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Abstract

We give a necessary and sufficient condition for a cubic graph to be Hamiltonian by
analyzing Eulerian tours in certain spanning subgraphs of the quartic graph associated with
the cubic graph by 1-factor contraction. This correspondence is most useful in the case
when it induces a blue and red 2-factorization of the associated quartic graph. We use this
condition to characterize the Hamiltonian I-graphs, a further generalization of generalized
Petersen graphs. The characterization of Hamiltonian I-graphs follows from the fact that
one can choose a 1-factor in any I-graph in such a way that the corresponding associated
quartic graph is a graph bundle having a cycle graph as base graph and a fiber and the
fundamental factorization of graph bundles playing the role of blue and red factorization.
The techniques that we develop allow us to represent Cayley multigraphs of degree 4, that
are associated to abelian groups, as graph bundles. Moreover, we can find a family of con-
nected cubic (multi)graphs that contains the family of connected I-graphs as a subfamily.
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1 Introduction

A graph is Hamiltonian if it contains a spanning cycle (Hamiltonian cycle). To find a
Hamiltonian cycle in a graph is an NP–complete problem (see [12]). This fact implies that
a characterization result for Hamiltonian graphs is hard to find. For this reason, most graph
theorists have restricted their attention to particular classes of graphs.

In this paper we consider cubic graphs. In Section 2 we give a necessary and sufficient
condition for a cubic graph to be Hamiltonian. Using this condition we can completely
characterize the Hamiltonian I-graphs.

The family of I-graphs is a generalization of the family of generalized Petersen graphs.
In [5], the generalized Petersen graphs were further generalized to I-graphs. Let n, p, q be
positive integers, with n ≥ 3, 1 ≤ p, q ≤ n − 1 and p, q 6= n/2. An I-graph I(n, p, q)
has vertex-set V (I(n, p, q)) = {vi, ui : 0 ≤ i ≤ n − 1} and edge-set E(I(n, p, q)) =
{[vi, vi+p], [vi, ui], [ui, ui+q] : 0 ≤ i ≤ n− 1} (subscripts are read modulo n). The graph
I(n, p, q) is isomorphic to the graphs I(n, q, p), I(n, n − p, q) and I(n, p, n − q). It is
connected if and only if gcd(n, p, q) = 1 (see [3]).

For p = 1 the I-graph I(n, 1, q) is known as a generalized Petersen graph and is de-
noted by G(n, q). The Petersen graph is G(5, 2). It has been proved that I(n, p, q) is
isomorphic to a generalized Petersen graph if and only if gcd(n, p) = 1 or gcd(n, q) = 1
(see [3]). A connected I-graph which is not a generalized Petersen graph is called a proper
I-graph. Recently, the class of I-graphs has been generalized to the class of GI-graphs (see
[6]).

It is well known that the Petersen graph is not Hamiltonian. A characterization of
Hamiltonian generalized Petersen graphs was obtained by Alspach [2].

Theorem 1.1 (Alspach, [2]). A generalized Petersen graph G(n, q) is Hamiltonian if and
only if it is not isomorphic to G(n, 2) when n ≡ 5 (mod 6).

In this paper we develop a powerful theory that helps us to extend this result to all
I-graphs.

Theorem 1.2. A connected I-graph is Hamiltonian if and only if it is not isomorphic to
G(n, 2) when n ≡ 5 (mod 6).

For the proof of the above main theorem, we developed techniques that are of interest
by themselves and are presented in the following sections. In particular, we introduce good
Eulerian graphs that are similar to lattice diagrams that were originally used by Alspach
in his proof of Theorem 1.1.

Our theory also involves Cayley multigraphs. In Section 4 we show that Cayley multi-
graphs of degree 4, that are associated to abelian groups, can be represented as graph bun-
dles [19]. By the results concerning the isomorphisms between Cayley multigraphs (see
[7]), we can establish when two graph bundles are isomorphic or not (see Section 4.2).
Combining the definition of graph bundles with Theorem 3.3, we can find a family of con-
nected cubic (multi)graphs that contains the family of connected I-graphs as a subfamily
(see Section 5).
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2 Cubic graph with a 1-factor and the associated quartic graph with
transitions

A cubic Hamiltonian graph has a 1-factor. In fact, it has at least three (edge-disjoint) 1-
factors. Namely any Hamiltonian cycle is even and thus gives rise to two 1-factors and the
remaining chords constitute the third 1-factor. The converse is not true. There are cubic
graphs, like the Petersen graph, that have a 1-factor but are not Hamiltonian. Nevertheless,
we may restrict our search for Hamiltonian graphs among the cubic graphs to the ones
that possess a 1-factor. In this section, we give a necessary and sufficient condition for the
existence of a Hamiltonian cycle in a cubic graph G possessing a 1-factor F .

Let G be a connected simple cubic graph and let F be one of its 1-factors. Denote by
X = G/F the graph obtained from G by contracting the edges of F . The graph X is
connected, quartic, that is, regular of degree 4 and might have multiple edges (X has no
loop sinceG is simple). We say that the quartic graphX is associated withG and F . Since
X is even and connected, it is Eulerian. A path on three vertices with middle vertex v that
is a subgraph of X is called a transition at v. Since any pair of edges incident at v defines
a transition, there are

(
4
2

)
= 6 transitions at each vertex of X . For general graphs each

vertex of valence d gives rise to
(
d
2

)
transitions. In an Euler tour some transitions may be

used, others are not used. We are interested in some particular Eulerian spanning subgraphs
W . Note that any such graph is sub-quartic and the valence at any vertex of W is either
4 or 2. A vertex of valence 4 has therefore 6 transitions, while each vertex of valence 2
has

(
2
2

)
= 1 transition. Let Y be the complementary 2-factor of F in G. Note that the

edges of Y are in one-to-one correspondence with the edges of X , while the edges of F
are in one-to-one correspondence with the vertices of X . If a is an edge of Y , we denote
by a′ the corresponding edge in X . If e is an edge of F , the corresponding vertex of X
will be denoted by xe. Let u and v be the end-vertices of e and let a and b be the other
edges incident with u and similarly c and d the edges incident with v. After contraction of
e, the vertex xe is incident with four edges: a′, b′, c′, d′. By considering the pre-images
of the six transitions at xe, they fall into two disjoint classes. Transitions a′b′ and c′d′ are
non-traversing while the other four transitions are traversing transitions. In the latter case
the edge e has to be used to traverse from one edge of the pre-image transition to the other.

Let W be a spanning Eulerian subgraph of X . Transitions of X carry over to W . The
4-valent vertices of W keep the same six transitions, while each 2-valent vertex inherits a
single transition. We say that W is admissible if the transition at each 2-valent vertex of W
is traversing.

Let W be an admissible Eulerian subgraph of X . A closed walk in W that allows only
non-traversing transitions at each 4-valent vertex of W is said to be a closed walk with
allowed transitions. A closed walk with allowed transitions passing through a 4-valent
vertex xe of W might use both transitions a′b′, c′d′ or only one of the two non-traversing
transitions. If it passes through a 2-valent vertex of W , then it uses traversing transitions.
Hence, the underlying graph of a closed walk with allowed transitions might be a cycle. A
partition of the edge-set ofW into closed walks with allowed transitions is said to be a tour
with allowed transitions. Each closed walk in the tour is a component of the tour.

Lemma 2.1. Let G be a connected cubic graph with 1-factor F . There is a one-to-one
correspondence between 2-factors T of G and admissible Eulerian subgraphs W of X =
G/F in such a way that the number of cycles of T is the same as the number of components
of a tour with allowed transitions in W .
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Proof. Let T be a 2-factor of G and let e = uv be an edge of the 1-factor F . Let W be the
projection of T to X = G/F . We will use the notation introduced above. Hence the edge
e and its end-vertices u and v project to the same vertex xe of X . There are two cases:

Case 1: e belongs to T . In this case exactly one other edge, say a, incident with u and
another edge, say c, incident with v belong to T . The other two edges (b and d) do not
belong to T . This means that xe is a 2-valent vertex with traversing transition.

Case 2: e does not belong to T . In this case both edges a and b incident with u belong
to T and both edges c and d incident with v belong to T . In this case xe is a 4-valent vertex
with non-traversing transitions.

Clearly,W is an admissible Eulerian subgraph. Each component of the tour determined
by W with transitions gives back a cycle of T . The correspondence between T and W is
therefore established.

An Eulerian tour in W with allowed transitions is said to be good. An admissible
subgraph W of X possessing a good Eulerian tour is said to be a good Eulerian subgraph.
In a good Eulerian subgraph W there are two extreme cases:

1. each vertex of W is 4-valent: this means that W = X; in this case the complemen-
tary 2-factor Y = G− F is a Hamiltonian cycle and no edge of F is used;

2. each vertex of W is 2-valent: this means that W is a good Hamiltonian cycle in X .
In this case F together with the pre-images of edges of W in G form a Hamiltonian
cycle.

Theorem 2.2. Let G be a connected cubic graph with 1-factor F . Then G is Hamiltonian
if and only if X = G/F contains a good Eulerian subgraph W .

Proof. Clearly G is Hamiltonian if and only if it contains a 2-factor with a single cycle. By
Lemma 2.1, this is true if and only if W is an admissible Eulerian subgraph possessing an
Eulerian tour with allowed transitions. But this means W is good.

Corollary 2.3. LetG be a connected cubic graph with 1-factor F . Finding a good Eulerian
subgraph W of X = G/F is NP-complete.

Proof. Since finding a good Eulerian subgraph is equivalent to finding a Hamiltonian cycle
in a cubic graph, and the latter is NP-complete [12], the result follows readily.

Also in [11] Eulerian graphs are used to find a Hamiltonian cycle (and other graph
properties), but our method is different.

The results of this section may be applied to connected I-graphs. The obvious 1-
factor F of an I-graph I(n, p, q) consists of spokes. Let Q(n, p, q) denote the quotient
I(n, p, q)/F . We will call Q(n, p, q) the quartic graph associated with I(n, p, q).

Corollary 2.4. Let I(n, p, q) be a connected I-graph and let Q(n, p, q) be its associated
quartic graph. Then I(n, p, q) is Hamiltonian if and only if Q(n, p, q) contains a good
Eulerian subgraph W .
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3 Special 1-factors and their applications
Let G be a cubic graph, F a 1-factor and Y the complementary 2-factor of F in G. Define
an auxiliary graph Y (G,F ) having cycles of Y as vertices and having two vertices adjacent
if and only if the corresponding cycles of Y are joined by one or more edges of F . If an
edge of F is a chord in one of the cycles of Y , then the graph Y (G,F ) has a loop. We shall
say that the 1-factor F is special if the graph Y (G,F ) is bipartite. A cubic graph with a
special 1-factor will be called special. If F is a special 1-factor of G, then the edges of F
join vertices belonging to distinct cycles of Y since Y (G,F ) is loopless.

Theorem 3.1. Let G be a connected cubic graph with a 1-factor, and let F be one of its
1-factors and X = G/F its associated quartic graph. Then X admits a 2-factor whose
edges may be colored blue or red in such a way that the traversing transitions are exactly
color-switching and non-traversing transitions are color-preserving if and only if G and F
are special.

Proof. Assume that F is a special 1-factor ofG. Since Y (G,F ) is bipartite, we can bicolor
the vertices of Y (G,F ): let one set of the bipartition be blue and the other red. This
coloring induces a coloring on the edges of Y : for every blue vertex (respectively, red
vertex) of Y (G,F ) we color in blue (respectively, in red) the edges of the corresponding
cycle of Y . Since the edges of Y are in one-to-one correspondence with the edges ofX , we
obtain a 2-factorization of X into a blue 2-factor and red 2-factor. Since F is special, the
edges of F are incident with vertices of G belonging to cycles of Y with different colors
(a blue cycle and a red cycle). Therefore, a traversing transition is color-switching and a
non-traversing transition is color-preserving.

Conversely, assume that X has a blue and red 2-factorization such that the traversing
transitions are color-switching and non-traversing transitions are color-preserving. Since
the edges of X are in one-to-one correspondence with the edges of Y , we can partition
the cycles of Y into red cycles and blue cycles. Since the traversing transitions are color-
switching and non-traversing transitions are color-preserving, the edges of F are incident
with edges belonging to cycles of different colors. This means that the graph Y (G,F ) is
bipartite, hence F is special.

Proposition 3.2. LetG andF be special and letW be any Eulerian subgraph ofX = G/F
the associated quartic graph with a blue and red 2-factorization. Then W is admissible if
and only if each 2-valent vertex is incident with edges of different colors.

Proof. An Eulerian subgraph W is admissible if and only if each 2-valent vertex v in W
is incident with edges forming a traversing transition at v. By Theorem 3.1, a traversing
transition is color-switching. Hence, W is admissible if and only if the edges incident with
v have different colors.

Note that quartic graphs with a given 2-factorization can be put into one-to-one corre-
spondence with special cubic graphs.

Theorem 3.3. Any special cubic graph G with a special 1-factor F gives rise to the asso-
ciated quartic graph with a blue and red 2-factorization. However, any quartic graph with
a given 2-factorization determines back a unique special cubic graph by color-preserving
splitting vertices and inserting a special 1-factor.
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Proof. By Theorem 3.1, a special cubic graph G with a special 1-factor F gives rise to the
graph X = G/F admitting a blue and red 2-factorization.

Conversely, it is well known that every quartic graphX possesses a 2-factorization, that
is, the edges of X can be partitioned into a blue and red 2-factor. We use the blue and red
2-factors of X to construct a cubic graph G as follows: put in G a copy of the blue 2-factor
and a copy of the red 2-factor; construct a 1-factor of G by joining vertices belonging to
distinct copies. It is straightforward to see that G and F are special.

We will now apply this theory to the I-graphs. In Section 7 we will see that this theory
allows us to find a Hamiltonian cycle in a proper I-graph and also to find a family of special
cubic graphs that contains the family of I-graphs as a subfamily (see Section 5).

Let I(n, p, q) be an I-graph. A vertex vi (respectively, ui) is called an outer vertex
(respectively, an inner vertex). An edge of type [vi, vi+p] (respectively, of type [ui, ui+q])
is called an outer edge (respectively, an inner edge). An edge [vi, ui] is called a spoke. The
spokes of I(n, p, q) determine a 1-factor of I(n, p, q). The set of outer edges is called the
outer rim, the set of inner edges is called the inner rim. As a consequence of the results
proved in [3], the following holds.

Proposition 3.4. Let I(n, p, q), n ≥ 3, 1 ≤ p, q ≤ n − 1, p, q 6= n/2, be an I-graph.
Set t = gcd(n, q) and s = n/t. Then t < n/2 and 3 ≤ s ≤ n. Moreover, I(n, p, q) is
connected if an only if gcd(t, p) = 1 and gcd(s, p) is coprime with q. It is proper if and
only if t and gcd(s, p) are different from 1.

Proof. The integer t satisfies the inequality t < n/2, since t is a divisor of q and q ≤ n−1,
q 6= n/2; whence 3 ≤ s ≤ n. By the results proved in [3], I(n, p, q) is connected if and
only if gcd(n, p, q) = 1. Since n = st and q = t(q/t), the relation gcd(n, p, q) = 1 can be
written as gcd(st, p, t(q/t)) = 1, whence gcd(t, p) = 1 and gcd(s, p) is coprime with q.
Also the converse is true, and therefore I(n, p, q) is connected if and only if gcd(t, p) = 1
and gcd(s, p) is coprime with q. A connected I-graph I(n, p, q) is a generalized Pe-
tersen graph if and only if gcd(n, q) = 1 or gcd(n, p) = 1 (see [3]). By the previous
results, I(n, p, q) is a generalized Petersen graph if and only if 1 = gcd(n, q) = t or
1 = gcd(n, p)= gcd(st, p)= gcd(s, p). The assertion follows.

The smallest proper I-graphs are I(12, 2, 3) and I(12, 4, 3). It is straightforward to see
that the following result holds.

Lemma 3.5. Let F be the 1-factor determined by the spokes of I(n, p, q) and X =
Q(n, p, q) its associated quartic graph. Then F is special, the graph X is a circulant
multigraph Cir(n; p, q), the blue edges of X correspond to the inner rim and the red edges
to the outer rim of I(n, p, q).

In the next section we introduce a class of graphs X(s, t, r) and later show that it
contains Q(n, p, q) as its subclass.

4 Graphs X(s, t, r)

Let Γ be a group in additive notation with identity element 0Γ. Let S be a list of not neces-
sarily distinct elements of Γ satisfying the symmetry property S = −S = {−γ : γ ∈ S}.
The Cayley multigraph associated with Γ and S, denoted by Cay(Γ, S), is an undirected
multigraph having the elements of Γ as vertices and edges of the form [x, x + γ] with
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x ∈ Γ, γ ∈ S. If Γ is a cyclic group of order n, then Cay(Γ, S) is a circulant multigraph of
order n. A Cayley multigraph Cay(Γ, S) is regular of degree |S| (in determining |S|, each
element of S is considered according to its multiplicity in S). It is connected if and only
if S is a set of generators of Γ. If the elements of S are pairwise distinct, then Cay(Γ, S)
is a simple graph and we will use the term Cayley graph. We are interested in connected
Cayley multigraphs of degree 4. In this case we write S as the list S = {±γ1,±γ2}. A cir-
culant multigraph of order n will be denoted by Cir(n;±γ1,±γ2). If γi, with i ∈ {1, 2},
is an involution of Γ or the trivial element, then ±γi means that the element γi appears
twice in the list S. Consequently, the associated Cayley multigraph has multiple edges or
loops. We will denote by o(γi) the order of γi. We will show that the Cayley multigraphs
Cay(Γ, {±γ1,±γ2}) defined on a suitable abelian group Γ (and in particular the circulant
multigraphsCir(n;±γ1,±γ2)) can be given a different interpretation in terms ofX(s, t, r)
graphs (see Figure 1) defined as follows.

Definition 4.1. Let s, t ≥ 1, 0 ≤ r ≤ s − 1 be integers. Let X(s, t, r) be the graph with
vertex-set {xij : 0 ≤ i ≤ t−1, 0 ≤ j ≤ s−1} and edge-set {[xij , xij+1] : 0 ≤ i ≤ t−1, 0 ≤
j ≤ s− 1}∪ {[xij , x

i+1
j ] : 0 ≤ i ≤ t− 2, 0 ≤ j ≤ s− 1}∪ {[xt−1

j , x0
j+r] : 0 ≤ j ≤ s− 1}

(the superscripts are read modulo t, the subscripts are read modulo s).

The graphX(s, t, r) has edges of type [xij , x
i
j+1], [xij , x

i+1
j ] or [xt−1

j , x0
j+r]. An edge of

type [xij , x
i
j+1] will be called horizontal. An edge of type [xij , x

i+1
j ] will be called vertical,

an edge of type [xt−1
j , x0

j+r] will be called diagonal. For t = 1, we say that the edges are
horizontal and diagonal (a diagonal edge is an edge of type [x0

j , x
0
j+r]). For s = 1, the

horizontal edges are loops. For (t, r) = (1, 0), the diagonal edges are loops. For s = 2 or
s > 2 and (t, r)=(1, 1), (1, s/2), (2, 0) the graph has multiple edges. For the other values
of s, t, r, the graphX(s, t, r) is a simple graph. A simple graphX(s, t, r) is a graph bundle
with a cycle fiber Cs over a cycle base Ct; the parameter r represents an automorphism of
the cycle Cs that shifts the cycle r steps (see [19] for more details on graph bundles). In the
literature a simple graph X(s, t, r) is also called r-pseudo-cartesian product of two cycles
(see for instance [10]). The definition of X(s, t, r) suggests that the graph X(s, t, r) is
isomorphic to X(s, t, s− r). The existence of this isomorphism can be also obtained from
the following statement.

xt − 1
0 xt − 1

1

xt − 1
r − 1

xt − 1
r xt − 1

r +1

xt − 1
2r − 1

xt − 1
2r xt − 1

2r +1

xt − 1
s − r − 1

xt − 1
s − r x t − 1

s − 1

x0
0 x0

1 x0
r − 1 x0

r x0
r +1 x0

2r − 1 x0
2r x0

2r +1 x0
s − r − 1 x0

s − r x0
s − 1

x1
0 x1

1 x1
s − 1

Figure 1: The graph X(s, t, r) is embedded into torus with quadrilateral faces; it has a
blue and red 2-factorization: the vertical and diagonal edges form the blue 2-factor, the
horizontal edges form the red 2-factor.
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Proposition 4.2. Let Cay(Γ, {±γ1,±γ2}) be a connected Cayley multigraph of degree 4,
where Γ is an abelian group, o(γ1) = s and |Γ|/s = t. Then aγ2 = rγ1 for some integer r,
0 ≤ r ≤ s−1, if and only if a = t. Consequently, Cay(Γ, {±γ1,±γ2}) can be represented
as the graph X(s, t, r) or X(s, t, s− r).

Proof. We show that G1 = Cay(Γ, {±γ1,±γ2}) and G2 = X(s, t, r) are isomorphic.
Since γ1 and γ2 are generators of Γ, the elements of Γ can be written in the form iγ2 + jγ1,
where iγ2 ∈ 〈γ2〉, jγ1 ∈ 〈γ1〉. Hence we can describe the elements of Γ by the left cosets
of the subgroup 〈γ1〉 in Γ. By this representation, we can see that the endvertices of an
edge [x, x ± γ1] of Cay(Γ, {±γ1,±γ2}) belong to the same left coset of 〈γ1〉 in Γ; the
endvertices of an edge [x, x ± γ2] belong to distinct left cosets of 〈γ1〉 in Γ. Therefore,
aγ2 = rγ1 ∈ 〈γ1〉 if and only if a = t, since Cay(Γ, {±γ1,±γ2}) is connected and
|Γ/〈γ1〉| = t. Hence we can set V (G1) = {iγ2 + jγ1 : 0 ≤ i ≤ t− 1, 0 ≤ j ≤ s− 1} and
E(G1) = {[iγ2+jγ1, (i+1)γ2+jγ1], [iγ2+jγ1, iγ2+(j+1)γ1] : 0 ≤ i ≤ t−1, 0 ≤ j ≤
s−1}. The map ϕ : V (G1)→ V (G2) defined by ϕ(iγ2 +jγ1) = xij is a bijection between
V (G1) and V (G2). Moreover, if v1, v2 are adjacent vertices of G1, that is, v1 = iγ2 + jγ1

and v2 = (i + 1)γ2 + jγ1 (or v2 = iγ2 + (j + 1)γ1), then ϕ(v1) = xij , ϕ(v2) = xi+1
j

(or ϕ(v2) = xij+1) are adjacent vertices of G2. In particular, if v1 = (t − 1)γ2 + jγ1

and v2 = tγ2 + jγ1= rγ1 + jγ1= (r + j)γ1, then ϕ(v1) = xt−1
j , ϕ(v2) = x0

r+j are
adjacent vertices of G2. It is thus proved that ϕ is an isomorphism between G1 and G2. If
we replace the element γ1 by its inverse −γ1, then G1 is the graph X(s, t, s− r).

In what follows, we show that for s, t ≥ 1 there exists a Cayley multigraph on a suitable
abelian group that satisfies Proposition 4.2, that is, for every s, t ≥ 1 the graph X(s, t, r)
can be represented as a Cayley multigraph. The proof is particularly easy when t = 1;
r = 0; or s = 2. For these cases, the following holds.

Proposition 4.3. The graph X(s, 1, r), with s ≥ 1, 0 ≤ r ≤ s − 1, is the circulant
multigraph Cir(s; ±1,±r). The graph X(s, t, 0), with s, t ≥ 1, is the Cayley multigraph
Cay(Zs × Zt, {±(1, 0), ±(0, 1)}). The graph X(2, t, 1), with t ≥ 1, is the circulant
multigraph Cir(2t;±t,±1).

Proof. For the graph X(s, 1, r) we apply Proposition 4.2 with Γ = Zst, γ1 = 1, γ2 =
r. For the graph X(s, t, 0) we apply Proposition 4.2 with Γ = Zs × Zt, γ1 = (1, 0),
γ2 = (0, 1). For the graph X(2, t, 1) we apply Proposition 4.2 with Γ = Z2t, γ1 = t,
γ2 = 1.

The following lemmas concern the graph X(s, t, r) with s ≥ 3, t ≥ 2 and 0 < r ≤
s− 1. They will be used in the proof of Proposition 4.6.

Lemma 4.4. Let a > 1 be an integer and let b ≥ 1 be a divisor of a. Let {[c]b : 0 ≤ c ≤
b−1} be the residue classes modulo b. Every equivalence class [c]b whose representative c
is coprime with b contains at least one integer h, 1 ≤ h ≤ a− 1, such that gcd(a, h) = 1.

Proof. The assertion is true if b = a (we set h = c). We consider b < a. Let [c]b be an
equivalence class modulo b with 1 ≤ c ≤ b − 1 and gcd(c, b) = 1. If c is coprime with
a, then we set h = c and the assertion follows. We consider the case gcd(c, a) 6= 1. We
denote by P the set of distinct prime numbers dividing a. We denote by Pb (respectively,
by Pc) the subset of P containing the prime numbers dividing b (respectively, c). Since b
is a divisor of a (respectively, gcd(c, a) 6= 1), the set Pb (respectively, Pc) is non-empty.
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Since c and b are coprime, the subsets Pb, Pc are disjoint. We set P ′ = P r (Pb ∪ Pc).
The set P ′ might be empty. We denote by ω the product of the prime numbers in P ′ (if
P ′ is empty, then we set ω = 1) and consider the integer h = c + ωb ∈ [c]b. We show
that h < a. Note that ω ≤ a/(2b). More specifically, (a/b) ≥ (

∏
p∈Pc

p) · ω ≥ 2ω,
whence ω ≤ a/(2b). Hence h = c + ωb ≤ c + (a/2) < a, since c < b and b ≤ (a/2).
One can easily verify that gcd(h, a) = gcd(c + ωb, a) = 1, since no prime number in
P = P ′ ∪ Pb ∪ Pc can divide c+ ωb. The assertion follows.

Lemma 4.5. Let s ≥ 3, t ≥ 2 and Zst/d1
be the cyclic group of integers modulo st/d1,

where d1 ≥ 1 is a divisor of d = gcd(s, t). Let 〈t/d1〉 be the cyclic subgroup of Zst/d1

generated by the integer t/d1 and let x + 〈t/d1〉, y + 〈t/d1〉 be left cosets of 〈t/d1〉 in
Zst/d1

. If x, y ∈ Zst/d1
are congruent modulo d/d1, then t(x+ 〈t/d1〉) = {tx+ µt2/d1 :

0 ≤ µ ≤ s− 1} and t(y + 〈t/d1〉) = {ty + µ′t2/d1 : 0 ≤ µ′ ≤ s− 1} represent the same
subset of Zst/d1

.

