 2 m. The transient is induced at time zero, when the gravity and/or external load start to act 
on the piping system. The simple structure starts to oscillate in lateral direction with more or less 
sinusoidal trajectory. 

Figure 15 shows the oscillations of the midpoint of a pinned-pinned pipe loaded with centric force Fy = 
100 N and the comparison to the case with equivalent mass m. The natural frequency of the oscillations 
of the pipe loaded with a force is equal to the frequency of the unloaded pipe f = 43.7 (43.5) Hz, and is 
decreased when the pipe is loaded with an additional centric mass fcm = 24.8 (24.5) Hz. First values are 
obtained with simulation while values inside brackets are obtained from analytical expressions. Figure 
16 shows a comparison of oscillations of a pipe with centric and eccentric masses. In the case with an 
eccentric mass the frequency is increased to fsim,ecm = 28.5 Hz, and the amplitude and the ultimate 
bending of the midpoint is slightly decreased. Figure 17 shows an example of oscillations of the right 
endpoint of the piping system with arbitrary supports and masses. The oscillation of any point along the 
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pipe is a complicated function of the load, pipe stiffness and supports. The analytical solution for the 
eccentric mass case and the case with arbitrary supports and loads does not exist. 
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Fig. 15: Geometry and lateral 
oscillation of the midpoint for the 

pipe with centric force and 
equivalent mass. 

Fig. 16: Geometry and lateral 
oscillation of the midpoint for the 
pipe with centric and eccentric 

mass. 

Fig. 17: Geometry and right 
endpoint oscillation for arbitrarily 

supported and loaded pipe. 
 

The additional mass m is included into the simulation as external load through differential term with mT in 
Eq. (73). If the additional mass m (usually m > mT ) is concentrated in a single volume then the abrupt 
jump in the mass represents a singularity in the eigensystem that locally increases the numerical 
dissipation. Table 10 shows that a simulation gives more accurate results for the cases with denser grid 
and the cases where the mass is distributed over more computational volumes. The analysis was 
performed with centric mass oscillating pipe problem depicted in Fig. 15. 
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Fig. 18: Bending, shear force  
and momentum in cantilever pipe 

due to static force at endpoint. 

Fig. 19: Bending, shear force 
and momentum in pipe due to 

static forces and gravity. 

Fig. 20: Bending, shear force 
and momentum in cantilever pipe 

due to static force at endpoint. 
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Table 10:  Accuracy of the simulation depends on the grid and number of  
computational volumes over which the mass is distributed. 

Grid density  
[comp. volumes] 

Mass distribution
[comp. volumes] 

Frequency  
[Hz] 

10 1 31.5 
30 3 26.3 
90 1 36.9 
90 3 26.8 
90 9 25.1 
270 27 24.8 

Analytical solution: 24.5 
 

Additional examples are presented in Figures 18, 19, and 20 (diagrams are grouped in columns). The 
pipes are loaded with forces at various positions (c = c2 = 1.6 m, and c1 = 0.6 m). The external lateral 
force for the cases of Figs. 18 and 20 is equal to Fy = 100 N and the beam in Fig. 19 is loaded with two 
eccentric lateral forces, Fy1 = 20 N and Fy2 = 50 N, and distributed mass q = 46.51 N/m. The natural 
frequency of oscillation of the (unloaded) cantilever pipe in Fig. 18 is f = 16.0 (15.6) Hz, and the natural 
frequency of the midpoint of the (unloaded) pipe in Fig. 19 oscillates with frequency f = 43.5 (44.1) Hz. 
Each movement is damped until the equilibrium is reached. Figures 18, 19, and 20 show equilibrium 
bending, shear force and bending momentum and all simulated variables (blue dots) perfectly match 
with analytical solution depicted with red continuous line. One should note, that the achievement of the 
equilibrium is not a consequence of the physical damping, but due to the numerical damping. 

 

Lateral oscillations of a fluid-filled pipe. The planar eight-equation quasi-two-phase flow FSI physical 
model described in Section 4.2.3 is applied to verify the influence of various fluids on lateral dynamics of 
the pipe. The geometry and geometric properties are the same as for the structure in Figure 15, the 
piping system is closed at both ends, pressurized, and filled with four different fluids (properties in Table 
8). The system is initially at rest, relative changes in pressure and displacements of the midpoint are 
traced.  

The case where the pipe is not loaded with an external load is considered first. Various fluids have 
various densities and therefore the total mass of the piping system per unit of length is different for 
different fluids. At time zero, the gravity starts to act on the piping system and the structure starts to 
oscillate. Figure 21 shows that for lateral dynamics, the heaviest fluid yields to the largest amplitude and 
the smallest frequency of oscillation. The structural oscillations through FSI coupling induce oscillations 
of the pressure in the midpoint however, the pressure changes due to oscillations are actually negligible. 
It is possible to see that the frequency of the pressure waves is few times larger than the frequency of 
the lateral movement, which in turn prevents the appearance of significant FSI effects in the lateral 
direction.  

Figure 22 shows a case similar to the previous one with one exception. There is no gravity field, the 
transient is initiated by the action of the lateral force Fy  = 100 N in the midpoint. Then the amplitude is 
equal for all fluids, because different density of different fluids (mass) affect only the frequency of the 
oscillations. The heaviest fluid R12 has the largest period of oscillation. The pressure history shows that 
the frequency of pressure pulsations is much shorter than the frequency of structural dynamics, the 
heaviest fluid experiences the highest pressure peaks, and the pressure pulsations are actually 
negligible. 

The study of the lateral dynamics in fluid-filled piping system with FSI yields to the following conclusions: 
• FSI is very weak in lateral dynamics of structures. 
• The most important FSI parameter for oscillation in the lateral direction is the density of the 

fluid (mass). 
• The total pipe volume change is very small for lateral dynamics, therefore, the pressure 

changes in the fluid are negligible.  
• With consideration of the gravity: the denser fluid decreases the natural frequency of the 

oscillation and increases the amplitude. 
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• Without consideration of the gravity: the denser fluid decreases the natural frequency of the 
oscillation while the amplitude is not affected. 
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Fig. 21: Pressure and oscillation history in the midpoint of the piping system filled with various fluids. 

The transient is initiated by introduction of the gravity forces. 
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Fig. 22: Pressure and oscillation history in the midpoint of the piping system filled with various fluids. 

The structure is loaded with lateral force (no gravity considered). 
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6.2. Delft hydraulic benchmark problems 
All developed FSI computer codes and the underlying mathematical models and numerical methods, 
have to be extensively tested. For this purpose Tijsseling [113] adopted several benchmark problems, 
known as Delft hydraulics benchmark (DHB) problems A to F. These benchmark problems are based on 
an inventory of field cases and were defined in consultation with prof. Wiggert. The DHB problems are: 

• DHB problem A: 20 m straight pipe with free massless valve. 
• DHB problem B: 20 m straight pipe with fixed valve. 
• DHB problem C: 330 m straight pipe with free massless valve. 
• DHB problem D: 330 m L-shaped pipeline, free bend 20 m away from fixed valve. 
• DHB problem E: 330 m L-shaped pipeline, fixed bend 20 m away from fixed valve. 
• DHB problem F: 330 m system with four bends. 

 

6.2.1. Delft hydraulic benchmark problems A and B 
 

TANK

P1
Water... ...i+1 i+2 i+3 NN-1N-2

P2

PIPE VALVE

Initial flow direction

i=1

  

Fig. 23: Numerical model of the DHB problem A (valve is free) 
and B (valve is fixed). 

Table 11: Piping system and water 
properties for DHB problems A and B.

Piping system Water 
L = 20 m ρf = 1000 kg/m3 

R = 0.3985 m K = 2.1 GPa 

e = 0.008 m p = ptank = 0 bar 

E = 210 GPa v = 1 m/s 

ρt = 7900 kg/m3 T = 20 °C 

ν = 0.3   
 

The DHB problems A and B refer to a simple straight tank-pipe-valve system depicted in Fig. 23. The 
pipe with properties described in Table 11 is filled with water at room temperature. The transient is 
initiated in the fluid by the instantaneous closure of the valve, which rapidly stops the steady-state water 
flow. The valve is massless and free for case A and fixed for case B. The results were obtained with 
application of the linear four-equation physical model for simulations of axial quasi-two-phase flow FSI 
coupling and are compared to the results obtained with the validated computer code of Tijsseling [113] 
s1ax01. The s1ax01 is based upon a linear physical model with constant characteristics for axial FSI 
coupling and is solved with the method of characteristics (for details see Lavooij and Tijsseling [75], 
Wylie and Streeter [150], or Tijsseling [117, 113]). Recall that the method of characteristics (MOC) 
actually provides the analytical solutions of FSI problems based on several assumptions that have to be 
introduced into the physical model: the transient is single-phase, the pipe is uniform, straight, with 
constant material properties, the state properties of the fluid are constant, all parameters that introduce 
damping are eliminated, and the source terms are set to zero. These assumptions mean the 
linearization of the leading partial differential equations. In addition, Wylie and Streeter [150] stated that 
the numerical error of MOC is partly eliminated by initial tuning of (constant) densities to appropriately 
adjust wave speeds to conform into equidistantly spaced grid points in distance-time plane (Lavooij and 
Tijsseling [75, 117]). 

To be comparable to the MOC results, all, although non-realistic assumptions were implemented into 
our physical model and consequently, all advantages of our approach were lost. However, the results 
enable a direct comparison between the method of characteristics and the characteristic upwind 
numerical method and thus the validation of the proposed numerical scheme. Figures 24 and 25 show 
the fluid pressure, the pipe axial force, and the pipe axial velocity histories obtained for the DHB 
problems A and B at position P2 that is located as close as possible to the valve. The simulation with 
both approaches yields practically the same results however, detail shows that the results obtained with 
the method of characteristics are slightly sharper. The differences are attributed to: 

• Numerical dissipation. The numerical dissipation that comes with the characteristic upwind 
method smoothens the discontinuities in the results. The numerical dissipation cannot be 
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eliminated, but it can be minimized (the applied number of computational volumes N = 400, the 
optimal time step is reduced by factor 0.2, and the Superbee limiter is applied). The amount of 
numerical dissipation contributes the largest part into differences between methods.  

• Position of the measurement. The MOC gives values that are valid for a position exactly at the 
end of the pipe (point), while the characteristic upwind method, with computational volumes, 
gives an averaged value over the whole computational volume (volume average). The practical 
representation of the slightly shifted and averaged measuring position again reduces the 
sharpness of discontinuities, which is an effect similar to the numerical dissipation.  

One can conclude that Figures 24 and 25 validate the characteristic upwind numerical method since the 
simulation perfectly matches the results obtained with the verified MOC method. 
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Fig. 24: DHB problem A: time history of basic variables at position P2. 

 

Figure 26 shows the pressure history in P2 for the first 4 seconds of the transient without consideration 
of the damping. The results for the DHB problem B exhibit the secondary frequency of pressure 
oscillations, which appears due to the Poisson coupling mechanism of the FSI. It is also evident that the 
maximal pressure peak near the valve is not achieved immediately after the valve closure, but it appears 
as transient evolves. The maximal pressure and therefore the maximal load of the fluid on the 
structure are not obtainable without appropriate FSI simulation. It is necessary to stress, that 
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simulations were performed without consideration of any of the damping mechanisms. Damping in real 
experiments is always significant and affects the pressure history. 
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Fig. 25: DHB problem B – time history of basic variables at position P2. 
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Fig. 26: DHB problems A and B – Pressure history in P2 for the first 4 seconds of the transient. 
 

 

Minimization of the numerical dissipation. The numerical dissipation of the applied numerical method 
is relatively small and manageable i.e. it is possible to control the amount of the numerical dissipation by 
various parameters of the simulation. One of the possible mechanisms are slope limiters given in 
Section 5.3. Figures 27 and 28 show that each limiter has a different influence on the sharpness of the 
result. The sharpest results are obtained with the Superbee limiter, the most diffusive (smearest) 
solutions, but still 2nd order accurate, are obtained with the Minmod limiter, while the solutions with Van 
Leer and MC limiters lie between the sharpest and the smearest results. All results obtained with 
application of limiters are second order accurate on smooth solutions (see first order solution Figs. 27 
and 28). The best results were obtained with the Superbee limiter but this limiter, especially in some 
more complex two-phase simulations, sometimes introduces nonstability into the simulation. The use of  
the Superbee limiter is recommended in single-phase flow but should be used with caution in two-phase 
flow.  
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Fig. 27: DHB problem A: pressure time history in P2 with study slope limiters. 
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Fig. 28: DHB problem B: pressure time history in P2 with study of slope limiters. 
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Fig. 29: DHB problem A: pressure time history in P2 with study of grid refinement. 
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Fig. 30: DHB problem B: pressure time history in P2 with study of grid refinement. 
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The second mechanism that affects numerical dissipation is the nodalization of the computational 
domain. The importance of this mechanism is shown by a very trivial grid refinement study in Figs. 29 
and 30. The sharpest results are obtained with N = 400 computational volumes however, N = 50 
computational volumes are sufficient for fast and accurate simulation. The case with 50 computational 
volumes took one minute of calculation time on Pentium IV 3.0 GHz processor. 

 

FSI coupling mechanisms. There are two major coupling mechanisms for the description of the FSI: 
the distributed Poisson coupling and the local junction coupling. Figures 31 and 32 show the importance 
of the coupling mechanisms, because both the Poisson and the junction coupling mechanisms must be 
accounted for accurate results. The valve in DHB problem B in Fig. 32 is fixed, which prevents junction 
coupling, thus the case “No Poisson coupling” is equal to the case “No FSI” (valid only for the straight 
pipe). The DHB problem A pressure history is equal to the DHB problem B pressure history if FSI is not 
considered. The simulation without the FSI is denominated as standard water hammer simulation, and 
rather simple box-like pressure histories near the valve are observed due to rapid valve closure (Figures 
31, 32, and C-2) in non-cavitating flow. The standard water hammer pressure history at the valve and 
the first few moments in pressure history at the valve due to the junction coupling mechanism can be 
reconstructed with Joukowsky’s equation, which defines the pressure rise/drop due to the disturbance in 
the flow velocity (see also Appendix C): 

f f fp c vρ∆ = ∆     where    , ,f f before f afterv v v∆ = −          (232) 

where cf is the speed of sound, ρf is the density of the fluid, and ∆vf is the flow velocity change with 
vf,before as the fluid velocity before and vf,after as the fluid velocity after the disturbance of the flow. Figures 
31 and 32 show that for standard water hammer simulations without consideration of the FSI, the fluid 
velocity after the valve closure is zero (vf,after = 0) and a typical box-like pressure history is obtained. The 
continuous (black) line on Figure 31 shows that with consideration of the FSI, just after the valve 
closure, the fluid pressure rise is smaller than for the no FSI case, while few milliseconds later, the 
continuous line increases above the standard solution (see the same effects in Figs. 13 and 36). The 
discrepancies from the standard solution are explained using Joukowsky’s theory: at the beginning, the 
flow is not entirely stopped although the valve is closed, because the pipe starts to extend. Therefore, 
vf,after = ux, where ux is the axial velocity of the pipe (valve). Consequently, the pressure near the valve 
remains lower than that of the fixed valve. The induced axial stress wave travels along the pipe and 
reflects at the tank as discussed in Section 6.1. When the reflected stress wave reaches the valve again, 
the valve starts to move in the opposite direction with velocity vf,after = -ux, which corresponds to the case 
of reversed flow. The fluid is additionally compressed, and the pressure near the valve increases above 
the no FSI case. The initially simple FSI phenomenon becomes much more complicated as time 
evolves.  
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Fig. 31: DHB problem A: pressure time history with study of the FSI coupling mechanisms. 

 

Figure 32 shows DHB case B with a fixed valve where only the Poisson coupling mechanism appears. 
The pressure gradually increases and later on decreases. This is the effect of the Poisson coupling 
mechanism. After the valve closure, the pressure rise through the Poisson coupling swells the cross-
section of the pipe and generates a new stress wave. The stress wave that travels along the pipe 
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approximately three times faster than water hammer wave, swells the pipe cross-section and therefore 
reduces the pressure. This pressure reduction is known as precursor wave. The pressure reduction 
changes sign at the tank and becomes a pressure increase, and this can be observed on the pressure 
history near the valve. This effect becomes more intense as time evolves. It is possible to conclude that 
simulations of an FSI are not possible without appropriate consideration of the Poisson and 
junction coupling mechanisms. 
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Fig. 32: DHB problem B: pressure time history with study of the FSI coupling mechanisms. 

 

 

Precursor and successor wave. At the moment of the valve closure in the straight axial system, an 
axial stress wave and a pressure wave are generated that travel along the pipe at the corresponding 
characteristic velocity. The axial stress waves travel approximately 3 times faster than pressure waves, 
and due to the axial extension of the pipe, throughout Poisson effect, cause contraction of the pipe 
cross-section. Consequently, the pressure is raised. This pressure rise travels along the pipe with the 
same speed as the axial stress wave in the pipe, so it is faster than other pressure waves in the fluid. 
This pressure disturbance wave is known as the precursor wave, and can be observed as a small 
pressure disturbance that travels in front of the pressure wave in the fluid during the transient. It is most 
evident at the beginning of the FSI transient (Figure 33), while later on, the pressure longitudinal profile 
becomes rather complicated and the precursor waves are not traceable anymore. The precursor waves 
are very evident in DHB case B, where only Poisson coupling mechanism is considered. The less 
famous counterpart of the precursor wave can be observed in the axial force longitudinal cross-section. 
At the position of the pressure wave, a small disturbance in the axial force is evident. This disturbance 
appears because the pressure wave swells the pipe and the pipe starts to contract throughout the 
Poisson coupling mechanism. In analogy to the precursor wave, this wave can be denominated as a 
successor wave. The successor wave travels in the pipe wall with the characteristic velocity of the 
pressure waves in the fluid.  
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Fig. 33: DHB problem A: Pressure and axial force longitudinal profile at time t = 3 ms with  

indication of the precursor and successor wave. 
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Common characteristics of the precursor and successor waves are, that they are both observed in one 
medium, while they are a consequence of the transient in the other medium. The propagation velocity of 
the transient wave in the first medium is equal to the characteristic velocity of the transient in the second 
medium. The precursor and successor waves can be described only with appropriate 
consideration of the Poisson coupling mechanism. 

 

6.2.2. Delft hydraulic benchmark problems C, D and E 
The Delft hydraulic benchmark (DHB) problems C, D and E are an extension of the DHB problems A 
and B. The piping system is longer, and it contains an additional 90° elbow in cases D and E. The 
material properties are collected in Table 12, the geometrical model for DHB problem C is sketched in 
Fig. 34 and the model for DHB problems D and E is sketched in Fig. 35. The DHB problems D and E are 
similar except the elbow that is located 20 meter away from the valve is not supported in case D, while it 
is fixed in case E. The valve is massless and free for case C and fixed for cases D and E. The piping 
system is initially filled with water at room temperature. The transient is initiated at time zero when the 
valve is instantaneously closed and the steady-state water flow is stopped. The flow is single-phase. 
The fluid thermodynamic state properties are assumed constant. The simulations were performed with 
the eight-equation linear quasi-two-phase flow model for FSI in arbitrarily shaped planar piping systems. 
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Fig. 34: Numerical model of the DHB problem C. 

Table 12: Piping system and water 
properties for DHB problems C, D and E. 

Piping system Water 
L = 330 m ρf = 880 kg/m3 

R = 0.1032 m K = 1.55 GPa 

e = 0.00635 m p = ptank = 0 bar 

E = 210 GPa v = 4 m/s 

ρt = 7900 kg/m3 T = 20 °C 

ν = 0.3   
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Fig. 35: Numerical model of the DHB problem D (free elbow 20 m away 

from the fixed valve) and E (fixed elbow 20 m away from the fixed valve). 
 

 

The results for the DHB problem C obtained with the simulations are compared to the results obtained 
with the verified computer code s1ax01 of Tijsseling [113, 117]. The physical model and assumptions 
applied in our code have been defined in a way to enable direct comparison of numerical methods 
(MOC vs. Characteristic upwind) without additional influences. The difference compared to the analysis 
of Section 6.2.1 is that eight-equation model is applied. Figure 36 shows some most important basic 
variables and comparisons to the results of the MOC. Numerical dissipation and non-equal measuring 
position contribute to some small discrepancies. However, the agreement between simulation with our 
code and verified MOC is perfect, which again, validates the application of the high resolution 
characteristic upwind numerical method. 
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Fig. 36: DHB problem C: History of basic variables in position P2 – comparison between MOC and 
characteristic upwind numerical method. 

 

Junction coupling at valve. Figure 37 shows a comparison for three variations of the DHB problem C 
precisely, the no FSI case is compared to the case with fixed valve (Poisson coupling mechanism only) 
and the case with free valve (Poisson and junction coupling mechanisms). Figure 37 shows that 
significantly higher pressures in the considered transient were recorded for the case with free valve, 
which means that the junction coupling mechanism at the valve plays a very important role. This 
confirms the generally accepted rule, which states that FSI is more intense in weakly or wrongly 
supported piping systems. It is possible to conclude that fast operating valves should be adequately 
supported in order to minimize FSI and transfer of energy from the pipe into the fluid. 
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Fig. 37: Comparison of pressure histories in straight pipe (DHB C) near the valve for  

cases without FSI, with FSI with fixed valve and with FSI with free valve. 
 

Junction coupling at an elbow. The simulation results of the DHB problems D (elbow is free) and E 
(elbow is fixed) are compared with the results of the simulation of the DHB problem C (straight pipe). 
Figure 38 shows the pressure histories close to the valve. The valve is fixed and closed instantaneously 
in all considered cases. It is possible to see that the highest pressure peaks (more than 50% higher) 
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were obtained for the case where the elbow was free. This again confirms the general rule, which states 
that the piping system has to be sufficiently supported to prevent development of the FSI coupling. 
Every elbow of the piping system has to be adequately supported. Comparison of the case with 
straight pipe and pipe with fixed elbow gives another interesting conclusion: the pressure history for 
case with fixed elbow (DHB problem E) is essentially the same as the pressure history for the case with 
straight pipe (DHB problem C, fixed valve). We can conclude that during the FSI pipe transient the 
piping system with fixed elbows behaves similarly as the straight piping system. 
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Fig. 38: Comparison of pressure histories in position as close as possible to the valve for  

cases with free and fixed elbow (DHB D & E) and for case without elbow (DHB C).  
 

