Mercury Methylation/Demethylation Potentials in Soils from Idrija Hg Mining Area, Slovenia, Studied using ¹⁹⁷Hg²⁺, CH₃¹⁹⁷Hg⁺ and ¹⁴CH₃Hg⁺ Radiotracers Vesna Jereb¹, Sergio Ribeiro Guevara² & Milena Horvat¹ ¹Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia ²Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Argentina **Abstract:** The aim of our work was to investigate methylation and demethylation potentials of soils from Idrija Hg mining area, Slovenia. Methylation of Hg²⁺ results in MeHg⁺, a high neurotoxin, - this process was studied using ¹⁹⁷Hg²⁺ radiotracer. Demethylation process (detoxification) of CH₃Hg⁺ results either in formation of CH₄ and Hg⁰, known as a reductive demethylation, or in formation of CO₂ and unidentified Hg moiety, known as an oxidative demethylation. The transformation was studied using CH₃¹⁹⁷Hg⁺ and ¹⁴CH₃Hg⁺ radiotracers. The latter was used to follow the formation of gaseous products (¹⁴CH₄ and ¹⁴CO₂), which indicates the prevailing detoxification mechanism mentioned above. In this work, the following soil samples were investigated: IAEA Soil-1 (dried, sieved and homogenised soil, a candidate for RM, sampled from a floodplain about 40 km downstream Idrija, just before Idrijca River merges Soca River), Baca soil (fresh soil from the sampling point of Soil-1) and chimney soil (sampled at the Hg ore smelter chimney in Idrija). In addition, we tested sediment from Hg non-polluted area (Ljubljana wetland). Samples were spiked with radiotracers of high specific activity and incubated in dark for up to several days at room temperature and mostly under aerobic conditions. Me¹⁹⁷Hg₊ (-formed in methylation experiments and remained fraction in demethylation experiments) was acid-leached from the samples and extracted into toluene, which was subsequently measured on well-type HPGe detectors. The gaseous products from ¹⁴CH₃Hg⁺ demethylation were trapped in NaOH solution and counted on liquid scintillation counter after the addition of scintillation cocktail. CH₄ was combusted to CO₂ in CuO column at high temperature prior to trapping in NaOH solution. The results obtained show no net methylation potential in the samples studied. On the other hand, the fractions of demethylated MeHg⁺ added to the samples were high, ranging from few percent up to 40% at the most contaminated site. ¹⁴C-radiotracer studies suggest reductive demethylation in soil, as the oxidative reductive demethylation potential ratio was about 0.1. This finding indicates the presence of Hg-resistant microorganims which demethylate MeHg⁺ encimatically after the induction of mer (mercury resistance) genes. Key words: soil, radiotracers, Hg transformations