Proof. Set x = y+λd/d1 with λ ∈ Z and t = sm′+m with m′ ∈ Z and 0 ≤ m ≤ s− 1.
Since gcd(s, t) = d, then also gcd(s,m) = d. Hence the integers dt/d1,mt/d1 ∈ Zst/d1

generate the same cyclic subgroup of 〈t/d1〉 of order s/d. Since t2/d1 = (sm′+m)t/d1 ≡
mt/d1 (mod st/d1), each set t(x+ 〈t/d1〉), t(y+ 〈t/d1〉) consists of exactly s/d distinct
elements of Zst/d1

, namely, t(x + 〈t/d1〉) = {tx + µmt/d1 : 1 ≤ µ ≤ s/d}, t(y +
〈t/d1〉) = {ty + µ′mt/d1 : 1 ≤ µ′ ≤ s/d}. Therefore, to prove that t(x + 〈t/d1〉) =
t(y + 〈t/d1〉), it suffices to show that every element of t(x+ 〈t/d1〉) is contained in t(y +
〈t/d1〉). Consider tx + µmt/d1 ∈ t(x + 〈t/d1〉). Since x = y + λd/d1, we can write
tx+µmt/d1 = t(y+λd/d1)+µmt/d1, whence tx+µmt/d1 = ty+λdt/d1 +µmt/d1.
Since 〈dt/d1〉 = 〈mt/d1〉, we can set λdt/d1 + µmt/d1 ≡ µ′mt/d1 (mod st/d1), with
0 ≤ µ′ ≤ s/d. Hence tx+µmt/d1 ≡ ty+µ′mt/d1 (mod st/d1), that is, tx+µmt/d1 ∈
t(y + 〈t/d1〉). The assertion follows.

Proposition 4.6. Let s ≥ 3, t ≥ 2, 0 < r ≤ s − 1, with gcd(s, t, r) = d1. The cyclic
group Zst/d1

of integers modulo st/d1 contains an integer k such that gcd(k, t) = 1 and
k ≡ r/d1 (mod s/d1). The graph X(s, t, r) can be represented as the Cayley graph
Cay(Zst/d1 × Zd1

, {±(t/d1, 1),±(k, 0)}). In particular, if d1 = 1 then X(s, t, r) can be
represented as the circulant graph Cir(st;±t,±k).

Proof. Set d = gcd(s, t). Since gcd(s, t, r) = d1, the integer r/d1 is coprime with
gcd(s/d1, t/d1) = d/d1. Hence, r/d1 belongs to an equivalence class [c]d/d1

whose
representative is coprime with d/d1. By Lemma 4.4, the class [c]d/d1

contains an inte-
ger h, 1 ≤ h < t, such that gcd(h, t) = 1. Consider the cyclic group Zst/d1

. Since
r/d1 < s, h < t, the integer r/d1 and h belong to Zst/d1

. Hence we can apply Lemma
4.5 with x = r/d1, y = h and find that t(r/d1 + 〈t/d1〉) = t(h + 〈t/d1〉), that is, there
exists an integer k ∈ h + 〈t/d1〉 such that tk ≡ rt/d1 (mod st/d1). The integer k is
coprime with t, since gcd(h, t) = 1. The assertion follows from Proposition 4.2, by setting
Γ = Zst/d1

× Zd1
, γ1 = (t/d1, 1), γ2 = (k, 0). Note: if d1 = 1, then Γ is the cyclic group

of order st, γ1 = t, γ2 = k and X(s, t, r) is the circulant graph Cir(st;±t,±k).

The result that follows is based on a well-known consequence of the Chinese Remain-
der Theorem. More specifically, it is known that if a, b, and n are positive integers, with
gcd(a, n) = c ≥ 1, then the equation ax ≡ b (mod n) admits a solution if and only if c is
a divisor of b and in this case x ≡ (a/c)−1(b/c) (mod n/c) is a solution to the equation.
The following holds.
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Proposition 4.7. Let s, t ≥ 1, 0 ≤ r ≤ s − 1 and d1 = gcd(s, t, r). If r 6= 0, then there
exists an integer k, 0 < k < st/d1, such that gcd(k, t) = 1 and k ≡ r/d1 (mod s/d1).
The graph X(s, t, r), with r 6= 0, is isomorphic to the graph X(st/ gcd(s, r), gcd(s, r),
r′), where r′ ≡ ±t(kd1/ gcd(s, r))−1 (mod st/ gcd(s, r)). The graph X(s, t, 0) is iso-
morphic to the graph X(t, s, 0).

Proof. We prove the assertion for s ≥ 3, t ≥ 2 and 0 < r ≤ s − 1. The existence of
the integer k follows from Proposition 4.6. By the same proposition, we can represent the
graph X(s, t, r) as Cay(Zst/d1 × Zd1

, {±(t/d1, 1),±(k, 0)}). We apply Proposition 4.2
by setting Γ = Zst/d1 × Zd1

, γ1 = (k, 0) and γ2 = (t/d1, 1). Note that gcd(st/d1, k) =
gcd(s/d1, k) = gcd(s, r)/d1, as k is coprime with t and k ≡ r/d1 (mod s/d1). Whence
the element (k, 0) has order

s′ = st/(d1 gcd(st/d1, k)) = st/ gcd(s, r) and t′ = |Γ/〈(k, 0)〉| = gcd(s, r).

By Proposition 4.2, gcd(s, r)(t/d1, 1) = r′(k, 0) for some integer r′, 1 ≤ r′ ≤ st/ gcd(s,
r). The integer r′ is a solution to the equation gcd(s, r)(t/d1) ≡ r′k (mod st/d1). By
the Chinese Remainder Theorem, r′ ≡ t(kd1/ gcd(s, r))−1 (mod st/ gcd(s, r)). An easy
calculation shows that s′− r′ ≡ −t(kd1/ gcd(s, r))−1 (mod st/ gcd(s, r)). It is straight-
forward to see that X(s, t, r) and X(s′, t′, r′), X(s′, t′, s′ − r′) are isomorphic. Hence the
assertion follows. For the remaining values of s, t, r, we represent the graph X(s, t, r) as
the Cayley multigraph in Proposition 4.3 and use Proposition 4.2. Note: if r 6= 0, then
k = r; if r = 0, then set γ1 = (0, 1), γ2 = (1, 0) and apply Proposition 4.2.

4.1 Fundamental 2-factorization of X(s, t, r)

From the definition of X(s, t, r) one can see that the horizontal edges form a 2-factor
(the red 2-factor) whose complementary 2-factor in X(s, t, r) is given by the vertical and
diagonal edges (the blue 2-factor). We say that the red and blue 2-factor constitute the fun-
damental 2-factorization of X(s, t, r). A graph X(s, t, r) can be represented as a Cayley
multigraph Cay(Γ, {±γ1,±γ2}), where Γ and {±γ1,±γ2} can be defined as in Proposi-
tion 4.3 or 4.6. From the proof of the propositions, one can see that the set of horizontal
edges of X(s, t, r) is the set {[x, x± γ1] : x ∈ Γ}, the set of vertical and diagonal edges is
the set {[x, x±γ2] : x ∈ Γ}. The edges in {[x, x±γ1] : x ∈ Γ} will be called the γ1-edges
and the edges in the set {[x, x ± γ2] : x ∈ Γ} will be called the γ2-edges. The following
result holds.

Proposition 4.8. The red 2-factor ofX(s, t, r) has exactly t cycles of length s consisting of
γ1-edges. The blue 2-factor ofX(s, t, r) has exactly gcd(s, r) cycles of length st/ gcd(s, r)
consisting of γ2-edges.

Proof. It is straightforward to see that the red 2-factor has t horizontal cycles of length s (if
s = 1, then each cycle is a loop; if s = 2, then each cycle is a dipole with 2 parallel edges).
By the previous remarks, each cycle consists of γ1-edges. The blue 2-factor of X(s, t, r)
corresponds to the red 2-factor of the graph X(st/ gcd(s, r), gcd(s, r), r′) in Proposition
4.7. Hence it has gcd(s, r) cycles of length st/ gcd(s, r) consisting of γ2-edges.

4.2 Isomorphisms between X(s, t, r) graphs

We now ask when two graphs X(s, t, r) and X(s′, t′, r′) are isomorphic. Our question
is connected to the following well-known problem [7, 14]. Given two isomorphic Cayley
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multigraphs Cay(Γ, S), Cay(Γ′, S′) or, equivalently, given two Cayley representations
(Γ, S), (Γ′, S′) of the same multigraph, determine whether (Γ, S) and (Γ′, S′) are equiva-
lent. We recall that two Cayley representations of the same multigraph are said to be equiva-
lent if there exists a permutation on the vertex-set of the multigraph that induces an isomor-
phism from the group Γ to the group Γ′ and sends S onto S′. Two Cayley representations
(Γ, S), (Γ, S′) are equivalent if and only if there exists an automorphism σ of the group Γ
that sends S onto S′ (see [14]). The automorphism σ is called a CI-isomorphism (CI stands
for Cayley Isomorphism). Ádám [1] considered this problem for circulant graphs and for-
mulated a well-known conjecture which was disproved in [9]. He conjectured that two
circulant graphs Cir(n;S), Cir(n;S′) are isomorphic if and only if there exists an integer
m′ ∈ Zn, gcd(m′, n) = 1, such that S′ = {m′x : x ∈ S}. Even though the conjecture was
disproved, there are some circulant graphs for which it holds (see for instance [16]). In [7]
the problem is studied for Cayley multigraphs of degree 4 which are associated to abelian
groups. The results in [7] are described in terms of Ádám isomorphisms. An Ádám isomor-
phism from Cay(Γ, S) to Cay(Γ′, S′) is an isomorphism obtained from a permutation on
the vertex-set of Cay(Γ, S), that makes (Γ, S), (Γ′, S′) equivalent, and an automorphism
of the graph Cay(Γ′, S′). By the definition of equivalent Cayley representations, the exis-
tence of an Ádám isomorphism means that the groups Γ, Γ′ are isomorphic and there exists
an isomorphism between the groups that sends S onto S′. An Ádám isomorphism between
Cay(Γ, S) and Cay(Γ, S′) is a CI-isomorphism. Since the graphs X(s, t, r) can be repre-
sented as Cayley multigraphs, we can extend the notion of Ádám isomorphism to the graphs
X(s, t, r). We will say that the graphs X(s, t, r), X(s′, t′, r′) are Ádám isomorphic if the
corresponding Cayley multigraphs Cay(Γ, {±γ1,±γ2}), Cay(Γ′, {±γ′1,±γ′2}), respec-
tively, are Ádám isomorphic (Cay(Γ, {±γ1,±γ2}), Cay(Γ′, {±γ′1,±γ′2}) are described
in Proposition 4.3 or 4.6). The following statements hold.

Proposition 4.9. Every Ádám isomorphism between the graphs X(s, t, r), X(s′, t′, r′)
sends the fundamental 2-factorization of X(s, t, r) onto the fundamental 2-factorization of
X(s′, t′, r′).

Proof. An Ádám isomorphism between the graphs Cay(Γ, {±γ1, ±γ2}), Cay(Γ′, {±γ′1,
±γ′2}) sends a γi-edge, i = 1, 2, of Cay(Γ, {±γ1,±γ2}) onto a τ(γi)-edge of Cay(Γ′,
{±γ′1, ±γ′2}), where τ(γi) ∈ {±γ′1,±γ′2}. Since Proposition 4.8 holds, every Ádám
isomorphism sends the red (respectively, the blue) 2-factor of X(s, t, r) onto the red (re-
spectively, the blue) 2-factor of X(s′, t′, r′) or vice versa.

Proposition 4.10. Let s, t ≥ 1, 0 ≤ r ≤ s− 1 and gcd(s, t, r) = d1. If r 6= 0, then there
exists an integer k, 0 < k < st/d1, such that gcd(k, t) = 1 and k ≡ r/d1 (mod s/d1).
The graphsX(s, t, r), with r 6= 0, andX(s′, t′, r′) are Ádám isomorphic if and only if s′ =
s, t′ = t, r′ = s− r or s′ = st/ gcd(s, r), t′ = gcd(s, r) and r′ ≡ ±t(kd1/ gcd(s, r))−1

(mod st/ gcd(s, r)). The graphs X(s, t, 0), and X(s′, t′, r′) are Ádám isomorphic if and
only if s′ = t, t′ = s and r′ ≡ 0 (mod t).

Proof. We prove the assertion for s ≥ 3, t ≥ 2 and r 6= 0. The graph X(s, t, r) is
the Cayley graph Cay(Zst/d1

× Zd1 , {±(t/d1, 1),±(k, 0)}), since Proposition 4.6 holds.
By Proposition 4.3 or 4.6, we can represent X(s′,t′,r′) as the Cayley multigraph Cay(Γ′,
{±γ′1, ±γ′2}). The graphs X(s, t, r), X(s′, t′, r′) are Ádám isomorphic if and only if
there exists an isomorphism τ between the groups Zst/d1

× Zd1
and Γ′ that sends the

set {±(t/d1, 1), ±(k, 0)} onto the set {±γ′1,±γ′2}. Without loss of generality, we can set
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{±γ′1} =
{±τ((t/d1, 1))} and {±γ′2}= {±τ((k, 0))}. By the existence of τ we can identify the
group Γ′ with the group Zst/d1

× Zd1
. Hence γ′1 and γ′2 are elements of Zst/d1

× Zd1

of order s and st/ gcd(s, r), respectively, since (t/d1, 1) and (k, 0) have order s and
st/ gcd(s, r), respectively (see the proof of Proposition 4.6 and 4.7). It is an easy mat-
ter to prove that an element (a, b) ∈ Zst/d1

× Zd1 has order o(a) · o(b)/ gcd(o(a), o(b)) =
st/(d1 gcd(st/d1, a)), since d1 is a divisor of s and t. Hence (a, b) has order s if and only
if gcd(st/d1, a) = t/d1, that is, (a, b) = (m′t/d1, b) where m′ ∈ Zst/d1

, gcd(m′, s) =
1, b is an arbitrary element of Zd1

. The element (a, b) has order st/ gcd(s, r) if and
only if gcd(st/d1, a) = gcd(s, r)/d1 = gcd(s/d1, k), since k is coprime with t and
k ≡ r/d1 (mod s/d1). Hence Cay(Γ′, {±γ′1,±γ′2}) is a graph of type Cay(Zst/d1

×
Zd1 , {±(m′t/d1, b),±(a, b′)}), where gcd(m′, s) = 1, gcd(st/d1, a) = gcd(s/d1, k), b
and b′ are suitable elements of Zd1

. Note that a is coprime with t and the relation ta ≡
rm′t/d1 (mod st/d1) holds, since τ is an isomorphism and tk ≡ rt/d1 (mod st/d1). If
we apply Proposition 4.2 to the graph G1 =Cay(Zst/d1

× Zd1
, {±(m′t/d1, b),±(a, b′)})

by setting γ1 = (m′t/d1, b) (or γ1 = −(m′t/d1, b)), then G1 can be represented as
the graph X(s, t, r) or X(s, t, s − r). The graph X(s, t, r) is isomorphic to the graph
G2 = X(s′, t′, r′), where s′ = st/ gcd(s, r), t′ = gcd(s, r), r′ ≡ ±t(kd1/ gcd(s, r))−1

(mod st/ gcd(s, r)), since Proposition 4.7 holds. Hence G1 is isomorphic to G2. The
isomorphism between G1 and G2 can be obtained also by applying Proposition 4.7 to the
graph G1. For the remaining values of s, t, r we represent the graph X(s, t, r) as the
Cayley multigraph in Proposition 4.3 and apply the previous method.

The results that follow are based on the following theorem of [7].

Theorem 4.11 ([7]). Any two finite isomorphic connected undirected Cayley multigraphs
of degree 4 coming from abelian groups are Ádám isomorphic, unless they are obtained
with the groups and sets Z4n, {±1,±(2n− 1)} and Z2n × Z2, {±(1, 0),±(1, 1)}.

By Theorem 4.11 the existence of an isomorphism between two Cayley multigraphs of
degree 4, that are associated to abelian groups, implies the existence of an Ádám isomor-
phism, unless they are the graphs Cir(4n;±1,±(2n − 1)) and Cay(Z2n × Z2, {±(1, 0),
±(1, 1)}). The following statements are consequences of Theorem 4.11.

Corollary 4.12. The graphs X(4n, 1, 2n− 1) and X(s′, t′, r′) are isomorphic if and only
if s′ = 4n, t′ = 1, r′ = 2n + 1 or s′ = 2n, t′ = 2, r′ ∈ {2, 2n − 2}. Moreover, there
is no isomorphism between X(4n, 1, 2n − 1) and X(2n, 2, 2) that sends the fundamental
2-factorization of X(4n, 1, 2n− 1) onto the fundamental 2-factorization of X(2n, 2, 2).

Proof. The graph X(4n, 1, 2n − 1) is the graph Cir(4n;±1,±(2n − 1)) (see Proposi-
tion 4.3). By Theorem 4.11, the graphs X(4n, 1, 2n − 1) and X(s′, t′, r′) could be Ádám
isomorphic or not. If they are Ádám isomorphic, then s′ = 4n, t′ = 1, r′ = 2n + 1,
since Proposition 4.10 holds. If they are not Ádám isomorphic, then X(s′, t′, r′) is the
graph Cay(Z2n × Z2, {±(1, 0), ±(1, 1)}) (see Theorem 4.11). Hence s′ = 2n, t′ = 2,
r′ ∈ {2, 2n − 2} (see Proposition 4.6 and 4.10). The fundamental 2-factorization of
X(4n, 1, 2n−1) consists of two Hamiltonian cycles, whereas the fundamental 2-factorization
of X(2n, 2, 2) consists of two 2-factors whose connected components are two 2n-cycles
(see Proposition 4.8). Therefore no isomorphism betweenX(4n, 1, 2n−1) andX(2n, 2, 2)
can send the fundamental 2-factorization of X(4n, 1, 2n − 1) onto the fundamental 2-
factorization of X(2n, 2, 2).
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Proposition 4.13. Let X(s, t, r), X(s′, t′, r′) be non-isomorphic to X(4n, 1, 2n − 1),
X(2n, 2, 2). Then X(s, t, r) and X(s′, t′, r′) are isomorphic if and only if they are Ádám
isomorphic, that is, if and only if the parameters s′, t′, r′ satisfy Proposition 4.10.

Proof. The assertion follows from Theorem 4.11, and Proposition 4.10.

5 Special cubic graphs arising from X(s, t, r) graphs
When we consider graphsX(s, t, r) we assume we are given a fundamental 2-factorization.
This, in turn, implies we may turn the graph X(s, t, r) into a cubic one by appropriately
splitting each vertex. We note in passing that the operation of vertex-splitting and its con-
verse were successfully used in a different context in [20].

There are two complementary possibilities. Either X(s, t, r) arises from an I-graph or
not. We consider each case separately.

5.1 I-graphs arising from X(s, t, r)

In Theorem 3.3 we remarked that any special cubic graph with a blue and red 2-factoriza-
tion gives rise to the associated quartic graph with a blue and red 2-factorization. In Lemma
3.5, we showed that a proper I-graph I(n, p, q) is special and gives rise to the associated
circulant graph Q(n, p, q). The following holds.

Lemma 5.1. The circulant graph Cir(n; p, q) = Q(n, p, q) arising from a connected I-
graph I(n, p, q) by contracting the spokes is the graph X(s, t, r) with t = gcd(n, q),
s = n/t ≥ 3 and r ≡ ±p(q/t)−1 (mod s).

Proof. The result follows from Proposition 4.2 by setting Γ = Zn, γ1 = q, γ2 = p.
Whence tp = rq for some integer r, 0 ≤ r ≤ s− 1, that is, r is a solution to the equation
r(q/t) ≡ p (mod s). By the Chinese Remainder Theorem, r ≡ p(q/t)−1 (mod s).

Theorem 5.2. The graph X(s, t, r) arises from a connected I-graph by contracting the
spokes if and only if gcd(s, t, r) = 1 and (t, r)6= (2, 0) for odd values of s. In this case, the
graph X(s, t, r) together with its fundamental 2-factorization, is in one-to-one correspon-
dence with the I-graph I(st, k, t), where 0 < k < st, gcd(k, t) = 1 and k ≡ r (mod s)
(in particular, k = s if r = 0). If at least one of the integers k, t, gcd(s, r) is 1, then
X(s, t, r) corresponds to a generalized Petersen graph.

Proof. Assume that X(s, t, r) arises from the connected I-graph I(n, p, q) by contracting
the spokes. By Lemma 5.1, t = gcd(n, q), s = n/t ≥ 3 and r(q/t) ≡ p (mod s).
Whence (t, r) 6= (2, 0) if s is odd, otherwise p = 0 (which is not possible). We show that
gcd(s, t, r) = 1. Suppose, on the contrary, that gcd(s, t, r) = d1 6= 1, then d1 is a divisor
of gcd(t, p) since r(q/t) ≡ p (mod s). That yields a contradiction, since gcd(t, p) = 1
(see Proposition 3.4). Hence gcd(s, t, r) = 1.

Assume that gcd(s, t, r) = 1. We show that X(s, t, r) arises from a connected I-graph
by contracting the spokes. Since gcd(s, t, r) = 1, the graphX(s, t, r) can be represented as
the circulant graph Cir(st;±t,±k), where 0 < k < st, gcd(t, k) = 1 and k ≡ r (mod s)
(see Proposition 4.6). If r = 0, then we can set k = s, since Proposition 4.3 holds. The
graph I(st, k, t) is connected and it gives rise to the graph X(s, t, r), since Lemma 5.1
holds. By Theorem 3.3, the graph X(s, t, r), together with its fundamental 2-factorization,
is in one-to-one correspondence with the I-graph I(st, k, t). If k = 1 or t = 1, then
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X(s, t, r) corresponds to a generalized Petersen graph (see [3]). If gcd(s, r) = 1 then
X(s, t, r) is isomorphic to X(st, 1, r′) (see Proposition 4.10. By the previous remarks, the
graph X(st, 1, r′) corresponds to a generalized Petersen graph. The assertion follows.

It is straightforward to see that isomorphic X(s, t, r) graphs give rise to isomorphic I-
graphs and also the converse is true. By Corollary 4.12 and Proposition 4.13, the circulant
graphs X(s, t, r), X(s′, t′, r′) are isomorphic if and only if they are Ádám-isomorphic,
that is, there exists an automorphism of the cyclic group of order st = s′t′ that sends the
defining set of the circulant graph X(s, t, r) onto the defining set of the circulant graph
X(s′, t′, r′). This fact is equivalent to the results proved in [13] about the isomorphism
between I-graphs.

5.2 Special Generalized I-graphs

In this section we consider the special cubic graphs that correspond to the graphsX(s, t, r)
with gcd(s, t, r) 6= 1, according to the correspondence described in Theorem 3.3. By
Proposition 5.2, these special cubic graphs do not belong to the family of connected I-
graphs. By Theorem 3.3 and Definition 4.1, we can define a family of special cubic graphs
containing the family of connected I-graphs as a subfamily. We call this family Special
Generalized I-graphs. This family is not contained in the family of GI-graphs [6].

Let s ≥ 1, t ≥ 1 and 0 ≤ r ≤ s − 1. We define a Special Generalized I-graph
SGI(st, s, t, r) as a cubic graph of order st with vertex-set V = {ui,j , u′i,j : 0 ≤ i ≤
t−1, 0 ≤ j ≤ s−1} and edge-set E = {[ui,j , ui,j+1], [ui,j , u

′
i,j ] : 0 ≤ i ≤ t−1, 0 ≤ j ≤

s− 1}∪{[u′i,j , u′i+1,j ] : 0 ≤ i ≤ t− 2, 0 ≤ j ≤ s− 1}∪{[u′t−1,j , u
′
0,j+r] : 0 ≤ j ≤ s− 1}

(the addition j+1 and j+r are considered modulo s). For s = 1 or (t, r) = (1, 0), a special
generalized I-graph has loops. For s = 2 or (t, r) = (2, 0), it has multiple edges. For the
other values of s, t, r, it is a simple cubic graph. We say that a vertex ui,j (respectively,
u′ij) is an outer vertex (respectively, an inner vertex). We say that an edge [ui,j , ui,j+1]
(respectively, [u′i,j , u

′
i+1,j ]) is an outer edge (respectively, an inner edge). We say that an

edge [ui,j , u
′
i,j ] is a spoke. The spokes constitute the special 1-factor. The graph arising

from SGI(st, s, t, r) by contracting the spokes is the graph X(s, t, r). The horizontal
edges of X(s, t, r) correspond to the outer edges of SGI(st, s, t, r), vertical and diagonal
edges of X(s, t, r) correspond to the inner edges of SGI(st, s, t, r). A generalization of
the proof of Proposition 5.2 gives the following statement.

Proposition 5.3. Let s ≥ 1, t ≥ 1, 0 ≤ r ≤ s − 1 and d1 = gcd(s, t, r). The graph
X(s, t, r), together with its fundamental 2-factorization, is in one-to-one correspondence
with the graph SGI(st, s, t, k) where k = s if r = 0, otherwise 0 < k < st/d1,
gcd(k, t) = 1 and k ≡ r/d1 (mod s/d1).

By Corollary 4.12, the graphs X(4n, 1, 2n − 1) and X(2n, 2, 2) are isomorphic, but
no isomorphism between them sends the fundamental 2-factorization of X(4n, 1, 2n − 1)
onto the fundamental 2-factorization ofX(2n, 2, 2). This fact means that the application of
Theorem 3.3 to the graphsX(4n, 1, 2n−1) andX(2n, 2, 2) yields non-isomorphic special
cubic graphs. As a matter of fact, Proposition 5.2 says that the graph X(4n, 1, 2n − 1)
is in one-to-one correspondence with a connected I-graph, whereas X(2n, 2, 2) does not
correspond to any I-graph. For instance, for n = 2 the graph X(8, 1, 3) is associated with
the Möbius-Kantor graph of girth 6, [15, 17], while X(4, 2, 2) arises from a graph of girth
4 (see Figure 2).
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Figure 2: The cubic split X(4, 2, 2) graph is SGI(8, 4, 2, 2). The thick edges represent the
special 1-factor.