Elbows are one of the most common parts of the piping systems, and simulations (and experiences) 
show that they should be adequately supported. Of course, this is not a trivial task. In the piping systems 
of a nuclear power plant for example, the thermal extensions of the primary coolant loop piping system 
lead to up to 20 centimeter extensions/contractions. Fixed supports would impose gigantic loads. The 
general solution was found in snubbers (mechanical shock arrestors). The snubber allows thermal 
displacements with velocities lower than threshold velocity (few cm/s), during the water hammer 
transient occurrences (or plant transients, earthquakes, etc.), velocities of displacements increase over 
the threshold and the snubber blocks any movement. For example there are approximately 2300 
snubbers mounted to support various piping systems in nuclear power plant Krško. 

 

6.3. Valve closure experiment in single elbow pipe 
Simpson [103] in 1986 conducted a series of 9 experiments during his Ph.D. research where he 
experimentally and numerically studied cavitation in single-elbow piping system. The valve closure 
experiment in the single elbow pipe, also known as Simpson's pipe column separation water hammer 
experiment [103], became one of the fundamental benchmarks for two-phase flow computer codes 
because of the simple geometry, initial conditions and clear water hammer initiating mechanism. The 
valve closure experiment in the single elbow pipe was applied in this dissertation for verification of the 
quasi-two-phase flow model and to study the influence of the FSI on two-phase flow transients. The 
simulated results were obtained with the eight-equation quasi-two-phase flow physical model for FSI in 
planar arbitrarily shaped piping systems, which was solved with the characteristic upwind numerical 
method. The quasi-two-phase flow model was applied for simulation of the column separation. The 
results of the simulations were compared to the experimental measurements. 

Simpson varied the initial velocity of the steady state fluid to affect the appearance of the two-phase flow 
and the severity of the water hammer and cavitation. The other initial parameters were held as constant 
as possible during the execution of the experiments. The matrix with initial conditions for various 
experiments is presented in Table 13. The transient in initially steady state tank-pipe-valve system (Fig. 
40) is induced by instantaneous ball valve closure. The ball valve is closed by hand to avoid the amount 
of pipe movement and vibration resulting from the fast closure of the valve. The hand operation of the 
valve leads to longer closing times and smooth and non-standard flow diminishing functions of the ball 
valve. For the simulation of all experiments we assumed that the fluid temperature is Tf = 297 K, the 
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valve closing function is defined by Eq. (228), and the applied uniform valve closing time is tc = 10 ms. 
The piping system in Fig. 40 is 36 meters long with one 90° elbow at 12.5 meter, and the section from 
12.5 to 36 meters is slightly inclined (γ = 2.44°). The experimental apparatus is fixed with brackets to the 
wall at approximately 2.5 meters interval and at additional three points: at the tank, at the elbow and at 
the valve. Simpson [103] claims that two brackets rigidly support the elbow and any movement of the 
elbow during the transient is expected to be negligible. Because of the fixed supports that are located at 
the crucial parts of the piping system, it is expected that the junction coupling FSI mechanism will be 
negligible. 

 

Fig. 39: Plane (left) and side (right) schematic view (not to scale) of experimental apparatus of the valve 
closure experiment in the single elbow pipe [103]. 
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Fig. 40: Numerical model for experimental apparatus of the valve closure experiment in the single elbow pipe.

 

 

Table 13: Matrix of initial conditions for experimental runs. 

Label 
Fluid 

velocity  
[m/s] 

Tank and pipe 
pressure  

[bar] 

Valve 
closing time

[ms]  

Fluid 
temperature  

[K] 
Wall friction 

coeff. Cavitation

Exp 1 0.239 3.369 29 297.1 0.0325 No 
Exp 2 0.332 3.281 35 297.6 0.0315 Yes 
Exp 3 0.401 3.281 17 296.5 0.0290 Yes 
Exp 4 0.466 3.259 34 296.5 0.0280 Yes 
Exp 5 0.507 3.244 25 296.5 0.0280 Yes 
Exp 6 0.596 3.265 29 297.1 0.0270 Yes 
Exp 7 0.696 3.233 25 297.1 0.0260 Yes 
Exp 8 0.938 3.196 35 297.1 0.0240 Yes 
Exp 9 1.125 3.118 43 297.1 0.0230 Yes 

 

 

Table 14: Material properties of experimental apparatus (Tf = 297 °K). 

Material 
Elasticity 
modulus 

[Pa] 
Poisson 

ratio  
Density 
[kg/m3] 

Inner pipe 
radius  

[m] 

Pipe wall 
thickness  

[m] 

Effective speed 
of sound in fluid

[m/s] 
Copper 1.19E11 0.34 1355 

Alloy 0.75E11 0.25 
8920 9.525E-3 1.588E-3 

1280 
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The material properties of the piping system are described in Table 14. Simpson [103, p.97] stated that 
the applied pipe was made of copper and consideration of the copper material properties and pipe 
geometry properties results in the following effective speed of sound in fluid: cf = 1355 m/s. Simpson 
performed a spectral analysis of all experimental data and as a result he obtained an effective speed of 
sound equal to cf,real = 1280 m/s, which was actually applied in his numerical studies. Simpson didn’t 
give any explanation for the discrepancy between the real and theoretical values for effective speed of 
sound. Kovač [71] showed that the Young modulus and other material properties depend on orientation 
of the crystals and therefore properties of a monocrystal material significantly changes compared to a 
policrystal material. It is possible that orientation of the copper crystals was affected during the 
manufacturing of the pipe. Another possible reason can be, if instead of the pure copper, a copper alloy 
was used as pipe material. Simulations showed that the properties for the undefined alloy give very 
good agreement with the experimental results. The alloy elasticity modulus was calculated backwards 
from the Korteweg’s equation (D-9), and the Poisson ratio was estimated based on comparisons 
between the experiment and simulation. A material with such properties was not found in the literature; 
we will denominate it in this dissertation as Alloy.  

The fluid pressure was measured along the pipe at three positions that are described in Table 15. In 
addition, the pressure in the tank was measured (manually) with a Mercury manometer. Other variables 
were not measured. 

Table 15: Position of the measuring equipment and elbow. 

Label Position  
[m] Volume No. Variable Equipment 

Tank 0.00 0 Pressure Mercury manometer 
P1 9.00 25 Pressure Pressure transducer 

Elbow 12.50 35   
P2 27.00 75 Pressure Pressure transducer 
P3 36.00 100 Pressure Pressure transducer 
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Fig. 41: Pressure history at positions P1, P2 and P3 for single-phase Exp 1. Comparison  
between experiment and simulation with consideration of the Copper or Alloy material properties. 
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Fig. 42: Pressure history at positions P1, P2 and P3 for moderate cavitation Exp 3. Comparison  
between experiment and simulation with consideration of the Copper or Alloy material properties. 

 

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

Ex
p 

9:
 P

re
ss

ur
e 

in
 P

3 
[M

P
a]

Time [s]

Experiment Alloy Alloy, no FSI Copper

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E
xp

 9
: P

re
ss

ur
e 

in
 P

2 
[M

P
a]

Time [s]

Experiment Alloy Alloy, no FSI

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E
xp

 9
: P

re
ss

ur
e 

in
 P

1 
[M

P
a]

Time [s]

Experiment Alloy Alloy, no FSI

Fig. 43: Pressure history at positions P1, P2 and P3 for severe cavitation Exp 9. Comparison  
between experiment and simulation with consideration of the Copper or Alloy material properties. 
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Figures 41, 42, and 43 show a pressure history comparison between the simulation and the 
measurement at various locations along the pipe, for three representative experiments (Single phase 
experiment Exp 1, experiment Exp 3 with moderate cavitation and experiment Exp 9 with severe 
cavitation). The continuous (red) line was obtained with the assumption of the alloy material properties 
(Table 14), the dotted (blue) line stands for default copper material properties, and the dash-dotted 
(green) line stands for Alloy but without consideration of the FSI coupling mechanisms. The simulation 
with imaginary Alloy material properties perfectly match with the experiment in all cases. It is also 
possible to see, that the results for Alloy with and without consideration of the FSI are almost identical. 
This points to the fact, that sufficiently supported piping system, like Simpson pipe is, prevents junction 
coupling FSI during the column separation water hammer transient. The pipe has a small cross-section 
and a relatively small radius over thickness ratio  (R/e = 5.9) and consequently the Poisson coupling is 
present but it is so weak, that it can be easily neglected. The simulations show that the influence of the 
FSI coupling is negligible for the Simpson pipe experiment. These findings are further supported by 
Figures from 44 to 47. 
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Fig. 44: Pressure history at positions P1 and P3 for Exp 2. 
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Fig. 45: Pressure history at positions P1 and P3 for Exp 4. 
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Fig. 46: Pressure history at positions P2 and P3 for Exp 6. 
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Fig. 47: Pressure history at positions P2 and P3 for Exp 8. 
 

 

Quasi-two-phase flow model. Gale and Tiselj [43] described their simulations of the Simpson’s pipe 
experiment with the six-equation two-fluid WAHA code (Tiselj et al. [126]) and showed that one does not 
need a complete two-fluid model for successful simulation of the column separation water hammer. 
Especially at low temperatures, flashing and condensation of the steam are not governed by the heat 
and mass transfer between the phases, but by dynamics of the liquid column. Thus, modeling of the 
transient in water at room temperature usually does not require energy equations (Bergant et al. [12]) 
and simplified cavitation models can be applied.  
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Fig. 48: Vapor volume fraction in time-space plane for the case with fixed valve (Exp 3 and 9). 
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Fig. 49: Vapor volume fraction in time-space plane for the case with free valve – with FSI (Exp 3 and 9). 
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Figures from 41 to 47 show and validate at the same time, that a relatively simple quasi-two-phase 
flow model describes the column separation type of the two-phase flow in water at room 
temperature with great accuracy. The duration of the cavitating flow in pressure history is exactly 
simulated, while it cannot be anticipated, that simulation will catch all small disturbances in a measured 
pressure history. Figure 48 shows the distribution of the vapor volume fraction in the time-space plane 
for two cases: moderate cavitation (Exp 3) and severe cavitation (Exp 9). In both cases, the initial 
cavitating area extends over larger sections of the pipe and later on appears also in the middle of the 
pipe. Figure 50 shows the vapor volume fraction (VVF) history in the closest volume to the valve. The 
growth of the vapor bubble is made up of two phases: the first phase where the vapor bubble grows and 
the second phase, shorter, where the vapor bubble collapses. The simulation shows that the length of 
the cavitation phase, vapor generation gradient, and amount of the generated vapor linearly depend on 
the initial fluid velocity. This is actually a property of the chosen quasi-two-phase flow model. The 
variable initial fluid velocity in lesser extent influences the length of the cavitating area and to a larger 
extent influences the amount of the generated vapor. The total amount of the vapor is exactly predicted 
with our code, while it is difficult to discuss or validate the distribution of the vapor without comparison to 
the experiment. 
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Fig. 50: VVF and pressure history at position P3 for the case with fixed valve. 
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Fig. 51: VVF and pressure history at position P3 for the case with free valve – with FSI. 
 

FSI coupling mechanisms and cavitation. The Simpson pipe experimental apparatus is relatively 
strongly supported and thus enables only development of the Poisson coupling FSI mechanism. To 
include the junction coupling mechanism into the transient, the simulations were repeated with a free 
valve and released supports in the axial direction. The results with the free valve and the junction 
coupling are presented in Figures 49 and 51 and some interesting differences in histories of basic 
variables can be found. Figure 51 shows that junction coupling affects the vapor generation rate. The 
vapor is generated faster or slower depending on the relative velocity between the pipe (valve) and the 
fluid. Figures 48 and 49 show the vapor volume fraction in the time-space plane. The vapor is distributed 
along larger sections of the pipe for the cases with the free valve than for the cases with a fixed valve, 
especially at the beginning of the transient pipe flow. The reason for the appearance of the additional 
distributed cavitation is FSI coupling, namely, significant axial stresses are generated at the valve 
through junction coupling, and as stress waves travel along the pipe, through Poisson coupling 
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generates additional pressure waves in the fluid denoted precursor waves. The precursor waves are 
added to the basic pressure waves and in case that two ‘negative’ waves are added, the pressure may 
occasionally drop below saturation and the cavitation starts. Tijsseling [113] denoted this type of 
cavitation as the Poisson coupling induced cavitation. As distributed cavitation may appear anywhere 
along the pipe according to the pressure profile, the Poisson coupling induced cavitation appears only 
as a consequence of the (negative) precursor waves. As time evolves, cavitation generates more and 
more pressure waves that travel along the piping system and add to the complexity of the pressure 
profile. In such cases, the precursor waves become more and more hidden and less important. 
Therefore, the Poisson coupling induced cavitation can be detected probably only at the beginning of the 
transient. 
 

 

6.4. Rod impact experiments in hanging piping systems 
Vardy and Fan [132] studied Fluid-Structure Interaction without cavitation in liquid-filled piping systems. 
An extensive series of high-quality measurements was carried out on four different piping systems in a 
test rig built in the Hydraulics Laboratory at the University of Dundee (UK). The interaction between the 
fluid and the structure in these piping systems is very strong. The piping systems are suspended by 
long, thin, vertical steel wires from the ceiling, and can move freely in a nearly horizontal plane. All 
piping systems are filled with pressurized tap water. The impact rod is used to simultaneously initiate 
stress waves in the pipe wall and pressure waves in the water by the axial impact of the rod on the left 
free end of the piping system. The experiments on the wired piping systems were carried out with 
intention to reduce all influences of the complex initial and boundary conditions, which usually affect the 
transient. The hanging experimental apparatus actually isolates the effects of the fluid-structure 
interaction in the case of axial wave propagation. Compared to the standard tank-pipe-valve system, the 
following unwanted influences were eliminated:  

• Influence of the initial steady-state distribution of the fluid properties (pressure, temperature, 
velocity, density, etc.). 

• Influence of the closing valve (closing time, closing function, induced vibrations). 
• Influence of the boundary conditions and supports of the piping system. 

Therefore, the only measured input in the simulation is the impact rod velocity that is theoretically equal 
to (with very small deviation in practice): 

0, 2rod rodv gh=                        (233) 

where hrod is the elevation of the rod in raised position.  

In his dissertation, Tijsseling [113] studied the cavitation and developed a computer code based on the 
method of characteristics for simulations of cavitation during FSI occurrence. At the test rig of Vardy and 
Fan [132] in the Hydraulics Laboratory at the University of Dundee, Tijsseling performed an additional 
set of experiments with reduced initial pressure in the piping system and thus included cavitation. 
Tijsseling [39, 113] stated that, at the time of his investigation, the FSI experiments with cavitation were 
the only well-documented experiments in which FSI and cavitation occur simultaneously and are both 
significant. Tijsseling provided several experimental data measured during a two-phase rod impact 
experiment and published them at his web site dedicated to the FSI phenomenon (www.win.tue.nl/fsi/). 
These experiments quickly became fundamental benchmarks for the FSI two-phase flow codes. The 
single-phase rod impact experiment in a straight pipe performed by Vardy and Fan and the two-phase 
flow rod impact experiment in a single elbow pipe performed by Tijsseling are simulated and discussed 
in the following subsections of this Section. 
 

6.4.1. Rod impact experiment in a straight pipe 
The rod impact experiment in the straight piping system consists of a stainless steel pipe closed at both 
ends with an end plug and an end cap (mass m1 and m2). The piping system presented in Figure 52 is 
filled with pressurized tap water and suspended by two long (about 3.3 m) thin, vertical steel wires from 
the ceiling. The impact rod is used to simultaneously initiate a transient by the axial impact of the rod on 
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the left free end of the piping system. The impact rod and the piping system are separated when the 
contact force becomes tensile, which happens 2 milliseconds after the strike. The material properties 
and the initial conditions of the considered piping system, water and impact rod are collected in Table 
16. Friction and gravity effects are unimportant and were not considered. The measured initial flexure of 
the pipe caused by its weight is less than 0.2 mm relative to the suspension points, which are situated 
about 0.95 m from the pipe ends. The experiment was simulated with the four-equation axial quasi-two-
phase flow FSI coupling model. 

 
 

P1
i=1 Water... ...i+1 i+2 i+3 NN-1N-2

P2 P4 P6P3 P5

  
Fig. 52: Sketch of experimental apparatus of the rod impact experiment from Tijsseling 

[113] (above), and nodalization of the piping system for simulation (below). 
 

Vardy and Fan [132] actually performed several single-phase experiments with variable initial pressure 
and velocity of the impact rod. The pipe in the considered experiment is pressurized with an initial 
pressure p = 20 bar, which is sufficiently high to prevent cavitation during the transient. Wiggert and 
Tijsseling [144] stressed that the underlying theory is almost linear for single-phase transients, thus, 
pressure, velocities and strains are linearly proportional to the impact velocity of the rod. The 
comparison of the measurement and simulation for one particular impact velocity are considered to be 
sufficient due to linearity. 

Table 16: Material and state properties of the piping system,  
water and impact rod. 

Piping system Water Impact rod 
L = 4.502 m ρf = 999 kg/m3 Lrod = 5.006 m 

R = 0.02601 m K = 2.14 GPa Rrod = 0.02537 m 
e = 0.003945 m p = 20 bar Erod = 200 GPa 

E = 168 GPa v = 0 m/s ρrod = 7848 kg/m3 
ρt = 7985 kg/m3 T = 20 °C v0,rod = 0.739 m/s 

ν = 0.29  Yrod = 80109.7 kg/s 
m1,2 = 1.2866 / 0.2925 kg   

 

The piping system was extensively instrumented [39, 132, 113]. Table 17 shows a summary of the 
instrumentation used to obtain data used for comparisons with results of simulation. The axial force was 
not directly measured but it is related to the averaged axial strain (measured at 4 positions around the 
circumference) and pressure throughout relationship: 

x t x t
RN ES S p
e

ε ν⎛ ⎞= +⎜ ⎟
⎝ ⎠

    where  εx = (εx,1 + εx,2 + εx,3 + εx,4) / 4       (234) 

The experimental data obtained during the rod impact experiments are very valuable, because of the 
simple and clear geometry and transient initiating mechanism. In comparison to the Simpson pipe 
experiment, the rod impact experimental data exhibit a higher level of interaction between the fluid and 
the structure. The numerical reproduction of the results without consideration of the Poisson and 
junction coupling mechanisms is not possible. These experiments therefore serve as an excellent 
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benchmark for any numerical simulation that considers the FSI phenomenon. Figure 53 shows a 
comparison between the experimental measurement and simulation with our code for all available 
measured variables (pressure in P1, P4, P6, axial force in P5 and axial pipe velocity in P2). The 
agreement is excellent. 

Table 17: Position of the measuring equipment from the impact (left) end. 
Label Position [m] Variable Equipment 

P1 0.0195 Pressure Piezoelectric pressure transducer 
P2 0.0465 Axial velocity Laser-Doppler vibrometer 
P3 0.5740 Axial strain Strain gauges (4 records) 
P4 2.2510 Pressure Piezoelectric pressure transducer 
P5 3.9440 Axial strain Strain gauges (4 records) 
P6 4.5020 Pressure Piezoelectric pressure transducer 
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Fig. 53: History of measured basic variables (pressure in P1, P4, and P6, axial force in P5, and  

axial pipe velocity in P2). Comparison between the experiment and simulation. 
 

The good agreement between the numerical simulations and the measurements allows us to display 
and explain the physical phenomena in the relatively simple experiment with the help of a 
comprehensive computer output. Figure 54 very illustratively shows the basic variables in the time-
space plane. From the aspect of the integrity of the structure, the most important variables are pressure 
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and axial force. Figure 54 shows that the pressure is strongly correlated with the axial pipe velocity. The 
direction of movement of the pipe actually determine the pressure profile. If the pipe moves to the right, 
the pressure at the right end is low and the pressure at the left end is high. Therefore, the high pressure 
always appears in a pair with low pressure (like the children’s swing). The pipe is not loaded with the 
pressure in the middle of the pipe (axis of the swing). Timing and position of the maximal pressure is not 
known in advance, all what is certain is, that the maximal pressure will appear in the vicinity of the left or 
right end. The largest compressive axial force appears just after the strike of the impact rod. When the 
stress wave travels along the pipe for the first time and reflects from the remote end, it shares energy 
with the fluid through the junction coupling and the axial force becomes much more moderate. In 
addition, the energy from the impact partly transforms into kinematic energy (movement) of the piping 
system. The largest compressive axial force appears at the beginning of the transient along the whole 
pipe, while the largest tensile axial force appears as transient evolves at arbitrary time and position. 
Similar analyses can be performed for other parameters of the simulation.  

Fig. 54: Basic variables in time – space plane. 
 

Generation of new waves in the piping system. The absolute value of the pressure or axial force at 
any time and any position is a superposition of all stress and pressure waves that travel along the pipe 
at current instance. The superposition is initially simple, made up of only few waves (example: after the 
rod impact, the precursor wave is added to the pressure wave), but it becomes quite complicated as 
time evolves. Each pressure (stress) wave through the junction coupling at geometric singularities 
generates new stress (pressure) wave, therefore, the number of stress and pressure waves in the piping 
systems is rapidly increasing with time. More precisely, the pressure and the stress wave are generated 
simultaneously at the impact end (left), therefore the faster stress wave is the first that reaches the 
remote end (right) of the pipe (Figure 54). The stress wave pushes the remote end away from the liquid 
so that the pressure drops and a new negative pressure wave is generated. The new pressure wave 
travels backwards and when it meets the forthcoming pressure wave, they are added together (the 
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precursor wave is also added). Afterwards, the first pressure wave reaches the remote end and reflects 
from the end cap. The end cap is pushed further away, the pressure is raised and a new tensile stress 
wave is generated. Only the first reflection of the pressure and the stress wave at remote end was 
described above but in general, any reflection of any wave through the junction coupling generates new 
waves.  

 

Linear and nonlinear physical models. The general form of a one dimensional nonlinear system of 
conservation laws is given as:  

( ), ,
0

f x t
t s

ψψ ∂∂ + =
∂ ∂

                      (235) 

Linearization of the nonlinear system with application of the Jacobian matrix C yields equation in the 
following vectorial form: 

( ) 0, ,x t
t s
ψ ψψ∂ ∂+ =
∂ ∂

C                      (236) 

The system of equations written in form of Eq. (236) is still nonlinear however, LeVeque [77] called it 
quasilinear because it resembles a linear system. The balance equations for the fluid developed in 
Chapter 2 are nonlinear. Moreover, every set of partial differential equations considered in this 
dissertation can be written in vectorial form by equation (236) with corresponding Jacobian matrix. The 
character (dependency) of the Jacobian matrix is very important for the selection of the numerical 
method. The following systems are possible: 

• Linear system with constant coefficients:    0
t s
ψ ψ∂ ∂+ =
∂ ∂

C  

• Linear system with variable coefficients:    ( ) 0,x t
t s
ψ ψ∂ ∂+ =
∂ ∂

C  

• Nonlinear system:          ( ) 0, ,x t
t s
ψ ψψ∂ ∂+ =
∂ ∂

C  

The linear model with constant coefficients is the only acceptable form that can be solved with the 
method of characteristics, because these systems have constant eigenvalues with time and position, 
and such systems are mostly used by the FSI community. The model is also known as a standard 
physical model, and the solution with the method of characteristics is known as a standard FSI 
procedure. The novelty of our approach introduced in this dissertation is application of the characteristic 
upwind numerical scheme, which provides numerical solutions of nonlinear systems and linear systems 
with variable coefficients in space and time. The ability of the characteristic upwind numerical method to 
solve nonlinear systems is an advantage of great practical importance because it enables application of 
advanced physical models. Figure 55 shows eigenvalues history in P6 for case with linear constant 
coefficient system (labeled Linear-const.), which is compared to the system with real water properties 
(labeled Linear-var.), and to the system with included convective terms (labeled Nonlinear). Figure 56 
left shows eigenvalue profiles at time t = 10 ms, where constant coefficient system is compared to the 
case where masses of the end cap and end plug are taken into account. Figure 56 right shows a similar 
comparison, where real water properties are used. Figures 55 and 56 show, that the characteristic 
velocities (eigenvalues) that appear in simulations of experimental (real) cases are not constant. 
They change with time and position however, Figure 57 shows that for the single-phase rod impact 
experiment in the straight piping system, consideration of advanced physical models yields relatively 
small differences to the results obtained with standard linear constant coefficient system. The solution 
with nonlinear matrix C (labeled Nonlinear) is actually identical to the linear constant matrix C (labeled 
Linear-const.) due to the acoustic approximation (vf << cf). The advanced physical models become 
much more important for accurate simulations of the two-phase flow FSI transients, for simulations of 
FSI transients in piping systems of more complicated geometry or for simulations of transients where the 
fluid velocity is not small (convection).  
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Improvements of the physical model that affect character of the Jacobian matrix and that were applied in 
dissertation consist in taking into account the convective terms, exact fluid thermodynamic properties 
(density, compressibility, speed of sound, etc.), various geometric changes like cross-section changes, 
variable pipe wall thickness, elbows, flexibility due ovalization, masses and loads, elastic supports, etc. 
Several examples of use of these improvements with discussion on advantages are given in the 
following sections. 
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Fig. 55: History of eigenvalues in P6 obtained with various systems of equations. 
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Mass of the end cap and end plug. An external load that is mounted on the pipe (end cap, end plug, 
and other objects with mass) affects inertia of the piping system, and therefore also the eigensystem 
itself. The eigenvalues of such system are not constant in space (Figure 56 left) but they are still 
constant in time. Figure 56 shows that the eigenvalues for the rod impact experiment are reduced at the 
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beginning and at the end of the experimental apparatus due to the end plug/cap mass, which is 
numerically distributed over the first/last few volumes. The effect of the mass of the end plug can be 
physically compared to the mass hanging on the spring. A heavier mass gives a longer period of natural 
oscillation and smaller natural frequency and the characteristic velocity is therefore reduced to account 
for this effects. Consideration of the end mass noticeable improves accuracy of results, therefore all 
results in Figure 53 were obtained with consideration of the additional mass of the piping system 
(differences are indicated in Figure 57).  

 

Friction and thick-walled model. Figure 58 shows the wall friction forces, obtained with a constant 
Darcy-Weisbach factor f = 0.01. The influence of the wall friction force is negligible for the considered 
experiment (small relative velocity between fluid and pipe wall) although it turned out that the friction 
forces are important for accurate simulation of the Simpson’s pipe experiment (see Table 13). The thick-
walled model described by Eq. (159) affects the characteristic velocities of the pressure/stress waves. 
The characteristic velocity of the pressure wave in the fluid is reduced to cf = 1350.6 (1361.7) m/s and 
the characteristic velocity of the stress wave in the pipe is reduced to ct,x = 4615.2 (4617.9) m/s. Values 
in brackets were obtained with the default (thin-walled) model. Figure 59 shows that the reduction of the 
characteristic velocities of the pressure wave in thick-walled model affects the course of the transient.  
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Fig. 58: Pressure history in P6 – wall friction  
forces are negligible. 

Fig. 59: Pressure history in P6 – influence  
of the thick-walled model. 

 

 

 

Processor time consumption. The number of waves in the piping system is rapidly increasing with 
time and this may become quite processor demanding for certain numerical methods like method of 
characteristics where each wave (characteristics) needs to be detected and traced with time. The 
advantage of the characteristic upwind numerical method is that the processor time consumption during 
the simulation is constant regardless the number of pressure, stress and other waves in the system. 
Actually, only the relaxation in the two-phase flow (see WAHA manual [126]) or eventually the implicit 
iterations for the solution of the stiff source terms can slow down the simulation.  
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Fig. 60: Pressure history in P6 – grid refinement study. 
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Figure 54 shows the results obtained with the numerical model that contains 45 computational volumes. 
The simulation itself on a Pentium IV 3.0 GHz processor lasts 50 seconds (extensive output to files and 
screen). The grid refinement study in Figure 60 shows that results are almost independent of the grid. 
The rough grid with N = 45 volumes is sufficiently dense and accurate since the results obtained on a 
denser grid with N = 90 and N = 450 computational volumes are not essentially better. The total 
computational time spent was 30 seconds (reduced output to file) on a P IV 3.0 GHz computer for the 
rough case and 2 minutes and 50 minutes for the cases with 90 and 450 volumes, respectively. 

 

6.4.2. Rod impact experiment in a single elbow pipe 
The rod impact experiment in a single elbow piping system is the second piping system of the 
experimental work of Vardy and Fan [132] who studied Fluid-Structure Interaction in wire hanging liquid-
filled piping systems. Tijsseling [39, 113] improved the set of initially single-phase experiments with two-
phase flow experiments. A detailed description of the experiments is given by Tijsseling, Vardy and Fan 
[114]. Figure 61 shows the geometry of the single elbow piping system that is hanging on three steel 
wires. The system consists of a stainless steel pipe closed at both ends with an end plug and an end 
cap (mass m1 and m2) and is filled with pressurized tap water. All geometry and state properties for the 
piping system, water and impact rod are collected in Table 18. The appearance of the two-phase flow 
depends on the initial pressure in the system, while the other parameters are held constant as much as 
possible. The transient starts when the impact rod axially strikes the left end of the piping system.  
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Fig. 61: Sketch of the experimental apparatus from Vardy and Fan [114] (above),  

and numerical model of the rod impact experiment in single-elbow piping system (below). 
 

Table 18: Material and state properties of the piping system, water and impact rod. 
Piping system Water Impact rod 
L = 4.51 + 1.34 m v = 0 m/s Lrod = 5.006 m 

R = 0.02601 m K = 2.14 GPa Rrod = 0.02537 m 
e = 0.003945 m p1F = 2.0 MPa  Erod = 200 GPa 

E = 168 GPa p2F = 0.30, 0.67, 0.87, 1.08, 1.24 MPa Yrod = 80109.7 kg/s 

ρt = 7985 kg/m3 T = 20 °C v0,rod = 0.809 m/s 

ν = 0.29 ρf = 999 kg/m3 ρrod = 7848 kg/m3 
m1,2 = 1.312 / 0.3258 kg   

 

Tijsseling [113] and Tijsseling, Vardy and Fan [114] described the extensive instrumentation that was 
mounted on the piping system to collect data from the experiment. Table 19 shows only a summary of 
the instrumentation applied in the present dissertation. The axial force is related to the averaged axial 
strain and pressure, and the bending momentum is related to the top and bottom axial stresses: 
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Table 19: Applied measuring equipment and position measured from the impact end. 
Label Position [m] Variable Equipment 

P1 0.0195 Pressure Piezoelectric pressure transducer 
P2 0.0465 Axial velocity Laser-Doppler vibrometer 
P3 0.5740 Axial strain Strain gauges (4 records) 
P4 4.6400 Pressure Piezoelectric pressure transducer 
P5 5.2500 Axial strain Strain gauges (4 records) 
P6 5.8500 Pressure Piezoelectric pressure transducer 
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Fig. 62: Histories of measured basic variables (pressure in P1 and P6, axial force in P5, and axial pipe 
velocity in P2 and momentum in P3 and P5). Comparison between the experiment and simulation. 

 

 

 

Single-phase transient. A single phase transient with an initial pressure p = 20 bar was considered 
first. The end masses and the flexibility factor of the elbow improve the accuracy of the simulation and 
were taken into account. Figure 62 shows a comparison between the experiment and the simulation for 
all available measured variables. The general agreement is very good for all variables; small 
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discrepancies are attributed to the complex 3D phenomena at the elbow which are linearized and solved 
with the 1D physical model. Figure 63 gives an additional illustrating overview of timing and position of 
extreme values of basic variables in the time-space plane.  
 

Fig. 63: Basic variables in time-space plane. 
 

 

 

Flexibility factor – ovalization of the elbow. In 1911, Von Karman [133] explained the complex 
behavior of an elbow under in-plane bending. He identified the ovalization of the circular cross-section of 
the pipe under the bending. Von Karman showed that using simplifying assumptions, the elbow is much 
more flexible than an equivalent straight pipe and that more complex stress distribution is induced. He 
introduced the concept of a flexibility factor and stress intensification factor that compares the 
flexibility under bending and the maximum stress to those of an equivalent straight pipe. Dodge and 
Moore [33] reported that ovalization gives the elbows an elastic flexibility that is 5 to 20 times more than 
the flexibility of the same size straight pipe. The flexibility of the elbow is accompanied by stresses and 
strains that are typically 3 to 12 times those of a straight pipe under the same load. The Von Karman’s 
concept essentially remains unchanged in today’s state of the art piping design and analysis software as 
specified by various design codes and standards [84, 9]. The effect of ovalization is taken into account 
as a reduction of the moment of inertia of the pipe's cross-section for flexibility factor k. In accordance to 
the ASME code (ASME, B&PVC, Class 1 components, NB-3686) the flexibility factor yields: 
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                 (238) 

where Rp stands for the radius of curvature of the elbow, R stands for the internal radius of the pipe, and 
e stands for the thickness of the pipe. In addition, the following conditions must hold: Rp/R  < 1.7, 
centerline length Rp α > 2 R, and there are no flanges or stiffeners on the elbow. The presented 
equation for the flexibility factor without part in square brackets is the most commonly used short form; 
the part in square brackets is a correction for the strengthening effect of the internal pressure.  

Figure 64 (upper left) shows the flexibility factor along the piping system for the rod impact experiment. 
The flexibility factor is different than at the elbow (or any other curved sections of the piping system). 
The introduction of the flexibility factor influences the eigensystem of the Jacobian matrix. Although the 
eigenvalues are still constant with time and position, the flexibility factor influences the corresponding 
eigenvectors L of the Timoshenko beam equations (148): 

2 2

1 1

TIM
t t t t

k k

EI EIρ ρ

⎡ ⎤
⎢ ⎥

−⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

L                    (239) 

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

Fl
ex

ib
ilit

y 
fa

ct
or

Length [m]

Elbow

0 2 4 6 8 10 12 14 16 18 20
0.2

0.4

0.6

0.8

1

1.2

A
xi

al
 v

el
oc

ity
 in

 P
2 

[M
P

a]

Time [ms]

Experiment With flexibility Without flexibility

0 2 4 6 8 10 12 14 16 18 20
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

M
om

en
tu

m
 in

 P
3 

[M
P

a]

Time [ms]

Experiment With flexibility Without flexibility

0 2 4 6 8 10 12 14 16 18 20
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

M
om

en
tu

m
 in

 P
5 

[M
P

a]

Time [ms]

Experiment With flexibility Without flexibility

Fig.  64: Flexibility factor profile and histories of some basic variables: comparison with and without 
consideration of the flexibility factor. 

 

 

Figure 64 shows that the history of various variables fits better to the measurement if the flexibility of the 
elbow is taken into account. The reduction of the flexibility at the elbow decelerates traveling waves in 
comparison to the simulation without flexibility factor. The ability to take into account different flexibility 
factors in the same computational section is one of the advantages of the Godunov numerical method. 
DeYong [29] and Kannapan [69] also utilized flexibility factors to account effects of the elbow ovalization 
during their simulations of the FSI in piping systems. 
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Reinforcement of the elbow. The ASME Boiling and Pressure Vessel code (NB-3641) recommends a 
minimum wall thickness prior to the bending. For sharp elbows (Rp < 3R) the code suggests an increase 
of the thickness for 25% compared to the straight section. Introduction of this recommendation into the 
computational model causes the system to become linear with variable coefficients in space. Figure 65 
shows the pipe wall profile with a thicker pipe wall at the elbow and the corresponding eigenvalues 
profile. Figure 66 shows that the different thickness affects the history of all variables and that the 
influence on the pressure history is smaller than the influence on the momentum history. The elbow of 
the experimental apparatus in the rod impact experiment was not reinforced, thus the simulations 
obtained with the reinforced pipe at the elbow are less accurate compared to the measurement. 
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Fig.  65: Pipe wall profile with thicker wall at elbow and eigenvalues profile. 
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Fig.  66: Pressure and momentum histories for simulation with normal and reinforced pipe wall. 
 

 

 

Water properties. The water properties are evaluated from the water tables in special subroutine, with 
temperature and pressure as inputs to the subroutine, and density and specific internal energy as 
outputs of the subroutine. The water properties are evaluated for each computational volume at each 
time step. Figure 67 shows that the temperature of the fluid affects the pressure and momentum 
histories because the temperature through the water properties affects the characteristic velocity (speed 
of sound) of the pressure waves. The influence of the temperature on the basic structural variables 
(velocity of the pipe, internal forces, momentum, etc.) is indirect, and therefore less evident. Table 20 
shows that the speed of sound in a six kelvins colder fluid is 20 m/s lower compared to the speed of 
sound at room temperature. Small changes in density and temperature have considerable 
influence on the speed of sound. The speed of sound is fundamental parameter in FSI simulations, 
therefore it is recommended to perform simulations with exact water properties, and when unavoidable, 
to be cautious and exact when defining constant water properties in order to estimate the speed of 
sound as close to reality as possible. Exact temperature should be measured and reported as an 
important initial condition.  

The temperature of the fluid in the (isothermal) eight equation planar quasi-two-phase flow FSI physical 
model is constant during the simulation (no energy balance equation included), and the experiments 
presented so far show, that this assumption is accurate for all transients at room temperature. The 
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temperature changes due to thermal relaxation in such transients are actually small and duration of the 
transients is so short that exchanges of heat through the pipe walls are negligible. 

Table 20: State properties of the fluid (water).  
Parameter Constant values T = 293 K T = 287 K 

Density [kg/m3] 999.00 999.12 1000.16 
Bulk modulus [GPa] 2.1400E9 2.1887E9 2.1401E9 

Speed of sound [m/s] 1463.6 1480.1 1462.8 
 

 

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P
re

ss
ur

e 
in

 P
6 

[M
P

a]

Time [ms]

T = 277 K T = 287 K T = 293 K T = 300 K

0 2 4 6 8 10 12 14 16 18 20
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

M
om

en
tu

m
 in

 P
5 

[k
N

m
]

Time [ms]

T = 277 K T = 287 K T = 293 K T = 300 K

Fig.  67: Pressure and momentum time histories for fluid with variable initial temperature. 
 

Tijsseling et al. [115] reported that they conducted the rod impact experiments at room temperature (it is 
assumed that room temperature is T = 293 K). Tijsseling [113] performed also numerical simulation of 
the experiment with constant water properties (MOC method), and got a very good agreement between 
simulation and experiment. The same experiment was simulated with our model, once with Tijsseling’s 
constant fluid properties and then with accurate water properties. The simulations yield the following 
conclusions: 

• The agreement between the simulation, the experiment and the results of Tijsseling is very good 
(Fig. 62). 

• The results of simulation obtained with accurate and constant water properties are almost 
identical (Fig. 57, linear-cons. vs. linear-var.). The improvement of real water properties over 
constant water properties represents a minor improvement for simulations of single-phase 
transients in cold water. However, it becomes very important for two-phase flow transients or 
transients in warm and hot water. 

• The best agreement with the experiment was obtained for the fluid temperature T = 287 K. This 
temperature was then applied for all simulations of considered rod impact experiments. The 
applied temperature is six kelvins lower than the presupposed ‘room’ temperature. However, the 
decision is justified by the accuracy of the results and by the fact that exact temperature of the 
water in the rod impact experimental apparatus is not available. 

 

Von Mises stress. The Von Mises stress or simply the Mises stress is a scalar function of the deviatoric 
components of the stress tensor that gives an appreciation of the overall magnitude of the shear 
components of the tensor. This allows the onset and amount of plastic deformation under triaxial loading 
to be predicted from the results of a simple uniaxial tensile test. It is most applicable to ductile materials. 
In three-dimension, the Mises stress can be expressed as: 

 
( ) ( ) ( )( )2 22
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σ σ σ σσ σ
σ

+ +− −−
=                (240) 

where σ1, σ2, and σ3 are the principal stresses. In one-dimension, this reduces to the uniaxial stress. In 
terms of a local coordinate system, the Von Mises stress can be expressed as: 
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Von Mises yield criterion for the onset of yield in ductile materials was first formulated by Maxwell [41] in 
1865 but is generally attributed to Von Mises in 1913. Von Mises yield criterion can be interpreted 
physically in terms of the maximum distortion strain energy, which states that yielding in three-dimension 
occurs when the distortion strain energy reaches that required for yielding in uniaxial loading. 
Mathematically, this is expressed as: σv ≤ σy. In the two-dimensional stress space (shell, pipe wall, σ3 = 
0) shown in Fig. 68, the yield criterion represents the interior of an ellipse. Stress states σ1 and σ2 not 
touching the boundary of the ellipse produce only elastic deformation. Figure 68 shows also 
Tresca's maximum shear stress criterion (dashed line labeled Maximum shear). This criterion is more 
conservative than Von Mises's criterion since it lies inside the von Mises ellipse. 

  
Fig. 68: Von Mises yield criterion for two 

dimensional stress space. 
Fig. 69: Von Mises stress scalar function in time-space 

plane for rod impact experiment in straight piping system.
 

Fig. 70: Von Mises stress in time-space plane in the upper part of the pipe and the cross-section envelope 
for rod impact experiment in single elbow piping system. 

 

Figure 70 shows the appearance of the maximal Mises stress in the upper part of the pipe and the 
envelope of the Mises stress for the whole cross-section of the piping system. It is evident that the 
critical section of the pipe with the maximal load is the section in the vicinity of the elbow at the 
beginning of the transient. The maximal stresses are less than σv,max < 50 MPa (typical yield stress for 
stainless steel is some σy = 250 MPa), and the duration of the maximal stresses is very short – 
pulsations. If the pipe resists for the first five milliseconds, then the integrity of the piping system is not 
jeopardized. Figure 69 shows the von Mises stress for the rod impact experiment in the straight piping 
system described in previous section. It is possible to see, that the maximal stresses (σv,max < 35 MPa) 
are achieved at the beginning of the transient during the strike of the impact rod. If the pipe resists 
impact strike, then there is no need to worry about the integrity of the piping system. 
 

Two-phase flow experiments. The quasi-two-phase flow model was verified with the Simpson pipe 
experiment. The FSI coupling mechanisms have been verified for numerous geometries of the pipe 
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conveying single-phase transients. Finally, the study in this section compares the experimental data and 
the simulation in piping systems where cavitation and FSI occur simultaneously and are both significant. 
The considered transients presented in Figs. form 71 to 74 cannot be reproduced without consideration 
of the coupling mechanisms and without consideration of the appropriate two-phase flow model.  
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Fig.  71: Histories of basic variables (p2F = 1.24 MPa): measurement vs. simulation. 
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Fig.  72: Histories of basic variables (p2F = 0.87 MPa): measurement vs. simulation. 
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Fig.  73: Histories of basic variables (p2F = 1.08 MPa): measurement vs. simulation. 
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Fig.  74: Histories of basic variables (p2F = 0.69 MPa): measurement vs. simulation. 
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Fig.  75: Histories of basic variables (p2F = 0.30 MPa): measurement vs. simulation. 
 