6 Good Eulerian tours in X(s, t, r) graphs
In this section we construct good Eulerian subgraphs of X(s, t, r). For each X(s, t, r) we
denote by W (s, t, r) the constructed good Eulerian subgraph. By Proposition 3.2, a span-
ning Eulerian subgraph W of X(s, t, r) is admissible if and only if at each 2-valent vertex
exactly one edge is horizontal. We consider X(s, t, r) being embedded into the torus with
quadrilateral faces. Hence any of its subgraphs may be viewed embedded in the same sur-
face. A tour in W may be regarded as as a straight-ahead walk (or SAW) on the surface
[18]. A good Eulerian tour ofW is an Eulerian SAW that uses only allowed transitions, that
is, the tour cannot switch from a horizontal to a vertical (or diagonal) edge when it visits
a 4-valent vertex of W . For instance, the graph W in Figure 4(a) is an admissible sub-
graph of X(5, 4, 3); the tour E = (x0

0, x
1
0, x

1
1, x1

2, x
1
3, x

1
4, x0

4, x
3
1, x

2
1, x1

1, x
0
1, x

0
2,x1

2, x
2
2, x

3
2,

x3
1, x

3
0, x

2
0,x2

1, x
2
2, x

2
3, x2

4, x
3
4, x

3
3, x2

3, x
1
3, x

0
3, x0

4, x
0
1) is a good Eulerian SAW of W ; hence

W is a good Eulerian subgraph of X(5, 4, 3).
If we delete the diagonal edges in X(s, t, r), we obtain a spanning subgraph that we

denote by X ′(s, t, r). Clearly X ′(s, t, r) is the cartesian product of a cycle Cs with a path
Pt embedded in the torus or cylinder. If we further delete an edge in Cs we obtain a path
Ps. We denote the cartesian product of Ps and Pt byX ′′(s, t, r) and obtain a spanning sub-
graph of X ′(s, t, r) and X(s, t, r). In order to simplify the constructions, we will seek to
find good Eulerian subgraphs inX ′(s, t, r) or inX ′′(s, t, r). In this case the resulting good
Eulerian subgraph will be denoted by W ′(s, t, r) and W ′′(s, t, r), respectively. This sim-
plification makes sense, since neither X ′(s, t, r) nor X ′′(s, t, r) depend on the parameter
r. Hence any Eulerian subgraph W ′(s, t, r) or W ′′(s, t, r) is good for any r.

6.1 Method of construction

We give some lemmas that will be used in the construction of a good Eulerian subgraph
W (s, t, r). Given a graph X(s, t, r), for every row index i, 0 ≤ i ≤ t− 1, we denote by Vi
the set of vertical edges Vi = {[xij , x

i+1
j ] : 0 ≤ j ≤ s− 1}. For every column index j, 0 ≤

j ≤ s− 1, we denote by Hj the set of horizontal edges Hj = {[xij , xij+1] : 0 ≤ i ≤ t− 1}.
Let H be a subgraph of X(s, t, r). We say that H can be expanded vertically (from row
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i) if |E(H) ∩ Vi| = s − 1 or s − 2 > 0 (for s = 3 we require |E(H) ∩ Vi| = 2). We say
that H can be expanded horizontally (from column j) if |E(H)∩Hj | = t− 1 or t− 2 > 0
(for t = 3 we require |E(H) ∩Hj | = 2). The following statements hold.

Lemma 6.1. LetW (s, t1, r) be a good Eulerian subgraph that can be expanded vertically.
Then there exists a good Eulerian subgraph W (s, t, r) for every t ≥ t1, t ≡ t1 (mod 2).

Proof. We use the graph W1 = W (s, t1, r) to construct a good Eulerian subgraph
W (s, t, r). By the assumptions, |E(W1) ∩ Vi| = s − 1 or s − 2 for some row index i,
0 ≤ i ≤ t − 1. By the symmetry properties of the graph X(s, t1, r), we can cyclically
permute its rows so that we can assume 0 < i < t − 1. We treat separately the cases
|E(W1) ∩ Vi| = s − 1 and |E(W1) ∩ Vi| = s − 2. Consider |E(W1) ∩ Vi| = s − 1 and
denote by [xia, x

i+1
a ] the vertical edge of Vi which is missing in W1. We can cyclically

permute the columns of X(s, t1, r) and assume a = 0. We subdivide every vertical edge
[xij , x

i+1
j ], with 0 < j ≤ s−1, by inserting two new vertices, namely, yij and yi+1

j such that
yij is adjacent to xij and yi+1

j is adjacent to xi+1
j , and we add two new vertices yi+1

0 , yi0 be-
tween xi+1

0 and xi0 in column 0. We now delete the edge [yis−1, y
i+1
s−1] and replace it with the

path from yis−1 to yi+1
s−1 composed of the edges [yi+1

j , yi+1
j+1], [yij , y

i
j+1], 0 ≤ j ≤ s− 2, and

[yi0, y
i+1
0 ]. The resulting graph is a good Eulerian subgraph W (s, t1 + 2, r). We can iterate

the process and find a good Eulerian subgraphW (s, t, r) for every t ≥ t1, t ≡ t1 (mod 2).
The case |E(W1)∩Vi| = s−2 can be treated analogously to the case |E(W1)∩Vi| = s−1.
As an example, consider the graph W ′′(6, 5, r) in Figure 3. It can be expanded vertically
from row 1 and it yields a good Eulerian subgraph W ′′(6, 7, r).

vertical expansion

Figure 3: A vertical expansion of the good Eulerian subgraph W ′(6, 5, r) yields a good
Eulerian subgraph W (6, 7, r).

In the following lemma we consider horizontal expansions. In this case we have to pay
attention to the diagonal edges of W (s, t, r), if any exist. If [xt−1

j , x0
j+r], where j + r is

considered modulo s, is a diagonal edge ofW (s, t, r), then we can assume j < j+r, since
we can cyclically permute the columns of W (s, t, r). Therefore we can say that a diagonal
edge [xt−1

j , x0
j+r] crosses column ` if j ≤ ` < j + r.

Lemma 6.2. Let W (s1, t, r1) be a good Eulerian subgraph that can be expanded horizon-
tally from column `. If no diagonal edge of W (s1, t, r1) crosses column `, then there exists
a good Eulerian subgraphW (s, t, r1) for every s ≥ s1, s ≡ s1 (mod 2). If every diagonal
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edge crosses column `, then there exists a good Eulerian subgraph W (s1 + r− r1, t, r) for
every r ≥ r1, r ≡ r1 (mod 2).

Proof. We apply the method described in Lemma 6.1 to the edges in H`. If every diagonal
edge of W (s1, t, r1) crosses column `, then by subdividing the edges of H` we can shift of
r− r1 steps the diagonal edges of W (s1, t, r1). If no diagonal edge of W (s1, t, r1) crosses
column `, then no diagonal edge is shifted. As an example, consider the graph W (5, 4, 3)
in Figure 4. If we expand horizontally the graph from column ` = 0, then no diagonal
edge crosses column ` and we obtain a good Eulerian subgraph W (7, 4, 3). If we expand
horizontally the graph from column ` = 2, then every diagonal edge crosses column ` and
we obtain a good Eulerian subgraph W (7, 4, 5).

x0
0 x0

1 x0
2 x0

3
x0

4

x1
0 x1

1 x1
2 x1

3 x1
4

x2
4x2

3x2
2x2

1x2
0

x3
0 x3

1

x3
2

x3
2 x3

3

(a) (b) (c)

Figure 4: A good Eulerian subgraph: (a) W (5, 4, 3); (b) W (7, 4, 3); (c) W (7, 4, 5). The
graphs W (7, 4, 3) and W (7, 4, 5) are obtained from W (5, 4, 3) by an horizontal expansion
from column 0 and column 2, respectively.

6.2 Constructions of good Eulerian subgraphs.

We apply the lemmas described in Section 6.1 to construct a good Eulerian subgraph
W (s, t, r). It is straightforward to see that the existence of loops in X(s, t, r) excludes
the existence of a good Eulerian subgraph W (1, t, r) and W (s, 1, 0). Analogously, the ex-
istence of horizontal parallel edges in X(2, t, r) excludes the existence of a good Eulerian
subgraph W (2, t, r) with t odd and W (2, t, 1) with t even, t > 2, (see Case 2 in the proof
of Lemma 6.5 for a good Eulerian subgraph W (2, 2, 1) and W (2, t, 0) with t even). Hence
we can consider s ≥ 3 and (t, r)6= (1, 0). The following hold.

Proposition 6.3. The graphX(s, 1, r), r 6= 0, possesses a good Eulerian subgraph, unless
s = 6m+ 5, with m ≥ 0, and r ∈ {2, s− 2, (s+ 1)/2, (s− 1)/2}.

Proof. By Proposition 4.3, the graph X(s, 1, r) can be represented as the circulant multi-
graph Cir(st;±1,±r). By Proposition 5.2, the graph X(s, 1, r) corresponds to the gener-
alized Petersen graph I(s, r, 1) or G(s, r). In particular, the graph X(6m + 5, 1, 2) corre-
sponds to the generalized Petersen graph G(6m+ 5, 2). Hence X(s, 1, r) has a good Eule-
rian subgraph, unless it is isomorphic toX(6m+5, 1, 2), since Theorems 1.1 and 2.2 hold.
By Proposition 4.13, the graphs that are isomorphic toX(6m+5, 1, 2) areX(6m+5, 1, r′),
where r′ ∈ {2, 6m + 3} or r′ ≡ ±2−1 (mod 6m + 5), that is, r′ ∈ {3m + 3, 3m + 2},
since r′ < 6m+ 5.

We can construct a good Eulerian subgraph W (s, 1, r), r 6= 0, without using Theorem
1.1. More specifically, by Proposition 4.10 the graph X(s, 1, r), with r 6= 0, is isomorphic
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to the graph X(s/ gcd(s, r), gcd(s, r), r′), where r′ ≡ ±r−1 (mod s). For r 6= 0 and
gcd(s, r) > 1, a construction of a good Eulerian subgraph can be found in the proof of
Lemma 6.5. We can also provide an ad hoc construction for the case gcd(s, r) = 1,
but we prefer to omit this construction, since the existence of a good Eulerian subgraph
W (s, 1, r), r 6= 0, is known (see Proposition 6.3) and the construction is based on the
method of Lemma 6.5. We will show that the graph X(6m + 5, 1, 2), m ≥ 0, has no
good Eulerian subgraph, that is, the generalized Petersen graph is not Hamiltonian. The
following statement is a consequence of Proposition 6.3 and it will be used in the proof of
Lemma 6.5.

Proposition 6.4. The graph X(s, t, r), with s ≥ 3, t > 1 and gcd(s, r) = 1 has a good
Eulerian subgraph.

Proof. By Proposition 4.6, the graph X(s, t, r) can be represented as the circulant graph
Cir(st;±t,±k), where gcd(k, t) = 1 and k ≡ r (mod s). By Proposition 4.10, the graph
X(s, t, r) is isomorphic to the graph X(st, 1, r′), with r′ 6= 0, since gcd(s, r) = 1. If
st 6≡ 5 (mod 6), then the assertion follows from Proposition 6.3 (see Proposition 4.10).
Consider st ≡ 5 (mod 6). We show that X(s, t, r) is not isomorphic to X(6m+ 5, 1, 2),
m ≥ 0. Suppose, on the contrary, that X(s, t, r) is isomorphic to X(6m + 5, 1, 2). Then
X(st, 1, r′)= X(6m + 5, 1, r′), where r′ ∈ {2, st − 2, (st + 1)/2, (st − 1)/2} (see
Proposition 6.3). By Proposition 4.10, the integer r′ satisfies the relation r′ ≡ ±tk−1

(mod st). Whence t is a divisor of r′. That yields a contradiction, since r′ ∈ {2, st − 2,
(st + 1)/2, (st − 1)/2} and t is coprime with the integers in {2, st − 2, (st + 1)/2,
(st− 1)/2}.

Lemma 6.5. Let s ≥ 3, t ≥ 2 and 0 ≤ r ≤ s− 1. There exists a good Eulerian subgraph
W (s, t, r), unless s is odd and (t, r) = (2, 0).

Proof. We treat separately the cases: t = 3; s, t even; s even, t odd, t ≥ 5; s odd, t even;
s, t odd, t ≥ 5. When we will speak of “vertical” and “horizontal” expansion we refer
implicitly to Lemma 6.1 and 6.2, respectively.

Case 1: t = 3. This case is treated in Section 8, since it requires a lengthy description.

(c)(b)(a) (d)

Figure 5: A good Eulerian subgraph: (a) W ′(2, 2, r); (b) W ′′(4, 4, r); (c) W ′(6, 6, r); (d)
W ′′(6, 8, r).
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Case 2: s even, t even. The graph W ′′(6, 8, r) in Figure 5(d) can be expanded vertically
from row 1 and horizontally from column 2. It yields a good Eulerian subgraph
W ′′(s, t, r) for every s, t even s ≥ 6, t ≥ 8. It remains to construct a good Eulerian
subgraph W ′′(s, t, r) for s ≥ 6, t = 2, 4, 6 and W ′′(4, t, r) for t ≥ 2, t even.
The graph W ′(2, 2, r) in Figure 5(a) can be expanded horizontally from column 0
or 1. It yields a good Eulerian subgraph W ′(s, 2, r) for every s even, s ≥ 2. We
expand horizontally the graph W ′′(4, 4, r) in Figure 5(b) and obtain W ′′(s, 4, r) for
every s even, s ≥ 4. We rotate W ′′(s, 4, r) by 90 degrees clockwise (around a
vertex) and obtain a good Eulerian subgraph W ′′(4, t, r) for every t even, t ≥ 4. We
expand horizontally the graph W ′′(6, 6, r) in Figure 5(c) from column 3 and obtain
W ′′(s, 6, r) for every s even, s ≥ 6.

Case 3: s even, t odd, t ≥ 5. The graphW ′(6, 5, r) in Figure 3 can be expanded vertically
from row 2 and horizontally from column 3. It yields a good Eulerian subgraph
W ′(s, t, r) for every s even, s ≥ 6, t odd, t ≥ 5. It remains to construct W (4, t, r)
with t odd, t ≥ 5, 0 ≤ r ≤ 3. Since X(4, t, r) is isomorphic to X(4, t, 4 − r), we
can consider 0 ≤ r ≤ 2. A good Eulerian subgraph for W (4, t, 0), t odd, t ≥ 5, can
be obtained from W (4, 3, 0) in Figure 6(a) by a vertical expansion from row 1. The
existence of a good Eulerian subgraph W (4, t, 1) follows from Proposition 6.4. By
Proposition 4.10, the graph X(4, t, 2) is isomorphic to the graph X(2t, 2, r′). By the
results in Case 2, there exists a good Eulerian subgraph W (2t, 2, r′).

(b) (c)(a)

Figure 6: A good Eulerian subgraph: (a) W (3, 3, 0); (b) W (4, 3, 0); (c) W (6, 3, 0).

Case 4: s odd, t even. By Proposition 4.10, the graph X(s, t, r), with r 6= 0, is isomor-
phic to the graph X(st/ gcd(s, r), gcd(s, r), r′), with r′ 6= 0, or to X(t, s, 0) if
r = 0. If r 6= 0 and gcd(s, r) = 1 or 3, then the existence of a good Eulerian sub-
graph follows from Proposition 6.4 or from the results in Case 1, respectively. Note
that st/ gcd(s, r) ≥ 4, since t is even and 0 < r 6= s− 1. Hence, for gcd(s, r) ≥ 5,
the existence of a good Eulerian subgraph follows from Case 3. Consider r = 0.
There is no good Eulerian subgraph W (s, 2, 0), because of the existence of paral-
lel vertical edges. Consider t ≥ 4. As remarked, the graph X(s, t, 0) is isomor-
phic to the graph X(t, s, 0). For s ≥ 5 the existence of a good Eulerian subgraph
W (t, s, 0) follows from the results in Case 3. The existence of a good Eulerian sub-
graph W (t, 3, 0) follows from Case 1.

Case 5: s odd, t odd, t ≥ 5. A good Eulerian subgraph W (s, t, 0) can be obtained from
the graph W (3, 3, 0) in Figure 6(a). If r ∈ {1, 2}, then the existence of a good
Eulerian subgraph follows from Proposition 6.4. Consider 3 ≤ r ≤ s − 3 and
s ≥ 7. Since X(s, t, r) is isomorphic to X(s, t, s− r) and s is odd, we can construct
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a good Eulerian subgraph W (s, t, r) for every s, r odd, s ≥ 7, 3 ≤ r ≤ s − 4.
The graph W (7, 5, 3) in Figure 10(c) can be expanded horizontally from column 4
and vertically from row 1 (or 2). It yields a good Eulerian subgraph W (s, t, 3) for
every s, t odd, s ≥ 7, t ≥ 5. Since s − r + 3 ≥ 7, we can consider the graph
W (s− r + 3, t, 3) arising from W (7, 5, 3) in Figure 10(c). We expand horizontally
the graph W (s − r + 3, t, 3) from column 2 and obtain a good Eulerian subgraph
W (s, t, r) for every s, t, r odd, s ≥ 7, t ≥ 5 and 3 ≤ r ≤ s− 4.

Proposition 6.6. The graph X(6m + 5, 1, 2), m ≥ 0, has no good Eulerian subgraph.
Consequently, the generalized Petersen graph G(6m+ 5, 2) has no Hamiltonian cycle.

Proof. We give a sketch of the proof by showing that X(5, 1, 2) has no good Eulerian sub-
graph. Suppose, on the contrary, that W is a good Eulerian subgraph of X(6m + 5, 1, 2).
Since the unique horizontal layer of W has an odd number of vertices, the graph W con-
tains at least one path P2j+1 consisting of 2j horizontal edges. It is possible to prove that
2j = 2 (if 2j > 2, then W is not good). Without loss of generality we can set P2j+1 =
(x0

0, x
0
1, x

0
2). Whence [x0

3, x
0
4] ∈ E(W ) and no other horizontal edge of X(5, 1, 2) belongs

to E(W ). Moreover, [x0
1, x

0
3],[x0

1, x
0
4] are edges of W , since W is admissible and x0

1 is
4-valent in W . Whence [x0

0, x
0
2] ∈ E(W ) and each admissible tour of W contains the

component A = (x0
3, x

0
4, x0

4, x0
3). That yields a contradiction, since A is not a spanning

subgraph of X(6m+ 5, 1, 2). Hence X(5, 1, 2) has no good Eulerian subgraph. By Theo-
rem 2.2, the graph G(5, 2) has no Hamiltonian cycle. The proof can be generalized to the
case G(6m+ 5, 2) with m > 0.

7 Characterization of Hamiltonian I-graphs
Now we are ready to prove the main theorem.

Proof of Theorem 1.2. By Theorem 1.1, a generalized Petersen graph is Hamiltonian if
and only if it is not isomorphic to G(6m + 5, 2), m ≥ 0. We prove that a proper I-graph
is Hamiltonian. By Lemma 3.5, a proper I-graph I(n, p, q) is special and its associated
quartic graph X is the circulant graph Cir(n; p, q). By Lemma 5.1, the graph Cir(n; p, q)
can be represented as the graph X(s, t, r), where t = gcd(n, q), s = n/t ≥ 3, r ≡
±p(q/t)−1 (mod s) and (t, r) 6= (2, 0) for odd values of s. By Lemma 6.5, the graph
X(s, t, r) has a good Eulerian subgraph. The assertion follows from Theorem 2.2.

By Theorem 2.2 and Lemma 6.5, we can extend the result of Theorem 1.2, about the
existence of a Hamiltonian cycle, to the special generalized I-graphs.

As a consequence of Theorem 1.2, a proper I-graph is 3-edge-colorable or, equiva-
lently, 1-factorizable (because it is cubic and Hamiltonian). A widely studied property
for 1-factorizable graphs is the property of admitting a perfect 1-factorization. We recall
that a 1-factorization is perfect if the union of any pair of distinct 1-factors is a Hamil-
tonian cycle. Partial results are known for generalized Petersen graphs: G(n, k) admits
a perfect 1-factorization when (n, k) = (3, 1); (n, k) = (n, 2) with n ≡ 3, 4 (mod 6);
(n, k) = (9, 3); (n, k) = (3d, d) with d odd; (n, k) = (3d, k) with k > 1, d odd, 3d and k
coprime (see [4]). So, it is quite natural to extend the same problem to proper I-graphs.
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Some further problems can be considered: the generalization of the existence of good
Eulerian tour to other graph bundles of a cycle over a cycle, the characterization of Hamilto-
nianGI-graphs or of Hamilton-laceable I-graphs. In [8], the authors proved by a computer
search that all bipartite connected I-graphs on 2n ≤ 200 vertices are Hamilton-laceable.

8 Appendix. Proof of Lemma 6.5
Case 1, t = 3. We expand horizontally the graph W (3, 3, 0) in Figure 6(a) from column 0
and obtain a good Eulerian subgraph W (s, 3, 0) for every s odd, s ≥ 3. A good Eulerian
subgraphW (s, 3, 0) with s even can be obtained from the graphsW (4, 3, 0) andW (6, 3, 0)
in Figure 6(b)-(c). As an example, the graph W (8, 3, 0) in Figure 7(a) has been obtained
by connecting two copies of the graph W (4, 3, 0). The graph W (10, 3, 0) in Figure 7(b)
has been obtained by connecting the graphs W (4, 3, 0) and W (6, 3, 0). For r = 1 the
existence of a good Eulerian subgraph W (s, 3, 1) follows from Proposition 6.4. Hence
we can consider 2 ≤ r ≤ s/2, since X(s, 3, r) is isomorphic to X(s, 3, s − r). The
graph W (4, 3, 2) in Figure 7(c) can be expanded horizontally from column 3. It yields
a good Eulerian subgraph W (s, 3, 2) for every s even, s ≥ 4. Since s − r + 2 ≥ 4,
we can consider the graph W (s− r+ 2, 3, 2) obtained from W (4, 3, 2) in Figure 7(c). We
expand horizontallyW (s−r+2, 3, r) from column 1 and obtain a good Eulerian subgraph
W (s, 3, r) for every s, r even, s ≥ 4, 2 ≤ r ≤ s/2. Analogously, the graphs W (6, 3, 3),
W (8, 3, 3) andW (10, 3, 5) in Figure 8 yield a good Eulerian subgraphW (s, 3, r) for every
s even, r odd, 3 ≤ r ≤ s/2. More specifically, we expand horizontally the graphW (8, 3, 3)
from column 7 and obtain a good Eulerian subgraph W (s, 3, 3) for every even integer
s ≥ 8. The graph W (10, 3, 5) can be expanded horizontally from column 9 (or 0). It yields
a good Eulerian subgraphW (s, 3, 5) for every even integer s, s ≥ 10. Since s−r+5 ≥ 10,
we can consider the graphW (s−r+5, 3, 5) obtained fromW (10, 3, 5) in Figure 8(c). We
expand W (s− r+ 5, 3, 5) from column 4 and obtain a good Eulerian subgraph W (s, 3, r)
for every s even, s ≥ 10, r odd, 5 ≤ r ≤ s/2.

(a) (b) (c)

Figure 7: A good Eulerian subgraph: (a) W (8, 3, 0); (b) W (10, 3, 0); (c) W (4, 3, 2).

(a) (b) (c)

Figure 8: A good Eulerian subgraph: (a) W (6, 3, 3); (b) W (8, 3, 3); (c) W (10, 3, 5).

Consider s odd, s ≥ 5. The graph W (5, 3, 2) in Figure 9(a) can be expanded hori-
zontally from column 4. It yields a good Eulerian subgraph W (s, 3, 2) for every s odd,
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s ≥ 5. Analogously, the graph W (9, 3, 4) in Figure 9(b) yields a good Eulerian sub-
graph W (s, 3, 4) for every s odd, s ≥ 9. The graph W (13, 3, 6) in Figure 9(c) can be
expanded horizontally from column 2 and column 10. It yields a good Eulerian subgraph
W (2r + 1, 3, r) with r even, 6 ≤ r ≤ s/2. Since s − 2r + 1 ≥ 0, we can expand
W (2r + 1, 3, r) from column 2r and find a good Eulerian subgraph W (s, 3, r) for every s
odd, s ≥ 13, r even, r ≥ 6. It remains to construct a good Eulerian subgraph W (s, 3, r)
with s, r odd, s ≥ 7, 3 ≤ r ≤ s/2. We use the graph W (7, 3, 3) in Figure 10(a) to con-
struct a good Eulerian subgraph W (2r + 1, 3, r) with r odd, r ≥ 3. As an example, the
graph W (11, 3, 5) in Figure 10(b) has been obtained by expanding horizontally the graph
W (7, 3, 3) from column r = 3 and s−1 = 6 and by adding new diagonal edges. If we iter-
ate the process, then we obtain a good Eulerian subgraphW (2r+1, 3, r) with r odd, r ≥ 3.
The graph W (2r + 1, 3, r) thus obtained can be expanded horizontally from column 2r. It
yields a good Eulerian subgraph W (s, 3, r) for every s, r odd, s ≥ 7, 3 ≤ r ≤ s/2.

(a) (b)

(c)

Figure 9: A good Eulerian subgraph: (a) W (5, 3, 2); (b) W (9, 3, 4); (c) W (13, 3, 6)

(a) (b) (c)

Figure 10: A good Eulerian subgraph: (a) W (7, 3, 3); (b) W (11, 3, 5); (c) W (7, 5, 3). To
obtain the graph W (11, 3, 5) we expanded horizontally the graph W (7, 3, 3) from column
r = 3 and column s− 1 = 6, then we added new diagonal edges (see the bold edges).
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[16] M. Muzychuk, Ádám’s conjecture is true in the square-free case, J. Combin. Theory Ser. A 72
(1995), 118–134, doi:10.1016/0097-3165(95)90031-4, http://dx.doi.org/10.1016/
0097-3165(95)90031-4.



24 Ars Math. Contemp. 12 (2017) 1–24

[17] T. Pisanski and B. Servatius, Configurations from a graphical viewpoint, Birkhäuser
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Abstract

Motivated by the conjectures from Castro, et al. in 2011, in this paper we use integer
programming formulations for computing the domination number, the 2-packing number
and the independent domination number of Fibonacci cubes and Lucas cubes for n ≤ 13.

Keywords: Fibonacci cubes, Lucas cubes, domination number, 2-packing number.

Math. Subj. Class.: 05C69, 05C25

1 Introduction
Hypercubes form one of the most applicable classes of graphs with many appealing prop-
erties. The n-cube Qn is the graph whose vertices are all binary strings of length n, and
two vertices are adjacent if they differ in exactly one position. The Fibonacci cubes were
introduced as a model for interconnection networks [4, 2]. They offer challenging math-
ematical and computational problems, and admit a recursive decomposition into smaller
Fibonacci cubes (see [5], [6], [8] for their structural properties). The Fibonacci cubes can
be recognized in O(m log n) time (where n is the order and m the size of a given graph)
[10]. The Lucas cubes [7] form a class of graphs closely related to the Fibonacci cubes,
obtained by removing some vertices from the Fibonacci cubes.

Let Qn be the n-dimensional hypercube. A Fibonacci string of length n is a binary
string b1b2 . . . bn with bi · bi+1 = 0 for 1 ≤ i < n. In other words, Fibonacci strings
are binary strings that contain no consecutive ones. The Fibonacci cube Γn, for n ≥ 1
is the subgraph of Qn induced by the Fibonacci strings of length n. A Fibonacci string
b1b2 . . . bn is a Lucas string if b1 · bn = 0. In other words, Lucas strings are binary strings
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Science.
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that contain no consecutive ones circularly. The Lucas cube Λn, for n ≥ 1 is the subgraph
of Qn induced by the Lucas strings of length n. It is well-known that |V (Γn)| = Fn+2,
where Fn are the Fibonacci numbers: F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1 for n ≥ 1.
Similarly, |V (Λn)| = Ln for n ≥ 1, where Ln are the Lucas numbers: L0 = 2, L1 = 1,
Ln+1 = Ln + Ln−1 for n ≥ 1.

Let G be a graph. Set D ⊆ V (G) is a dominating set if every vertex from V (G) either
belongs to D or is adjacent to some vertex from D. The domination number γ(G) is the
minimum cardinality of a dominating set of G. A set X ⊆ V (G) is called a 2-packing if
d(u, v) > 2 for any two different vertices u and v of X . The 2-packing number ρ(G) is
the maximum cardinality of a 2-packing of G. It is well-known that for any graph G holds
γ(G) ≥ ρ(G).

An independent set or stable set is a set of vertices in a graph, no two of which are
adjacent. The independent domination number i(G) of a graph G is the size of the smallest
independent dominating set (or, equivalently, the size of the smallest maximal independent
set). The minimum dominating set in a graph will not necessarily be independent, but the
size of a minimum dominating set is always less than or equal to the size of a minimum
maximal independent set, γ(G) ≤ i(G).

Pike and Zou in [9] obtained a lower bound for the domination number of Fibonacci
cube of order n and determined the exact value of the domination number of Fibonacci
cubes of order at most 8. Castro et al. in [1] obtained upper and lower bounds for the
domination and 2-packing number of Fibonacci and Lucas cubes. Furthermore, the authors
obtained the exact values for γ(Γn) and γ(Λn) for n ≤ 9 and for ρ(Γn) and ρ(Λn) for
n ≤ 10.

In this paper we use integer programming method to compute the exact values of the
domination, 2-packing and independent domination number of Fibonacci and Lucas cubes
for n ≤ 13, which resolves the conjecture from [1].

2 Main results
For each subset of the vertex set S ⊆ V (G) define

xi =

{
1 if i ∈ S
0 if i ∈ V \ S.

The neighborhood N(v) of a vertex v in a graph G is the induced subgraph of G consisting
of all vertices adjacent to v and all edges connecting two such vertices. LetN [v] = N(v)∪
{v} denote the closed neighborhood of the vertex v.

The domination number ofG can be formulated as the following 0−1 integer program-
ming problem:

γ(G) = min

n∑
i=1

xi (2.1)

subject to ∑
j∈N [i]

xj ≥ 1, (2.2)

xi ∈ {0, 1}, for all 1 ≤ i ≤ n. (2.3)

It is easy to see that the conditions (2.2) and (2.3) define dominating set S and vice versa
[3]. For Fibonacci cube Γn this formulation has Fn+2 variables and 2Fn+2 constraints,
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while each condition from (2.2) contains at most n variables. For Lucas cube Λn this
formulation has Ln variables and 2Ln constrains, while each condition from (2.2) contains
at most n variables.

The 2-packing number of G can be formulated as the following 0− 1 integer program-
ming problem:

ρ(G) = max

n∑
i=1

xi (2.4)

subject to ∑
j∈N [i]

xj ≤ 1, (2.5)

xi ∈ {0, 1}, for all 1 ≤ i ≤ n. (2.6)

We will prove that the conditions (2.5) and (2.6) define 2-packing set S and vice versa.
Let S be a 2-packing set. Since S does not contain two vertices on distance 1 or 2, for each
v ∈ V (G) there is at most one vertex from the closed neighborhood N [v] which belongs
to S. Assume now that the set S satisfies the condition (2.5) and let u and v be two vertices
from S on distance 2. In that case for the shortest path vwu, we have

∑
j∈N [w] xj ≥ 2,

which is impossible. Therefore, S is a 2-packing set.
The independent domination numberG can be formulated as the following 0−1 integer

programming problem:

i(G) = min

n∑
i=1

xi (2.7)

subject to ∑
j∈N [i]

xj ≥ 1, (2.8)

(n− 1)xi +
∑

j∈N(i)

xj ≤ n− 1, (2.9)

xi ∈ {0, 1}, for all 1 ≤ i ≤ n. (2.10)

The conditions (2.8) and (2.10) define domination set S, while the condition (2.9) en-
sures the independence. For xi = 0 we have always true

∑
j∈N(i) xj ≤ n − 1, while for

xi = 1 we have
∑

j∈N(i) xj ≤ 0 which is equivalent to
∑

j∈N [i] xj = 1. This proves
that the formulation is correct. For Fibonacci cube Γn this formulation has Fn+2 variables
and 3Fn+2 constraints, while each conditions from (2.8) and (2.9) contain at most n vari-
ables. For Lucas cube Λn this formulation has Ln variables and 3Ln constrains, while each
condition from (2.8) and (2.9) contain at most n variables.

The tests were performed on the Intel Core 2 Duo T5800 2.0 GHz with 2 GB RAM
running the Linux operating system and using CPLEX 8.1. The results are summarized in
Tables 1 and 2. In Tables 3 and 4 we give some examples of dominating sets and 2-packing
sets that were obtained during the computation of these values.

These results resolve the conjecture from [1] and support Problem 5.1 for n ≤ 12.
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n 1 2 3 4 5 6 7 8 9 10 11

|V (Γn)| 2 3 5 8 13 21 34 55 89 144 233
|E(Γn)| 1 2 5 10 20 38 71 130 235 420 744
γ(Γn) 1 1 2 3 4 5 8 12 17 25
ρ(Γn) 1 1 2 2 3 5 6 9 14 20 29
i(Γn) 1 1 2 3 4 5 8 12 19 26

Table 1: Parameters of small Fibonacci cubes.

n 1 2 3 4 5 6 7 8 9 10 11 12

|V (Λn)| 1 3 4 7 11 18 29 47 76 123 199 322
|E(Λn)| 0 2 3 8 15 30 56 104 189 340 605 1068
γ(Λn) 1 1 1 3 4 5 7 11 16 23 35
ρ(Λn) 1 1 1 2 3 5 6 8 13 18 26 38
i(Λn) 1 1 1 3 4 5 8 11 17 24 35

Table 2: Parameters of small Lucas cubes.

Dominating set
Γ(10) Λ(11)
(0, 1, 0, 1, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 1, 0, 0, 0, 0) (1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)
(1, 0, 1, 0, 0, 1, 0, 0, 0, 0), (1, 0, 0, 1, 0, 0, 1, 0, 0, 0) (0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0)
(0, 0, 0, 0, 1, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 1, 0, 0) (0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)
(1, 0, 1, 0, 1, 0, 0, 1, 0, 0), (1, 0, 0, 1, 0, 1, 0, 1, 0, 0) (1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0)
(1, 0, 0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 1, 0, 0, 0, 0, 0, 1, 0) (1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0)
(0, 1, 0, 0, 1, 0, 0, 0, 1, 0), (0, 0, 0, 1, 0, 1, 0, 0, 1, 0) (0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0), (0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0)
(0, 0, 1, 0, 0, 0, 1, 0, 1, 0), (0, 1, 0, 1, 0, 0, 1, 0, 1, 0) (1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0)
(1, 0, 1, 0, 1, 0, 1, 0, 1, 0), (0, 0, 0, 1, 0, 0, 0, 0, 0, 1) (0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0), (0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0)
(1, 0, 0, 0, 1, 0, 0, 0, 0, 1), (0, 0, 1, 0, 1, 0, 0, 0, 0, 1) (0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0), (0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0)
(1, 0, 0, 0, 0, 1, 0, 0, 0, 1), (0, 1, 0, 0, 0, 0, 1, 0, 0, 1) (1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0), (1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0)
(1, 0, 1, 0, 0, 0, 1, 0, 0, 1), (1, 0, 0, 0, 0, 0, 0, 1, 0, 1) (1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0), (0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0)
(0, 1, 0, 0, 1, 0, 0, 1, 0, 1), (0, 0, 1, 0, 0, 1, 0, 1, 0, 1) (0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0), (1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0)
(0, 1, 0, 1, 0, 1, 0, 1, 0, 1) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1), (0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1)

(0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1), (0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1)
(0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1), (0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1)
(0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1), (0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1)
(0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1), (0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1)
(0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1)

Table 3: Examples of minimal dominating sets for Γ(10) and Λ(11)

2-packaging set
Γ(11) Λ(12)
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0)
(0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0), (0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0) (0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0), (1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0)
(1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0), (0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0) (0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0), (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)
(0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0), (0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0) (0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0), (1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0)
(1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0), (0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0) (0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0), (1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0)
(0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0), (0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0) (0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0), (1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0)
(1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0), (0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0) (0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0), (0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0)
(0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0), (0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0) (0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0), (1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0)
(1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0), (0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1) (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0), (1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0)
(1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1), (0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1) (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0)
(0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1), (0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1) (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0), (0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0)
(1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1), (0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1) (0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0)
(1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1), (1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1) (0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0), (0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0)
(0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1), (1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1) (0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0), (0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1)
(1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1) (0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1), (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1)

(0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1), (0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1)
(0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1), (0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1)
(0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1), (0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1)
(0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1), (0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1)

Table 4: Examples of 2-packing sets for Γ(11) and Λ(12)
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Abstract

Gauss first studied representations of self-intersecting curves in the plane using only
lists of their crossings in the sequence as they occur when traversing a curve, i.e., rep-
resentations using Gauss words. The characterisation of words that are Gauss words has
been elusive for a long time, and only in recent decades have some good characterizations
been established. Together with these, the interest in Gauss paragraphs, i.e., representations
of sets of curves by sets of words listing their sequences of crossings, has came to light,
and we are unaware of a (good) characterization of abstract sets of words that are Gauss
paragraphs. We establish such a characterization and we show that characterizing Gauss
paragraphs is algorithmically equivalent to characterizing Gauss words, as there exists a
word W that can be obtained from a set of words P in linear time, such that P is a Gauss
paragraph if and only if W is a Gauss word.

Keywords: Gauss words, Gauss codes, Gauss paragraphs, good characterization.

Math. Subj. Class.: 5C10, 57M15

1 Introduction
Gauss [5, 282-286] has studied representations of closed curves using lists of their crossings
in the sequence obtained by following the curve. Clearly, each crossing appears exactly
twice, and Gauss noticed that these two occurrences must have one an even and the other an
odd index in the sequence, i.e. there has to be an odd number of letters between them. Gauss
noted that the condition is not sufficient for curves with five or more crossings. The question
of characterizing such words has not been solved until late 1960s, when Marx [9] and
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Treybig [13] gave algorithmic characterization of words that are Gauss words. Grünbaum
[6] noted that they lack the aesthetic appeal of, for instance, Kuratowski theorem, an issue
resolved by Lovász and Marx [8], who gave the first characterization satisfying Edmonds’
criterion for “good characterization” [4].

Recently, the interest in Gauss words, i.e. the words that occur when the crossings
of a self-intersecting curve are read in a sequence, has been renewed through several new
good characterizations [3, 10, 11] and through introduction of Gauss paragraphs, sets of
words corresponding in the same manner to sets of curves. The questions that arise in
the bibliography are classified by Courcelle [2] into (i) Which (sets of) words over some
alphabet are Gauss words (paragraphs), i.e. realizable as (sets of) (self)intersecting curves
whose sequences of crossings are equal to specified (sets of) words, (ii) Which (sets of)
curves can be uniquely reconstructed from their Gauss words (paragraphs) and (iii) What
is the common structure of (sets of) curves having the same Gauss word (paragraph).

In our paper, we investigate the question (i) for Gauss paragraphs, and develop an ef-
ficient characterization of sets of words that can be realized with sets of (self)intersecting
curves in the plane so that a Gauss paragraph of this set of curves equals the original set of
words. The same problem was recently studied by Schellhorn [12], who extended virtual
strings introduced by Turaev [14] from single close curve S1 to sets of such curves and used
them to characterize realizable Gauss paragraphs with a conjunction of seven technical con-
ditions. In what follows, we give an elementary characterization that reduces the problem
of realizability of a set of words to the problem of realizability of a single specific word
obtainable from the set in linear time, avoiding the use of virtual strings. Besides show-
ing that the problem of recognizing Gauss paragraphs is equivalent to recognizing Gauss
words, the main improvement over Shcellhorn’s characterization is the added algorithmic
transparency.

2 Characterization of Gauss paragraphs
We first summarize some of the used notation. A double-occurrence word over an alphabet
Σ is a word in which every letter of Σ appears exactly twice. The double-occurrence
words that are Gauss words of some self-intersecting curve have been characterized by
Rosenstiehl [10, 11] and de Fraysseix and de Mendez [3]. Rosenstiehl proved the following
algebraic characterization of Gauss words.

Theorem 2.1. [10, Theorem 2′] A double-occurrence word W on a finite set Σ of letters
is a Gauss word if, and only if,

1. any letter of W has an even number of interlaced letters;

2. any non-interlaced pair of letters has an even number of common interlaced letters;

3. the interlaced pairs having an even number of common interlaced letters form a
separating set S, i.e. there exists Σ′ ⊆ Σ, such that any pair of S has a letter of Σ′

and a letter of Σ \ Σ′.

The last condition of the theorem suggests it has a natural graph-theoretic formulation.
We state it in terms of the interlace-graph GW of a Gauss word W over the alphabet Σ,
defined so that the letters of Σ are the vertex set, V (GW ) = Σ, and two vertices u, v ∈ Σ
are adjacent in GW , uv ∈ E(GW ), if and only if they interlace in W . A cut is a partition
of the vertices of a graph into two disjoint subsets. Any cut determines a cut-set, the set of
edges that have one endpoint in each subset of the partition.
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Using these concepts, Theorem 2.1 can be stated as the following:

Theorem 2.2 ([3]). Let W be a double-occurrence word over a finite alphabet Σ and let
GW be its interlace-graph. Then W is a Gauss word if and only if

1. each component of GW is Eulerian;

2. if u and v are two nonadjacent vertices of GW , then they have an even number of
common neighbors;

3. the set {e = uv | u, v have an even number of common neighbors} is a cut-set in
GW .

When studying sets of curves, a crossing may appear on different curves, so we need
to relax the condition of double-occurrence. We define a semi-double-occurence word over
an alphabet Σ to be a word, in which every letter of Σ appears at most twice. Then, a
double-occurence k-paragraph1 (shortly, k-DOP) over an alphabet Σ is a set of k semi-
double-occurence words over Σ, such that each letter appears precisely twice in the union
of all words of the paragraph. Further, a mixed crossing of a set of (self)intersecting curves
in the plane is a crossing of two different curves, i.e. not a self-crossing of some word.
Correspondingly, a mixed letter of a k-DOP P is a letter that appears in two different words
of P . With M(P ) or just M , when the paragraph is clear from the context, we will denote
the mixed letters of P .

Note that, in contrast to some knot-theoretic bibliography [1], our definition follows the
original definition of Gauss, which does not encode over- or under-pass information that is
required for knot-theoretic investigation. For us, the curves are embedded in the plane and
each crossing is either a self-crossing of some curve, appearing twice in the same word, or
is a crossing of two curves, appearing once in each corresponding word.

Finally, for a k-DOP P = (w1, . . . , wk), we define its intersection graph G(P ) as the
graph whose vertices are words of P , V (G(P )) = P , in which two vertices are adjacent,
iff the corresponding words share a letter of Σ.

Let P be k-DOP that contains x ∈ M. Then we will simplify notation and write P =
(xw1, xw2, . . . , wk).

Lemma 2.3. Let P = (xw1, xw2, . . . , wk) be a k-DOP and let x ∈ M be a selected
letter appearing in the first two words. Then P is a Gauss paragraph, if and only if the
(k − 1)-DOP P x = (xx′w1xx

′w2, w3, . . . , wk) is a Gauss paragraph.

Proof. Suppose first that P is a Gauss paragraph. Let π be a drawing that realizes P . In π,
replace x in its small neighborhood by a digon xx′ with incoming edges adjacent to x and
outgoing to x′ (see Figure 1). The resulting embedding is an embedding of (k − 1)-DOP
P x, showing that P x is a Gauss paragraph.

For the converse, suppose that P x is a Gauss paragraph, realized in π. We will first
prove that xx′ is not a cut. Indeed, if xx′ is a cut, then x and x′ are not interlaced in π, a
contradiction. Since x and x′ induce a cycle and do not induce a cut, one of the faces of
this cycle is empty and the other contains the full embedding. This implies that the out-
edges and the in-edges come consecutive in the vertex rotation around the empty face. By

1As pointed out by one of the referees, a more natural name for this concept would be a sentence, as sentence
is the next grammatical structure composed of words. Indeed we used double-occurrence sentence and Gauss
sentence until a more thorough search through the bibliography [1] revealed that it was studied under the name
Gauss paragraph.
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contracting the empty face, x and x′ become a single point. By rerouting the curves so that
x is a crossing, we get a realization of P.

x

x

x’

Figure 1: Replacing x with digon xx′ or vice versa.

We say that P x from Theorem 2.3 is an x-reduction of P. With a sequence of reduc-
tions, we would like to obtain a single word. Let x ∈ w1 ∩ w2. Since the letters appearing
only in w1 and w2, after x-reduction appear in a common word, at most (k− 1) reductions
reduce a Gauss paragraph to a single word, to which we can apply Theorem 2.2.

Let P be a k-DOP and G(P ) the intersection graph of semi-double-occurence words
of P ; its vertices are words and two words are adjacent if they have at least one letter in
common. Let T be a tree in G(P ) and w1, . . . , wt the vertices of T , such that wi has at
most one neighbor in {wi+1, . . . , wt} and the connecting edge results from letter mi ∈M.
Let w1 = w1. We define recursively wi+1 = mim

′
iw

imim
′
iwi+1, i = 1, . . . , t − 1. The

T -reduction of P is PT = (wt, wt+1, . . . , wk). By induction, using the previous lemma as
induction step, we get the following result:

Theorem 2.4. Let P = (w1, . . . , wk) be a k-DOP and let T be a tree in G(P ) on t
vertices v1, . . . , vt, such that vi has at most one neighbour in {vi+1, . . . vt}. Then P is a
Gauss paragraph, if and only if PT is a Gauss paragraph.

Applying this corollary to a spanning tree of G, we get the following characterization
of k-DOPs that are Gauss paragraphs:

Corollary 2.5. Let P = (w1, . . . , wk). Let T be a spanning tree in G(P ), and let W be
the only word of PT . Then P is a Gauss paragraph, iff W is a Gauss word, i.e. iff GW

satisfies the conditions of Theorem 2.2.

It is clear that this corollary implies existence of a polynomial algorithm for determin-
ing whether a k-DOP is a Gauss paragraph, and thus satisfies Edmonds’ criterion for a good
characterization [4]: if A is the adjacency matrix of a graph G, then A2 counts the number
of length-two walks between any pair of vertices, i.e., the number of common neighbors,
the crucial information required for verifying conditions of Theorem 2.2. The matrix A2

can be computed in O(|V (G)|ω) time, with ω < 2.376, using fast matrix multiplication.
This yields the dominating time-complexity term O(|Σ|ω) of the k-DOP realizability veri-
fying algorithm, as running time of the algorithm is dominated by the requirement to count
the common neighbors of any pair of vertices of GW , either adjacent or not. There are
|Σ| + k vertices of GW , but the vertices x and x′ have the same set of neighbors and are
adjacent, hence with some preprocessing it suffices to check only a matrix of size |Σ|.
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Note that the best known time complexity of exact counting of all triangles in a general
graph with n vertices (which is equivalent to counting the common neighbors of just the
adjacent pairs of graph’s vertices) is O(nω) [7], which indicates that the time complexity
of checking realizability of a given k-DOW using conditions of Theorem 2.2 can hardly be
improved, unless some detailed properties of the graph GW are exploited in counting the
common neighbors. However, as constructing the graph G(P ) can be done in time O(|Σ|),
its spanning tree T found in O(k), and the T -reduction of P found in O(k+ |Σ|), then any
improvement in checking realizability of a double-occurring word immediately translates
into an improvement of checking realizability of k-DOP.
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Abstract

In the present paper we generalize the notion of a Heyting algebra to the non-commuta-
tive setting and hence introduce what we believe to be the proper notion of the implication
in skew lattices. We list several examples of skew Heyting algebras, including Heyting
algebras, dual skew Boolean algebras, conormal skew chains and algebras of partial maps
with poset domains.

Keywords: Skew lattices, Heyting algebras, non-commutative algebra, intuitionistic logic.

Math. Subj. Class.: 06F35, 03G27

1 Introduction
Non-commutative generalizations of lattices were introduced by Jordan [11] in 1949. The
current approach to such objects began with Leech’s 1989 paper on skew lattices [13].
Similarly, skew Boolean algebras are non-commutative generalizations of Boolean alge-
bras. In 1936 Stone proved that each Boolean algebra can be embedded into a field of sets
[20]. Likewise, Leech showed in [14, 15] that each right-handed skew Boolean algebra
can be embedded into a generic skew Boolean algebra of partial functions from a given set
to the codomain {0, 1}. Bignall and Leech [5] showed that skew Boolean algebras play a
central role in the study of discriminator varieties.

Though not using categorical language, Stone essentially proved in [20] that the cat-
egory of Boolean algebras and homomorphisms is dual to the category of Boolean topo-
logical spaces and continuous maps. Generalizations of this result within the commutative
setting yield Priestley duality [16, 17] between bounded distributive lattices and Priestley
spaces, and Esakia duality [9] between Heyting algebras and Esakia spaces. (See [4] for
details.) In a recent paper [10] on Esakia’s work, Gehrke showed that Heyting algebras may
be understood as those distributive lattices for which the embedding into their Booleani-
sation has a right adjoint. A recent line of research generalized the results of Stone and
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Priestley to the non-commutative setting. By results in [1] and [12], any skew Boolean
algebra is dual to a sheaf of rectangular bands over a locally-compact Boolean space. A
further generalization given in [2] showed that any strongly distributive skew lattice (as
defined below) is dual to a sheaf (of rectangular bands) over a locally compact Priestley
space.

While Boolean algebras provide algebraic models of classical logic, Heyting algebras
provide algebraic models of intuitionistic logic. In the present paper we introduce the
notion of a skew Heyting algebra. In passing to the non-commutative setting one needs to
sacrifice either the top or the bottom of the algebra in order not to end up in the commutative
setting. In the previous papers [1], [12] and [2] algebras with bottoms were considered, and
hence the notion of distributivity was generalized to the notion of so-called strong distribu-
tivity. If one tried to define an implication operation in the setting of strongly distributive
skew lattices with a bottom as a right adjoint to conjunction, that would force the skew lat-
tice to also possess a top and hence be commutative, resulting in a usual Heyting algebra.
In order to define implication in the skew lattice setting we consider the ∨ − ∧ duals of
strongly distributive skew lattices with a bottom, namely, the co-strongly distributive skew
lattices with a top. That is not surprising as a top plays a crucial role in logic. The category
of co-strongly distributive skew lattices with a top is, of course, isomorphic to the category
of strongly distributive skew lattices with a bottom. In choosing co-strongly distributive
skew lattices with a top we follow the path paved by Bignall and Spinks in [6], and by
Spinks and Veroff in [19] where dual skew Boolean algebras were introduced. For further
reading on implications in skew Boolean algebras and their algebraic duals, see [7].

After reviewing some preliminary definitions and concepts in Section 2, in the next
section we introduce the notion of a skew Heyting algebra, prove that such algebras form a
variety and show that the maximal lattice image of a skew Heyting algebra is a generalized
Heyting algebra (possibly without a bottom). Indeed, a co-strongly distributive skew lattice
with a top is the reduct of a skew Heyting algebra, if and only if its maximal lattice image
forms a generalized Heyting algebra. (See Theorem 3.5.) This leads to a number of useful
corollaries and examples. We finish with Section 4 where we explore the consequences
of our results to duality theory, and describe how skew Heyting algebras correspond to
sheaves over local Esakia spaces.

2 Preliminaries
A skew lattice is an algebra S = (S;∧,∨) of type (2, 2) such that ∧ and ∨ are both
idempotent and associative and they satisfy the following absorption laws:

x ∧ (x ∨ y) = x = x ∨ (x ∧ y) and (x ∧ y) ∨ y = y = (x ∨ y) ∧ y.

These identities are collectively equivalent to the pair of equivalences: x∧y = x⇔ x∨y =
y and x ∧ y = y ⇔ x ∨ y = x.

On a skew lattice S one can define the natural partial order by stating that x ≤ y if and
only if x ∨ y = y = y ∨ x, or equivalentely x ∧ y = z = y ∧ x, and the natural preorder
by x � y if and only if y∨x∨ y = y, or equivalentely x∧ y∧x = x. Green’s equivalence
relation D is then defined by

xDy if and only if x � y and y � x. (2.1)
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Lemma 2.1. ([8]). For elements x and y elements of a skew lattice S the following are
equivalent:

(i) x ≤ y,

(ii) x ∨ y ∨ x = y,

(iii) y ∧ x ∧ y = x.

Leech’s First Decomposition Theorem for skew lattices states that the relation D is a
congruence on a skew lattice S, S/D is the maximal lattice image of S, and each congru-
ence class is a maximal rectangular skew lattice in S [13]. Rectangular skew lattices are
characterized by x ∧ y ∧ z = x ∧ z, or equivalentely x ∨ y ∨ z = x ∨ z. We denote the
D-class containing an element x by Dx.

It was proved in [13] that a skew lattice always forms a regular band for either of the
operations ∧, ∨, i.e. it satisfies the identities

x ∧ u ∧ x ∧ v ∧ x = x ∧ u ∧ v ∧ x and x ∨ u ∨ x ∨ v ∨ x = x ∨ u ∨ v ∨ x.

A skew lattice with top is an algebra (S;∧,∨, 1) of type (2, 2, 0) such that (S;∧,∨) is
a skew lattice and x ∨ 1 = 1 = 1 ∨ x, or equivalently x ∧ 1 = x = 1 ∧ x, holds for all
x ∈ S. A skew lattice with bottom is defined dually and the bottom, if it exists, is usually
denoted by 0.

Furthermore, a skew lattice is called strongly distributive if it satisfies the following
identities:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z);

and it is called co-strongly distributive if it satisfies the identities:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z).

If a skew lattice S is either strongly distributive or co-strongly distributive then S is
distributive in that it satisfies the identities

x∧ (y∨ z)∧x = (x∧ y∧x)∨ (x∧ z∧x) and x∨ (y∧ z)∨x = (x∨ y∨x)∧ (x∨ z∨x).

A skew lattice S that is jointly strongly distributive and co-strongly distributive is bi-
normal, i.e. S factors as a direct product of a lattice L and a rectangular skew lattice B,
S ∼= L×B, with L in this case being distributive. (See [15] and [18].)

Applying duality to a result of Leech [15], it follows that a skew lattice S is co-strongly
distributive if and only if S is jointly:

• quasi-distributive: the maximal lattice image S/D is a distributive lattice,

• symmetric: x ∧ y = y ∧ x if and only if x ∨ y = y ∨ x, and

• conormal: x ∨ y ∨ z ∨ w = x ∨ z ∨ y ∨ w.