 

The simulation was performed with the eight-equation nonlinear model for FSI in a planar arbitrarily 
shaped piping system with consideration of real water properties and quasi-two-phase flow model. The 
available experimental data have been applied for comparison with simulation in Figures 71 to 74. The 
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overall agreement found between the experimental and numerical results is good in view of the 
complexity of the phenomena. The magnitude and timing of the extreme pressures, the axial velocities, 
the extreme axial forces and the extreme bending moments are predicted accurately. Discrepancies 
between numerical and experimental results are attributed to (i) the use of a simple quasi-two-phase 
flow model of two-phase flow, which is not able to describe cross-section specific localized cavitation at 
elbow, (ii) the experimental uncertainty (Tijsseling et al. [113] showed that reproducibility of the 
experiments is generally good, although  discrepancies rise for flows with stronger cavitation), (iii) other 
standard errors, discussed in previous sections, which come with applied numerical method and 
physical model.  

Although an advanced physical models and an advanced numerical method are applied, the overall 
agreement between the numerical and experimental results is only slightly better compared to the 
results obtained by Tijsseling et al. [113]. This points to the fact that Tijsseling et al. in their simplified 
approach, included in physical model all fundamental terms that are essential for the description of the 
FSI phenomenon coupled with cavitating flow. However, the results presented in this thesis show that all 
improvements of our physical model and numerical method, give more accurate results and enable 
significantly more advanced analyses and simulations. While the approach based on the method of 
characteristics, already reached its limit, our approach enables the inclusion of numerous additional 
improvements. 

 

Generation and distribution of vapor. Figure 76 shows the comparison of the vapor volume fraction 
with (left) and without (right) consideration of the FSI for the experiment with moderate cavitation and 
analogously Figure 77 for the case with severe cavitation. In the cases with FSI, the amount of 
generated vapor is slightly larger however, the overall generation and distribution with and without FSI 
are almost the same.  
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Fig. 76: Vapor volume fraction in time-space plane for moderate (p2F = 1.08 MPa) cavitation, 
with (left) and without (right) consideration of the FSI effects. 
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Fig. 77: Vapor volume fraction in time-space plane for severe (p2F = 0.3 MPa) cavitation,  
with (left) and without (right) consideration of the FSI effects. 
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Von Mises stress in two-phase flow. Comparison of Figures 70 and 78 show that the severity of the 
cavitation does not influence the overall stress situation in the piping system. The maximal stresses 
appear at the same position and the temporal distribution is approximately the same. The moderate 
cavitation case exhibits only one anticipated effect (higher stress) that comes due to different initial 
pressure. Because all parameters of the simulation, except the initial pressure, are held constant, the 
maximal stresses are shifted for contribution of the initial pressure. Consequently, the maximal absolute 
stresses are encountered in single-phase flow, because of the maximal contribution of the initial 
pressure. It is possible to conclude that the appearance of the two-phase flow, regardless to the 
intensity of the cavitation, does not reduce the relative maximal stresses in the piping system. 
The statement that two-phase flow isolates and prevents FSI is wrong. FSI is strong even in 
compressible two-phase flow. 

Fig. 78: Von Mises stress envelope in time-space plane for moderate (left, p2F = 1.08 MPa)  
and severe (right, p2F = 0.3 MPa) cavitation. 
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7. Conclusions 
Fluid-Structure Interaction (FSI) during a transient in a fluid is an important phenomenon that affects 
dynamics and integrity of many piping systems. The FSI coupling is strong in soft piping systems 
conveying less compressible single or two-phase fluids, and is weak in stiff and fully supported piping 
systems. The integrity of soft piping systems is jeopardized during the FSI occurrence, while the stiff 
piping systems are costly and are jeopardized by thermal loads. Exchange of energy between the fluid 
and the structure during the FSI transient occurrence is thus a very important issue and should be 
predicted (and controlled) as precisely as possible. There are no simple criteria for the estimation of the 
FSI coupling importance for a general piping system; therefore, several physical and computational 
approaches have been developed in the past. The approaches that are based on modeling of the FSI 
coupling phenomena with a single physical model for the thermo-fluid and structural dynamics, and that 
are solved with an appropriate numerical method, turned out to be the best way for design of new piping 
systems, for modifications and improvements of the existing piping systems and for analyses of the past 
accidents. New and more accurate concepts for derivation of advanced physical models, coupling of 
physical sub-models, and new more accurate numerical algorithm are founded in this dissertation. 

The one dimensional general balance equation of thermo-fluid dynamics is derived in arbitrarily shaped, 
moving and deformable Lagrangian coordinates. The general balance equation is then applied for the 
derivation of the mass, momentum and energy balance equations of the two-phase flow. The mass, 
momentum and energy balance equations are used for the construction of the six-equation two-fluid 
model of the two-phase flow intended for simulations of the two-phase flow transients with FSI. 
Analogously, the single-phase flow model and the simplified two-phase flow models namely, the 
homogeneous equilibrium model and the quasi-two-phase flow model, are derived. The Lagrangian 
derivation yields several new terms in the balance equations compared to the equivalent equations 
derived in the standard Eulerian coordinate system or compared to the generally accepted fluid 
dynamics models applied for simulations of the FSI. These terms are terms for local junction coupling 
FSI mechanism at curvatures and distributed Poisson coupling FSI mechanism, terms with axial force of 
the pipe and axial and lateral velocity of the pipe, terms accounting for deformations and curvature of the 
pipe. Accurate thermodynamic states of the fluid are evaluated from the realistic water properties. It is 
shown that assuming stiff, straight and fixed pipe, the balance equations naturally degenerate into the 
standard equations derived in the Eulerian frame. 

The one dimensional physical models for axial, rotational, lateral and torsional structural dynamics are 
derived for arbitrarily shaped piping systems described with a general arc length parameter. Several 
new terms appear compared to the standard physical models of the beam theory, namely, terms 
accounting for the junction coupling FSI mechanism at curvatures, and distributed Poisson and friction 
coupling FSI mechanisms. Considering the assumption of a straight piping system, the models for 
arbitrarily shaped piping systems degenerate into the standard models for straight piping systems. The 
equations for rotational and lateral movement of the straight piping systems correspond to the equations 
of the Timoshenko beam theory. The physical models are valid for phenomena in piping systems where 
longitudinal and lateral frequencies of vibration prevail over circumferential vibration of the pipe wall 
(low-frequency or long wavelength assumption). The high-frequency phenomena are negligible for the 
fluid transient and also for the FSI and are thus neglected.  

The physical models for thermo-fluid dynamics are grouped with the physical models for structural 
dynamics into various models of various complexities. They range from the two-equation single-phase 
flow model to the eighteen-equation model for two-phase flow FSI simulations in arbitrarily shaped and 
deformable piping systems lying in a 3D space. The fundamental physical model of this dissertation is 
the eight-equation quasi-two-phase flow FSI model for arbitrarily shaped piping systems in a 2D plane. 
The equations that make up these physical models are first order nonlinear partial differential equations. 
The majority of the physical models are hyperbolic by default i.e. the Jacobian matrix of the physical 
model is diagonalizable, while in order to assure hyperbolicity of all physical models that imply the six-
equation two-fluid model of the two-phase flow, a differential virtual mass term is introduced. Analytical 
solutions for diagonalization exist only for the simple physical models; numerical diagonalization is 
performed for all other physical models. The eigensystem at output of the numerical diagonalization is 
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sorted from the largest eigenvalue towards the smallest, therefore additional sorting of the eigensystem 
is performed at the end of each diagonalization. The sorting is trivial for physical models containing 
single-phase flow, quasi-two-phase flow, or homogeneous equilibrium two-phase flow, while it becomes 
quite complicated for the physical models containing the six-equation two-fluid model of a two-phase 
flow.  

The high resolution characteristic upwind finite difference numerical scheme is applied. The term high 
resolution applies to methods that are at least second order accurate on smooth solutions and yet give 
well resolved, non-oscillatory discontinuities by modifying the method in the neighborhood of a 
discontinuity to a monotone first order method. The numerical scheme for the convective terms is 
explicit: the results exhibit second order accuracy. The stiff source terms of the Timoshenko beam 
equations are solved by implicit iterations and the stiff relaxation source terms are integrated with the 
two-step operator splitting approach. The most important property of the numerical method is that it 
operates with piecewise constant characteristics of the nonlinear physical models. This enables the 
introduction of numerous improvements like consideration of realistic water properties, consideration of 
curvatures of the piping system, consideration of geometry changes (cross-section area, pipe wall 
thickness, material properties, etc.), consideration of the distributed cavitation, consideration of the 
external loads and masses, friction terms based on Reynolds number, reinforcement of the pipe wall, 
etc. All these phenomena cannot be addressed with methods dealing with linear equations like the 
method of characteristics. The weakest point of the characteristic upwind numerical method is the 
numerical dissipation, which tends to smoothen the solutions at discontinuities. However, the numerical 
dissipation can be minimized by an appropriate definition of the slope limiter and by increasing the 
number of computational volumes per unit of length. The numerical method is proclaimed as effective 
since the average processor time spent for simulation is few minutes, and the most accurate solutions 
presented in this dissertation took less than one hour on personal computer Pentium IV with 3.0 GHz 
processor. 

The accuracy of the characteristic upwind numerical method is verified by comparison with the results 
obtained by the method of characteristics. The physical model used was linearized and simplified to 
match the same assumptions that are used in standard physical models (linear constant coefficient 
system, no source terms). The agreement is almost perfect, small differences between the characteristic 
upwind numerical method and the method of characteristics refer to numerical dissipation. 

The analytical verification of the results validated the code for the evaluation of the natural frequency of 
oscillation for arbitrarily supported and loaded piping systems. The code exhibits high accuracy for the 
non-standard  evaluation (simulation with increased damping) of equilibrium values – deflection, internal 
forces, bending momentum, and other variables, which are used in static calculations in civil 
engineering. The analysis of the axial and lateral oscillations points out that intensity of the FSI in the 
axial direction strongly depends on compressibility of the fluid while the intensity of the FSI in the lateral 
direction is negligible. The most important parameter for lateral oscillations is the mass of the fluid. 

Precursor and successor waves are simulated, their origin, appearance and significance for the FSI 
transient pipe flow is explained. While precursor waves are rather well known and frequently mentioned 
in the literature, their counterpart, successor waves, are usually neglected; their existence was not 
traced in the literature by the author yet.  Precursor waves under certain circumstances cause the 
formation of the Poisson coupling induced cavitation. The phenomenon is explained and discussed.  

The quasi two-phase flow model is verified by means of experiments for the case with moderate and 
severe cavitation in a very stiff piping system. The quasi two-phase flow is utilized for the simulation of 
the rod impact experiment, where FSI coupling is very strong and isolated from the surroundings. 
Agreement between the experiment and the simulation is remarkable.  

The stiffness of a piping system at elbows is reduced due to ovalization of the elbow. The standard 
model, based on a flexibility factor, is integrated into the computer code. The accuracy of the simulation 
is increased for the cases with unsupported and flexible elbow. 

The 3D stress tensor is represented with scalar values based on the approach established by Von 
Mises. The Von Mises stress plotted in the time-space plane is one of the most important engineering 
results of the FSI coupling simulations. It gives timing and position of the maximal stresses in the pipe. 
The simulations of the pipe with an elbow show that the position and the height of the maximal stresses 
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are unpredictable without appropriate FSI simulation, and that the duration of the maximal stresses is 
short – pulsations. 

The good agreement between the numerical simulations and the measurements allows explaining the 
physical phenomena in the relatively simple experimental setups with the help of extensive computer 
output. Many lessons can be learned from it. It clarifies the phenomenon, when significant cavitation and 
pipe motion due to water hammer occur simultaneously. Simulations of the FSI coupling transient pipe 
flow are not possible without consideration of the local junction coupling mechanism and distributed 
Poisson coupling mechanism. In view of possible transient pipe flows, the junction coupling can be 
prevented by fixing elbows and/or valves, and the Poisson coupling can be prevented with thick walled 
pipes. However, none of the solutions to prevent FSI is reasonable. FSI must be allowed to occur, 
because exchange of energy between the fluid and the structure is in most of the cases beneficial for 
the integrity of the piping system. Exchange of energy during the FSI must be controlled, and this is not 
possible without appropriate computer simulations.   

The developed advanced physical models and the applied characteristic upwind numerical method have 
been compiled into the computer code, which is the most prominent practical outcome of the present 
dissertation. The code is assigned as verified since it was successfully applied for simulation of 
numerous phenomena related to the FSI and cavitation, and can be now used for simulations of 
practical cases. There are two possibilities for further research and development. The first is the 
application of the six-equation two-fluid model of the two-phase flow into the current eight-equation 
model. The second possibility is a further extension of the equations for 3D space so that it would be 
possible to simulate arbitrary structures in 3D. It is necessary to stress, that the abovementioned 
improvements mainly concern computer programming skills, while the firm theoretical background has 
been established within the scope of the current work. On the other hand, the lessons learned and the 
advanced physical models derived can be implemented also into the WAHA code, which will improve 
the WAHA for simulations of the FSI. 
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Appendix A. Gauss theorem and Leibniz rule 
A natural set of parameters to describe a pipeline or the fluid domain inside that pipeline consists in a 
line such as the neutral fiber of the pipe and a cross-section sliding on this line (see Figure A-1). The 
sliding section on the line generates a domain that Coutris [26] denominates a fluid filament. The fluid 
filament is thus defined by the inner space of a moving and deforming pipe of circular cross-section. The 
derivations of the Gauss theorem and the Leibniz rule for a fluid filament of arbitrary cross-section are 
based on extensive theoretical discussions by Lemonnier [82], Delhaye [32] and Coutris [26] and exceed 
the scope and purpose of the present work. The interested reader can find the derivation in the above 
references. The purpose of this section is to define the Leibniz rule and the Gauss theorem for a fluid 
filament of arbitrary cross-section. 
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Fig. A-1: A fluid filament generated by the motion of the section S limited by circle Ω,  

the center of which is P and lies on the curve C. 
 

The Gauss theorem for a filament of arbitrary cross-section. Let us described the divergence 
theorem of vector calculus more commonly known in the older literature as the Gauss theorem. Let V be 
the region in space with boundary S. Then the volume integral of the divergence ∇⋅ B of an arbitrary 
vector or tensor B over V and the surface integral of B over the boundary S of V are related by:  

V S

dV d∇ ⋅ = ⋅∫ ∫B B S                        (A-1) 

Coutris [26, Eq. C5] mentioned in a footnote that the limiting form of the Gauss theorem holds for 
arbitrary cross-sections. Lemonnier [82] proved this statement. Following Coutris, the starting point is 
the Gauss theorem applied to a finite and arbitrary portion of a filament (see Figure A-1) limited by two 
end sections S1 and S2, and the lateral surface of the filament Σ. The Gauss theorem applied to B on V 
is given by: 

1 2

1 2
V S S

dV dS dS dSΣ
Σ

∇ ⋅ = ⋅ + ⋅ + ⋅∫ ∫ ∫ ∫B B n B n B n                (A-2) 

where n  is the unit vector normal to V pointing outwards the volume and where the subscripts 1, 2, and 
Σ refers respectively to surfaces S1, S2, and Σ. After derivation given by Lemonnier [82], the limiting form 
of the Gauss theorem, within the Fresnet frame, yields: 

( ) ( ) ( )0, , ,S SP t P t P t

dS dS d
s

λ λΣ

Σ ΩΩ

⋅∂∇ ⋅ = ⋅ + Ω
∂ ⋅∫ ∫ ∫

B nB B t
n n

             (A-3) 

where λ is the geometrical factor, and Ωn  is the normal unit vector to the section perimeter and pointing 
outwards S. This equation is very similar to that of Delhaye [32] related to fixed and straight pipes. The 
main difference arises from the geometrical factor λ = 1 - y/R accounting for the lesser weight of points 
of the cross-section lying closer to the center of the curvature of the neutral fiber of the pipe.  
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The Leibniz integral rule for a filament of arbitrary cross-section. The Leibniz integral rule gives a 
formula for the differentiation of a definite integral whose limits are functions of the differential variable: 

( )( )
( ) ( )( )( )

( ) ( )( ), , ,
b t b t

a t a t

f b af x t dx dx f b t t f a t t
t t t t

∂ ∂ ∂ ∂= + −
∂ ∂ ∂ ∂∫ ∫            (A-4) 

It is sometimes known as the integration under the integral sign. According to the derivation of 
Lemonnier [82], the Leibniz integral rule for arbitrarily shaped fluid filaments yields (see also [26, Eq. 
C7]): 
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    (A-5) 

where t  is the vector tangent of the Fresnet frame, ΣU  is the displacement velocity of the lateral surface 

(pipe wall),  SU  is the displacement velocity of the section S and CU  is the velocity vector of a point P 
attached to the line C. The derivation of the Leibniz rule can be found in Lemonnier [82]. When 
compared with the analogous equation of Delhaye [32] for fixed and straight pipes, Equation (A-5) 
shows many new terms. New are the second and the third term on the left hand side and they are 
related respectively to the stretching of C and the motion of the center of the cross-section S on C. The 
new term on the right hand side is the second term, which is relative to the motion of the cross-section 
S. It is naturally encountered when the balance equations are written on a section translating with 
respect to the frame of reference.   

 

Identity for the pressure. An identity for the pressure is derived from the Gauss theorem. It is a 
classical transformation in the two-fluid model (Hetsroni, [56]) to collect terms involving the pressure on 
the interface and pipe boundary and to substitute them with the average of the pressure gradient on the 
section. This identity is still valid in the case of a moving and deformable pipe. Its derivation is a 
consequence of the limiting form of the Gauss theorem, that is formally valid also for tensors. Lemonnier 
[82] derived and proved the following relationship: 
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k k k k
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Appendix B. Derivation rules for vectors in Fresnet frame 
This appendix gives an overview of the time and space derivatives of vectors in the Fresnet frame 
( ), ,t n b  basis. The results are expressed as functions of the derivatives of the vector components. Let 

B  be an arbitrary vector in the ( ), ,t n b  basis given by: 

t n bB B B= + +B t n b                       (B-1) 

 

Time derivatives. The time derivative of B  is given by: 

t bn
t n b

B BB B B B
t t t t t t t

∂ ∂∂∂ ∂ ∂ ∂= + + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂
B t n bt n b              (B-2) 

moreover, since ( ), ,t n b  is a rigid frame: 

t
∂ = Ω ×
∂
t t , and  

t
∂ = Ω ×
∂
n n , and  

t
∂ = Ω ×
∂
b b             (B-3) 

where Ω  is the angular velocity of rotation of the ( ), ,t n b  frame. As a result: 

t bn
t n b

B BB B B B
t t t t

∂ ∂∂∂ = + + + Ω × + Ω × + Ω ×
∂ ∂ ∂ ∂
B t n b t n b            (B-4) 

therefore: 

t bnB BB
t t t t

∂ ∂∂∂ = + + + Ω ×
∂ ∂ ∂ ∂
B t n b B                   (B-5) 

The components of the time derivative are then given by: 

( )tB
t t

∂∂⋅ = + ⋅ Ω ×
∂ ∂
Bt t B                      (B-6) 

( )tB
t t

∂∂⋅ = + ⋅ Ω ×
∂ ∂
Bn n B                      (B-7) 

( )tB
t t

∂∂⋅ = + ⋅ Ω ×
∂ ∂
Bb b B                      (B-8) 

 

Space derivatives. The balance equations encompass derivatives of vectors with respect to the arc 
length. By using the components of B  it yields: 

( )t n bB B B
s s

∂ ∂= + +
∂ ∂
B t n b                     (B-9) 

Expanding the terms and using the derivative rules for the vectors of the Fresnet frame: 

p

d
ds R

=t n  ,   
p p

d
ds R T

= − −n t b ,  and  
p

d
ds T

=b n             (B-10) 
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 the space derivative of B  yields: 

t bn
t n b

p p p p

B BBB B B
s s R s R T s T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂∂∂ = + + + − − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

B n t b nt n b          (B-11) 

Collecting the terms together yields: 

t t b bn n n

p p p p

B B B BB B B
s s R s R T s T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂∂∂ = − + + + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

B t n b             (B-12) 

Finally the projections of these derivatives are: 

t n

p

B B
s s R

∂∂⋅ = −
∂ ∂
Bt                        (B-13) 

t bn

p p

B BB
s s R T

∂∂⋅ = + +
∂ ∂
Bn                      (B-14) 

b n

p

B B
s s T

∂∂⋅ = −
∂ ∂
Bb                        (B-15) 
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Appendix C. Thermo-fluid dynamics equations in Eulerian 
coordinates 
This appendix gives a short insight into the standard 1D thermo-fluid dynamics models that are based 
on the equations derived in Eulerian coordinates. The Eulerian coordinates are fixed in space. Typical 
single and two-phase flow water hammer models in Eulerian coordinates together with the results of a 
simple water-hammer experiment are given. 