If a skew lattice is conormal then given any u ∈ S the set

u↑ = {u ∨ x ∨ u |x ∈ S} = {x ∈ S |u ≤ x}

forms a (commutative) lattice for the induced operations ∧ and ∨, cf. [15].
The following lemma is the dual of a well known result in skew lattice theory.
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Lemma 2.2. Let S be a conormal skew lattice and let A and B be D-classes such that
B ≤ A holds in the lattice S/D. Given b ∈ B there exists a unique a ∈ A such that b ≤ a.

Proof. First the uniqueness. If a and a′ both satisfy the desired property then by Lemma
2.1 we have a = b ∨ a ∨ b and likewise a′ = b ∨ a′ ∨ b. Now, using idempotency of ∨,
conormality and the fact that aD a′ we obtain:

a = b ∨ a ∨ b = b ∨ a ∨ a′ ∨ a ∨ b =
b ∨ a ∨ a′ ∨ b = b ∨ a′ ∨ a ∨ a′ ∨ b = b ∨ a′ ∨ b = a′.

To prove the existence of a take any x ∈ A and set a = b ∨ x ∨ b. Then a ∈ A and using
the idempotency of ∨ we get:

b ∨ a ∨ b = b ∨ (b ∨ x ∨ b) ∨ b = b ∨ x ∨ b = a

which implies b ≤ a.

An important class of strongly distributive skew lattices that have a bottom is the class
of skew Boolean algebras where by a skew Boolean algebra we mean an algebra S =
(S;∧,∨, \, 0) where (S;∧,∨, 0) is a strongly distributive skew lattice with bottom 0, and
\ is a binary operation on S such that both (x∧y∧x)∨ (x\y) = x = (x\y)∨ (x∧y∧x)
and (x ∧ y ∧ x) ∧ (x \ y) = 0 = (x \ y) ∧ (x ∧ y ∧ x). Given any element u of a skew
Boolean algebra S the set

u↓ = {u ∧ x ∧ u |x ∈ S} = {x ∈ S |x ≤ u}

is a Boolean algebra with top u and with u \ x being the complement of u ∧ x ∧ u in u↓.
Recall that a Heyting algebra is an algebra H = (H;∧,∨,→, 1, 0) such that (H,∧,∨,

1, 0) is a bounded distributive lattice that satisfies the condition:

(HA) x ∧ y ≤ z iff x ≤ y → z.

Stated otherwise, ∀y, z ∈ H the sublattice {x ∈ H |x ∧ y ≤ z} is nonempty and con-
tains a top element to be denoted by y → z. Thus, given a bounded distributive lattice
(H;∧,∨, 1, 0), if a binary operation→ exists that makes (H;∧,∨,→, 1, 0) a Heyting al-
gebra, then it is unique because it is already there implicitly. Indeed, given two isomorphic
lattices, if either is the lattice reduct of a Heyting algebra then so is the other, and both are
isomorphic as Heyting algebras.

Equivalently, (HA) can be replaced by the following set of identities:

(H1) (x→ x) = 1,

(H2) x ∧ (x→ y) = x ∧ y,

(H3) y ∧ (x→ y) = y,

(H4) x→ (y ∧ z) = (x→ y) ∧ (x→ z).

Lemma 2.3. In any Heyting algebra, x→ y = (x ∨ y)→ y.

A generalized Heyting algebra is an algebra A = (A;∧,∨,→, 1) such that the reduct
(A,∧,∨, 1) is a distributive lattice with top 1, and condition (HA) holds. If it also has a
bottom, it is a Heyting algebra. In general, each upset u↑ forms a Heyting algebra. The
identities above also characterize this more general class of algebras, which are often called
Brouwerian algebras.
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3 Skew Heyting algebras
A skew Heyting lattice is an algebra S = (S;∧,∨, 1) of type (2, 2, 0) such that:

• (S;∧,∨, 1) is a co-strongly distributive skew lattice with top 1. Each upset u sup is
thus a bounded distributive lattice.

• for any u ∈ S an operation→u can be defined on u↑ such that (u↑;∧,∨,→u, 1, u)
is a Heyting algebra with top 1 and bottom u.

Given a skew Heyting lattice S, define→ on S by setting

x→ y = (y ∨ x ∨ y)→y y.

A skew Heyting algebra is an algebra S = (S;∧,∨,→, 1) of type (2, 2, 2, 0) such that
(S;∧,∨, 1) is a skew Heyting lattice and → is the implication thus induced. A sense of
global coherence for→ on S is given by:

Lemma 3.1. Let S be a skew Heyting lattice with→ as defined above and let x, y, u ∈ S
be such that both x, y ∈ u↑ hold. Then x→ y = x→u y.

Proof. As x and y both lie in u↑, they commute. By the definition of →, x → y =
(x ∨ y) →y y ≥ y by (H3). On the other hand, since →u is the Heyting implication in
the Heyting algebra u↑ it follows that x →u y = (x ∨ y) →u y ≥ y. Thus y, x ∨ y,
(x ∨ y) →y y and (x ∨ y) →u y all lie iin the Heyting algebra y↑. The maximal element
characterization of both (x ∨ y)→y y and (x ∨ y)→u y forces both to agree.

We will use the axioms of Heyting algebras to derive an axiomatization of skew Heyting
algebras. The reader should find most of the axioms of Theorem 3.2 below to be intuitively
clear generalizations to the non-commutative case. However, two axioms should be given
further explanation. Firstly, the u in axiom (SH4) below appears since upon passing to the
non-commutative case, an element that is both below x and y with respect to the partial
order≤ no longer need exist. (We can have x∧y∧x ≤ x but not x∧y∧x ≤ y in general.)
Similarly, axiom (SH0) is needed since in the non-commutative case it no longer follows
from the other axioms, the reason being that in general x ≤ y ∨ x ∨ y need not hold.

Theorem 3.2. Let (S;∧,∨,→, 1) be an algebra of type (2, 2, 2, 0) such that (S;∧,∨, 1)
is a co-strongly distributive skew lattice with top 1. Then (S;∧,∨,→, 1) is a skew Heyting
algebra if and only if it satisfies the following axioms:

(SH0) x→ y = (y ∨ x ∨ y)→ y.

(SH1) x→ x = 1,

(SH2) x ∧ (x→ y) ∧ x = x ∧ y ∧ x,

(SH3) y ∧ (x→ y) = y and (x→ y) ∧ y = y,

(SH4) x→ (u ∨ (y ∧ z) ∨ u) = (x→ (u ∨ y ∨ u)) ∧ (x→ (u ∨ z ∨ u)).

Proof. Assume that S is a skew Heyting algebra.
(SH0). Both x → y and (y ∨ x ∨ y) → y are defined as (y ∨ x ∨ y) →y y. Thus they

are equal.
(SH1). This is true because 1 ∧ x = x is true in x↑.
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(SH2). In y↑ (H2) implies (y ∨ x ∨ y) ∧ ((y ∨ x ∨ y) →y y) = (y ∨ x ∨ y) ∧ y = y.
Hence

x ∧ (y ∨ x ∨ y) ∧ (x→ y) ∧ x = x ∧ y ∧ x.

On the other hand,

x ∧ (y ∨ x ∨ y) ∧ (x→ y) ∧ x = x ∧ (y ∨ x ∨ y) ∧ x ∧ (x→ y) ∧ x = x ∧ (x→ y) ∧ x,

where we have used the regularity of ∧ and the fact that x � y ∨ x ∨ y.
(SH3). Both identities hold because y ∧ (y ∨ x ∨ y) = y in y↑. Thus x → y =

(y ∨ x ∨ y)→ y ≥ y.
(SH4). First note that (SH4) is equivalent to
(SH4’) (u∨x∨u)→ (u∨ (y∧z)∨u) = ((u∨x∨u)→ (u∨y∨u))∧ ((u∨x∨u)→

(u ∨ z ∨ u)).
Indeed, (SH0) and the conormality of ∨ give both

(u ∨ x ∨ u)→ (u ∨ w ∨ u) = (u ∨ x ∨ w ∨ u)→ (u ∨ w ∨ u)

and
x→ (u ∨ w ∨ u) = (u ∨ x ∨ w ∨ u)→ (u ∨ w ∨ u)

so that
x→ (u ∨ w ∨ u) = (u ∨ x ∨ u)→ (u ∨ w ∨ u).

Hence it suffices to prove that (SH4’) holds.
Observe that distributivity implies

(u ∨ y ∨ u) ∧ (u ∨ z ∨ u) = u ∨ (y ∧ z) ∨ u. (3.1)

Since u ∨ x ∨ u, u ∨ y ∨ u, u ∨ z ∨ u and u ∨ (y ∧ z) ∨ u all lie in u↑ we can simply
compute in u↑. Using (3.1) and axiom (H4) for Heyting algebras we obtain: (u∨x∨u)→
(u ∨ (y ∧ z) ∨ u) = (u ∨ x ∨ u) → ((u ∨ y ∨ u) ∧ (u ∨ z ∨ u)) = ((u ∨ x ∨ u) →
(u ∨ y ∨ u)) ∧ ((u ∨ x ∨ u)→ (u ∨ z ∨ u)).

To prove the converse assume that (SH0)–(SH4) hold. Given arbitrary u ∈ S and
x, y, z ∈ u↑ set x→u y = x→ y. Axiom (SH3) implies that x→ y ∈ y↑ ⊆ u↑. Thus the
restriction→u of→ to u↑ is well defined. Since u↑ is commutative with bottom u, axioms
(SH1)–(SH4) for→ respectively simplify to (H1)–(H4) for→u, making→u the Heyting
implication on u↑. Axiom (SH0) assures that → is indeed the skew Heyting implication
satisfying a→ b = (b ∨ a ∨ b)→b b, for any a, b ∈ S.

Corollary 3.3. Skew Heyting algebras form a variety.

In the remainder of the paper, given a skew Heyting algebra we shall simplify the
notation→u to→ when referring to the Heyting implication in u↑. Remarks made about
Heyting algebras in Section 2 apply here also. Given a co-strongly distributive skew lattice
(S;∧,∨, 1) with a top 1, if a binary operation→ exists that makes (S;∧,∨,→, 1) a skew
Heyting algebra, then it is unique since it is already there implicitly. Hence, given two
isomorphic skew lattices, if either is the reduct of a skew Heyting algebra, then so is the
other and both are isomorphic as skew Heyting algebras.

Proposition 3.4. The relation D defined in (2.1) is a congruence on any skew Heyting
algebra.
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Proof. Let (S;∧,∨,→, 1) be a skew Heyting algebra. Since D is a congruence for co-
strongly distributive skew lattices with a top, we only need to prove (a → b) D (c → d)
holds for any a, b, c, d ∈ S satisfying a D c and b D d. Without loss of generality we may
assume b ≤ a and d ≤ c. (Otherwise replace a by b ∨ a ∨ b and c by d ∨ c ∨ d.)

To begin, define a map ϕ : b↑ → d↑ by setting ϕ(x) = d ∨ x ∨ d. We claim that ϕ
is a lattice isomorphism of (b↑;∧,∨) with (d↑;∧,∨), with inverse ψ : d↑ → b↑ given by
ψ(y) = b ∨ y ∨ b. It is easily seen that ϕ and ψ are inverses of each other. For instance,
ψ(ϕ(x)) = b ∨ d ∨ x ∨ d ∨ b equals (b ∨ d ∨ b) ∨ x ∨ (b ∨ d ∨ b) by the regularity of ∨.
But the latter reduces to b ∨ x ∨ b because bDd, and since x ∈ b↑ it reduces further to x by
Lemma 2.1, giving ψ(ϕ(x)) = x. ϕ must preserve ∧ and ∨. Indeed distributivity gives:

ϕ(x ∧ x′) = d ∨ (x ∧ x′) ∨ d = (d ∨ x ∨ d) ∧ (d ∨ x′ ∨ d) = ϕ(x) ∧ ϕ(x′).

And the regularity gives:

ϕ(x ∨ x′) = d ∨ (x ∨ x′) ∨ d = (d ∨ x ∨ d) ∨ (d ∨ x′ ∨ d) = ϕ(x) ∨ ϕ(x′).

Thus ϕ (and ψ) is a lattice isomorphism of b↑ with d↑. But then ϕ and ψ are also isomor-
phisms of Heyting algebras. That is, e.g., ϕ(x→ y) = ϕ(x)→ ϕ(y).

Next, observe that xD ϕ(x) for all x ∈ b↑. Indeed, regularity gives:

ϕ(x) ∨ x ∨ ϕ(x) = (d ∨ x ∨ d) ∨ x ∨ (d ∨ x ∨ d) = d ∨ x ∨ d = ϕ(x)

and likewise x ∨ ϕ(x) ∨ x = ψ(ϕ(x)) ∨ ϕ(x) ∨ ψ(ϕ(x)) = ψ(ϕ(x)) = x. There is
more: a is the unique element in its D-class belonging to b↑ and c is the unique element
in the same D-class belonging to d↑ (since each upset u↑ intersects any D-class in at most
one element). But ϕ(a) in d↑ behaves in the manner just like c, and so ϕ(a) = c. Since
b D d, ϕ(b) = d ∨ b ∨ d = d and ϕ(a → b) = ϕ(a) → ϕ(b) = c → d, thus giving
a→ bD c→ d.

Following [5] a commutative subset of a symmetric skew lattice is a non-empty subset
whose elements both join and meet commute.

Theorem 3.5. Given a co-strongly distributive skew lattice (S;∧,∨, 1) with top 1, an op-
eration→ can be defined on S making (S;∧,∨,→, 1) a skew Heyting algebra if and only if
the operation→ can be defined on S/D making (S/D;∧,∨,→,D1) a generalized Heyting
algebra.

Proof. To begin, for any u in S, the upset u↑ is a D-class transversal of the principal filter
S ∨ u ∨ S. Secondly, the induced homomorphism ϕ : S → S/D is bijective on any
commutative subset of S since distinct commuting elements of S lie in distinct D-classes.
It follows that for each u in S, ϕ restricts to an isomorphism of upsets, ϕu : u↑ ∼= ϕ(u)↑.
Thus each upset u↑ in S forms a Heyting algebra if and only if each upset v↑ in S/D, being
some ϕ(u)↑, must form a Heyting algebra. The theorem follows.

Comment. This result is a near-dual of the important fact that a strongly distributive skew
lattice S with bottom 0 is the (necessarily unique) reduct of a skew Boolean algebra if and
only if its lattice image S/D is the reduct of a (necessarily unique) generalized Boolean
algebra. ([15], 3.8.)
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We next consider consequences of the above theorem. The first is on the ”skew lattice
side” of things and the next is more on the ”Heyting side”. But first recall the definitions of
Green’s relations L andR on a skew lattice:

xLy ⇔ (x ∧ y = x& y ∧ x = y, or equivalently x ∨ y = y& y ∨ x = x),

xRy ⇔ (x ∧ y = y& y ∧ x = x, or equivalently x ∨ y = x& y ∨ x = y).

Relations L and R are contained in the Green’s relation D defined above and L ◦ R =
R◦L = D holds. A skew lattice is called right-handed if the relation L is trivial, in which
case D = R, and it is called left-handed if the relation R is trivial, in which case D = L.
By Leech’s Second Decomposition Theorem [13] the relations L and R are congruences
on any skew lattice S, S/R is left-handed, S/L is right-handed and the following diagram
is a pullback:

S //

��

S/R

��
S/L // S/D

Corollary 3.6. If S = (S;∧,∨, 1) be a co-strongly distributive skew lattice with top 1,
then the following are equivalent:

1. S is the reduct of a skew Heyting algebra (S;∧,∨,→, 1).

2. S/L is the reduct of a skew Heyting algebra (S/L;∧,∨,→, 1).

3. S/R is the reduct of a skew Heyting algebra (S/R;∧,∨,→, 1).

Moreover, both L andR are congruences on any skew Heyting algebra.

Proof. The equivalence of (i)–(iii) is due to the preceding theorem plus the fact that S/D,
(S/L)/DS/L and (S/R)/DS/R are isomorphic. Next, the induced map ρ : S → S/L is
at least a homomorphism of co-strongly distributive skew lattices. By the argument of the
preceding theorem, it induces isomorphisms between corresponding pairs of upsets, u↑ in
S and Lu↑ in S/L. Thus given x→ y = (y∨x∨y)→y y and u→ v = (v∨u∨ v)→v v
with x; ,L; , u and y; ,L; , v in S, both (y ∨x∨ y)→y y and (v ∨u∨ v)→v v are mapped
to the common Ly∨x∨y →Ly

Ly , making x → y; ,L; , y → v in S. A similar argument
applies to the induced map λ : S→ S/R.

An alternative to the characterization of Theorem 3.2 is given by:

Corollary 3.7. Every skew Heyting algebra satisfies:

(SHA) x � y → z if and only if x ∧ y � z.

In particular, x→ y = 1 iff x � y.
In general, an algebra S = (S;∧,∨,→, 1) of type (2, 2, 2, 0) is a skew Heyting algebra

if the following conditions hold:

1. The reduct (S;∧,∨, 1) is a co-strongly distributive skew lattice with top 1.

2. y ≤ x→ y holds for all x, y ∈ S.
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3. S satisfies axiom (SHA).

Proof. Given that S is a skew Heyting algebra, since the induced epimorphism ϕ : S →
S/D is a homomorphism of skew Heyting algebras we have

x � y → z iff ϕ(x) ≤ ϕ(y)→ ϕ(z) iff ϕ(x) ∧ ϕ(y) ≤ ϕ(z) iff x ∧ y � z.

Conversely, let S = (S;∧,∨,→, 1) be an algebra of type (2, 2, 2, 0) satisfying (1)–(3).
Suppose that x, y, z lie in a common upset u ↑. Since � is just ≤ in u ↑ nad y → z lies
in u ↑ by (2) we have x ≤ y → z iff x ∧ y ≤ z in u ↑. (S;∧,∨, 1) is thus at least
a skew Heyting lattice. Now consider the derived implication →∗ given by x →∗ y =
(y ∨ x ∨ y)→y y. Both y → z and y →∗ z satisfy (SHA) and thus are D-equivalent. But
since both lie in the sublattice z↑, they must be equal.

We have seen that each skew Heyting algebra is basically a co-strongly distributive
skew lattice S with top, say 1, for which S/D is a generalized Heyting algebra, in which
case the Heyting structure on each upset u↑ of S is obtained from that of the isomorphic
upset Du↑ in S/D. This suggests that all standard classes of generalized Heyting algebras
yield classes of skew Heyting algebras whose maximal commutative images belong to the
particular class. We consider several cases.
Case 1. Finite distributive lattices possess a well-defined Heyting algebra structure. Thus
any finite co-strongly distributive skew lattice with a top, or more generally any co-strongly
distributive skew lattice with a top and a finite maximal lattice image is the reduct of a
unique skew Heyting algebra.
Case 2. All chains possessing a top 1 form Heyting algebras. Here things are simple:

x→ y =

{
1; if x ≤ y.
y; otherwise.

Thus all co-strongly distributive skew chains with a top are skew Heyting algebra reducts,
where a skew chain is any skew lattice S where S/D is a chain, i.e., � is a total preorder
on S. Here, given x, y in a common u↑ one has:

x→ y =

{
1; if x � y.
y; otherwise.

Case 3. Dual generalized Boolean algebras. These are algebras S = (S;∧,∨, \\, 1) where
(S;∧,∨, 1) is a distributive lattice with top 1 and \\ is a binary operation on S such that
(y∨x)∨ (y \\x) = 1 and (y∨x)∧ (y \\x) = y for all x, y in S. As with \ for generalized
Boolean algebras, \\ is uniquely determined. Moreover, in this case, x → y = y \\ x.
A dual-skew Boolean algebra S = (S;∧,∨, \\, 1) is an algebra such that (S;∧,∨, 1) is a
co-strongly distributive skew lattice with top 1 and binary operation \\ such that:

(y ∨ x ∨ y) ∨ (y \\ x) = 1 = (y \\ x) ∨ (y ∨ x ∨ y);
(y ∨ x ∨ y) ∧ (y \\ x) = y = (y \\ x) ∧ (y ∨ x ∨ y).
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The relevant diagram is:

1

y ∨ x ∨ y y \\ x

y

These dual algebras are, of course, precisely the co-strongly distributive skew lattices with
a top whose maximal lattice images are the lattice reducts of dual-generalized Boolean
algebras. Once again we follow the commutative case: x → y = y \\ x which now is
y \\ (y ∨ x ∨ y) in y↑.

We thus have:

Corollary 3.8. A co-strongly distributive skew lattice with a top S = (S;∧,∨, 1) is the
reduct of a uniquely determined skew Heyting algebra (S;∧,∨, \\, 1) if any one of the
following conditions holds:

1. S/D is finite.

2. S is a skew chain.

3. S is the reduct of a dual generalized Boolean algebra, S = (S;∧,∨, \\, 1).

Implicit in Case 3 is a basic duality that occurs for skew lattices. Given a skew lattice
S = (S;∧,∨), its (vertical) dual is the skew lattice Sl = (S;∧l,∨l), where as binary
functions, ∧l = ∨ and ∨l = ∧. Clearly Sll = S and any homomorphism f : S → T
of skew lattices ia also a homomorphism from Sl to Tl; moreover a skew lattice S is
distributive (or symmetric) iff Sl is thus. Either S or Sl is strongly distributive iff the other
is co-strongly distributive; more generally, S or Sl is normal iff the other is co-normal.
Also, one has a bottom element iff the other has a top element, both being the same element
in S.

Expanding the signature, (S;∧,∨, \, 0) is a skew Boolean algebra if and only if its
dual (S;∧l,∨l, \\, 1) is a dual skew Boolean algebra where \ and 0 are replaced by \\
and 1. Thus any skew Boolean algebra (S;∧,∨, \, 0) induces a skew Heyting algebra
(S;∧l,∨l,→, 1) where x → y = y \ x and 1 = old 0. Standard examples of skew
Boolean algebras thus give us:

Example 3.9. Given sets X and Y , the skew Heyting operations derived from the skew
Boolean operations on the set P(X,Y ) of all partial functions from X to Y are as follows.

skew Heyting operation description skew Boolean operation
f ∧ g f ∪ (g|domg−domf ) f ∨ g
f ∨ g g|domg∩domf f ∧ g
f → g g|domg−domf g \ f

1 ∅ 0



K. Cvetko-Vah: On skew Heyting algebras 47

Example 3.10. Given a surjective function π : Y → X , let Sec(π) denote the set of all
sections of π, that is, functions f from subsets U of X to Y such that π ◦ f = iddom(f).
Skew Heyting algebra operations and corresponding skew Boolean operations are defined
on Sec(π) using precisely the above descriptions. At first glance this seems to be just
a subalgebra of the type of algebra in Example 1. The latter, however, is isomorphic to
Sec(π) where π is now the coordinate projection of X × Y onto X . Modifications of this
example arise in the dualities of the next section.

It so happens that any right-handed (co-)strongly distributive skew lattice is isomorphic
to a subset of partial functions in some P(X,Y ) that is closed under the relevant ∧ and ∨
operations above. (See [12] Section 3.7.) It follows that the skew lattice reduct of a skew
Heyting algebra is isomorphic to some such partial function algebra. The difference of this
more general case from that of the two examples above is that here x→ y need not have a
polynomial definition, unlike the co-Boolean case where x→ y = y \ x.

The following result is useful for computing in skew Heyting algebras.

Proposition 3.11. Let S = (S;∧,∨,→, 1) be a skew Heyting algebra and x, y, z ∈ S.
Then

(x ∨ y ∨ x)→ z = (x→ z) ∧ (y → z) ∧ (x→ z).

Proof. As S/D is a generalized Heyting algebra and relation D respects all skew Heyting
algebra operations, it follows that (x ∨ y ∨ x) → zD (x → z) ∧ (y → z) ∧ (x → z).
However, both (x∨y∨x)→ z and (x→ z)∧ (y → z)∧ (x→ z) are above z with respect
to the natural partial order, and hence must be equal by Lemma 2.2.

A skew lattice S is meet [join] complete if each nonempty commutative subset pos-
sesses an infimum [a supremum] in S. It follows from the dual of [5] Proposition 2.10 that
if S is a meet complete co-strongly distributive skew lattice with 1, then S is complete. We
call a skew Heyting algebra complete if it is complete as a skew lattice.

4 Connections to duality
Dual skew Boolean algebras are order duals (upside-downs) to usually studied skew
Boolean algebras. Skew Boolean algebras and dual skew Boolean algebras are categor-
ically isomorphic. Right-handed (dual) skew Boolean algebras are dually equivalent to
sheaves over locally compact Boolean spaces by results of [1] and [12], where a locally
compact Boolean space is a topological space whose one-point-compactification is a
Boolean space. The obtained duality asserts that any right- [left-]handed skew Boolean
algebra is isomorphic to the skew Boolean algebra of compact open sections (i.e. sections
over compact open subsets) of an étale map over some locally compact Boolean space. Let
us note that the restriction to right- [left-]handed algebras is not a major restriction since
Leech’s Second Decomposition Theorem yields that any skew lattice is a pull back of a
left-handed and a right-handed skew lattice over their common maximal lattice image [13].
The general two-sided case was also covered in [1].

Bounded distributive lattices are dual to Priestley spaces; in this duality each bounded
distributive lattice is represented as the distributive lattice of all clopen (i.e. closed and
open) upsets of a Priestley space. The Esakia duality established in [9] yields that Heyting
algebras are dual to Esakia spaces, i.e. those Priestley spaces in which the downset of each
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clopen set is again clopen. Moreover, if (X,≤, τ) is an Esakia space then given clopen
subsets U and V in X the implication is defined by

U → V = X \ ↓(U \ V ).

Duality for strongly distributive skew lattices was recently established in [2]. It yields
that right-handed strongly distributive skew lattices with bottom are dual to the sheaves over
locally Priestley spaces, where by a locally Priestley space we mean an ordered topological
space whose one-point-compactification is a Priestley space. Via the obtained duality each
right-handed strongly distributive skew lattice with bottom is represented as a skew lattice
of sections over copen (i.e. compact and open) downsets of a locally Priestley space, with
the operations being defined as follows:

0 = ∅,
r ∧ s = s|domr∩doms,

r ∨ s = r ∪ s|doms−domr,

r \ s = r|domr−doms.

Given a distributive lattice L denote by Lc the distributive lattice that is obtained from
L by reversing the order. Denote by DL the category of all distributive lattices, by PS the
category of all locally Priestley spaces and consider the functors:

c : DL → DL
L 7→ Lc and

r : PS → PS
(X,≤) 7→ (X,≥).

Restricting the functors c and r to the categories HA of all Heyting algebras and ES of all
Esakia spaces, respectively, yields the following isomorphism of categories:

c : HA → cHA
L 7→ Lc and

r : ES → cES
(X,≤) 7→ (X,≥),

where cHA denotes the category of all co-Heyting algebras (defined as order-inverses of
Heyting algebras) and cES denotes the category of all co-Esakia spaces the latter being
introduced in [3] as Priestley spaces in which an upset of a clopen is again clopen.

We introduce the following categories:

SDSL : strongly distributive skew lattices with 0,
cSDSL : co-strongly distributive skew lattices with 1,
SHA : skew Heyting algebras,
cSHA : co-skew Heyting algebras,

with the latter being defined as the category of all algebras of the form Sc, where S is a
skew Heyting algebra and

c : SDSL → cSDSL
S 7→ Sc

is the isomorphism of categories that turns a skew lattice upside-down. The restriction of
the functor c to the categories cSHA and SHA yields the isomorphism:

c : cSHA → SHA
S 7→ Sc .
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The isomorphism of categories induces an isomorphism of concepts:

SHA cSHA
∧ ∨
∨ ∧
1 0

strong codistributivity strong distributivity
filter ideal

prime filter prime ideal

It follows from Theorem 3.5 that the skew Heyting algebra structure can be imposed ex-
actly on those co-strongly distributive skew lattices with top whose maximal lattice image
is a generalized Heyting algebra. Therefore the duality for right-handed skew Heyting alge-
bras yields that they are dual to sheaves over local Esakia spaces, i.e. ordered topological
spaces whose one-point-compactification is an Esakia space.

Let (B,≤) be an Esakia space, E a topological space and p : E → B a surjective étale
map. Consider the set S of all sections of p over copen upsets in B, i.e. an element of S is
a map s : U → E, where U is a copen upset in B, that satisfies the property p ◦ s = idU .
A section s ∈ S is considered to be below a section r ∈ S when s extends r. The skew
Heyting operations are defined on S by:

r ∨ s = s|domr∩doms,

r ∧ s = r ∪ s|doms\domr,

r → s = r|↑(doms\domr)

1 = ∅.

Theorem 4.1. Let p : E → B be a surjective étale map over a local Esakia spaceB. Then
the set S of all sections of p over copen upsets in B forms a skew Heyting algebra under
the above operations.
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Abstract

The path of Markov process X run up to an independent exponential random time Sθ
can be decomposed into the part prior to the last exit time from a point before Sθ, and the
remainder up to Sθ. In this paper the laws of the two segments are identified under suitable
assumptions using excursion theory.

Keywords: Markov processes, excursions, last exit decomposition, diffusions, Brownian motion.
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1 Introduction
Considering a Markov processX up to an independent exponential time Sθ with rate θ > 0
has been used effectively to compute functionals of X . The computations are often based
on decompositions of the path of X up to Sθ into fragments before and after the last exit
time from a set before time Sθ. The known results described below are more general in
the sense that the path is decomposed at the last exit from a set before either fixed times or
random times belonging to a suitable family. Choosing an independent exponential time in
some cases leads to simpler descriptions of the laws of the two fragments involved. They
are often conditionally independent given suitable conditioning variables and their laws are
related to laws of known processes.

Williams [27] uses a decomposition of Brownian motion with drift run up to an in-
dependent Sθ to prove result of Ray [23] on the distribution of local times in the space
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variable. In their investigations of Ray-Knight theorems for Brownian motion B at fixed
times Biane and Yor [4] considered the pair of processes (Bt : 0 ≤ gSθ ) and (BSθ−t : 0 ≤
t ≤ Sθ − gSθ ) where Sθ is an exponential random variable independent of B and gt =
sup{s ≤ t : Bs = 0} is the last exit time from 0 before time t. Under P0 the two processes
are shown to be independent and their conditional laws given the local time L(Sθ) at zero
of Brownian motion and BSθ respectively are identified. This decomposition has been ex-
ploited by Jeanblanc, Pitman and Yor [13] to derive Feynman-Kac formulae for Brownian
motion. Salminen, Vallois and Yor [26] extend the decomposition for Brownian motion to
linear diffusions on [0,∞) with 0 a recurrent point and use them to study the excursion of
the diffusion straddling an independent exponential time.

For general Markov processes Pittenger and Shih [22] investigated the dependence of
the fragments of the path of a càdlàg strong Markov process X before coterminal time
Lt ≤ t and the fragment on the interval between Lt and t. Last exit times LtF before time t
from a closed set F are coterminal times. It is shown that given a suitably defined σ-algebra
FLt , the conditional law of the process (XLt+s : 0 ≤ s ≤ t− Lt) only depends on Lt and
XLFt

or XLt− and is an inhomogenous strong Markov process. Getoor and Sharpe [7]
give related results. General and elegant treatments of last exit decompositions are given
in Maisonneuve [18] and Pitman [21]. Kallenberg [14] proves that for Lévy processes the
fragments considered by Pittenger and Shih are conditionally independent givenXLtF− and
LtF where the last exit time from a set F is an instance of a backward time. Under suitable
conditions the laws of the two fragments are described.

Another example of considering a decomposition of a Markov process at last exit time
from 0 before and independent exponential time Sθ is the proof of fluctuation equalities
for Lévy processes given by Greenwood and Pitman [9]. If X is a Lévy process then it is
known that the process reflected at the supremum defined by Yt = sups≤tXs − Xt is a
strong Markov process. See e.g. Bertoin [2], p.156. If Y is split at the last exit time from
0 before an independent exponential time Sθ the two fragments are independent and their
laws can be described. This gives a direct proof of the infinite divisibility results needed to
prove the fluctuation identities by Pečerskiı̆ and Rogozin [20].

The setting of this paper is a strong Markov processes X with a recurrent point a. Last
exit times from a are considered and the path of X is split at the last exit time from a
before an independent exponential time Sθ. The two resulting fragments turn out to be
independent and their laws are described.

2 Notation and statement
Let X be a càdlàg Markov process with state space (E, E) which we will assume to be
Lusinian. We will assume that the semigroup Pt maps Borel functions into Borel functions
and that the process can be realized as the coordinate process on the Skorohod space Ω
of paths which are right continuous with left limits. Assume that the Markov process has
transition densities pt(x, y) with respect to a σ-finite measure ξ on (E, E). The densities
are assumed to be jointly continuous in all three variables for t > 0 which implies the
Chapman-Kolmogorov equations

pt+s(x, y) =

∫
E

pt(x, z)ps(z, y) ξ(dz)

for all s, t > 0 and x, y ∈ E.
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To formulate the results the existence of a dual strong Markov process X̂ on (E, E)
relative to the measure ξ will be assumed. This means that ξ is an invariant measure for
both X and X̂ and

Px(Xt ∈ dy) = pt(x, y)ξ(dy) and P̂x(X̂t ∈ dy) = p̂t(y, x)ξ(dy) (2.1)

for all t > 0, x, y ∈ E with p̂t(x, y) = pt(y, x). See [6] and the references therein for
details. Denote by

rθ(x, y) =

∫ ∞
0

e−θtpt(x, y) dt and r̂θ(x, y) =

∫ ∞
0

e−θtp̂t(x, y) dt

the resolvent densities of X and X̂ respectively. For the sake of simplicity it will be as-
sumed thatX and X̂ have infinite lifetimes ζ under Px and P̂y for all x, y ∈ E respectively.

The assumptions on X imply that it is possible to define bridge laws

P tx,y(·) = Px(·|Xt = y) (2.2)

for t > 0 and for x, y ∈ E. By Proposition 1 in Fitzsimmons, Pitman, Yor [6] for any
x, y ∈ E and t > 0 with pt(x, y) > 0 there is a unique law P tx,y on (Ω,Ft) such that for
any Fs-measurable functional F for 0 ≤ s < t

Etx,y(F ) · pt(x, y) = Ex (F · pt−s(Xs, y)) , (2.3)

whereEtx,y andEx are expectations with respect to measures P tx,y and Px respectively. The
laws P tx,y provide a regular version of the family of conditional distributions P (·|Xt = y).
Furthermore by Corollary 1 in Fitzsimmons, Pitman, Yor [6] the law of the reversed bridge
(X(t−s)− : 0 ≤ s < t) under P tx,y has the law of the bridge of the dual process P̂ ty,x.

The subject of this paper is the law of the process X started at a and run to an inde-
pendent exponential time Sθ with rate θ and conditioned on {XSθ = b}. Conditionally on
{Sθ = t,Xt = b} the law of the process will be the law of the bridge P ta,b and the laws
P ta,b will serve as the regular version of the family of conditional distributions.

Assume that a is a recurrent point of the process X . Let Ta = inf{t > 0: Xt− =
a orXt = a}. Since a is assumed to be recurrent the assumptions imply that Pb(Ta <
∞) = 1 for all b ∈ E.

For t > 0 define the last exit time from a before time t as

gt = sup{s ≤ t : Xt− = a orXt = a} .

Let (Lat : t ≥ 0) be the local time for the process X at a. We will assume that such
a right continuous nondecreasing additive functional exists and only increases on the set
M = {t ≥ 0: Xt− = a orXt = a}. All the results will be valid for any choice of
normalization of the local time. Let for s ≥ 0

τs = inf{t ≥ 0: Lat > s} (2.4)

be the right continuous inverse of the local time. From the strong Markov property of X it
follows that (τs : s ≥ 0) is a subordinator. Since we are assuming recurrence the local time
at a will be unbounded and hence τs is well defined for all s. For simplicity we will assume
that the set M has Lebesgue measure 0 almost surely. This means that the subordinator
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(τs : s ≥ 0) has no drift. From properties of subordinators, see Bertoin [2], Ch. 3, it
follows that

Ea
(
e−θτu

)
= e−ψ(θ)u . (2.5)

The notation X(t), La(t) and g(t) will be used for Xt, Lat and gt whenever necessary.
The theorem to be proved is stated as follows.

Theorem 2.1. Assume that a is a recurrent point for the process X and pt(a, b) > 0 for
all t > 0. Let X0 = a and assume (Lat : t ≥ 0) is the local time of X at a. If Sθ is an
exponential random variable with parameter θ independent of X then, under the measure
Pa:

(i) The random variables La(Sθ) and X(Sθ) are independent with distributions

Pa(La(Sθ) ∈ du) = ψ(θ) e−ψ(θ)udu and Pa(X(Sθ) ∈ dy) = θrθ(a, y)dy
(2.6)

where ψ(θ) is the Laplace exponent defined in Equation 2.5.

(ii) The processes

(Xt : 0 ≤ t ≤ gSθ ) and (XgSθ+u : 0 ≤ u ≤ Sθ − gSθ )

are independent.

(iii) For bounded measurable functionals F and G

Ea [F (Xs : 0 ≤ s ≤ gSθ )|LSθ = u] =
Ea
[
F (Xs : 0 ≤ s ≤ τu) e−θτu

]
Ea [e−θτu ]

(2.7)

Ea[G(X(Sθ−s)− : 0 ≤ s ≤ Sθ − gSθ )|XSθ = b] = (2.8)

=
Êb

[
G(X̂s : 0 ≤ s ≤ T̂a) e−θT̂a

]
Êb[e−θT̂a ]

where Êb refers to expectation under the law P̂b of the dual process, and T̂a = inf{t :
X̂t = a or X̂t− = a} is the hitting time of a for X̂ .

The novelty lies in the fact that known special cases are covered by the more general
Markov setup. Excursion arguments used are standard.

3 Excursion arguments
Let Π be a point process on an abstract space (S,S) with mean measure Λ. If Π is a Poisson
process then by Campbell’s Theorem, see Kingman [16], p. 28, for any measurable f ≥ 0

E

(
exp

(
−
∫
S

f(x)Π(dx)

))
= exp

(
−
∫
S

(1− e−f(x)) Λ(dx)

)
. (3.1)

Conversely, if Equation 3.1 holds for any measurable f ≥ 0, then Π is a Poisson process
with mean measure Λ.
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Assume that Π is a Poisson process with mean measure Λ, and let h : S → [0,∞) be a
measurable function such that∫

S

(1− e−h(x)) Λ(dx) <∞ . (3.2)

The random variable Σh defined by

Σh =

∫
S

h(x)Π(dx)

is almost surely finite and non-negative with

E (exp(−Σh)) = exp

(
−
∫
S

(1− e−h(x))Λ(dx)

)
. (3.3)

Define a new probability measure Q by

dQ

dP
=

exp (−Σh)

E [exp (−Σh)]
. (3.4)

The following lemma is known in the literature, see Proposition 2.1 in James [12] and the
discussion therein, or Proposition 2.4 in Bertoin [3].

Lemma 3.1. Under the measure Q, Π is a Poisson process with mean measure e−h(x) ·
Λ(dx).

Proof. It suffices to check that Equation 3.1 holds. Denote c = 1/E(exp(−Σh)) and let
Σf =

∫
S
f(x)Π(dx) for a measurable funtion f ≥ 0. One has

EQ [exp(−Σf )] = cEP

[
exp (−Σh) · exp

(
−
∫
S

f(x)Π(dx)

)]
= cEP

[
exp

(
−
∫
S

(f(x) + h(x)) Π(dx)

)]
= c exp

(
−
∫
S

(
1− e−f(x)−h(x)

)
Λ(dx)

)
= c exp

(
−
∫
S

[
(1− e−f(x)) e−h(x) + (1− e−h(x))

]
Λ(dx)

)
= exp

(
−
∫
S

(1− e−f(x)) e−h(x) Λ(dx)

)

LetX be a càdlàg strong Markov process. The setM = {t ≥ 0: Xt− = a or Xt =
a} is closed under the assumptions. Since we are assuming recurrence of X the com-
plement of M is a countable union of bounded open intervals. The segments of the
path of X on these open intervals are called the excursions of X away from the point
a. By definition the open intervals coincide with the complement of the range of the
subordinator (τs : s > 0) defined in Equation 2.4. Let Uδ be the space of càdlàg paths
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w : [0,∞) → E such that w(0) = a and there is a t > 0 such that for 0 < s < t we have
w(s) 6= a,w(s−) 6= a, and w(t) = a or w(t−) = a and w(s) = δ for s > t where δ is the
coffin state added to E. Let Uδ be the σ-algebra generated by the coordinate maps in Uδ .
Define the point process (es : s > 0) of excursions of X in the sense of Itô as

es =

{
δ if τs − τs− = 0
es(u) = Xτs−+u for u < τs − τs− and δ else. (3.5)

The process e is a Poisson process in the sense of Itô governed by the measure λ̃×n where
λ̃ is a multiple of the Lebesgue measure on [0,∞) and n is the Itô excursion law. We
can change the normalization of the local time, if needed, in order to ensure that λ̃ is the
standard Lebesgue measure. See Rogers and Williams [25], Ch. 8 or Revuz and Yor [24],
Ch. 8 for background on excursion theory.

The connection between excursion theory and the law of a Markov process run up to
an independent exponential time Sθ is established through marking excursions. Let Π be
a Poisson process on an abstract space (S,S). If conditionally on Π each point x ∈ Π is
assigned a mark with probability p(x) independently of all the other points in Π then the
resulting marked and unmarked processes are both Poisson and are independent. If Λ is the
mean measure of Π the marked process will have mean measure p · Λ and the unmarked
process (1− p) · Λ. See Kingman [16], Ch. 5 for definitions and proofs.

The excursion of the Markov processX straddling the independent exponential random
time Sθ can be interpreted as the first marked excursion of X where conditionally on e
marks are assigned to an excursion e with probability 1 − e−θR(e) where R(e) stands for
the duration of the excursion i.e. the length of the open interval of M c containing Sθ.
Intuitively we can think that Sθ is the first point in a Poisson process N on (0,∞) with
rate θ and independent of X . Excursions straddling a point of N are considered marked
and other excursions are considered unmarked. By independence properties of Poisson
processes conditionally on e the marks are assigned independently and an excursion of
lengthR(e) contains a point of the Poisson process with probability 1−eR(e) which follows
from the Poisson distribution of points contained in the excursion interval. See Sec. 49 in
Rogers and Williams [25] for definitions and proofs.

The following theorem is stated in slightly more general terms allowing the Poisson
process (es : s > 0) to be killed at a rate q. This would correspond to excursions of X
that have infinte length. The conclusions of the theorem are well known, see Sec. 49.4 in
Rogers and Williams [25].

Theorem 3.2. Let (es : s > 0) be a possibly killed excursion process ofX from a recurrent
point a in the sense of Itô, and let Sθ be an exponential random variable with parameter θ
independent ofX . Denote by (Lat : t ≥ 0) the local time process ofX at a and (es : s > 0)
the associated excursion process governed by λ× n where λ is the Lebesgue measure.

(i) The local time La(Sθ) during the excursion straddling Sθ is an exponential random
variable with parameter∫

U

(1− e−θR(e))n(de;R <∞) + q

where q is the rate of arrival of excursions with infinite lifetime. Moreover, it is
independent of the excursion e∗ = e(LaSθ ) which may have infinite lifetime.
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(ii) Given La(gSθ ) = u the process of excursions (es : 0 < s < u) is a Poisson
process in the sense of Itô which is governed by the measure n̄ given by n̄(de) =
e−θR(e) n(de;R(e) <∞) where n is Itô’s excursion law andR(e) denotes the length
of the excursion. Moreover, e∗ is conditionally independent of (es : 0 < s < u) given
{La(Sθ) = u}, and is independent of La(Sθ).

Proof. The first marked excursion in (es : s > 0) will arrive at an exponential time. The
processes of finite length excursions and those of infinte length are independent so the rates
of arrivals add. The rate of arrivals of marked finite length excursions is by definition equal
to ∫

U

(1− e−θR(e))n(de;R <∞) .

The two processes of marked and unmarked excursions are independent. This means that
conditionally on La(Sθ) = u the process (es : 0 < s < u) is a Poisson process on
(0, u)× Uδ .

The first marked excursion is picked according to the normalized law (1 − e−θR) · n
irrespective of the local time La(Sθ). This and the independence of marked and unmarked
excursions conclude the proof.

4 Proofs

Recall that under the assumptions on X and X̂ and if pt(a, b) > 0 there is a measure P ta,b
corresponding to the bridge of X starting at a and conditioned to be b at time t. The family
of P ta,b is a family of regular conditional laws of X given Xt = b. If Sθ is an exponential
random variable of rate θ then under Pa the family P ta,b is a regular conditional law of
X given {Sθ = t,Xt = b}. The assumptions made on X and X̂ also imply that X and
X̂ have no jumps at fixed times. See (3.18) in Getoor and Sharpe [8] for a proof. Let
T̂b = inf{t > 0: X̂t = b or X̂t− = b}. Assume further that P̂b(T̂b > 0) = 0 which in
conjunction with right continuity and strong Markov property implies that XTb = b.

Lemma 4.1. Assume that Pa(Tb <∞) = 1. Assume that pt(a, b) > 0 for all t > 0. Then

Pa(Tb ∈ ds|X(Sθ) = b) = e−θsPa(Tb ∈ ds)
rθ(b, b)

rθ(a, b)
,

where rθ(x, y) is the resolvent density.

Proof. By assumptions on b and X̂ we have Pa(Tb < Sθ|X(Sθ) = b) = 1. For fixed
0 < s < t and a Fs measurable functional F by 2.6 in Fitzsimmons, Pitman and Yor [6]

Eta,b(F ) · pt(a, b) = Ea (F · pt−s(Xs, b)) . (4.1)

Choose an open neighbourhood B ∈ E of b such that rθ(a, y) > 0 for y ∈ B. Let
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F = 1(Tb ∈ ds). We have

Pa(Tb ∈ ds, Tb < Sθ, XSθ ∈ B) =

=

∫ ∞
s

θe−θt dt

∫
B

pt(a, y)P ta,y(Tb ∈ ds) ξ(dy)

=

∫ ∞
s

θe−θt dt

∫
B

Pa (Tb ∈ ds) pt−s(b, y) ξ(dy)

= e−θsPa(Tb ∈ ds)
∫
B

ξ(dy)

∫ ∞
0

θe−θupu(b, y) du

= e−θsPa(Tb ∈ ds) θ
∫
B

rθ(b, y)ξ(dy)

= e−θsPa(Tb ∈ ds)
∫
B

rθ(b, y)

rθ(a, y)
· θrθ(a, y) ξ(dy)

It follows that

Pa(Tb ∈ ds|X(Sθ) = b) = e−θsPa(Tb ∈ du)
rθ(b, b)

rθ(a, b)
.

Remark 4.2. Integrating the equation with respect to s over (0,∞) in Lemma 4.1 gives
the well known formula

Ea(e−θTb) =
rθ(a, b)

rθ(b, b)
. (4.2)

See e.g. Rogers and Williams [25], (50.7) on p. 293.

Let us consider the process (Xt : 0 ≤ t ≤ Tb) given {XSθ = b}. The following lemma
gives the conditional distribution of this process given X(Sθ) = b.

Lemma 4.3. Assume that Pa(Tb <∞) = 1. Assume that pt(a, b) > 0 for all t > 0. Let F
be a non-negative measurable functional of the process (Xt : 0 ≤ t ≤ Tb). Then

Ea(F |X(Sθ) = b) = Ea
(
e−θTb · F

)
· rθ(b, b)
rθ(a, b)

, (4.3)

where rθ(x, y) is the resolvent density.

Proof. As in Lemma 4.1 we compute for an open neighbourhood B ∈ E of b such that
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rθ(a, y) > 0 and a bounded measurable functional F

Ea [F · 1(Tb < Sθ, Tb ∈ ds,XSθ ∈ B)] =

=

∫ ∞
s

θe−θt dt

∫
B

pt(a, y)Eta,y(F · 1(Tb ∈ ds)) dy

=

∫ ∞
s

θe−θt dt

∫
B

Ea (F · 1(Tb ∈ ds)) pt−s(b, y) dy

= e−θsEa (F · 1(Tb ∈ ds))
∫
B

dy

∫ ∞
0

θe−θupu(b, y) du

= e−θsEa (F · 1(Tb ∈ ds)) θ
∫
B

rθ(b, y) dy

= e−θsEa (F · 1(Tb ∈ ds))
∫
B

rθ(b, y)

rθ(a, y)
· θrθ(a, y) dy

This in conjunction with the distribution of Tb from Lemma 4.1 completes the proof.

The conclusions of Lemma 4.3 apply equally to the dual process X̂ . Moreover under
Pa the conditional law of the process (X(Sθ−t)− : 0 ≤ t ≤ Sθ) given XSθ = b is equal to
the law of X̂ started at b run to an independent exponential time and conditioned to be a at
the end. This implies that under the assumptions on a for any bounded functional G

Ea

[
G

(
X(Sθ−t)− : 0 ≤ t ≤ Sθ − gSθ

)∣∣∣∣XSθ = b

]
= Êb

[
G
(
X̂t : 0 ≤ t ≤ T̂a

)
e−θT̂a

]
· r̂θ(a, a)

r̂θ(b, a)

(4.4)

because the last exit time gSθ from a is the first hitting time of a for the reversed process.
This is in accordance with Theorem 7.6 in Getoor and Sharpe [8] that excursions straddling
a fixed time reversed and conditioned on the length are the excursions of the dual process.
See also formula (3.12) in Ikeda, Nagasawa, Sato [11] who give the law of the process
reversed from the lifetime of a killed Markov process. The case treated here considers
killing at a constant rate.

We are now in position to give the proof of Theorem 2.1.

Proof. The second assertion in (i) is the definition of the resolvent density. Let (es : s > 0)
be the excursion process of X from a. Marked excursions arrive at an exponential rate so
we know that La(Sθ) will be exponential. Since excursions are marked by an independent
Poisson process, the event {La(Sθ) > u} is equal to the event that there is no mark in the
interval [0, τu], and has conditional probability e−θτu . Integration gives

Pa(La(Sθ) > u) = Ea
(
e−θτu

)
= e−uψ(θ) ,

which by differentiation gives the density. To prove (ii) note that by Theorem 3.2 condi-
tionally on {La(Sθ) = u} the process of excursions (es : 0 < s < u) is independent of the
excursion e∗ straddling Sθ. Because marks to excursions are assigned by an independent
Poisson process conditionally on R(e∗) = r the mark is distributed at the distance U from
the left endpoint with density

θe−θu/(1− e−θr)
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on [0, r] independently of the process of unmarked excursions and of the local time La(Sθ).
So the excursion e∗ together with the position of Sθ within the duration of e∗ are indepen-
dent of the process of unmarked excursions and of La(Sθ). This proves the independence
of the two processes in (ii).

For the first assertion in (iii) note that conditionally on La(Sθ) = u the excursions of
(Xt : 0 ≤ t ≤ gSθ ) from the point a are a Poisson process with excursion law e−θR · n by
Theorem 3.2 (i). On the other hand, if we let (es : 0 < s < u) be the Poisson process of
excursions of X from a and choose h(e) = θ R(e) in Lemma 3.1, under the new measure
the process is still Poisson but with the mean measure e−Σh · n. But under the assumption
that the set M has Lebesgue measure 0 we have Σh = θ · τu.

The proof of the second formula in (iii) follows from Lemma 4.3 applied to the reversed
process.

Note the connection with Lemma 4.1 in Kallenberg [14] which states that for Lévy
processes with continuous densities

Pa (F (Xs : 0 ≤ s ≤ τu)|τu = t) = P ta,a (F (Xs : 0 ≤ s ≤ t)|Lt = u) (4.5)

where Pt refers to the law of the bridge of length t. Noting that Lemma 3.1 gives

Pa (gSθ ∈ dt|L(Sθ) = u) =
e−θtPa(τu ∈ dt)
Ea (e−θτu)

. (4.6)

Equations 4.5 and 4.6 imply part (ii) in Theorem 2.1.

5 Examples
5.1 Linear diffusions

Let X be a regular diffusion on an interval I ⊂ R with speed measure m. It is well known
that X has a jointly continuous density p(t, x, y) with respect to m:

Px(Xt ∈ A) =

∫
A

p(t, x, y)m(dy) . (5.1)

The density is symmetric in x and y which implies that for diffusions the dual process is
the diffusion itself. Assume that the X has a recurrent point a and that the point a is not
an atom of the speed measure m. This implies that the inverse local time at a has no drift.
With such assumptions the conclusions of the Theorem 2.1 hold with X̂ = X . Moreover,
it is known that

Eb
(
e−θTa

)
=
rθ(b, a)

rθ(a, a)
and Ea

(
e−θτu

)
= e
− u
rθ(a,a) . (5.2)

See Rogers and Williams [25], Sec. 50.
As the first example one can take X to be Brownian motion and a = 0. All the

assumptions are satisfied. It follows that the two processes (Bt : 0 ≤ t ≤ gSθ ) and
(BSθ−t : 0 ≤ t ≤ Sθ − gSθ ) are independent. For the first process we get

E0 (F (Bt : 0 ≤ t ≤ gSθ )|L(gSθ ) = l) =
E0

(
F (Bt : 0 ≤ t ≤ τu)e−θτu

)
E0 (e−θτu)

. (5.3)
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It is well known that

E0

(
e−θτl

)
= e−l

√
2θ and Eb

(
e−θT0

)
= exp

(
−|b|
√

2θ
)
.

where T0 = inf{t ≥ 0: Bt = 0}. The first assertion follows from (i) in Theorem 2.1 and
the fact that Lt

d
= |Bt|, see e.g. Revuz and Yor [24], p. 289. The hitting time distribution

is an elementary consequence of the reflection principle for Brownian motion. The law of
the second process, given BSθ = a, is described by

E(G(BSθ−t : 0 ≤ t ≤ Sθ − gSθ )|BSθ = b) =
Eb
(
F (Bs : 0 ≤ s ≤ T0)e−θT0

)
Eb (e−θT0)

. (5.4)

which yields the result first obtained by Biane and Yor in [4]. See Leuridan [17] for an
alternative elementary proof and Yen and Yor [28], Ch 9. for an alternative proof.