C.1. Single-phase flow equations 
The research of single-phase water hammer has a long tradition. Blaise Pascal in the 1600s contributed 
to some of the initial theory to this field, Bernoulli (1738) and Euler established the general equations of 
hydrodynamics (see also Menabrea [86], Young [152,153], brothers Weber [137,136], Weston [139], 
Carpenter [21], and Frizell [42]). Joukowsky [66] in 1898 developed the fundamental equation of the 
single-phase water hammer that relates the pressure changes ∆p to the velocity changes ∆vk in the fluid: 

k k kp c vρ∆ = ∆     where    , ,f f before f afterv v v∆ = −          (C-1) 

where ρk is the fluid density and ck is the speed of sound in fluid k. The equation was developed from the 
momentum jump condition (conservation law) under the special case where the flow velocity is 
negligible compared to the speed of sound. Equation (C-1) is commonly known as the Joukowsky 
equation, sometimes Joukowsky-Frizell or the Allievi equation. Although the water hammer 
equations were fully established by the 1960s (Allievi [3,4], Jaeger [63], Wood [146], Rich [100], 
Parmakian [98], Streeter and Lai [106], Wylie and Streeter [150], etc.), these equations have since been 
analyzed, discussed, redefined and elucidated in numerous classical texts [47]. The full single-phase 
water hammer equations with convective terms, gravity and friction terms are defined as: 

2 2
1 1 0f

f
f f f f

vp pv
t x xc cρ ρ

∂∂ ∂+ + =
∂ ∂ ∂

                   (C-2) 

( )sin
4
r rf f

f f f f f wf
v vv v pv g α f

t x x R
ρ ρ ρ ρ∂ ∂ ∂+ + = −

∂ ∂ ∂
              (C-3) 

These equations constitute the fundamental equations for 1D water hammer problems and contain all 
the physics necessary to model wave propagation in complex single-phase fluid-filled piping systems. 
The standard single-phase water hammer theory correctly predicts extreme pressures and wave 
periods, but it usually fails in accurately calculating damping and dispersion of wave fronts [150]. The 
reason is a number of effects that are not taken into account in the standard theory (dissolved and free 
air, solidified sediment deposit at the pipe walls, unsteady friction and unsteady minor losses, non-
elastic behavior of the pipe wall material, etc.). Another omitted effect is FSI in all possible ways.    
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v = 0.4 m/s, p = 3.42bar, ρf = 997.6 kg/m3, K = 2.18E9 Pa  
St = 2.84E-4 m2, E = 0 and 120 GPa, L = 36 m. 
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Fig. C-1: Geometry of the simple Tank-Pipe-Valve 
system. The valve is rapidly closed at time zero. Fig. C-2: Pressure history near the valve.  
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Figure C-2 shows a typical single-phase flow pressure history near the valve in a Tank-Pipe-Valve 
system due to instantaneous valve closure. Equations (C-2) and (C-3) were applied without source 
terms, thus FSI, damping, body forces, friction, and two-phase flow effects were excluded. The pressure 
rise above and drop below the initial pressure equals the Joukowsky equation prediction (C-1). The 
duration of one pressure peak is exactly t1 = 2 L / cf. 

 

C.2. Two-phase flow equations 
Physical models and basics. Ishii and Hibiki [62] stressed that two-phase flow thermo-fluid dynamics 
is an order of a one magnitude more complicated subject than that of the single-phase flow due to the 
existence of a moving and deformable interface and its interactions with the phases. Significant efforts 
have been made in recent years to develop accurate general two-phase formulations, mechanistic 
models for interfacial transfer and interfacial structures, and computational methods to solve these 
predictive models. Standard two-phase flow models are classified according to the number of partial 
differential equations that constitute the model. Table C-1 shows some of the most important models.  

Table C-1: Typical two-phase flow models. 
Number 
of eqs. Description Vector of basic variables Notes 

2 Single-phase water hammer equations { }, fp vψ =   

Homogeneous Equilibrium Model (HEM). 
Thermal and mechanical equilibrium. { }, ,m m m m mv eψ ρ ρ ρ=  Theoretically important, 

interesting for FSI. 3 
Inhomogeneous model without heat transfer { }, ,g fv vαψ =   

4 Drift-flux model - one phase in saturation 
(usually vapor). { }, , ,m g m m m mv eρ ρ ρ ρψ =   

Thermal non-equilibrium, mechanical 
equilibrium. { }, , , ,g f m m f f g gv e eρ ρ ρ ρ ρψ =  Not used in practice 

5 
One phase in saturation, the other in non-
equilibrium, mechanical non-equilibrium { }, , , ,g f g g f f m mv v eρ ρ ρ ρ ρψ =   

6 Thermal and mechanical non-equilibrium. 
Both pressures equal. { }, , , , ,f g f f g g f f g gv v e eρ ρ ρ ρ ρ ρψ =  

Main model in nuclear 
thermal-hydraulics 
computer codes. 

Thermal and mechanical non-equilibrium. 
Non-equal pressures  X = p2 

Two-pressure model 

Transport equation for interfacial area 
concentration  X = agf  

 7 

Transport equation for concentration of non-
condensable gas  X = αg 

{ }, , , , , ,f g f f g g f f g gv v e e Xρ ρ ρ ρ ρ ρψ =  

 

Multi-field models 
Annular flow: the same phase is modeled with a separate 

conservation equation for the liquid film at the wall and a separate 
equation for the droplets in the core. 8 

Multi-group models 
 

Bubbly flow: bubble size spectra divided into various classes. 
Each class of bubbles treated with a separate balance equation. 

 

 

The most frequently used six-equation two-fluid model is formulated by considering each phase 
separately. The model is described in every classical work concerning multiphase flows including Ishii 
and Hibiki [62], Moody  [89], Toro [128], Warsi [135], and also researchers like Lemonnier [82] or Tiselj 
et al. [126] who also integrated the model into the WAHA (WAterHAmmer) computer code. The six-
equation two-fluid model of the two-phase flow is derived from Navier-Stokes's system and is expressed 
in terms of conservation equations governing the balance of mass, momentum, and energy for each 
phase. The two-phase flow field equations describing the conservation principles require additional 
constitutive relations or balance equations (also closure relations) for mass, momentum and energy 
transfers from the kth-phase to the interface. Closure relations encompass the turbulence effects for 
momentum and energy lost with averaging as well as for interfacial exchanges for mass, momentum 
and energy transfer. The interfacial transfer rates can be considered as the product of the interfacial flux 
and the available interfacial area. In the two-phase flow analysis, the void fraction and distribution of the 
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interface area represent the two fundamental geometrical parameters, which are closely related to the 
corresponding flow regime. The 1D application of the two-phase models is used for simulations of 
transients in piping systems whenever pipe’s radius over pipe’s length ratio is small. The closure 
relations replace various information that are lost with the averaging made to get the 1D model. The 
computer power still limits the utilization of the full 3D models for simulations of processes. Ishii and 
Hibiki [62] classify two-phase flows according to the structure of the interface into the following major 
groups called flow regimes or patterns:  

• Separated flows: Film flow, annular flow, jet flow. 
• Mixed or transitional flows; Cap, slug or churn turbulent flow, Bubbly annular flow, Droplet 

annular flow, Bubbly droplet annular flow. 
• Dispersed flows: Bubbly flow, Droplet flow, Particulate flow. 

Flow regime maps are coded in computer programs with various levels of complexity: from a very 
detailed flow regime map applied in the RELAP5 code [20] to less detailed applied in the CATHARE 
code [13]. The standard method using the flow regime transition criteria and the flow regime-dependent 
closure relations is limited by the fact that closure relations are mainly based on experimental 
measurements and are thus valid only for certain (steady state) conditions and certain flow regimes. The 
uncertainty of such correlations and conditions for the transition between flow regimes is even higher 
during the fast transients, which are considered in this study.  

 

Typical six-equation two-phase flow model. A typical 1D six-equation two-phase flow model in the 
field of nuclear pipeline thermo-fluid dynamics is given in this section. The described two-fluid model of 
the two-phase flow belongs to the WAHA [126] code and it similar to the models of RELAP5 [20], 
Cathare [13], Trac and Trace [129] computer codes. The basic equations are the mass, momentum and 
energy balances for the liquid and the vapor, with terms for pipe elasticity and without terms for wall-to-
fluid heat transfer. The continuity, momentum and internal energy balance equations used in the WAHA 
code are (equations are derived in Eulerian coordinates): 

kk k gk kS    S   iSvt x
α αρ ρ∂ ∂+ = − Γ

∂ ∂
                   (C-4) 

2
, ,

k
k k k k k i i k gx k t g ik k

p S  v S  v S iS CVM Sp iSF SF SF iS v
t x x x

αα α αρ ρ ∂∂ ∂ ∂+ + − ⋅ + = + − − Γ
∂ ∂ ∂ ∂

   (C-5) 

* 2
, , ,( / 2)k tot k k tot k k k k k ik g k k k k gxk kS  e S  e v p S Spv SQ iS h v Sv F

t x t x
α α α αρ ρ∂ ∂ ∂ ∂+ + + = − Γ + +

∂ ∂ ∂ ∂
 (C-6) 

Where 2
, / 2tot k k ke e v= +  is the total specific phasic energy, /k k kh e p ρ= +  is the specific phasic 

enthalpy, αk is the phasic volume fraction, Γg is the vapor generation rate, i is the phase factor, Qik is the 
phasic volumetric heat flux, Fi is the interface drag force, pi is the interfacial pressure term, Fk,t is the 
phasic wall friction, Fk,gx is the phasic gravity force in axial direction, and CVM is the virtual mass term. 
The pi and CVM terms were added to ensure hyperbolicity of the system of equations, which is required 
by the numerical method. The equations can be applied for the fluid and vapor phase using the 
definitions in Table C-2. For more details on this model see the WAHA code manual [126]. 

Table C-2:  Application of the WAHA code equations for fluid and vapor phase or mixture. 
Property index k vapor volume fraction αk phase factor i 

Fluid f 1 - α 1 
Vapor g α -1 

 

Figure C-3 shows the geometry and initial conditions for a water hammer transient that is initiated in 
steady state flow by rapid valve closure. Figure C-4 shows the single and two-phase pressure histories 
near the valve that are compared to the experiment. Table C-1 contains a brief description of various 
two-phase flow models. Two of them, the six-equation model of WAHA code and the three-equation 
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HEM model, are compared in Figure C-5. Figure C-6 shows the importance of an accurate specification 
of the flow regime and the corresponding flow regime dependent closure terms in two-phase flow codes. 
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Fig. C-3: Geometry of the Simpson pipe [103] 
experiment; the valve is rapidly closed. 

 

Fig. C-4: Pressure history near the valve: two-
phase code accurately describes transient.  
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Fig. C-5: Pressure history near the valve: 
comparison between six-equation WAHA code and 

HEM model. 

Fig. C-6: Pressure history near the valve: flow 
regime dependent closure terms are important. 

 

The transition between the single and two-phase flow in the six-equation two-phase flow model starts 
when the pressure of the single-phase liquid drops below the saturation pressure or when the vapor 
volume fraction exceeds the numerical uncertainty criterion. The relaxation source terms i.e. heat, mass 
and energy transfers are calculated only in two-phase flows. The transition back to single-phase flow 
starts when the vapor volume fraction becomes zero. 

The phenomenon of single to two-phase flow transition represents one of the crucial differences 
between the 'standard' numerical simulations of single-phase flows (CFD) and the numerical simulations 
of the multi-phase flows (CMFD - Computational Multi-Fluid Dynamics). The transition from single to 
two-phase flow emerges inside the particular computational volume as a consequence of the thermo-
dynamical instability in the single-phase flow or as a consequence of the convection of two-phase 
flow from a contiguous volume. The Navier-Stokes equations are sufficient to describe single-phase flow 
with a three-equation model and, when equipped with appropriate closure relations at the interface, also 
two-phase flow with (usually) six-equation model. But the problem that arises in transition modeling is 
that the Navier-Stokes equations are not sufficient to describe the transition from single to two-phase 
flow, where for example bubbles are being generated in the single-phase liquid due to the cavitation. 
The applied model describes single-phase flow with six equations where the second, non-existing phase 
is virtually present with a residual volume fraction (αrez = 10-10). As eigenvalues and eigenvectors are 
defined also in the volumes with single-phase, this approach automatically solves the problem with 
convection of the two-phase into the volume previously filled with the single-phase.  

 

C.3. Closure relationships for six-equation two-fluid model 
The mass, momentum and internal energy balance equations contain several undefined source terms 
which are given in this section. The modeling of the interface heat, mass and momentum exchange, wall 
friction forces, body forces, etc. in various physical models relies on the empirically derived, (usually) 
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nondifferential correlations that are usually flow-regime dependent. Our experiences with transient flow 
modeling show, that a very simple flow regime map with only one flow regime that corresponds to the 
dispersed bubbly flow is sufficient for accurate simulations of the FSI transient flow. The closure 
relations were directly extracted from the WAHA code [126] and are briefly described below. More 
details are given in the WAHA code manual. 

 

Water properties. Whenever realistic water properties are evaluated, an additional equation of state for 
each phase is needed. The equation of state for phase k is defined by Eq. (111) and Eq. (D-1). The 
derivatives on the right hand side of the Eq. (111) are determined by the water property subroutines that 
are based on the ASME steam tables. Water properties are pre-tabulated and saved in ASCII file for 400 
pressures: -95 bar < p < 1000 bar and 500 temperatures: 273 K < T < 1638 K. The equation of state 
relationships are obtained with a three-point interpolation. 

 

Phase-to-interface mass flux. The mass transfer (vapor generation rate Γg) is calculated as: 

* *
if ig

g
g f

Q Q
h h

+
Γ = −

−
                       (C-7) 

where hk* are specific phasic enthalpies (hk = ek + p / ρk) and Qik are fluid-to-interface heat fluxes. The 
specific enthalpies are defined as: 

* *
,

* *
,

and if 0

and if 0
f f g g sat g

f f sat g g g

h h h h

h h h h

= = Γ >

= = Γ <
            (C-8) 

 

Phase-to-interface heat flux. The fluid-to-interface volumetric heat fluxes are calculated as: 

( )ik ik S kQ H T T= −        k = f, g                   (C-9) 

where Hik are the heat transfer coefficients. In WAHA, for the dispersed flow the vapor generation rate is 
calculated with the Homogeneous Relaxation Model (HRM) proposed by Downar-Zapolski et al. [34], 
and modified by Lemonnier [81]: 

sat
g m

X Xρ
θ

−Γ = −                        (C-10) 

where X is the vapor quality, Xsat is the saturation quality and θ  is the relaxation time correlation: 

g

m
X

αρ
ρ

=   and ,

, ,

m f sat
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g sat f sat

h h
X

h h
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−

 and 
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− −

−
− −

⎧
⎪

∆⎪ ⋅ ≤⎪= ⎨
⎪ ∆⎪ ⋅ >
⎪ −⎩

( C-11) 

where pc = 221.2 bar is the critical pressure, ∆p = max(1000 Pa, |ps – p|), ps is the saturation pressure 
and  6max(10 , )wα α−= .  

The vapor heat transfer coefficient Hig is assumed to be extremely large to bring the vapor in equilibrium 
at a given pressure (similar in the RELAP5 code for dispersed flows): 
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( )* *5
6

9
max( ,10 )min 10 (1 (100 25 )), max 1,
max( ,10 )

g g f
ig

S g

h h
H

T T
α η η
α

−

−

⎡ ⎤⎛ ⎞Γ −
⎢ ⎥⎜ ⎟= ⋅ + ⋅ + ⋅ −
⎢ ⎥⎜ ⎟−

⎝ ⎠⎣ ⎦

     (C-12) 

where max( 2, )S gT Tη = − − .  The fluid volumetric heat transfer coefficient is then deduced as: 

( ) ( )* *

( )
ig S g g g f

if
S f

H T T h h
H

T T

− − − Γ −
=

−
                  (C-13) 

In most of the other flow regimes Hif and Hig are calculated first, and Γ follows from the heat fluxes Qif 
and Qig. 

 

Body forces. The body forces per unit volume due to gravity in a pipe with inclination angle γ and 
considering void fraction, direction and density of the material are defined as: 

fluid k: ( ), sink gx k kF gα ρ γ=   and  ( ), cosk gy k kF gα ρ γ=         (C-14) 

pipe:  ( ), sint gx tF gρ γ=    and  ( ), cost gy tF gρ γ=          (C-15) 

 

Phase-to-interface momentum flux. The interface friction force is defined as: 

i i r r g frF C v CVM v v vv= + = −                 (C-16) 

In WAHA, for the dispersed flow regime, the interfacial friction coefficient Ci in the momentum equations 
is calculated from correlations, which are valid for two-component and/or two-phase flow (similar to the 
RELAP5 model): 

1
8i f D gfC C aρ=                         (C-17) 

where CD is the drag coefficient of the slug and agf is the interfacial area concentration: 

0.7524(1 0.1 Re ) /ReDC = +    and  03.6 /gf buba dα=          (C-18) 

where Re is the Reynolds number,  αbub is the modified vapor volume fraction, and d0 is the average 
bubble diameter, that are defined as: 

2

( )(1 )Re
f fg

We

v

σ α
µ
⋅ −=  and 5max(min( ,0.5),10 )bubα α −=  and 0 2

( )

f fg

Wed
v

σ
ρ

⋅=    (C-19) 

The term µf is the liquid viscosity, ( )We σ⋅  is the product of the critical Weber number and surface 

tension and  2
fgv  is the modified relative velocity: 

10( ) max(5 , 10 )We σ σ −⋅ = ⋅   and   2 2
1/ 3

( )max ,
min( ,0.005 )fg r

f bub

Wev v
D

σ
ρ α

⎛ ⎞⋅= ⎜ ⎟⎜ ⎟
⎝ ⎠

    (C-20) 

 

Virtual mass term. The virtual mass term CVM is discussed by Drew et al. [35]. The main purpose of 
the virtual mass term CVM is to ensure hyperbolicity of the six-equation two-phase flow equations, thus 
only absolute velocities are taken into account in the derivatives of the following equation: 
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( ) ( )g g f f
xgxvm f

vv v vuv uCVM = C  +  - -  v
t x t x

µµ
∂⎛ ⎞∂ ∂ ∂++⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

           (C-21) 

where Cvm is the virtual mass coefficient similar to one used in the RELAP5 [20]. It is defined as: 

2
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1 1 2 0.4
2 1

(1 ) 1.5 10( 0.4)( 0.6) 0.4 0.6

3 2 (1 )(2 1) 0.6
2 (1 / )
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g f
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α α

ρ α α α α α

α α α α
α α αρ ρ

⎧
⎪ +⋅ ≤⎪ −⎪⎪= − − − − < ≤⎨
⎪
⎪ − − −⎛ ⎞ + >⎪ ⎜ ⎟ − +⎝ ⎠⎪⎩

        (C-22) 

The applied virtual mass term does not ensure unconditional hyperbolicity. Tiselj [122] reported that 
complex eigenvalues may appear for very large relative velocities in comparison to the mixture speed of 
sound ( 0.3r mv c> ). However these are extremely rare occasions, not relevant in realistic two-phase 
flows. 

 

The wall friction. The pressure losses due to the wall friction within a given length of a pipe L are 
defined by the Darcy-Weisbach equation (Wylie and Streeter [150]): 

, 4
r r

k k t
v v

∆p = ρ f L
R

                        (C-23) 

where vr = vk - ux. The wall friction force per unit volume is defined as a product of shear stress and 
contact surface area: , ,k t k tF = S SLτ Σ  and the force balance on a differential pipe section in steady state 

flow is defined as: ,k t∆pS = Sτ Σ . Then the friction force per unit volume is: 

,
, , 4

r rk t
k t k k t

v vS
F = ρ f

SL R
τ Σ =                     (C-24) 

Much research is currently focused on transient friction (Tiselj and Gale [127], Kucienska [74]). 
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Appendix D. Equation of state 
The main properties of the fluid are the thermodynamic functions of state and are defined by the 
equation of state. Consideration of the accurate thermodynamic state properties of the fluid is essential 
for accurate simulations of single-phase and two-phase flow transients, therefore, the Navier-Stokes 
system of equations for each phase is supplemented with an additional closure relationship - 
corresponding equation of state. Fundamentals are briefly described in this appendix. 

D.1. Compressibility and speed of sound 
According to the set of applied basic variables in this thesis the density of the fluid k is written as a 
function of pressure and internal energy ρk = ρk (p, ek). The differential equation of state is: 

k

kk
k k

ke p

p e
ep
ρρρ

∂∂ ⎛ ⎞⎛ ⎞∂ = ∂ + ∂⎜ ⎟⎜ ⎟ ∂∂⎝ ⎠ ⎝ ⎠
                    (D-1) 

where ek is the phasic specific internal energy, p is the pressure, ρk is the density of the fluid.  

The single-phase liquid transient pipe flow is under certain circumstances almost isothermal (∆T~0) 
where also ∆ek ~ 0. Such circumstances are encountered during transient pipe flow with ‘room’ 
temperature water. This is generally the case in this work. Then the equation of state simplifies into: 

k

k
k

e

p
p
ρρ ∂⎛ ⎞∂ ≅ ∂⎜ ⎟∂⎝ ⎠

                        (D-2) 

The compressibility β is a measure of the relative volume change of a fluid k as a response to a 
pressure change: 
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 or or 

1 1 k
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ρβ
ρ

∂∂ ⎛ ⎞⎛ ⎞= − ≡ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
                (D-3) 

where V is the volume, index T stands for the isothermal compressibility (const. temperature T), and S 
stands for the adiabatic compressibility (const. entropy S). Figure D-1 shows, that differences between 
isothermal and adiabatic compressibility are small, but not negligible.  
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Fig. D-1: Isothermal (left) and adiabatic (right) bulk modulus for water - NIST water properties [80]. 
 

 

The inverse of the compressibility is the bulk modulus K. The bulk modulus of a fluid essentially 
measures the resistance of the fluid to uniform compression. It is a thermodynamic quantity therefore 
the bulk modulus varies with variable thermodynamic state (Fig. D-1). The bulk modulus is defined as 
the pressure increase needed to affect a given relative decrease in volume. 

water water 

steam steam
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                   (D-4) 

The adiabatic bulk modulus and the density of a material determine the speed of sound c0 of a fluid k: 
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               (D-5) 

Figure D-2 gives the speed of sound in water in a pressure-temperature diagram. The sharp 
discontinuity appears near the transition from water into steam phase. The speed of sound in single-
phase water or steam flow is well defined, while the speed of sound in two-phase flow is a complex flow 
function. The speed of sound in two-phase water hammer flows can be obtained by substituting the 
effective bulk modulus of elasticity Ke and the effective density ρe in place of K and ρk in the equation for 
the speed of sound (D-5) in single-phase flow. The effective quantities Ke and ρe are obtained by the 
weighted average of the bulk modulus and density of each component, where the partial volumes are 
the weights. Tiselj [122] derived the following relationship for the speed of sound in two-phase flow, 
which is valid for the WAHA code described in Appendix C with consideration of the virtual mass term: 
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where cg and cf are the (effective) speeds of sound in gas and liquid, respectively. 
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Fig. D-2: The speed of sound water according to 
the NIST water properties [80]. 

Fig. D-3: The effective speed of sound in water 
conducted by elastic pipe. 