Since the bridge laws for Brownian motion with drift B(µ)
t = Bt + µt are exactly the

same for all drifts the conditional law of (B
(µ)
t : 0 ≤ t ≤ Sθ) given {B(µ)

Sθ
= b} does not

depend on µ. This means that Equations 5.3 and 5.4 hold for Brownian motion with drift
with B instead of B(µ). The only change is that the resolvent density changes to that of
Brownian motion with drift

rθ(a, b) =
1√

2θ + µ2
eµ(b−a)−|b−a|

√
2θ+µ2

.

The skew Brownian motion X(α) with parameter α ∈ (0, 1) is constructed by inde-
pendently flipping the excursions of |Bt| up with probability α and down with probability
1 − α. A pair of dual processes with respect to Lebesgue measure are the processes X(α)

andX(1−α). Both processes behave like Brownian motion away from 0 and the distribution
of their local time at a fixed point is equal to the distribution of the local time of Brownian
motion X(1/2). From the known transition densities of X(α), see p. 82 in Revuz and Yor
[24], it follows

rθ(0, b) = (2α1(b > 0) + 2(1− α)1(b ≤ 0)) e−|b|
√

2θ .

The skew Brownian motion satisfies all the assumptions made on the Markov process X .
Equation 2.7 holds with the same E(e−θτu) as in the case of Brownian motion. Equation
2.8 holds with X replaced by standard Brownian motion started at 0.

Let X be a Bessel process of dimension δ ∈ (0, 2). Denote ν = δ/2 − 1 ∈ (−1, 0).
It is well known, see Revuz and Yor [24], that 0 is a recurrent point for X , satisfying all
the assumptions and that the time X spends at 0 has Lebesgue measure 0. The results
of Theorem 2.1 apply. Bessel processes are dual to themselves under the speed measure
with density ξ(dx) = −x

2ν+1

ν dx on [0,∞). Let Iν(z) and Kν(z) be the modified Bessel
functions with index ν. With respect to ξ the transition density of X for a, b > 0 is given
by

pt(a, b) =
1

t(ab)ν
e−

a2+b2

2t Iν

(
ab

t

)
.

Using formula 15.55 in Oberhettinger [19] for 0 < a ≤ b we get that

rθ(b, a) =
2

aνbν
Iν(a
√

2θ)Kν(b
√

2θ) .
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By Equation 4.2

Ea
(
e−θTb

)
=

(
b

a

)ν
Kν(a

√
2θ)

Kν(b
√

2θ)

in accordance with Theorem 3.1 in Kent [15]. By Pa(T0 < ∞) = 1 and the continuity
of paths we have Ta ↑ T0 as a ↓ 0. Letting a → 0 and taking into account that Kν(z) ∼
Γ(−ν)

2 (z/2)ν for z → 0 we get

Eb
(
e−θT0

)
=

21+ν

Γ(−ν)

(
b
√

2θ
)ν/2

Kν

(
b
√

2θ
)
.

By Pitman, Barlow and Yor [1] there is a bicontinuous family of local times Lbt of the
process X such that ∫ t

0

f(Xs)ds =
1

2

∫ ∞
0

bδ−1Lbt db

for bounded measurable functions f . With this choice the inverse local time is a stable
subordinator of index −ν with Laplace transform

E0

(
e−θτu

)
= exp

(
−u · 21+νθ−νΓ(1 + ν)

Γ(−ν)

)
.

5.2 Lévy processes

For a Lévy process X the Lebesgue measure is invariant and the dual process is−X . If the
process has continuous densities for t > 0, is recurrent and spends Lebesgue measure 0 at
points the conclusions of Theorem 2.1 can be applied.

An example is provided by symmetric stable processes of index α ∈ (1, 2). These
processes are recurrent and by scaling property the inverse local time is a subordinator
of index 1 − 1/α. See Bertoin [2], Ch. 8. The independence of (Xt : 0 ≤ t ≤ gSθ ) and
(XgSθ+u : 0 ≤ u ≤ Sθ−gSθ ) and scaling imply that given g1 the process (Xt : 0 ≤ t ≤ g1)
is conditionally independent of (Xg1+u : 0 ≤ u ≤ 1 − g1). This means that the two
processes (

Xtg1√
g1

: 0 ≤ t ≤ 1

)
and

(
Xg1+u(1−g1)√

1− g1
: 0 ≤ u ≤ 1

)
(5.5)

are independent. Scaling also implies that the inverse local time τu is a stable subordinator
of index 1 − 1/α with E(e−θτu) = e−uψ(θ) = e−cθ

1−1/α

for some constant c depending
on the normalization of the local time. From Equation 2.7 we can compute

E
(
e−λgSθ

∣∣L(Sθ) = u
)

=
E
(
e−(λ+θ)τu

)
E (e−θτu)

. (5.6)

Using the form of ψ(θ) and unconditioning using Equation 2.6 gives

E
(
e−λgSθ

)
=

(
θ

λ+ θ

)1−1/α

.

It follows that gSθ ∼ Γ(1 − 1/α, θ) and by independence Sθ − gSθ ∼ Γ(1/α, θ). Using
scaling again this gives the arc-sine law g1 ∼ Beta(1 − 1/α, 1/α). This result is due to
Chaumont [5]. See also Bertoin [2], p. 230.
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For another application let Y be a Lévy process. Assume P (Y0 = 0) = 1 and define
Ȳt = sups≤t Ys. The reflected process X = Ȳ − Y is a Feller process in the right
continuous filtration Ft of X , see Ch. 6 in Bertoin [2]. Denote by L its local time 0 and
let τu = inf{t : Lt > u} be the right continuous inverse of L. Denote by (eu : u > 0) the
excursion process attached to the process X . It is in general not possible to reconstruct Ȳ
from the exursion process of the reflected process X . As noted by Greenwood and Pitman
in their remark on p. 899 in [10], however, the process of excursions can be extended into
a two dimensional Poisson point process such that X̄ can be reconstructed. The idea is to
add to the excursion at time u > 0 the jump of the ladder height processHu = Ȳτu . Denote
Ju = Hu−Hu−. The resulting point process ((eu, Ju) : u > 0) is a Poisson point process
in the sense of Itô in the space U × (0,∞).

Let Sθ be an exponential random variable with rate θ independent of Y . If the as-
sumptions of Theorem 3.2 are met the following conclusions can be made: (i) The pairs of
random variables (gSθ , X̄Sθ ) and (Sθ−gSθ , ȲSθ−YSθ ) are independent. This follows from
Theorem 2.1. (ii). The random pair (gθ, X̄θ) is infinitely divisible. To prove this statement
first recall a standard result about Lévy processes: if Z is a d-dimensional Lévy process
and Sθ is an independent exponential random variable, then the random variable (Sθ, ZSθ )
is infinitely divisible. See Bertoin, [2] p. 162. By Equation 2.8 applied to the reflected
process X̃ we find that the law of (gSθ , X̄Sθ ) given {L̃θ = u} is just like the sum of the
points of the process ((Ru, Ju) : u > 0) where Ru is the excursion length at local time u
and Ju is the jump of the ladder height process H . This last two-dimensional process is
a map of the extended excursion process ((eu, Ju) : u > 0) and as such a Poisson point
process on (0,∞)2. Sums of Poisson processes are infinitely divisible so it follows that
(gSθ , X̄Sθ ) given {LSθ = u} is infinitely divisible. But LSθ is exponentially distributed
and infinite divisibility follows. The infinite divisibility of the pair (Sθ − gSθ , ȲSθ − YSθ )
follows by duality arguments. See Lemma 9 in Bertoin [2], p. 164.

The assertions about infinite divisibility and independence are true in general without
additional assumptions on the reflected process X . See Greenwood and Pitman [9] for
details.
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351 cours de la Libération, F-33405 Talence Cedex, France

Received 3 April 2015, accepted 3 April 2016, published online 2 May 2016

Abstract

We discuss the multiple integral of a multivariate exponential taken with respect either
to the Lebesgue measure or to the discrete uniform Bernoulli measure. In the first case
the integral is linked to Euler’s everywhere divergent power series and its generalizations,
while in the second case the integral is linked to a one-dimensional model of spin systems
as encountered in physics.
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Math. Subj. Class.: 33E20, 28A35, 82B44, 82D30

1 Introduction
Consider the integral (N ≥ 1)

ZN (x) =

∫
RN

exp

−H
 N∑
j=1

uj

− x N∏
j=1

uj

µ

 N∏
j=1

duj

 (1.1)
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If µ is the Lebesgue measure on (0,∞)
N and H = 1, the integral is linked to the series∑

n≥0

(−1)n(n!)N−1xn

which, for N = 2, is attributed to Euler. If N = 1 the series reduces to (1 + x)−1

(convergent for |x| < 1) and for N ≥ 2 it diverges for all x 6= 0.
If on the other hand, µ is the Bernoulli measure on the set {−1, 1}N then the integral

reads

ZN (x) =
1

2N

∑
u∈{±1}N

exp

−H
 N∑
j=1

uj

− x N∏
j=1

uj


and could represent a certain spin system described in Section 6.

2 Euler’s divergent series
If µ is the Lebesgue measure on (0,∞)

N , we suppose that H > 0 and x ≥ 0. There is
no loss of generality in the choice H = 1 in Formula 1.1; take new variables vj = Huj .
Integrate

ZN (x) =

∫
(0,∞)N

exp

−
 N∑
j=1

uj

− x N∏
j=1

uj

 N∏
j=1

duj

with respect to duN to obtain

ZN (x) =

∫
(0,∞)N−1

exp
(
−
(∑N−1

j=1 uj

))
1 + x

∏N−1
j=1 uj

N−1∏
j=1

duj .

Suppose N ≥ 2 since the case N = 1 is trivial. ZN converges for all complex x outside

the negative real axis (−∞, 0). Expand
(

1 + x
∏N−1
j=1 uj

)−1
into a formal power series

ZN (x) =

∫
(0,∞)N−1

exp

−N−1∑
j=1

uj

∑
n≥0

(−1)nxn
N−1∏
j=1

uj
n
N−1∏
j=1

duj .

If we accept to permute the summation with the integral, then

ZN (x) =
∑
n≥0

(−1)nxn
N−1∏
j=1

∫
(0,∞)

unj exp(−uj)duj =
∑
n≥0

(−1)n(n!)N−1xn.

What happens if N = 1 or 2? The case N = 1 is trivial yet interesting,

Z1(x) =

∫ ∞
0

exp(−u− xu)du =
1

1 + x
·

Expanding the integral with respect to xwe obtain Z1(x) =
∑
n≥0 (−1)nxn and for x = 1

we rediscover the well-known “equality”
∑
n≥0 (−1)n = 1

2 ·
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∫ ∞
0

exp(−u)

1 + u
du = 0.5963 . . .

and therefore concluded ∑
n≥0

(−1)nn! = 0.5963 . . .

a most astonishing equality! In his beautiful book G. H. Hardy [2] discusses in detail this
case N = 2.

Remark 2.1. The constant
∫∞
0

exp(−u)
1+u du = 0.5963 . . . is called the Euler or the Euler-

Gompertz constant (see [3], [1, Section 6.2], and in particular [1, Section 6.2.4] for the
name “Gompertz”). Among the numerous results related to this constant we do not resist
to write the following continued fraction expansion:∫ ∞

0

exp(−u)

1 + u
du =

1

2−
1

4−
4

6−
9

8−
. . .

This continued fraction expansion is sometimes attributed to Stieltjes, but in [8] Stieltjes
indicated that it was studied by Laguerre. We found indeed in [5, p. 154] that Laguerre con-
sidered e times the Prym function1 eQ(α) =

∫∞
1
e1−xxα−1dx and obtained as consecutive

approximations of eQ(0) the sequence

4

7
,

20

34
,

124

209
,

920

2546
,

7940

13327
, . . .

which are exactly the values of the first few truncatures of the above continued fraction
(also see Laguerre [4, p. 77]). Of course eQ(0) =

∫∞
0

exp(−u)
1+u du = Z2(1): it would thus

be interesting to obtain such nice continued fraction expansions for the quantities ZN (1).
More generally, a formula given by Tannery in [9, p. 1699] or an easy rewriting of a

formula given by Laguerre in [4, end of Page 75] reads

ex
∫ ∞
x

e−t

t
dt =

1

x+ 1−
1

x+ 3−
4

x+ 5−
9

x+ 7−
. . .

But

Z2(x) =

∫ ∞
0

exp(−u)

1 + xu
du =

1

x

∫ ∞
0

e−u

1
x + u

du =
1

x
e1/x

∫ ∞
1/x

e−t

t
dt.

1Note that there seems to be a misprint in the formula given by Laguerre, where e1−x is replaced by e−x, see
the original definition by Prym [7, p. 169].
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Hence

Z2(x) =
1

1 + x−
x2

1 + 3x−
4x2

1 + 5x−
9x2

1 + 7x−
. . .

3 The Borel operator
The sequence ZN can be defined recursively by means of the so-called Borel operator

B : f 7→
∫ ∞
0

exp(−u)f(ux)du.

The Borel operator applies the series
∑
n≥0 f

(n)(0)x
n

n! onto
∑
n≥0 f

(n)(0)xn.
Using the relation Z0(x) = exp(−x) and ZN+1 = BZN , we see that the integral ZN

is therefore the N th iterate BN of x 7→ exp(−x), or equivalently the (N − 1)st iterate
BN−1 of x 7→ (1 + x)−1.

4 The Abel-Plana summation and the Γ function
In this section we study the behavior of ZN when N goes to infinity. Note that for real
x ≥ 0, the sequence N 7→ ZN (x) is bounded from above by 1 and furthermore it is
increasing. Indeed let ∆N (x) = ZN+1(x)− ZN (x) and ΠN (x) = x

∏N
j=1 uj . Then

∆N (x) =

∫
(0,∞)N

exp

− N∑
j=1

uj

( 1

1 + ΠN (x)
− exp (−ΠN (x))

) N∏
j=1

duj .

Since 1
1+t − exp(−t) ≥ 0, ZN+1(x) ≥ ZN (x) as claimed. Therefore ZN (x) tends to a

limit which we now compute.

Theorem 4.1. For all real x ≥ 0, we have lim
N→∞

ZN (x) = 1.

Proof. Since the result is trivial for x = 0, we may assume x > 0. We note that ZN (x)
can be written as a diverging series

ZN (x) =
∑
n≥0

(−1)nfN (n)

where fN : s 7→ Γ(1 + s)N−1xs is an analytic function on the half-plane <(s) > −1.
By blindly applying the Abel-Plana Formula (see [6, III, formula X]) to this series, we

get

ZN (x) = −
∫ −1/2+i∞
−1/2−i∞

Γ(1 + z)N−1xz

2i sin(πz)
dz

=

∫ +∞

−∞

Γ(1/2 + it)N−1x−1/2+it

2 cosh(πt)
dt
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or by displacing the integration contour,

ZN (x) = 1−
∫ 1/2+i∞

1/2−i∞

Γ(1 + z)N−1xz

2i sin(πz)
dz (4.1)

= 1−
∫ +∞

−∞

Γ(3/2 + it)N−1x1/2+it

2 cosh(πt)
dt (4.2)

The convergence of the integrals is provided by the fact the Γ function decreases like
exp(−π2 |z|) as z goes to−1/2±i∞ (resp. 1/2±i∞), and sin(πz) increases like exp(π|z|).

Strictly speaking, the Abel-Plana Theorem only applies forN = 0. However, by apply-
ing the Borel operator to the right-hand side and interverting the summations by Fubini’s
Theorem, we find that

FN (x) =

∫ +∞

−∞

Γ(1/2 + it)N−1x−1/2+it

2 cosh(πt)
dt

satisfies the same recursion as ZN (x). Indeed,

BFN (x) =

∫ ∞
0

exp(−u)

∫ +∞

−∞

Γ(1/2 + it)N−1(xu)−1/2+it

2 cosh(πt)
dtdu

=

∫ +∞

−∞

Γ(1/2 + it)N−1x−1/2+it

2 cosh(πt)

∫ ∞
0

u−1/2+it exp(−u)dudt.

From the identity Γ(1/2 + it) =
∫∞
0
u−1/2+it exp(−u)du, it follows

BFN (x) =

∫ +∞

−∞

Γ(1/2 + it)Nx−1/2+it

2 cosh(πt)
dt = FN+1(x)

therefore FN = ZN .
Now since |Γ(3/2 + it)| ≤

√
π
2 < 1 for all t ∈ R, the integral (4.2) converges to 0

when N goes to infinity for all real x ≥ 0, thus we have proved:

lim
N→∞

ZN (x) = 1.

To conclude this section, we note that this formula for ZN involves a single integral
which is much more suitable for numerical computations than the original formula involv-
ing a multiple integral. Note also that N need not be an integer. . .

5 A differential equation
It might be worthwhile to mention that the function

ZN (x) =

∫
(0,∞)N

exp

−
 N∑
j=1

uj

− x N∏
j=1

uj

 N∏
j=1

duj
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is a solution of a differential equation of order N − 1 with polynomial coefficients.
Indeed, the shortest way to establish this is to introduce the linear operator U defined

by U(z) = (xz)′. Clearly U(xn) = (n+ 1)xn so that Uk(xn) = (n+ 1)kxn. Then

UN−1ZN (x) = UN−1
∑
n≥0

(−1)n(n!)N−1xn

=
∑
n≥0

(−1)n(n!)N−1(n+ 1)N−1xn

=
∑
n≥0

(−1)n((n+ 1)!)N−1xn ;

xUN−1ZN (x) =
∑
n≥0

(−1)n((n+ 1)!)N−1xn+1

= 1− ZN (x).

The function ZN (x) is thus solution of the (N − 1)-st order differential equation

xUN−1y + y = 1

with initial conditions

y(0) = 1, y′(0) = −1, . . . , y(N−2)(0) = (−1)n−2 ((N − 2)!)
N−1

.

The reader may well criticize the above proof since it involves divergent series. There
is however no problem in justifying the result by applying the operator U to the integral
representation of ZN (x); the calculations are just slightly more cumbersome.

Example 5.1. Z2(x), Z3(x), Z4(x) are respectively solution of the equations

x2y′ + (x+ 1)y = 1

x3y′′ + 3x2y′ + (x+ 1)y = 1

x4y′′′ + 6x3y′′ + 7x2y′ + (x+ 1)y = 1

The reader will recognize the numbers above as the Stirling numbers of the second kind.
This can be proved by noting that both families of numbers obey the formula

an+1,k = kan,k + an,k−1.

6 An unconventional spin system
We now assume that µ is the Bernoulli measure on {−1,+1}N :

ZN (x) =
1

2N

∑
u∈{±1}N

exp

−H
 N∑
j=1

uj

− x N∏
j=1

uj

.
We interpret ZN as the partition function of a certain spin system which we describe

below. Conventional spin systems are discussed for example in C. J. Thompson [10].
Imagine an N -component particle, each component of which has a spin uj = ±1, and

which are instantaneously influenced by the N − 1 others. The “total” spin of the particle,
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i.e., its sign is
∏N
j=1 uj . A real external fieldH acts on the spins. The Hamiltonian attached

to the spin system in state u = (u1, u2, . . . , uN ) with external field −H is then given by

x

N∏
j=1

uj +H

N∑
i=1

uj .

The behavior of the spin system is controlled by the partition function, in particular by
its thermodynamical limit

lim
N→∞

logZN (x)

N
·

Theorem 6.1. For all real x ≥ 0,

ZN (x) = cosh(x) cosh(H)N − (−1)
N

sinh(x) sinh(H)N .

Proof. By using the relation exp(−t) = cosh(t)− sinh(t), we write

ZN (x) =
1

2N

∑
u∈{±1}N

exp

−H
 N∑
j=1

uj

cosh(x

N∏
j=1

uj)− sinh(x

N∏
j=1

uj)

.
Since

∏N
j=1 uj = ±1, cosh is even and sinh is odd, it follows that

ZN (x) =
1

2N

∑
u∈{±1}N

exp

−H
 N∑
j=1

uj

cosh(x)− sinh(x)

N∏
j=1

uj

. (6.1)

The following two formulas are easily proved by recursion on N :

∑
u∈{±1}N

exp

H
 N∑
j=1

uj

 = (2 cosh(H))
N

∑
u∈{±1}N

exp

H
 N∑
j=1

uj

 N∏
j=1

uj = (2 sinh(H))
N
.

From Equation (6.1) it follows:

ZN (x) = cosh(x) cosh(H)N − (−1)
N

sinh(x) sinh(H)N .

Remark 6.2. Theorem 6.1 above implies that ZN (x) ∼
N→∞

cosh(H)N cosh(x), so that

lim
N→∞

logZN (x)

N
= log cosh(H)

which happens to be independent of x and which is continuous with respect to H . The
system has no critical value of the external field and therefore presents no phase transition.
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7 A disturbed Ising chain
In the preceding section we described an unconventional spin system. We now turn to the
most familiar one, namely the one dimensional Ising chain (see [10]) with Hamiltonian

H

N∑
j=1

uj + J

N∑
j=1

ujuj+1

where J is a “coupling constant”. Actually this Hamiltonian corresponds to the parameters
−H and −J but that makes no essential difference for our computation.

We consider in fact a perturbed Ising chain with the additional term x
∏N
j=1 uj . The

Hamiltonian is therefore

H(u) = H

N∑
j=1

uj + J

N∑
j=1

ujuj+1 + x

N∏
j=1

uj

and the partition function is now

YN =
1

2N

∑
u∈{±1}N

exp(−H(u))

which we propose to compute where we need to specify uN+1. Following most textbooks,
we simplify the model by assuming that the chain is cyclic: uN+1 = u1.

Theorem 7.1. Define

λ± = exp(−J) cosh(H)±
(
exp(−2J) cosh(H)2 + 2 sinh(2J)

) 1
2 ,

λ± = exp(−J) sinh(H)±
(
exp(−2J) sinh(H)2 − 2 sinh(2J)

) 1
2 .

Then

YN =
1

2N
cosh(x)(λN+ + λN− )− (−1)N

2N
sinh(x)(λ

N

+ + λ
N

− ).

Proof. Observe as in Section 6 that

YN =
coshx

2N
Y ′N −

sinhx

2N
Y ′′N

where

Y ′N =
∑

u∈{±1}N
exp

−H N∑
j=1

uj − J
N∑
j=1

ujuj+1

,
Y ′′N =

∑
u∈{±1}N

exp

−H N∑
j=1

uj − J
N∑
j=1

ujuj+1

 N∏
j=1

uj .

The classical way to compute Y ′N is to introduce the 2× 2 transfer matrix

L1 =

(
L1(1, 1) L1(1,−1)
L1(−1, 1) L1(−1,−1)

)
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where

L1(u1, u2) = exp

(
−H

2
(u1 + u2)− Ju1u2

)
.

In other words

L1 =

(
exp(−H − J) exp(J)

exp(J) exp(H − J)

)
.

Then

Y ′N =
∑

u∈{±1}N
L1(u1, u2)L1(u2, u3) . . . L1(uN , u1)

=
∑

u1∈{±1}

LN1 (u1, u1) = Trace(LN1 ) = λN+ + λN−

where λ+ and λ− are the eigenvalues of L1, i.e., the solutions of

λ2 − 2λ exp(−J) cosh(H) + exp(−2J)− exp(2J) = 0.

Therefore

λ± = exp(−J) cosh(H)±
(
exp(−2J) cosh(H)2 + 2 sinh(2J)

) 1
2 .

The computation of Y ′′N is quite similar. Let

L2 =

(
L2(1, 1) L2(1,−1)
L2(−1, 1) L2(−1,−1)

)
where

L2(u1, u2) = u1 exp

(
−H

2
(u1 + u2)− Ju1u2

)
so that

L2 =

(
exp(−H − J) exp(J)
− exp(J) − exp(H − J)

)
then

Y ′′N =
∑

u∈{±1}N
L2(u1, u2)L2(u2, u3) . . . L2(uN , u1)

=
∑

u1∈{±1}

LN2 (u1, u1) = Trace(LN2 ) = λ
N

+ + λ
N

−

where λ+ and λ− are the eigenvalues of L2, i.e., the solutions of

λ2 + 2λ exp(−J) sinh(H)− exp(−2J) + exp(2J) = 0.

Therefore

λ± = − exp(−J) sinh(H)±
(
exp(−2J) sinh(H)2 − 2 sinh(2J)

) 1
2 .

Finally

YN =
1

2N
cosh(x)(λN+ + λN− )− (−1)N

2N
sinh(x)(λ

N

+ + λ
N

− ).
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Remark 7.2. The reader will easily verify that for J = 0 we obtain the value of ZN
computed in Section 6.

Remark 7.3. It is not difficult to see that max{|λ−|, |λ−|, |λ+|} < λ+. Hence YN ∼
1
2N

cosh(x)(λN+ ) when N goes to infinity. This implies that the following limit exists, is
continuous in both variables J andH , and is independent of x (as in Remark 6.2); therefore
the system has no phase transition:

lim
N→∞

log YN
N

= log
λ+
2

= log

(
(exp(−J) cosh(H)

2
+

(exp(−2J) cosh(H)2 + 2 (sinh(2J))
1
2

2

)
.

8 Conclusion and acknowledgements
This article illustrates a classical fact, namely that one formula may well lead to far dis-
tant and unexpected developments. Unifying themes is probably one of the most exciting
aspects of mathematics.

We warmly thank H. Cohen and A. Lasjaunias for their very kind help. We are very
grateful to J.-Y. Yao and to the referees for their precise and constructive remarks and
comments. J.-P. A. was partially supported by the ANR project ANR-12-IS01-0002 “FAN”
(Fractals et Numération).

References
[1] S. R. Finch, Mathematical constants, volume 94 of Encyclopedia of Mathematics and its Ap-

plications, Cambridge University Press, Cambridge, 2003, doi:10.1017/CBO9780511550447,
http://dx.doi.org/10.1017/CBO9780511550447.

[2] G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949.

[3] J. C. Lagarias, Euler’s constant: Euler’s work and modern developments, Bull. Amer. Math. Soc.
(N.S.) 50 (2013), 527–628, doi:10.1090/S0273-0979-2013-01423-X, http://dx.doi.
org/10.1090/S0273-0979-2013-01423-X.