 

Tijsseling [115] in the standard FSI approach applied the following assumption of compressible material 
with constant density and bulk modulus. The properties of the fluid are evaluated at the beginning of the 
transient from the initial state. The temporal derivative of density is replaced by the temporal derivative 
of the pressure given by relationship (D-2): 
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ρρ ∂⎛ ⎞∂ ≅ ∂⎜ ⎟∂⎝ ⎠

   where   .
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          (D-7) 

The theory of water hammer based on the assumption of constant fluid properties is sometimes called 
the elastic water hammer theory according to the analogy with Hooke’s linear elasticity theory for 
solids.  
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D.2. Effective speed of sound 
The standard water hammer and the FSI theory consider the correction of the speed of sound in a fluid 
as a consequence of the pipe elasticity. The effective speed of sound in an elastic conduit is given by 
[66,150]: 

2 2
0,

1 1 correction f f

f f S

S
p S pc c
ρ ρ∂⎛ ⎞ ∂= + = +⎜ ⎟∂ ∂⎝ ⎠

                (D-8) 

where variable S stands for the cross-section area and index S stands for the adiabatic process. The 
speed of sound in a compressible fluid within a rigid pipe is obtained by setting / 0S p∂ ∂ = , and the 
speed of sound in an incompressible fluid within an extremely flexible pipe is obtained by setting 
( ) 0/f Spρ =∂ ∂ . 

Korteweg [150] in 1878 introduced the fluid properties through the state equation (D-4) and used the 
elastic theory of continuum mechanics to evaluate the correction term. Korteweg developed the 
relationship for the effective speed of sound and improved it with terms for the Poisson coupling (axial 
stresses and inertia are considered) and a term to account for the propagation of stress waves along the 
pipe: 
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  where  1 1 2R= +
K' K Ee

ψ       (D-9) 

where ψ is the multiplication factor that depends on geometry and support conditions. Wylie and 
Streeter [150] find the following options for the multiplication factor (see Appendix E for details): 

• ψ =1 - ν/2   for a pipe anchored at its upstream end only. 
• ψ =1 - ν2   for a pipe anchored throughout from axial movement. 
• ψ =1    for a pipe anchored with expansion joints throughout. 

Korteweg indicated that his theory is valid for long wavelengths with respect to the pipe diameter. Figure 
D-3 shows the effective speed of sound as a function of elasticity modulus E of the piping system for 
various initial temperatures of the fluid according to Korteweg’s equation. 
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Appendix E. Hooke’s law of elasticity 
Hooke’s law for uniaxial strain. Hooke's law of elasticity is an approximation that states that the 
amount by which a structure is deformed (the strain) is linearly related to the force causing the 
deformation (the stress). The materials for which Hooke's law is a useful approximation are known as 
linear-elastic or "Hookean" materials. The most commonly encountered form of the Hooke law is the 
spring equation, which relates the force exerted by a spring F to the distance w it is stretched by a spring 
constant k: 

F k w=                           (E-1) 

It can be rewritten in a form valid for Hookean materials under certain loading conditions: 

Eσ ε=                            (E-2) 

where E is the modulus of elasticity, σ the axial stress causing the deformation, and ε strain is the ratio 
of the change caused by the stress to the original state of the object. The modulus of elasticity is a 
measure of the stiffness of a given material.  

The modulus of elasticity in uniaxial tension, also known as Young’s modulus E, is the ratio of stress to 
strain on the loading plane along the loading direction: 

ii

ii
E σ

ε
=     i = x,y,z                    (E-3) 

Other moduli describe the material response to other kinds of stress. The shear modulus G describes 
the response to shear and is related to the elasticity modulus by the relationship: 

( )2 1
EG

ν
=

+
                        (E-4) 

where ν is the Poisson ratio. When a sample of material is stretched in one direction, it tends to get 
thinner in the other two directions. The Poisson ratio ν is a measure of this tendency. Tensile 
deformation is considered as positive and compressive deformation is considered as negative: 

 transverse unit strain
longitudinal unit strain

yy

xx

ε
= =

ε
ν − −                  (E-5) 

The Poisson ratio for most metals falls between 0.25 and 0.35. Materials with a Poisson ratio of exactly 
0.5 (rubber) are incompressible, since the sum of all their strains leads to a zero volume change. Cork, 
on the other hand, has a Poisson ratio close to zero.  

The Young elasticity modulus and the density of a material determine the speed of sound in the solid 
material (the wall of the piping system) in the axial direction ct (longitudinal waves): 

t
t

Ec
ρ

=                          (E-6) 

 

General form of Hooke’s law for 3D isotropic material. Most metallic alloys are considered isotropic, 
where by definition the material properties are independent of the direction. Such materials have only 2 
independent  variables, Young elasticity modulus and Poisson ratio. Hooke’s law for isotropic materials 
in compliance matrix form is given by: 
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               (E-7) 

where εij are the strains and σii and τij are the corresponding stresses depicted in Fig. E-1. The stiffness 
matrix is equal to the inverse of the compliance matrix, and is given by: 
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Fig. E-1: Infinitesimal cube with stress vectors and the corresponding stress tensor. 
 

Application of Hooke’s law for piping systems. The wall of the piping system can be treated as a 2D 
shell structure (σzz = σzx = σyz = 0). An approximation of the three-dimensional Hooke law for a two-
dimensional structure gives: 
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                   (E-9) 

which can be rewritten in an explicit form as: 

 ( )1
xx yyxxε =

E
σ νσ−                       (E-10) 

 ( )1
yy xxyyε =

E
σ νσ−                       (E-11) 

where σxx is the axial stress, and σyy is the circumferential stress.  

 

Application of Hooke’s law for evaluation of the cross-section area change. Wylie and Streeter 
[150] defined the relationship for the change of cross-section area of the pipe as a result of the 
circumferential strain. It is given as: 

2 yyS S ε∂ = ∂                          (E-12) 
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The 2D circumferential strain for a pipe wall is given by Eq. (E-11). The circumferential stress appears 
as a consequence of the internal and external pressures and is given by: 

 ( ) out
yy

Rp p RR e p
e e

σ − += ≅                    (E-13) 

where R is the inner radius of the pipe, e is the pipe thickness, p is the internal pressure (fluid), and pout 
is the external pressure. Approximation of pout = 0 can be usually made because the external pressure is 
constant with time and position (derivative is zero), in addition the experimental measurements are 
always relative: therefore the external pressure is usually neglected.  

The axial stress σxx can vary according to the support situation, and this in turn yields various definitions 
of the total circumferential strain. Wylie and Streeter [150] recognized the following support situations for 
a thin-walled pipeline: 

• The pipe anchored only at one end (example: closed piping system is fixed at one end only): 
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σ   and (E-11) gives:   1
2yy
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         (E-14) 

• The pipe anchored throughout against axial movement (example: closed piping system is fixed 
at both ends, 0xx =ε ): 

xx yy=σ νσ   and (E-11) gives:  ( )21yy
Rε = p
Ee ν−          (E-15) 

• The pipe anchored with expansion joints throughout (example: open piping system is free at both 
ends): 

0xx =σ    and (E-11) gives:  yy
Rε = p
Ee

           (E-16) 

• The pipe is anchored throughout against axial movement and loaded with axial force (example: 
closed piping system is fixed at both ends, 0xx =ε , and loaded with an additional axial force Nx):  

xxx yy N=σ νσ σ+   and (E-11) gives: ( )21 x
yy

t

NRε = p
Ee ES

νν− −        (E-17) 

The Eq. (E-17) where the pipe is anchored throughout against axial movement and loaded with axial 
force actually corresponds to the case encountered in numerical simulations of the FSI transient pipe 
flow. The piping section is divided into computational volumes and each computational volume is 
anchored between two contiguous computational volumes and loaded with an axial force. So, the 
change in cross-section area that is influenced by the total circumferential strain, and is defined by Eq. 
(E-12) gives: 

( )22 22 1yy x
t

RS = S ε = S p S N
Ee ES
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Appendix F. Timoshenko’s beam theory  
Lateral and rotational motion of piping sections can be described with a Timoshenko beam equation 
(Taylor and Yau [110], Mendez, Sanches, Morales and Flores [87]), which can be decomposed into a 
system of four linear first order partial differential equations. Timoshenko's beam theory (TBT) 
constitutes an improvement over the Euler-Bernoulli theory in that it incorporates shear deformation and 
rotation inertia effects. These improvements of the Euler-Bernoulli theory make the system of four partial 
differential equations hyperbolic, which is a fundamental condition for the application of the upwind 
characteristic numerical method. The importance of the shear deformation and rotatory inertia in the 
description of the response of beams is well documented (Timoshenko and Young [119]) and first 
improved theory was given by Timoshenko [120] already in 1921. Antes [7] demonstrated that the Euler-
Bernoulli theory is a special case of TBT, and that the difference depends on the geometry and is in 
general very small for static problems. The four Timoshenko beam equations are (see also Section 3.3): 
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where, ϕz is the pipe rotation velocity, uy is the pipe displacement velocity, Qy is the lateral force, Mz is 
the momentum, E is the Young elasticity modulus, G is the shear modulus, It is the moment of inertia, St 
is the pipe wall cross-section area, ρt is the pipe wall density, κ is the Timoshenko shear coefficient, mT 
stands for total mass, and fy(s,t) stands for the external and body forces. The system of four 
Timoshenko’s beam equations is free of distributed coupling and therefore independent from axial 
stresses, extensions and fluid transient. The system of Timoshenko beam equations can be coupled to 
the axial and fluid dynamics locally through junction coupling mechanisms (see Section 3.3 for 
appropriate derivation). Considering / y yu = w t∂ ∂  and / z z= tϕ φ∂ ∂ , and eliminating momentum and 
lateral force, the two coupled equations are obtained (Taylor and Yau [110], Antes [7] and Macchelli and 
Melchiorri [85]): 
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After elimination of the rotational displacement the fundamental Timoshenko beam equation gives 
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The left hand part of the equation consists of four terms having the units of force per mass or 
acceleration. There are terms involving bending momentum, rotational motion, shear force, and 
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translational motion on the left side of the equation and terms with axially distributed forces on the right 
side of the equation, respectively. When the shear and rotational terms in (F-7) are small and 
disregarded, and when there are no external load, the equation becomes the equation of motion of the 
Euler-Bernoulli beam (Nanguleswaran [92 and 93], Goncalves, Brennan and Elliot [50]): 

4 2

4 2  = 0y yt

t t

w wEI +
ρS s t

∂ ∂
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                     (F-8) 

 

Timoshenko’s shear coefficient. The Timoshenko shear coefficient κ is defined as the average shear 
stress on beam cross-section over the shear stress at the neutral axis. The value depends on the shape 
of the cross-section, and, as pointed out by Cowper [27], on the material’s Poisson ratio ν and on the 
considered frequency range (only for dynamic problems). Hence, different approximations exist that 
typically give values between 0.5 and 0.6 for a hollow circular cross-section. Hutchinson [60] defined the 
precise expression of the Timoshenko shear coefficient valid for pipes: 
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where b = R + e is outer radius of the pipe. For a thick walled pipe Cowper [27] proposed: 
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For a thin walled pipe m tends to 1 and a simpler and most frequently used definition for the shear 
coefficient independent of geometry is given by [27]: 
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                         (F-11) 

The definitions of the Timoshenko shear coefficient are valid for long wavelengths and low frequencies, 
since they are based on a quasi-static shear-stress distribution. For short wavelengths, the Timoshenko 
shear coefficient κ becomes frequency dependent [113]. 
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Appendix G. Sklopitev linijske konstrukcije in dvofaznega 
toka tekočine med hitrimi prehodnimi pojavi - povzetek v 
slovenskem jeziku  
 

G.1. Uvod 
ITK - Interakcija med tekočino in konstrukcijo (ang.: FSI – Fluid-Structure Interaction) je splošen pojem 
za opis izmenjave (kinetične) energije med gibajočo tekočino in deformabilno konstrukcijo. Količina 
izmenjane energije je v veliki meri odvisna od gibkosti in deformabilnosti konstrukcije in upora, ki ga le ta 
nudi toku tekočine (nanj vplivajo geometrijske in materialne lastnosti konstrukcije, podpore, zunanje 
obremenitve, itd.). Prav tako je količina izmenjane energije odvisna od tekočine, t.j. od gradientov in 
amplitude tlačnih valov, hitrostnega polja in od lastnosti stanja tekočine, predvsem stisljivosti. ITK se 
pojavlja v konstrukcijah, ki so potopljene v tekočino, v konstrukcijah v katerih se pretaka tekočina in v 
kombinaciji obeh vrst konstrukcij. Področje, ki ga zajema ITK je zelo obširno, od aeronavtike, 
gradbeništva, (procesnega) strojništva, kemične in naftne industrije, in mnogih drugih področij, do 
končno glasbil in človeškega telesa. 

V disertaciji smo se osredotočili na majhen del področja ITK: na dolge (1D) tanke votle konstrukcije v 
katerih se pretaka tekočina, t.j. cevovode. Cevovodi in cevni sistemi omogočajo transport velikemu 
spektru tekočin, od vode, kemikalij, nafte, plina, ipd., hkrati pa v nekaterih primerih zagotavljajo 
varnostno funkcijo (na primer v jedrski elektrarni – hlajenje sredice reaktorja). Tlačni sunki in mehanske 
vibracije cevovoda med hitrim prehodnim pojavom lahko zmanjšajo varnost in kvaliteto funkcije, ki jo 
opravlja cevovod. Odpoved cevovoda ima lahko katastrofalne posledice, lahko povzroči poškodbe in 
smrti ljudi, ekonomsko škodo, okoljske posledice, odpoved ali vibracije cevovoda in hrup. Tijsseling 
[113] pravi, da ITK ni splošno priznan pojav, čeprav znatno prispeva k določenim odpovedim cevovodov, 
kot sta na primer utrujanje ali korozija cevovoda. 

Raziskave ITK v cevovodih so relativno mlada veja znanosti, še posebno dvosmerna sklopitev 
konstrukcije in tekočine in raziskave z dvofazno tekočino, čeprav prve hidravlične raziskave vodnega 
udara segajo daleč nazaj v 18 stoletje (najbrž pa še mnogo dlje, saj so markantne vodne sisteme gradili 
že Egipčani in Rimljani). Svingen [108] je klasificiral delo, ki se izvaja na področju ITK in delo, ki ga je še 
potrebno opraviti, na naslednje 4 točke: 

• Eksperimentalne preiskave, ki omogočajo širjenje baze podatkov in tako omogočajo izdelavo 
vedno boljših računalniških programov in povečujejo poznavanje in znanje o pojavu ITK. 

• Izpeljava fizikalnih modelov in uporaba naprednih numeričnih shem prevedenih v učinkovite 
in zanesljive računalniške programe za raziskovalno in praktično inženirsko delo. 

• Priprava smernic temelječih na eksperimentih, terenskih izkušnjah in računalniških programih, ki 
omogočajo prepoznavanje pomembnosti ITK in izdelavo točnejših računskih analiz. 

• Določitev projektantskih kriterijev za cevovode, s katerimi se je v večini primerov mogoče na 
preprost način izogniti nepotrebnim posledicam ITK med hitrimi prehodnimi pojavi. 

Raziskovalno delo predstavljeno v pričujoči disertaciji se neposredno nanaša na drugo točko, izpeljava 
naprednih fizikalnih modelov in vpeljava zmogljivejše numerične sheme. Prva točka  (eksperimentalne 
raziskave) je uporabljena za validacijo računalniškega programa, medtem ko tretja in četrta točka 
logično sledita iz analize rezultatov.   

V nadaljevanju povzetka v slovenskem jeziku, so na kratko navedeni osnovni koraki in najpomembnejši 
rezultati in dosežki, ki so sicer podrobneje opisani v angleškem delu besedila.  

 

Namen in cilji disertacije. Disertacija je orientirana k modeliranju interakcije med tekočino in 
konstrukcijo med eno ali dvofaznim hitrim prehodnim pojavom v cevovodu. Obsežne raziskave in 
publikacije prof. Tijsselinga [112 - 118] predstavljajo tako imenovani stat-of-the-art v svetu modeliranja 
ITK. Skoraj izključno se uporabljajo linearni hiperbolični sistemi parcialnih diferencialnih enačb prvega 
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reda, ki v enem modelu opisujejo tako tekočino kot konstrukcijo. Tijsseling in ostala skupnost 
raziskovalcev uporablja izključno metodo karakteristik (MK). Z MK se lahko rešuje le linearne modele s 
konstantnimi karakterističnimi hitrostmi, kar že v osnovi izključuje uporabo nelinearnih fizikalnih modelov 
oziroma izboljšav obstoječih fizikalnih modelov z nelinearnimi členi. Identifikacija omejitev metode 
karakteristik sugerira osnovni namen pričujoče disertacije, ki je, vpeljati in preveriti numerično metodo, ki 
omogoča reševanje nelinearnih sistemov diferencialnih enačb. Na podlagi bogatih izkušenj, pridobljenih 
v času razvoja računalniškega programa WAHA [126] (namenjen je simulacijam termo-hidrodinamike v 
tekočini med hitrim prehodnim pojavom v popolnoma togem cevovodu brez ITK), in dejstva da se take 
numerične metode v zadnjem desetletju pogosto uspešno uporabljajo za reševanje inženirskih 
problemov [44,45,125,127], smo uporabili karakteristično privetrno shemo visoke resolucije drugega 
reda natančnosti. Drugi pomembni cilji disertacije so (i) izpeljati nelinearne ravnovesne enačbe za 
tekočino v Lagrangejevem koordinatnem sistemu, (ii) izpeljati enačbe za opis dinamike poljubno 
ukrivljenega cevovoda, (iii) izpeljati ustrezne fizikalne modele za simulacije ITK, in (iv) izdelati učinkovit 
in zanesljiv računalniški program za simulacije ITK. 

 

Originalni prispevek. Pričujoča disertacija vsebuje več pomembnih originalnih prispevkov k področju 
modeliranja interakcije med tekočino in konstrukcijo v cevnih sistemih napolnjenih z eno ali dvofazno 
tekočino med hitrim prehodnim pojavom. Rezultati raziskav so objavljeni v reviji Journal of Pressure 
Vessel Technology (Gale in Tiselj [45]). Naše raziskave so privedle do naslednji originalnih prispevkov: 

1.  Izpeljani so ustrezni nelinearni več-enačbni fizikalni modeli za točnejše simulacije pojava 
ITK med dvofaznim hitrim prehodnim pojavom v poljubno ukrivljenih in deformabilnih cevovodih. 

o Splošna ravnovesna enačba tekočine je izpeljana v premičnem, deformabilnem in 
poljubno ukrivljenem Lagrangejevem koordinatnem sistemu in uporabljena za izpeljavo 
ravnovesne enačbe za maso, gibalno količino in energijo. Iz teh enačb so sestavljeni 
tudi osnovni modeli (termo) dinamike tekočine: šest-enačbni model dvofaznega toka, tri-
enačbni model homogenega ravnovesnega toka (HEM model) in dvo-enačbni model 
kvazi-dvofaznega toka. 

o Izpeljan je fizikalni model za opis osne, prečne, rotacijske in torzijske dinamike poljubno 
ukrivljenega cevovoda napolnjenega s tekočino. 

o Izpeljani so različno kompleksni fizikalni modeli za opis ITK, sestavljeni iz fizikalnih 
modelov za tekočino in konstrukcijo. 

2.  Uporabljena in preverjena je karakteristična privetrna numerična shema visoke resolucije, ki 
temelji na metodi končnih razlik, ter izpeljana numerična rešitev za stabilno integracijo togih 
členov v enačbah Timoshenkovega nosilca.  

3.  Izpeljan in preverjen je računalniški program za simulacije hitrih prehodnih pojavov v 
dvofazni tekočini v cevovodu ob upoštevanju prispevka ITK. Različne izboljšave in modeli so 
integrirani v program in uspešno uporabljeni v simulacijah (točne lastnosti vode, faktor 
upogljivosti kolena, debelostenski model, zunanje sile, obremenitve, elastične podpore, napetosti 
po von Misesu, model tanka, ventila, ipd.). 

 

G.2. Ravnovesne enačbe v Lagrangejevem koordinatnem sistemu 
Standardne enačbe za opis termodinamike tekočin so izpeljane v Eulerjevem koordinatnem sistemu 
(dodatek Appendix C). Eulerjeve koordinate so fiksne v prostoru, medtem ko so Lagrangejeve 
koordinate fiksirane na določen odsek premikajočega se in deformabilnega cevovoda. Lemonnier [82] 
pravi, da je izpeljava ravnovesnih enačb iz Eulerjevega k.s. v Lagrangejev k.s. obvezna za točen opis 
termodinamike tekočine v premikajočih se in deformabilnih cevovodih, še posebej, če so premiki 
cevovoda znatni. Najpomembnejši korak pri transformaciji enačb v Lagrangejev k.s. je povprečenje 
ravnovesnih enačb preko prečnega preseka cevovoda, ter nato izpeljava in ustrezna uporaba 
Gausovega (divergenčnega) teorema in Leibnizovega integralskega pravila. Vpeljan je nov splošni 
parameter s s katerim je enoznačno opisana poljubna krivulja v prostoru. Krivulja predstavlja nevtralno 
os cevovoda oz. delčka tekočine, ki je predstavljen na sliki G-1.  
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Slika G-1: Delec tekočine, ki ga omejujeta dva prečna prereza S1 in S2 ter ploskev Σ, ki nastane, če 

ploskev S z obodom Ω in centralno točko P, drsi po krivulji C. Gibanje oboda Ω generira ploskev Σ, ki 
predstavlja steno cevovoda. Krivuljo C opišemo s splošnim parametrom krožnega loka s. 

 

Splošna ohranitvena enačba. Vsaka posamezna faza oziroma enofazni delec tekočine omejen z 
jasnimi mejami oziroma stenami cevovoda, se matematično opiše s sistemom Navier-Stokesovih enačb, 
ki vsebuje kontinuitetno, gibalno in energijsko enačbo. Navier-Stokesove enačbe so podrobneje 
obravnavane v mnogih knjigah (Moody [89], Ishii in Hibiki [62], Davis [28], Warsi [135], ipd.). Uporabili 
smo ravnovesne enačbe v najsplošnejši obliki (Ishii in Hibiki [62]): 

( ) 0k k k k kk k kt
ρ ψ ρ φρ ψ∂ + ∇ ⋅ + ∇ ⋅ − =

∂
Jv                 (G-1)  

kjer je ρk gostota tekočine k (k = f za kapljevine in k = g za pare), kv  je vektor hitrosti tekočine, ostale 
spremenljivke pa so definirane v tabeli G-1. S pomočjo tabele G-1 lahko izpeljemo ustrezno 
kontinuitetno, gibalno in energijsko enačbo iz splošne ravnovesne enačbe. 

Tabela  G-1:  Spremenljivke v splošni ohranitveni enačbi. 
Ravnovesje kψ  kJ  kφ  

Mase 1 0 0 
Gibalne količine kv  kp −I V  gF  

Totalne energije 2
, 0.5tot k k ke e v= + ( )k kkp+ ⋅−q vI V  g kF ⋅ v  

 

Splošna 1D ohranitvena enačba v Lagrangejevem koordinatne sistemu. Po izpeljavi, podrobneje 
opisani v angleškem delu, dobimo naslednjo splošno ravnovesno enačbo v Lagrangejevih  koordinatah: 

( ) ( ) 0

y
k k k x k k k k k k k k k k k k

p

i k k k kk k k k k k

u
S u S S v S S

t s s s R

P P Sm

α ρ ψ α ρ ψ µ α ρ ψ µ α α ρ ψ

α ρ φψ

∂ ∂ ∂ ∂+ + + ⋅ − +
∂ ∂ ∂ ∂

+ − =+ ⋅ ⋅

J t

J n J n
     (G-2) 

Splošna ravnovesna enačba v Lagrangejevih enačbah se lahko uporabi za poljubno tekočino k, pravila 
za aplikacijo na posamezno fazo pa so definirana v tabeli G-1. 

Tabela  G-2: Uporaba splošne ravnovesne enačbe v Lagrangejevih koordinatah za poljubno fazo k. 
Faza Indeks k Volumski delež pare αk Fazni faktor i 

Kapljevina f 1 - α 1 
Para g α -1 

 
 

Kontinuitetna, gibalna in energijska ohranitvena enačba. Če v splošno ohranitveno enačbo vstavimo 
relacije 1; 0; 0k k kψ φ= = =J  definirane v tabeli G-1 in nastavek modela generacije pare, dobimo 
splošno kontinuitetno enačbo:  
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y
k k x k k k k k k k g

p

u
S u S S v S iS

t s s R
α ρ α ρ µ α ρ α ρ∂ ∂ ∂+ + = − Γ

∂ ∂ ∂
          (G-3) 

v kateri so vsi diferencialni členi zbrani na levi strani, nediferencialni členi pa so zbrani na desni strani 
enačbe. Na podoben način s pomočjo tabele G-1 in mnogih dodatnih zvez in relacij, izpeljemo tudi 
splošno gibalno in energijsko enačbo:  

, ,

k k k x k k k k k k k k

y
k k k g i i k gx k t

p

pS v u S v S v v S
t s s s

u
S v iS v iSF SF SF

R

α ρ α ρ µ α ρ µα

α ρ

∂ ∂ ∂ ∂+ + + =
∂ ∂ ∂ ∂

− Γ + + −
          (G-4) 

, , ,

2

, , ,2

k k tot k x k k tot k k k k tot k k k

y k
k k tot k g ik k i k k gx k k t

p

S e u S e S v e Sv p
t s s s

u vS e iS SQ iSv F Sv F v SFhR

α ρ α ρ µ α ρ µ α

α ρ

∂ ∂ ∂ ∂+ + + =
∂ ∂ ∂ ∂

⎛ ⎞− Γ + + + −+⎜ ⎟
⎝ ⎠

       (G-5) 

 

Aplikacija enačb za raven in tog cevovod. Ob predpostavki, da je cevovod raven, nepremičen in 
popolnoma tog, postaneta osna in prečna hitrost cevi enaki nič (ux = 0, uy = 0), koeficient raztezanja 
postane enak ena (µ = 1), člen z radijem ukrivljenosti pa postane enak nič (uy / Rp  → 0). Splošna 
kontinuitetna enačba, gibalna enačba in energijska enačba se poenostavijo: 

k k k k k gS S v iS
t s

α ρ α ρ∂ ∂+ = − Γ
∂ ∂

                   (G-6) 

, ,k k k k k k k k g i i k gx k t
pS v S v v S iS v iSF SF SF

t s s
α ρ α ρ α∂ ∂ ∂+ + = − Γ + + −

∂ ∂ ∂
       (G-7) 

2

, , , ,2
k

k k tot k k k k tot k k k g ik k i k k gx k k t
vS e S v e Sv p iS SQ iSv F Sv F v SFht s s

α ρ α ρ α∂ ∂ ∂ ⎛ ⎞+ + = − Γ + + + −+⎜ ⎟∂ ∂ ∂ ⎝ ⎠
 (G-8) 

Enačbe dejansko predstavljajo standardne ravnovesne enačbe zapisane v Eulerjevem koordinatnem 

sistemu, ki je razen člena kp S
t

α∂
∂

 z zanemarljivim vplivom na lastne vrednosti sistema, popolnoma 

enak enačbam uporabljenim na primer pri izpeljavi šest-enačbnega dvotekočinskega modela termo-
hidrodinamike med hitrimi prehodnimi pojavi, znanega pod imenom računalniški program WAHA (Tiselj 
et al. [126]). Enačbe programa WAHA so povzete v dodatku Appendix C.   

 

Novi členi v ravnovesnih enačbah. Primerjava enačb (G-3), (G-4) in (G-5), zapisanih v Lagrangejevih 
koordinatah, z enačbami (G-6), (G-7) in (G-8), zapisanimi v Eulerjevih koordinatah pokaže, da se v 
novih enačbah pojavijo novi členi in nove spremenljivke: 

• V ravnovesnih enačbah se pojavi nov diferencialni člen oblike ...xu
s
∂

∂
 oz. ( ) ...x ku v

s
µ ∂+

∂
, ki 

predstavlja popravek konvekcijskega člena zaradi osnega gibanja cevovoda. Ta člen postane 
pomemben pri večjih premikih cevovoda. 

• Vsi prostorski odvodi so pomnoženi s korekcijskim faktorjem zaradi osnega raztezanja µ . Osni 
premiki cevovoda so običajno nekaj velikostnih redov manjši od prečnih premikov, zato: µ ≅ 1. 

• Člen uy / Rp predstavlja prispevek prečnega gibanja cevi k ravnovesju mase. Člen v ITK 
predstavlja mehanizem vozliščne sklopitve in postane različen od nič v krivinah. Člen vozliščne 
sklopitve je najpomembnejši novi člen, brez katerega ni mogoče opisati ITK.  
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G.3. Dinamika poljubno ukrivljenega cevovoda 
Obravnavani cevovodi so poljubno ukrivljene 1D konstrukcije v prostoru. Za opis takega cevovoda je 
najprimernejši splošni parameter krožnega loka s. Izpeljava temelji na osnovnih zvezah elastomehanike 
med napetostmi in deformacijami, ter na drugem in tretjem Newtonovem zakonu. Po izpeljavi dobimo 
naslednji dve enačbi za osno nihanje cevovoda: 

1 yx x

t p

uN uR p
ES t Ee t s R

ν∂ ∂∂− − = −
∂ ∂ ∂

  in   , ,
yx x x

s k t t t gx
p

Qu N Fm = SF S F
t s R s

∂ ∂− − + + +
∂ ∂ ∆

  (G-9) 

Enačbi sta močno sklopljeni s termodinamiko tekočine preko diferencialnega člena v katerem nastopa 
časovni odvod tlaka. Prečno in rotacijsko nihanje je sklopljeno, zato enačbe vedno pišemo skupaj, hkrati 
pa štiri enačbe prečnega in rotacijskega nihanja predstavljajo osnovne enačbe Timošenkovega nosilca 
(dodatek Appendix F, Taylor in Yau 2003 [110], Menez et al. 2005 [87]). Timošenkove enačbe nihanja 
lahko zapišemo za dve ravnini, prva je ravnina ukrivljenosti cevovoda (koleno), druga pa je pravokotna 
na prvo ravnino. Osnovni pojavi ITK se najlažje opišejo, če se uporabi ravninski cevovod, zato je velik 
poudarek v tej disertaciji namenjen takim cevovodom. Enačbe prečnega in rotacijskega gibanja 
cevovoda v ravnini ukrivljenosti so: 

1 y y x z
z

t p p

Q u u u
S G t s R T

ϕ
κ

∂ ∂
− = + −

∂ ∂
  in  ( )cosy y yx z

T T
p p

u Q FN Sp Qm = m g
t s R T s

γ
∂ ∂ −− + + −
∂ ∂ ∆

(G-10) 

1 yz z

t p

M =
EI t s T

ϕϕ∂ ∂− −
∂ ∂

     in  yz z
t t y

p

MMI ρ = Q
t s T

ϕ∂ ∂− − +
∂ ∂

       (G-11) 

Čeprav so cevovodi simetričnega okroglega preseka, se enačbe za gibanje v ravnini ukrivljenosti in v 
pravokotni ravnini med seboj razlikujejo. Razlike so v členih izvirov: 

1 yz z
y

t p

uQ u
S G t s T

ϕ
κ

∂ ∂− = − −
∂ ∂

   in  ( )cosyz z z
T T

p

Qu T Fm m g
t s T s

γ∂ ∂− = − + −
∂ ∂ ∆

   (G-12) 

1 y y x z

t p p

M
EI t s R T

ϕ ϕ ϕ∂ ∂
− = −
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   in  y y x z

t t z
p p

M M MI ρ = Q
t s R T
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− + +

∂ ∂
      (G-13) 

Enačbi torzijske dinamike cevovoda sta: 

1 yx x

t p

M
GJ t s R

ϕϕ∂ ∂− = −
∂ ∂

    in  yx x
t t

p

MMρ J =
t s R

ϕ∂ ∂− −
∂ ∂

        (G-14) 

Ob predpostavki, da je cevovod raven, odpadejo vsi členi v izvirih, ki imajo v delitelju radij ukrivljenosti 
cevi Rp ali radij torzijske ukrivljenosti cevi Tp, saj se v takih primerih oba parametra približujeta 
neskončnosti. Enačbe (G-9) do (G-14) se poenostavijo in postanejo identične standardnim enačbam, ki 
se uporabljajo v simulacijah ITK (Wiggert, Hatfield in Stuckenbruck [143]). Primerjava pokaže, da so 
členi z radijem ukrivljenosti in torzijskim radijem ukrivljenosti novi, predstavljajo pa mehanizem vozliščne 
sklopitve. Simulacije ITK v poljubno ukrivljenih cevovodih niso mogoče brez teh členov. To 
pomanjkljivost standardnih enačb rešujejo tako, da cevovod razrežejo na odsekoma ravne odseke, 
kolena in vozliščno sklopitev pa opišejo z dodatnimi enačbami (Tijsseling  [115]). Enačbe dinamike 
cevovoda so uporabne tudi za opis nihanja cevovoda (Lavooij in Tijsseling [75]), izračun lastne 
frekvence in statičnih sil in premikov cevovoda (z in brez polnila - vode). 
 

G.4. Fizikalni modeli za opis ITK 
Za opis ITK lahko uporabimo različne modele za različno kompleksne pojave. Osnovni in tukaj 
največkrat uporabljeni model za simulacije eksperimentov je osem-enačbni kvazi-dvofazni model ITK za 



 

                    - 139 -

ravninski cevovod, ki je v nadaljevanju podrobneje predstavljen. Najbolj splošni model sestavlja 18 
enačb z naslednjimi osnovnimi spremenljivkami (Tiselj [122] ali Hirsch [57]): 

• 6 spremenljivk za tekočino: hitrost vsake faze vg in vf, tlak p, volumski delež pare α in specifična 
notranja energija vsake faze eg and ef.  

• 12 spremenljivk za konstrukcijo: osna hitrost cevi ux in osna sila Nx, prečni hitrosti cevi uy in uz in 
prečni sili Qy in Qz, rotacijski hitrosti ϕz in ϕy in upogibna momenta Mz,in My, ter torzijska 
rotacijska hitrost ϕx in torzijski moment Mx. 

Izbran set osnovnih spremenljivk je najprimernejši in najučinkovitejši za splošne simulacije ITK. Fizikalne 
modele, sestavljene iz parcialnih diferencialnih enačb prvega reda zapišemo v naslednji vektorski obliki: 

 S
t s
ψ ψ∂ ∂+ =
∂ ∂

A B   oz. po preureditvi    0R
t s
ψ ψ∂ ∂+ + =
∂ ∂

C        (G-15) 

kjer sta A in B matriki sistema, ψ  je vektor osnovnih spremenljivk, S  in R , sta vektorja izvirov, C pa je 
Jacobijeva matrika. Sistemi enačb so hiperbolični, kar pomeni da je Jacobijeva matrika diagonalizabilna, 
lastne vrednosti obstajajo, so realne, število neodvisnih lastnih vektorjev je enako dimenziji Jacobijeve 
matrike. Diagonalizacija Jacobijeve matrike je osnoven korak pri uporabi izbrane numerične metode.  

 

Zapis osnovnih enačb z osnovnimi spremenljivkami. Preureditev enačb (G-3), (G-4) in (G-5) tako, 
da v diferencialnih členih nastopajo samo osnovne spremenljivke, ter vključitev zveze za specifično 
deformacijo prečnega preseka in enačbe stanja tekočine, da ohranitvene enačbe v naslednji obliki, ki je 
dejansko primerna za uporabo v fizikalnih modelih ITK: 
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      (G-17) 
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Izotermični kvazi-dvofazni model ITK. Ohranitvene enačbe v osnovnih spremenljivkah se ob 
določenih predpostavkah dodatno poenostavijo. V obravnavanih eksperimentih vedno nastopa voda pri 
skoraj konstantni sobni temperaturi in zaradi specifičnih lastnosti stanja take tekočine, se kontinuitetna in 
gibalna enačba za kapljevino poenostavita v: 

( ) ( )2 2
1 2 1 2 yx x f

x f x f
t t pf f f f

uN N vp pu v u v
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ν ν µµ µ
ρ ρ

∂ ∂ ∂∂ ∂− + − + =+ +
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( ) , ,
f f

f f f gx f tx f
v v p F Fu v
t s s

ρ ρ µµ∂ ∂ ∂+ + = −+
∂ ∂ ∂

               (G-20) 

kjer je cf efektivna hitrost zvoka definirana s poenostavljeno zvezo: 
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Dobljeni sistem dveh parcialnih diferencialnih enačb je izredno pomemben za simulacije ITK v 
ravninskih cevovodih z enofazno tekočino pri sobni temperaturi, saj enačbe za paro in energijsko 
enačbo v takšnih primerih lahko zanemarimo. Sami enačbi omogočata opis enofaznega toka, z dodatno 
ravnovesno enačbo za volumski delež pare, pa dobimo izredno zanimiv in zmogljiv kvazi-dvofazni 
sistem enačb za simulacije izotermnih  oz. adiabatnih dvofaznih hitrih prehodnih pojavov. 

Model dvofaznega toka, oziroma kavitacije se imenuje kvazi-dvofazen, zato ker temelji na predpostavki, 
da je med kavitacijo absolutni tlak v tekočini konstanten in enak tlaku nasičenja pare (p = psat). Taka 
predpostavka je izpolnjena le v izotermnem toku tekočine, saj je tlak nasičenja sicer funkcija 
temperature. Uporabili smo naslednjo ravnovesno enačbo za volumski delež pare α (Simpson [103]): 

0fv
t s

αα ∂∂ + =
∂ ∂

  ⇒  0f
f

vv
t s s
α α α ∂∂ ∂+ + =

∂ ∂ ∂
             (G-22) 

Enačba preprosto kaže, da je volumski delež pare neposredno odvisen od inercije vodnih stolpcev v 
dveh sosednjih odsekih cevi. Termični vplivi na dvofazni tok se ne upoštevajo.  

 

Nelinearni osem-enačbni model kvazi-dvofaznega toka v ravninskem cevovodu. V disertaciji smo 
se omejili na kvazi-dvofazni model dvofaznega toka in na cevne konstrukcije v ravnini. Osnovni model je 
tako sestavljen iz dveh enačb za opis prehodnega pojava v tekočini, dveh enačb osnega nihanja in štirih 
enačb prečnega nihanja cevovoda. Osnovne matrike sistema v vektorski obliki se zapiše:  
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Vektor osnovnih spremenljivk: { }, , , , , , ,T
x x y y z zv p u N u Q Mϕψ = . 
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Linearni osem-enačbni model kvazi-dvofaznega toka v ravninskem cevovodu. Ob predpostavki, da 
je cev popolnoma ravna, če zanemarimo zunanje sile in trenje in upoštevamo akustično aproksimacijo, 
ki pravi, da so členi konvekcije zanemarljivi v primerjavi z zvočno hitrostjo potovanja tlačnih valov, se 
sistem enačb definiran z matrikami od (G-23) do (G-25) poenostavi: 
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Pri čemer je vektor izvirov: { }0, 0, 0, 0, , 0, 0,T
z yQS ϕ−= . Predstavljeni linearni model je dejansko enak 

modelu, ki so ga uporabili Tijsseling, Vardy in Fan [114] v njihovih simulacijah ITK v (odsekoma) ravnih 
cevovodih. Tijsseling, Vardy in Fan so v primeru cevovoda s koleni, cevovod razdelili na več ravnih 
odsekov s konstantnimi geometrijskimi in materialnimi karakteristikami, na kolenih pa so uporabili 
ustrezne sklopitvene relacije (robne pogoje). V simulacijah so uporabili konstantne lastnosti tekočine, 
zato je ta sistem enačb znan tudi kot linearni sistem s konstantnimi karakteristikami. Linearni model smo 
uporabili za primerjavo z rezultati Tijsselinga, Vardya in Fana [114]. 

 

Začetni in robni pogoji. Za uspešno simulacijo morajo biti začetni in robni pogoji definirani tako, da v 
sistem ne vnašajo dodatnih valov oz. motenj. Tijsseling [118] predpostavlja, da mora biti na začetku 
simulacije sistem cevovod-tekočina vedno v ravnovesju. Pri določanju začetnih vrednosti je potrebno 
upoštevati razlike med relativnimi in absolutnimi vrednostmi osnovnih spremenljivk. Uporabili smo točne 
lastnosti tekočine (vode), kar pomeni, da mora biti začetni tlak v sistemu absoluten in je tako običajno 
različen od zunanjega tlaka. V izogib začetnemu neravnovesju je potrebno ustrezno prilagoditi zunanji 
tlak. V takem primeru je potrebno prišteti napetosti zaradi notranjega tlaka v cevovodu. Najpreprostejši 
način izračuna ravnovesnih absolutnih vrednosti osnovnih spremenljivk, se izvede tako, da se pred 
simulacijo prehodnega pojava naredi izračun, v katerem se poišče ravnovesno stanje. Vrednosti 
spremenljivk v ravnovesju se nato uporabi kot začetne vrednosti pri prehodnem pojavu.  

 

G.5. Numerična shema 
V preteklosti se je na področju ITK najpogosteje uporabljala metoda karakteristik, ki je zelo primerna za 
reševanje linearnih sistemov enačb s konstantnimi koeficienti. Sistem enačb, ki vsebuje enačbe (G-16), 
(G-17) in (G-18) je nelinearen, tudi parametri, ki nastopajo v matrikah (na primer od (G-23) do (G-25)) 
niso konstantni, zato metoda karakteristik ni primerna. Uporabili smo karakteristično privetrno numerično 
metodo visoke ločljivosti, ki temelji na metodah končnih razlik. Privetrna metoda končnih razlik je 
primerna za reševanje nelinearnih sistemov, edini pogoj je, da je sistem enačb hiperboličen. Izbrano 
numerično metodo smo uspešno uporabili tudi pri razvoju programa WAHA [126]. 

Po vpeljavi karakterističnih spremenljivk 1 1R sδξ δψ δ− −= +-1L Λ L , lahko vektorsko obliko enačb (G-15) 
zapišemo tudi v karakteristični obliki: 

0ξ ξ+ =
t s

∂ ∂
∂ ∂

Λ                         (G-27) 
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kjer je Λ  matrika lastnih vrednosti (karakteristik) Jacobijeve matrike C. Enačbo rešujemo s privetrno 
shemo, ki omogoča ustrezno ločevanje pozitivnih in negativnih karakteristik (zgornji indeks – za 
negativne in + za pozitivne karakteristike): 

( ) ( ) ( ) ( )1
1 11/ 2 1/ 2

n nn n n n n n
j j j j j jj j

t t
x x

ξ ξ ξ ξ ξ ξ+ + −
− +− +

∆ ∆= − −− −
∆ ∆Λ Λ           (G-28) 

kjer velja 

( )+ +
1 M= ...diag λ , ,λ+Λ  in + += pp pλλ f⋅    ter    ( )- -

1 M= ...diag λ , ,λ-Λ  in - -= pp pλλ f⋅   (G-29) 

Indeks p teče po vseh M lastnih vrednostih, korekcijski faktor fp pa je definiran z enačbo: 
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              (G-30) 

Matrika +Λ  vsebuje vse pozitivne karakteristike, ki potujejo proti desni, matrika −Λ  vsebuje vse 
negativne karakteristike, ki potujejo proti levi. Matriko karakteristik Λ  lahko rekonstruiramo z delnima 

matrikama +Λ  in −Λ  v vmesni točki j-1/2 in času n s pomočjo zveze: ( ) ( )n n
1/ 2 1/2 1/2

n
j j j

= ++ −
− − −

Λ Λ Λ . 

Shema v enačbi (G-28) je 1. reda natančnosti po kraju in času in je stabilna, če je izpolnjen CFL pogoj: 

max

∆xt
λ

∆ ≤                          (G-31) 

 

Karakteristična privetrna shema visoke resolucije. Osnovna ideja privetrnih shem visoke resolucije 
je, da so rezultati na gladkih rešitvah najmanj drugega reda natančnosti, medtem ko je v območju 
nezveznih (strmih) rešitev, uporabljena metoda prvega reda z večjo numerično difuzijo (LeVeque 
[77,78], Hirsch [57], Toro [128]). Po izpeljavi, ki presega okvir tega povzetka, dobimo karakteristično 
privetrno shemo visoke resolucije, ki je v osnovi enaka enačbi (G-28). Spremenijo se le korekcijski 
faktorji definirani v enačbi (G-30): 
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Prvi člen v korekcijskih faktorjih je že znan smerni faktor, drugi člen pa je popravek drugega reda 
natančnosti določen z omejitvenim faktorjem φp (ang. limiter). Omejitveni faktorji so izpeljani s pomočjo 
teorije TVD (ang.: total variation diminishing). Numerična shema je TVD, če se celotna variacija (TV) s 
časom ne povečuje (LeVeque [77,78]). Poznamo več enačb za izračun omejitvenega faktorja, največ se 
uporabljajo Minmod, Superbee in VanLeer. Če omejitveni faktor postane enak 0, potem numerična 
metoda postane metoda prvega reda natančnosti. TVD shema ne generira numeričnih oscilacij. 

Po transformaciji karakterističnih spremenljivk nazaj v osnovne dobimo dejansko uporabljeno shemo: 
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Karakteristična privetrna shema drugega reda natančnosti pa ima poleg številnih prednosti, tudi 
pomanjkljivost, saj v rešitev vnaša numerično disipacijo (pravzaprav je numerična disipacija nujno 
potrebna za stabilnost numerične sheme). Z optimalno izbiro časovnega koraka, uporabo Superbee 
omejitvenega faktorja: ( ) ( )( )max 0,min 2 ,1 ,min ,2pφ θ θ=  in povečevanjem števila računskih volumnov na 

enoto dolžine, se numerično disipacijo lahko bistveno zmanjša. 
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Členi z izviri. Členi z izviri predstavljajo poseben numeričen problem, saj v določenih primerih postanejo 
togi. To pomeni, da je potreben integracijski korak bistveno krajši od časovnega koraka definiranega s 
CFL pogojem (G-31). V uporabljenih členih izvirov nastopata dve vrsti togosti. Prva je posledica 
temperaturne in mehanske relaksacije v dvofaznem toku (temperatura kapljevine oz. pare ni v 
nasičenju, hitrosti faz na medfazni ploskvi različni), druga pa zaradi integrirane enačbe nihanja v 
enačbah Timošenkovega nosilca. Prvi problem se reši z dvokoračno shemo razcepa operatorjev, 
drugega pa z zmanjšanjem časovnega koraka in implicitnimi iteracijami. Velja, da je celotna numerična 
shema stabilna, če je časovni korak napredovanja določen po enačbi: 
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I ρ ∆xt
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                    (G-34) 

pri čemer prvi člen predstavlja togost izvirov v enačbah Timošenkovega nosilca, drugi pa je CFL pogoj.  

 

G.6. Računski primer 
Vardy and Fan [132] sta raziskovala enofazno ITK v cevovodih obešenih na dolgih jeklenih vrveh. V ta 
namen sta izdelala eksperimentalno napravo v laboratoriju za hidravliko Univerze v Dundeju (Velika 
Britanija). Interakcija med tekočino in konstrukcijo v eksperimentalnih napravah je zelo intenzivna. 
Cevovodi so obešeni na jeklenih vrveh in tako izolirani od okolice. Različni vplivi začetnih pogojev, 
robnih pogojev, podpor, iniciacije hitrega prehodnega pojava ipd. so izločeni. Slika G-2 kaže 
obravnavani cevovod z enim kolenom. Hitri prehodni pojav se prične, ko na levi rob cevovoda z 
določeno hitrostjo udari kladivo (udarna cev). V osnovi enofazne eksperimente je Tijsseling [113] 
dopolnil z dvofaznimi eksperimenti (zmanjšal je začetni tlak v cevi). Tijsseling [39, 113] je poudaril, da so 
v času raziskav njegovi eksperimenti edini v katerih sta tako ITK kot kavitacija zelo močni in sta hkrati 
tudi ustrezno dokumentirani z eksperimentalnimi meritvami (www.win.tue.nl/fsi/). Vsi potrebni podatki o 
konstrukciji in tekočini so zbrani v tabeli G-3, več podrobnih podatkov pa se lahko dobi v Vardy in Fan 
[132] ter Tijsseling [39, 113]. V disertaciji smo obravnavali primere z enofaznim in dvofaznim tokom. 
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Slika G-2 Numerična shema eksperimenta v cevovodu z enim kolenom. 

 

Tabela G-3:  Lastnosti stanja in materiala za cevovod, vodo in udarno cev. 
Cevovod Voda Udarna cev 

L = 4.51 + 1.34 m v = 0 m/s Lrod = 5.006 m 
R = 0.02601 m K = 2.14 GPa Rrod = 0.02537 m 
e = 0.003945 m p1F = 2.0 MPa  Erod = 200 GPa 

E = 168 GPa p2F = 0.30, 0.67, 0.87, 1.08, 1.24 MPa Yrod = 80109.7 kg/s 

ρt = 7985 kg/m3 T = 20 °C v0,rod = 0.809 m/s 

ν = 0.29 ρf = 999 kg/m3 ρrod = 7848 kg/m3 
m1,2  = 1.312 / 0.3258 kg   

 

Enofazni eksperiment. Začetni tlak v cevovodu je bil p = 20 bar, kar je zadosten tlak, da med celotnim 
hitrim prehodnim pojavom v cevi ostane tok enofazen. Upoštevali smo dodatni masi (m1 in m2 v tabeli G-
3) na koncih cevovoda zaradi pokrova cevi, prav tako smo upoštevali faktor fleksibilnosti zaradi 
ovalizacije prereza v kolenu.  
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Slika G-3: Časovni potek nekaterih osnovnih spremenljivk v določenih točkah cevovoda (tlak v P1, 
osna hitrost cevi v P2, osna sila v P3 in moment v P5). Primerjava med simulacijo in eksperimentom.

 

Slika G-4: Osnovne spremenljivke v ravnini čas-prostor. 
 

Slika G-3 prikazuje primerjavo različnih osnovnih spremenljivk z merjenimi. Ujemanje med 
eksperimentom in simulacijo je izjemno, naš program lahko razglasimo kot preverjen in točen za 
računanje enofaznih hitrih prehodnih pojavov v poljubno ukrivljenih cevovodih. Potrebno je poudariti, da 
uspešna simulacija tega eksperimenta ni možna brez ustreznega upoštevanja mehanizmov vozliščne in 
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Poissonove sklopitve med tekočino in konstrukcijo. Slika G-4 prikazuje nekatere osnovne spremenljivke 
v ravnini čas-pozicija, kar omogoča zelo pregledno analizo razvoja hitrega prehodnega pojava tako v 
tekočini kot v stenah cevovoda.  
 

 

Faktor upogljivosti zaradi ovalizacije prereza. Von Karman [133] je že leta 1911 pojasnil, da je togost 
kolena v primerjavi z ravnim odsekom iste cevi bistveno zmanjšana zaradi ovalizacije prereza, zato je 
vpeljal faktor upogljivosti in faktor povečanja napetosti. Njegova priporočila so še danes v uporabi 
praktično nespremenjena. Po ASME standardu (ASME, B&PVC, Class 1 components, NB-3686 [9]) se 
vztrajnostni moment prereza cevi It v kolenu zmanjša za faktor upogljivosti k definiran po enačbi: 
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                 (242) 

Del enačbe izven oglatega oklepaja predstavlja najpogosteje uporabljeno enačbo, del v oglatem 
oklepaju pa predstavlja korekcijo zaradi stabilizacijskega učinka notranjega tlaka v cevovodu. Slika G-5 
kaže, da je faktor upogljivosti različen od 1 na kolenu, desna slika pa kaže izboljšavo rezultata zaradi 
upoštevanja ovalizacije. Uporaba faktorja upogljivosti ne vpliva na lastne vrednosti, vpliva pa na lastne 
vektorje. Upoštevanje faktorja upogljivosti v simulacijah je možno samo s karakteristično privetrno 
numerično shemo, kar predstavlja prednost izbrane numerične metode. 
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Odebelitev cevovoda.  ASME standard (Boiling and Pressure Vessel code NB-3641), predvideva 
odebelitev cevovoda na mestih, kjer se bo cev kasneje krivila (mehanska izdelava kolen). Za ostra 
kolena (Rp < 3R) se priporoča povečanje stene cevi za 25%. Slika G-6 kaže, da bi morebitna odebelitev 
stene vplivala na lastne vrednosti sistema in posledično na rezultate (zmanjšani maksimalni momenti). V 
eksperimentu uporabljena cev ni bila odebeljena na kolenu. Karakteristična privetrna numerična shema 
je za upoštevanje te izboljšave fizikalnega modela bolj primerna kot metoda karakteristik. 
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Enačbe stanja tekočine. Uporaba karakteristične privetrne sheme omogoča uporabo natančnejših 
enačb stanja tekočine, kar pomeni, da se lastnosti stanja računajo v vsakem časovnem koraku v 
vsakem računskem volumnu. Obravnavani eksperiment je bil opravljen pri sobni temperaturi, točne 
vrednosti pa avtorji niso navedli. Tabela G-4 in slika G-7 kažeta, da je točna začetna temperatura zelo 
pomembna za izračun. Stanje tekočine vpliva na karakteristično hitrost potovanja valov v tekočini in 
tabela G-4 kaže, da v samo 6 stopinj hladnejši vodi, valovi potujejo 20 m/s počasneje. Ob splošno 
sprejetem dejstvu, da se lastnosti tekočine v hladni vodi praktično ne spreminjajo, pa tabela G-4 in slika 
G-7 kažeta, da razlike v gostoti ali modulu stisljivosti vodita k razlikam v zvočni hitrosti. Primerjali smo 
tudi uporabo konstantnih in točnejših lastnih vrednosti. Izkaže se, da je v enofaznih eksperimentih ta 
razlika zelo majhna in ne opravičuje uporabe natančnejših lastnosti stanja, medtem ko brez točnejših 
lastnosti stanja ni možno računati prehodnih pojavov v topli/vroči vodi oziroma v dvofaznem toku. 

Tabela G-4: Lastnosti stanja tekočine (voda).  
Parameter T = 293 T = 287 

Gostota [kg/m3] 999.12 1000.16 
Modul stisljivosti [GPa] 2.1887E9 2.1401E9 

Zvočna hitrost [m/s] 1480.1 1462.8 
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Slika G-7: Časovni potek tlaka in momenta s prikazom vpliva temperature tekočine. 
 

  
Slika G-8: Levo meja elastičnosti po von Misesu v 2D, desno ovojnica napetosti po von Misesu. 

 

Napetosti po von Misesu. Napetost po von Misesu je skalarna vrednost kompleksnega napetostnega 
tenzorja, definirana kot: 

 ( ) ( ) ( ) ( )2 2 2 2 2 21 6
2 xx yy yy zzv zz xx xy yz zxσ σ σ σσ σ σ τ τ τ− −= + + +− + +        (243) 

Če je napetost po von Misesu manjša od meje elastičnosti (σv < σy), potem lahko predpostavimo 
elastične deformacije. Na primer, v 2D konstrukcijah, kamor prištevamo tudi cevovode, mora biti 
napetostno stanje določeno s σ1 in σ2 znotraj elipse (slika G-8 levo). Slika kaže tudi konzervativnejši 
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Tresca kriterij (črtkana črta). Slika G-8 desno kaže položaj in časovni potek napetosti po Misesu 
(ovojnica največjih napetosti). Kritični del konstrukcije pri obravnavanem prehodnem pojavu je koleno na 
začetku, ko skozi koleno potuje prvi napetostni val. Največje napetosti so σv,max = 50 MPa, medtem ko je 
tipična meja elastičnosti v jeklu σy = 250 MPa. Trajanje največjih napetosti je kratko – pulziranje.  
 

 

Dvofazni eksperimenti. Če začetni tlak v cevovodu znižamo, med hitrim prehodnim pojavom pride do 
kavitacije. Kavitacija je lahko zmerna ali močna, odvisno od začetnega tlaka v sistemu (slike od G-9 do 
G-11). Glede na uporabljen preprost kvazi-dvofazen model dvofaznega toka in kompleksnost pojava 
lahko zaključimo, da je ujemanje med meritvijo in eksperimentom zelo dobro. Magnituda in časovni 
potek največjih napetosti, tlakov in kavitacije sta opisana zelo dobro. Opaziti je možno, da ujemanje 
nekoliko upada z naraščanjem intenzivnosti kavitacije. Razloge za neujemanje lahko pripišemo (i) 
uporabi poenostavljenega model dvofaznega toka, (ii) eksperimentalni nezanesljivosti (Tijsseling [113] je 
pokazal da je ponovljivost relativno dobra, pada pa s povečevanjem intenzivnosti kavitacije), (iii) drugim 
napakam, kot je na primer numerična disipacija, nepopolni fizikalni modeli, ipd.  
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Slika G-9: Časovni potek nekaterih (izbor) osnovnih spremenljivk (p2F = 1.24 MPa). 
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Slika G-10: Časovni potek nekaterih (izbor) osnovnih spremenljivk (p2F = 1.08 MPa). 
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Slika G-11: Časovni potek nekaterih (izbor) osnovnih spremenljivk (p2F = 0.30 MPa). 
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Volumski delež pare. Slika G-12 kaže volumski delež pare za primer močne kavitacije z in brez 
upoštevanja ITK mehanizmov. Vidimo, da ITK sicer vpliva na porazdelitev pare vendar minimalno.  
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Slika G-12: Volumski delež pare za primer močne kavitacije (p2F = 0.3 MPa). Levo z upoštevanjem učinkov 
ITK in desno brez upoštevanja. 

 

Von Mises napetosti v dvofaznem toku. Slika G-13 kaže primerjavo napetosti za primer z zmerno in 
močno kavitacijo, rezultate pa primerjamo tudi s sliko G-8 desno kjer ni kavitacije. Najpomembnejša 
ugotovitev je, da kavitacija ne vpliva bistveno na napetosti oziroma na sam potek ITK in hitrega 
prehodnega pojava. Opaziti je le, da so največje napetosti dosežene v enofaznem primeru, najnižje 
maksimalne napetosti pa v dvofaznem primeru z močno kavitacijo. Razlog je v tem, da je v enofaznem 
primeru začetni tlak v cevi največji, kar seveda povzroči največje napetosti v stenah cevovoda. Sama 
kavitacija pa na ITK ne vpliva bistveno. 

Slika G-13: Ovojnica napetosti po von Misesu za primer zmerne  (levo, p2F = 1.08 MPa) 
in močne  (desno, p2F = 0.3 MPa) kavitacije. 

 

G.7. Zaključek 
Obravnavali smo interakcijo med tekočino in konstrukcijo (ITK) med hitrimi prehodnimi pojavi v tekočini. 
Ugotovili smo, da je ITK intenzivna v mehkih in slabo podprtih cevovodih v katerih se pretaka skoraj 
nestisljiva tekočina (eno ali dvofazna). Uporaba togega in preveč podprtega cevovoda je dokaj preprosta 
rešitev, toda v takih cevovodih, še posebno v jedrskih elektrarnah, bi nastopile velike notranje sile zaradi 
termičnih obremenitev. Izmenjava kinetične energije med tekočino in cevovodom je v osnovi ugoden 
pojav, ki pa ga je potrebno ustrezno kontrolirati. Kontrola ITK med hitrimi prehodnimi pojavi ni možna 
brez ustreznih orodij za numerične simulacije. Za opis ITK v cevnih sistemih so najprimernejši 
enodimenzionalni sistemi parcialnih diferencialnih enačb, ki vsebujejo tako enačbe za tekočino kot 
enačbe za konstrukcijo, in ki so nato numerično rešeni z enotno numerično proceduro. V tej disertaciji so 
na novo izpeljane diferencialne enačbe za tekočino in konstrukcijo, uporabljena je nova numerična 
metoda, vse skupaj pa smo prevedli v računalniški program.  
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Izpeljali smo enodimenzionalno splošno ohranitveno enačbo termo-hidrodinamike v poljubno 
ukrivljenem, premikajočem in deformabilnen cevovodu (Lagrangejev koordinatni sistem). Iz splošne 
ohranitvene enačbe smo izpeljali kontinuitetno, gibalno in energijsko ravnovesno enačbo. V enačbah se 
pojavijo novi členi in nove spremenljivke, s katerimi je upoštevana dinamika in ukrivljenost cevovoda. Iz 
splošnih ohranitvenih enačb je izpeljanih več sistemov enačb, ki so primerni za opis hitrih prehodnih 
pojavov v različnih tekočinah (izotermični eno in kvazi-dvofazni model, šest-enačbni dvofazni model, tri-
enačbni dvofazni model toplotnega in mehanskega ravnovesja). Izpeljali smo tudi 1D fizikalne modele 
osne, rotacijske, prečne in torzijske dinamike poljubno ukrivljenega cevovoda. Pojavi se več novih 
členov, vsi pa predstavljajo mehanizem vozliščne sklopitve v kolenih. Različni modeli termo-
hidrodinamike in različni fizikalni modeli dinamike cevovoda so nato združeni v več sistemov enačb za 
opis pojava ITK v cevovodih različne kompleksnosti. Vsi sistemi so sestavljeni iz parcialnih diferencialnih 
enačb prvega reda, so hiperbolični, lastne vrednosti je možno določiti analitično ali pa numerično. 
Osnovni fizikalni model ITK v disertaciji je osem-enačbni model sklopitve izotermičnega kvazi-
dvofaznega toka in ravninskega cevovoda. 

Enačbe smo reševali s karakteristično privetrno shemo končnih razlik visoke resolucije in drugega reda 
natančnosti. Numerična shema je eksplicitna, občasno pa uporabimo tudi implicitne iteracije, ker so členi 
izvirov togi in bi bil potreben časovni korak integracije nesprejemljivo majhen. Najpomembnejša 
prednost uporabljene numerične metode je možnost reševanja nelinearnih sistemov oziroma sistemov 
enačb s spremenljivimi parametri. Tako je možno uporabiti enačbe stanja tekočine, ki ustrezajo 
dejanskemu termodinamičnemu stanju tekočine, upoštevanje geometrijskih in materialnih sprememb v 
cevovodu (prečni prerez, debelina cevi, ukrivljenost cevi, drugačna togost cevi ipd.), možnost 
upoštevanja dvofaznega toka na poljubnih delih cevovoda, upoštevanje zunanjih obremenitev, togih ali 
elastičnih podpor, ipd. Numerična metoda vnaša numerično disipacijo, ki pa jo je možno relativno 
enostavno nadzirati in zmanjševati. Točnost numerične metode smo preverili z uveljavljeno metodo 
karakteristik, ujemanje rezultatov je zelo dobro, malenkostna odstopanja v nezveznostih lahko pripišemo 
numerični disipaciji in drugačnemu konceptu računanja.  

Rezultate smo preverjali tudi z analitičnimi enačbami, pokazali smo, da je z našim pristopom možno 
določiti lastno frekvenco nihanja poljubno ukrivljenega cevovoda, prav tako je z veliko natančnostjo 
možno določiti klasične spremenljivke statike konstrukcij: notranje sile, premike, momente, ipd. Ugotovili 
smo, da na osno sklopitev cevovoda in tekočine v veliki meri vpliva stisljivost tekočine, medtem ko na 
prečno sklopitev vpliva predvsem masa tekočine. Pokazali smo obstoj valov imenovanih znanilci in 
nasledniki, prav tako smo pokazali, da valovi znanilci v določenih primerih lahko preko Poissonovega 
mehanizma sklopitve povzročijo izredno kavitacijo v sistemu. Izpeljali in preverili smo poenostavljen 
model dvofaznega toka. S tako imenovanim kvazi-dvofaznim modelom smo uspešno in natančno 
simulirali več dvofaznih eksperimentov. Vgradili in preverili smo model zmanjšanja togosti kolena zaradi 
pojava ovalizacije. Uporabili smo tudi debelostenski fizikalni model in pokazali, da upoštevanje debeline 
cevi za simulacijo praktičnih primerov, ni bistveno. Iz inženirskega stališča je najpomembnejši rezultat 
napetost izračunana po metodi von Misesa. Največje obremenitve cevovoda so kratkotrajne, pojavljajo 
pa se na različnih in večinoma v naprej nepredvidljivih delih cevovoda. Mesto in čas največje 
obremenitve cevovoda je možno napovedati samo z ustrezno računalniško simulacijo. 

Izpeljani napredni fizikalni modeli in uporabljena karakteristična privetrna numerična shema so bili 
prevedeni v računalniški program, ki smo ga obširno in uspešno testirali z obstoječimi eksperimentalnimi 
in numeričnimi podatki. Vidimo dve možnosti za nadaljevanje raziskav in razvoj programa. Prva je 
uporaba šest-enačbnega dvotekočinskega modela dvofaznega toka tekočine, druga pa uporaba vseh 
enačb dinamike konstrukcije, s katerimi bo mogoče opisati dinamiko prostorskega cevovoda. Poudariti 
je potrebno, da se omenjeni izboljšavi v veliki meri nanašata na programersko delo in iskanje ustreznih 
računalniških rešitev, medtem ko so teoretične osnove že podane v disertaciji. Obstaja tudi možnost, da 
se s fizikalnimi modeli in izkušnjami pridobljenimi med izvajanjem raziskav, nadgradi obstoječi termo-
hidrodinamični program WAHA, tako, da ga bo mogoče uporabiti tudi za simulacije prehodnih pojavov z 
upoštevanje interakcije med tekočino in konstrukcijo.
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