[4] Laguerre, Sur l’intégrale
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Abstract

The distinguishing index D′(G) of a graph G is the least natural number d such that G
has an edge colouring with d colours that is only preserved by the identity automorphism.
In this paper we investigate the distinguishing index of the Cartesian product of connected
finite graphs. We prove that for every k ≥ 2, the k-th Cartesian power of a connected
graph G has distinguishing index equal 2, with the only exception D′(K2

2 ) = 3. We also
prove that if G and H are connected graphs that satisfy the relation 2 ≤ |G| ≤ |H| ≤
2|G|

(
2‖G‖ − 1

)
− |G|+ 2, then D′(G2H) ≤ 2 unless G2H = K2

2 .

Keywords: Edge colouring, symmetry breaking, distinguishing index, Cartesian product of graphs.

Math. Subj. Class.: 05C15, 05E18

1 Introduction
We use standard graph theory notation (cf. [6]). In particular, Aut(G) denotes the auto-
morphism group of a graph G.

An edge colouring breaks an automorphism ϕ ∈ Aut(G) if ϕ does not preserve the
colouring, i.e., there exists an edge of G that is mapped by ϕ to an edge of different colour.
The distinguishing index D′(G) of a graph G is the least natural number d such that G has
an edge colouring with d colours that breaks all non-trivial automorphisms of G. Such a d-
colouring is called distinguishing. This notion was introduced by Kalinowski and Pilśniak
[10] as an analogue of the well-known distinguishing number D(G) of a graph G defined
by Albertson and Collins [1] as the least number of colours in a vertex colouring that breaks
all non-trivial automorphisms of G. 1 As the distinguishing index is not defined for K2, we
assume henceforth that K2 is not a connected component of any graph considered.

∗The research was partially supported by the Polish Ministry of Science and Higher Education.
E-mail addresses: agorzkow@agh.edu.pl (Aleksandra Gorzkowska), kalinows@agh.edu.pl (Rafał

Kalinowski), pilsniak@agh.edu.pl (Monika Pilśniak)
1Fisher and Isaak [5] considered distinguishing edge colourings of complete bipartite graphs, but did not

introduce any special notation or terminology.
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The distinguishing index of several examples of graphs was exhibited in [10]. For
instance, D′(Pn) = D(Pn) = 2, for n ≥ 3; D′(Cn) = D(Cn) = 2, for n ≥ 6, and
D′(Cn) = 3, for n = 3, 4, 5. There exist graphs G for which D′(G) < D(G), for
instance D′(Kn) = D′(Kp,p) = 2, for any n ≥ 6 and p ≥ 4, while D(Kn) = n and
D(Kp,p) = p+1. It is also possible thatD′(G) > D(G). All trees satisfying this inequality
were characterized in [10]. The following general upper bound of the distinguishing index
was proved in [10].

Theorem 1.1. [10] IfG is a finite connected graph of order n ≥ 3, thenD′(G) ≤ D(G)+
1. Moreover, if ∆ is the maximum degree of G, then D′(G) ≤ ∆ unless G is a C3, C4 or
C5.

The distinguishing index was also investigated for infinite graphs [2] and their Cartesian
product [3].

The Cartesian product of graphs G and H is a graph, denoted G2H , whose vertex
set is V (G) × V (H). Two vertices (g, h) and (g′, h′) are adjacent if either g = g′ and
hh′ ∈ E(H), or gg′ ∈ E(G) and h = h′. Denote G2G by G2, and recursively define the
k-th Cartesian power of G as Gk = G2Gk−1.

A non-trivial graph G is called prime if G = G12G2 implies that either G1 or G2 is
K1. It is easy to see that every non-trivial finite graph has a prime factorization with respect
to the Cartesian product. For connected graphs it is also unique up to isomorphisms and
the order of the factors, as has been shown by Sabidussi and Vizing (cf. [6]). Two graphs
G and H are called relatively prime if K1 is the only common factor of G and H .

Let v be a vertex of H . A Gv-layer (called also a horizontal layer of G2H) is the
subgraph induced by the vertex set {(u, v) : u ∈ V (G)}. An Hu-layer, or vertical layer,
is defined analogously for a vertex u of G. Clearly, each horizontal layer is isomorphic to
G and each vertical one is isomorphic to H . Therefore, speaking of a specified layer of
G2H , we shall usually use only one coordinate of a vertex. The same refers to edges.

We shall need knowledge of the structure of the automorphism group of the Cartesian
product, which was determined by Imrich [7], and independently by Miller [11].

Theorem 1.2. [7, 11] Suppose ψ is an automorphism of a connected graph G with prime
factor decomposition G = G12G22 . . .2Gr. Then there is a permutation π of the set
{1, 2, . . . , r} and there are isomorphisms ψi : Gπ(i) 7→ Gi, i = 1, . . . , r, such that

ψ(x1, x2, . . . , xr) = (ψ1(xπ(1)), ψ2(xπ(2)), . . . , ψr(xπ(r))).

It follows in particular that every automorphism of the Cartesian product of two rela-
tively prime graphs is a composition of a permutation of vertical layers generated by an
automorphism of G and a permutation of horizontal layers generated by an automorphism
of H . For additional results about the Cartesian product consult [6].

Our main results are extensions of theorems about the distinguishing number of Carte-
sian powers and of Cartesian products of connected graphs to the distinguishing index. The
results (and some of the proofs) are inspired by a paper [8] by Imrich, Jerebic and Klavžar.
In Section 2 we generalize a result of Imrich and Klavžar.

Theorem 1.3. [9] Let G be a connected graph and k ≥ 2. Then D(Gk) = 2 except for the
graphs K2

2 ,K
3
2 ,K

2
3 whose distinguishing number is three.

The second result that we extend is also due to Imrich and Klavžar:
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Theorem 1.4. [9] Let G and H be connected, relatively prime graphs such that

|G| ≤ |H| ≤ 2|G| − |G|+ 1.

Then D(G2H) ≤ 2.

In Section 3 we prove an analogous result (Theorem 3.4) for the distinguishing index
of the Cartesian product of connected graphs, not necessarily relatively prime (let us note
that, using our method of proof, Theorem 3.4 was already strengthened in [4] by omitting
the assumption that G and H are relatively prime). We also obtain a slightly stronger result
for trees (Theorem 3.1).

In proofs, we usually use colours 1, . . . , d. If d = 2, then we also use colours 0 and 1,
or alternatively red and blue.

2 Distinguishing Cartesian powers
Let us start with the Cartesian powers of K2. Recall that the k-dimensional hypercube is
isomorphic to Kk

2 and denoted by Qk. As mentioned earlier, the distinguished index is not
defined for K2 = Q1. Clearly, D′(Q2) = 3 since Q2 = C4. The following result was
proved in [13].

Theorem 2.1. [13] If a graph G of order at least 7 contains a Hamiltonian path, then
D′(G) ≤ 2.

Proposition 2.2. If k ≥ 3, then D′(Qk) = 2.

Proof. For k ≥ 3 a hypercubeQk is Hamiltonian and has at least eight vertices. Therefore,
D′(Qk) = 2 by Theorem 2.1.

The distinguishing index of the square of cycles and for arbitrary powers of complete
graphs with respect to the Cartesian, direct and strong products has been already considered
by Pilśniak [12]. In particular, she proved that D′(C2

m) = 2 for m ≥ 4, and D′(Kk
n) = 2

for any n ≥ 4 and k ≥ 2.
Here we consider Cartesian powers of arbitrary connected graphs. We first prove some

lemmas.

Lemma 2.3. Let G and H be connected, relatively prime graphs with D′(G) = D′(H) =
2. Then D′(G2H) = 2.

Proof. We colour one G-layer and one H-layer with distinguishing 2-colourings. The
remaining edges can be coloured arbitrarily. Such a colouring breaks all permutations of
both horizontal and vertical layers. Since G and H are relatively prime, it follows from
Theorem 1.2 that this colouring breaks all automorphisms of G2H .

Lemma 2.4. LetG andH be two connected graphs whereG is prime, |G| ≤ ‖H‖+1 and
D′(H) = 2. Then D′(G2H) = 2.

Proof. We first colour the H-layers of the graph G2H . There are at least two H-layers,
so we colour all edges of one layer blue, all edges of another one with a distinguishing
red-blue colouring. If there are moreH-layers, then we colour them such that each of them
has a different number of blue edges (including the H-layers coloured previously). This is
possible since |G| ≤ ‖H‖+ 1. Next, we colour all edges in every G-layer red.
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All automorphisms of the Cartesian product generated by the automorphisms of H are
broken, since one H-layer assumes a distinguishing colouring. Also, no H-layers can be
interchanged as every H-layer has different number of blue edges.

If H has a factor H ′ isomorphic to G, then G2H has an automorphism interchanging
H ′ with G. However, since all G-layers have only red edges and there exists an H-layer
with only blue edges, such an automorphism does not preserve this colouring.

Lemma 2.5. If H is a graph with 2 ≤ D′(H) = d, then

2 ≤ D′(H2K2) ≤ d.

Proof. We colour the edges of one H-layer with a distinguishing d-colouring, and all the
edges of the other H-layer with the same colour, say 1. Next, we colour all edges of K2-
layers with colour 2. Thus all automorphisms of the Cartesian product H2K2 generated
by the automorphisms ofH are broken, since one of theH-layers assumes a distinguishing
colouring. Also, the two H-layers cannot be interchanged as they have different numbers
of edges coloured with 1.

IfH has a factorH ′ isomorphic toK2, thenK22H has an automorphism interchanging
H ′ with K2. However, since all K2-layers have only colour 2 and there exists an H-layer
with all edges coloured with 1, such an automorphism does not preserve the colouring.

The equality for d = 2 is obvious since the prism of every graph has a non-trivial
automorphism.

We now consider the Cartesian powers of arbitrary connected graphs and continue with
powers of connected prime graphs on at least three vertices.

Lemma 2.6. If G is a connected prime graph with |G| ≥ 3, then D′(Gk) = 2 for every
k ≥ 2.

Proof. The proof goes by induction on k. Let k = 2. There are n horizontal and n vertical
layers, where n = |G|.

Suppose first that G contains a cycle, i.e., ‖G‖ ≥ n. We colour horizontal G-layers
with two colours such that each of them has a different number of blue edges between 0
and n − 1. The other edges are coloured such that every vertical G-layer has a different
number of blue edges between 1 to n. As every horizontalG-layer has a different number of
blue edges they cannot be interchanged. The same is true for vertical G-layers. Therefore
automorphisms of the Cartesian product generated by automorphisms of G are broken.
Our colouring also breaks interchanging the factors, since there exists a completely red
horizontal G-layer but no such vertical G-layer.

Assume now that G is a tree. Every tree has either a central vertex or a central edge
fixed by every automorphism. In case of a tree with a central vertex v, we colour the edges
ofG2 such that consecutive horizontal layers have 0, . . . , n−1 blue edges, and consecutive
vertical layers have 0, . . . , n− 1 blue edges in such a way that the horizontal Gv-layer and
the vertical Gv-layer have all edges coloured red and blue, respectively. The vertex (v, v)
is fixed by every automorphism of G2, hence this colouring is distinguishing. If G has a
central edge e0 = uv, we colour the edge (u, u)(v, u) red and the remaining three edges
of the subgraph e02e0 blue. The vertical and horizontal Gv-layers have all edges blue and
red, respectively. The remaining edges of G2 are coloured as in the case of a tree with a
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central vertex. Such colouring forbids exchange of the horizonal layers with the vertical
layers. Thus D′(G2) = 2.

For the induction step, we apply Lemma 2.4 by taking H = Gk−1 since |G| ≤
‖Gk−1‖+ 1.

Let us now state the main theorem of this section that solves the problem of the distin-
guishing index of the k-th Cartesian power of a connected graph.

Theorem 2.7. Let G be a connected graph and k ≥ 2. Then

D′(Gk) = 2

with the only exception: D′(K2
2 ) = 3.

Proof. Let G = Gp11 2Gp22 2 . . .2Gprr , where pi ≥ 1, i = 1, . . . , r, be the prime factor
decomposition of G.

Assume first that Gi 6= K2, i = 1, 2, . . . , r. Then for every i we have D′(Gkpii ) = 2

due to Lemma 2.6. By repetitive application of Lemma 2.3 we get D′(Gk) = 2 since Gkpii

and Gkpjj are relatively prime if i 6= j.
Suppose now that G has a factor isomorphic to K2, say G1 = K2. If p1 ≥ 2, then

D′(Kkp1
2 ) = 2 and againD′(Gk) = 2 by Lemma 2.3 applied toKkp1

2 andGp22 2 . . .2Gprr .
The same argument applies in case p1 = 1 and k ≥ 3. Finally, if p1 = 1 and k = 2 we
apply Lemma 2.4 twice and we also get D′(Gk) = 2 unless r = 1, i.e., Gk = K2

2 .

3 Distinguishing Cartesian products
In this section we investigate sufficient conditions on the sizes of factors of the Cartesian
product of two graphs to have the distinguishing index equal to two.

3.1 Trees

We begin with a result for trees. Observe first that, by Theorem 1.2, the Cartesian product
of two non-isomorphic asymmetric trees is an asymmetric graph, so its distinguishing index
is equal to 1.

Theorem 3.1. Let Tm and Tn be trees of size m and n, respectively. If

2 ≤ m ≤ n ≤ 22m+1 −
⌈m

2

⌉
+ 1,

then D′(Tm2Tn) ≤ 2.

Proof. If Tm is isomorphic to Tn, then the conclusion follows from Lemma2.6. Therefore,
assume that Tm and Tn are non-isomorphic. Then they are relatively prime, and it is enough
to prove the existence of a 2-colouring of edges of Tm2Tn that breaks the automorphisms
generated by automorphisms of Tm and those generated by automorphisms of Tn.

In the proof we use the following well-known fact. In a rooted tree, if a parent vertex
is fixed by every automorphism preserving a given colouring and its children cannot be
permuted, then the children are also fixed.

Assume first that n = 22m+1−dm2 e+ 1. We choose a root u0 of Tm as follows. If Tm
has a central vertex, then we take it as a root u0. If Tm has a central edge, then we choose
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one of its end-vertices as u0 and the other one as u1. Then we choose an enumeration
u0, . . . , um of vertices of the rooted tree Tm satisfying the following condition: if ui is the
parent of uj , then i < j. We enumerate the edge uiuj = ej . Thus E(Tm) = {e1, . . . , em}.
Let v0 be a root of Tn chosen by the same rule as the root u0 of Tm. Then we analo-
gously enumerate vertices and edges of Tn to obtain V (Tn) = {v0, . . . , vn}, E(Tn) =
{ε1, . . . , εn}.

We begin by colouring the T v0m -layer by putting colour 0 on the edges ei, for i =
1, . . . ,

⌈
m
2

⌉
, and colour 1 on the remaining edges of this layer. It is easy to see that we

can choose such an enumeration of vertices, and hence of edges, that the root u0 is fixed
by every automorphism of Tm preserving this colouring. Indeed, this is obvious if u0 is a
central vertex; if e1 = u0u1 is a central edge of Tm, then we enumerate the vertices such
that u1, . . . , ubm2 c belong to the same subtree of Tm − e1, therefore our colouring breaks
all automorphisms of Tm reversing the end-vertices of e1.

Then, we similarly colour the Tu0
n -layer with 0 and 1 in such a way that the ver-

tex (u0, v0) is fixed by every automorphism of Tm2Tn preserving this partial colour-
ing. Hence, the T v0m -layer, as well as the Tu0

n -layer, is mapped onto itself by every ϕ ∈
Aut(Tm2Tn) preserving this colouring.

Next, we colour the other layers. Consider the set S of all 22m+1 binary sequences of
length 2m+ 1. Each T vim -layer with i ≥ 1 is assigned a distinct sequence

si = (a0, a1, . . . , am, b1 . . . , bm)

from S, where aj , j = 0, . . . ,m, is the colour of the edge εi joining the vertex (uj , vi)
with its parent in the Tuj

n -layer (observe that a0 has been already defined for all i ≥ 1), and
bj , j = 1, . . . ,m is the colour of the edge of the T vim -layer corresponding to ej . To break
all permutations of Tn-layers we delete some sequences from the set S. First observe that
the sum of each coordinate taken over all sequences in S is the same (and equal to 22m).
Clearly, a Tuj

n -layer and a T
uj′
n -layer cannot be permuted whenever j ≤ dm2 e < j′ since

the edges ej and ej′ in the T v0m -layer have different colours.
Consider the set A = {sk ∈ S : k = 1, . . . , dm2 e − 1}, where sk = (a0, a1, . . . , am,

b1, . . . , bm) is a sequence such that

aj = adm2 e+j = 1, j = 1, . . . , k,

and all other elements of sk are equal to 0. Thus |S \ A| = 22m+1 − dm2 e + 1. We use
the set S \ A to colour T vim -layers, i = 1, . . . , 22m+1 − dm2 e + 1, hence the numbers of
edges coloured with 1 is distinct for every pair of Tn-layers that could be permuted. Thus,
all edges in Tm2Tn are coloured, and we obtain a distinguishing 2-colouring of Tm2Tn,
when n = 22m+1 − dm2 e+ 1.

Now, assume that the difference l = 22m+1 − dm2 e + 1 − n is positive. We have to
choose l sequences from S \ A that will not be used in the colouring. To do this we apply
the idea of complementary pairs used in [8]. Denote 0 = 1, 1 = 0. A pair of sequences

(a0, a1, . . . , am, b1, . . . , bm), (a0, a1, . . . , am, b1, . . . , bm)

from S \ A is called complementary. When l is even, we choose l
2 complementary pairs.

When l is odd, we choose the sequence (0, . . . , 0) ∈ S \ A and l−1
2 complementary pairs.

Again all permutations of layers in Tm2Tn are broken by this colouring since for every
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pair of Tn-layers that could be permuted, the numbers of edges coloured with 1 is distinct,
because aj + aj = 1, j = 1, . . . ,m.

The bound 22m+1−dm2 e+1 for the size of a larger tree is perhaps not sharp. However, it
cannot be improved much since Proposition 3.2 below shows that the distinguishing index
of the Cartesian product of a star K1,n of size n and a path Pm of order m is greater than 2
whenever n > 22m+1. It also shows that the distinguishing index of the Cartesian product
of two graphs with widely different orders and sizes can be arbitrarily large.

Proposition 3.2. If m ≥ 2 and n ≥ 2, then

D′(K1,n2Pm) =
⌈

2m−1
√
n
⌉

unless m = 2 and n = r3 for some r. In the latter case D′(K1,n2P2) = r + 1.

Proof. Let d be a positive integer such that (d − 1)2m−1 < n ≤ d2m−1. Denote by v
the central vertex of the star K1,n, by v1, . . . , vn its pendant vertices, and by u1, . . . , um
consecutive vertices of Pm.

Suppose first that m ≥ 3. Clearly, every automorphism of K1,n2Pm maps the P vm-
layer onto itself. We colour the first edge of this layer with 1 and all other edges of it with
2. Thus the P vm-layer is fixed by every automorphism, hence the K1,n-layers cannot be
permuted.

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

Figure 1: A distinguishing 2-colouring of K1,322P3

We want to show that the remaining edges of K1,n2Pm can be coloured in such a
way that Pm-layers also cannot be interchanged. Then all non-trivial automorphisms of
K1,n2Pm will be broken. Note that a colouring of the yet uncoloured edges can be fully
described by defining a matrix M with 2m − 1 rows and n columns such that in the j-
th column the initial m − 1 elements are colours of consecutive edges of the P vjm -layer,
and the other m elements are colours of the edges of K1,n-layers incident to consecutive
vertices of the P vjm -layer. It is easily seen that there exists a permutation of Pm-layers
preserving colours if and only if M contains at least two identical columns. There are
exactly d2m−1 sequences of length 2m − 1 with elements from the set {1, . . . , d}, hence
there exists a colouring with d colours such that every column of M is distinct. Therefore,
D′(K1,n2Pm) ≤ d = d 2m−1

√
ne. On the other hand, n > (d − 1)2m−1 so for every

edge (d−1)-colouring ofK1,n2Pm, the corresponding matrix has to contain two identical
columns, therefore D′(K1,n2Pm) > d− 1. Figure 1 presents the case n = 32 and m = 3.

For m = 2, we colour the edges of K1,n2P2 in the same way. The only difference is
that every P2-layer has only one edge, hence the two K1,n-layers need not be fixed. This
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is the case when n = d3, because then each element of {1, . . . , d}3 is a column in M , and
there exists a permutation of columns of M which together with the transposition of rows
of M defines a non-trivial automorphism of K1,n2P2 preserving the colouring. Thus we
need an additional colour for one edge in a K1,n-layer. When n < d3, we put the sequence
(1, 1, 2) as the first column of M , and we do not use the sequence (1, 2, 1) any more, thus
breaking the transposition of the K1,n-layers, and all automorphisms of K1,n2P2.

Let us mention in passing that D′(K1,n2Cm) = d 2m
√
ne, unless m ≤ 5 and n = 22m.

In the latter case D′(K1,n2Cm) = 2m
√
n+ 1 = 3. The proof can be led on the lines of the

proof of Proposition 3.2.

3.2 Arbitrary factors

We now consider the Cartesian product of arbitrary connected graphs. We first formulate a
result for relatively prime factors.

Lemma 3.3. Let G and H be connected, relatively prime graphs such that

3 ≤ |G| ≤ |H| ≤ 2|G|
(
2‖G‖ − 1

)
− |G|+ 2.

Then D′(G2H) ≤ 2.

Proof. Let V (G) = {u1, . . . , u|G|}, E(G) = {e1, . . . , e‖G‖}, V (H) = {v1, . . . , v|H|},
E(H) = {ε1, . . . , ε‖H‖}. Assume that v1 is a root of a spanning tree TH of the graph
H , and the vertices of H are enumerated according to the rooted tree TH , i.e., each child
has an index greater than that of its parent. As G and H are relatively prime, the only
automorphisms of G2H are permutations of G-layers and H-layers.

We first colour the edges of the Gv1 -layer with a sequence

(b1, . . . , b‖G‖) = (1, . . . , 1).

We shall not use this sequence to colour the edges of any other G-layer any more. Thus
the Gv1 -layer will be mapped onto itself by every automorphism of G2H preserving the
colouring.

From now on, we proceed similarly as in the proof of Theorem 3.1. For i = 2, . . . , n,
the Gvi -layer will be assigned a distinct sequence of colours

(a1, . . . , a|G|, b1, . . . , b‖G‖),

where aj is a colour of the edge joining the vertex (uj , vi) to its parent in the rooted tree
TH in the Huj -layer, and bj is a colour of ej in the Gvi -layer. We have 2|G|

(
2‖G‖ − 1

)
such sequences, as we excluded all sequences of the form (a1, . . . , a|G|, 1, . . . , 1). Thus all
permutations of G-layers are broken. To break permutations of H-layers, we also exclude
all sequences sk = (a1, . . . , a|G|, b1, . . . , b‖G‖) with a1 = . . . = ak = 1 and ak+1 =

. . . = a|G| = b1 = . . . = b‖G‖ = 0, for every k = 1, . . . , |G| − 1. We have 2|G|
(
2‖G‖ −

1
)
− (|G| − 1) sequences to colour |H| − 1 G-layers. Depending on the size of |H|, we

also exclude a suitable number of complementary pairs of sequences

(a1, . . . , a|G|, b1, . . . , b‖G‖), (a1, . . . , a|G|, b1, . . . , b‖G‖)
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and, possibly, a sequence (0, . . . , 0). Thus we obtain a colouring of G2H with a set of se-
quences such that the number of 1’s is distinct in any of the initial |G| coordinates. There-
fore, no permutation of H-layers preserves this colouring. Hence, this is a distinguishing
2-colouring of G2H .

Finally, we state the main result of this section.

Theorem 3.4. Let G and H be connected graphs such that

2 ≤ |G| ≤ |H| ≤ 2|G|
(
2‖G‖ − 1

)
− |G|+ 2.

Then D′(G2H) ≤ 2 unless G = H = K2.

Proof. If G = K2, then |H| ≤ 4. If H 6= K4, then either D′(H) = 2 or H is a cycle
or a star, and these cases were already settled in Section 2. To construct a distinguishing
2-colouring of K22K4, colour one edge in one K4-layer and two adjacent edges in the
other K4-layer red, and all remaining edges blue.

Let |G| ≥ 3. The case when G and H are relatively prime was settled by Lemma
3.3. Therefore, we focus here on the situation when G and H have at least one common
factor. Then D′(G2H) ≥ 2, since the automorphism group of G2H is non-trivial. Let
G = Gk11 2 . . .2Gktt and H = H l1

1 2 . . .2H ls
s be the prime factor decompositions of

G and H , respectively. Assume that the initial r factors are common, i.e., Gi = Hi for
i = 1, . . . , r. Denote

GII = Gk11 2 . . .2Gkrr , HII = H l1
1 2 . . .2H lr

r .

Thus G = GI2GII and H = HI2HII . We use the following notation

n1 = |GI |, n2 = |GII |, m1 = |HI |, m2 = |HII |.

We first show that the distinguishing index of the Cartesian product

GII2HII = Gli+k11 2 . . .2Glr+krr

is equal to 2. If GII2HII = K2
2 , then |HI | ≥ 2 and the graphs GI2K2

2 and HI satisfy
the assumptions of Theorem 3.3, hence D′(G2H) = 2, unless |GI2K2

2 | > |HI |, that is
|HI | < 4|GI |. In the latter case, we can also apply Theorem 3.3 for the graphs GI and HI

which are relatively prime and satisfy the inequalities |GI | ≤ |HI | ≤ 2|GI |(2‖GI‖ − 1)−
|GI |+ 2 unless |GI | = 2 and ≤ |HI | ≤ 7, i.e., G2H = K3

22H
′
I , where H ′I is prime. So

we can apply Proposition 2.2 and Lemma 2.4. In any case D′(G2H) = 2.
If Gli+kii 6= K2

2 for every i = 1, . . . , r, then D′(Gl1+kii ) = 2 due to Theorem 2.7,
and hence D′(GII2HII) = 2 by repeated application of Lemma 2.3. If Gl1+k11 = K2

2 ,
then analogously D′(Gl2+k22 2 . . .2Glr+krr ) = 2, hence D′(GII2HII) = 2 by applying
Lemma 2.5 twice.

Consider now the graphs G′ = GI2GII2HII and H ′ = HI . Clearly, they are rela-
tively prime and

|H ′| < |H| ≤ 2|G|
(
2‖G‖ − 1

)
− |G|+ 2 < 2|G

′|(2‖G′‖ − 1
)
− |G′|+ 2.
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If also |G′| = n1n2m2 ≤ m1 = |H ′|, then graphs G′ and H ′ satisfy the conditions
of Lemma 3.3, and consequently, D′(G2H) = D′(G′2H ′) = 2. Then suppose that
n1n2m2 > m1. We consider two cases here.

Assume first that n1 ≤ n2m2, i.e., |GI | ≤ |GII2HII |. Hence, |GI | ≤ ‖GII2HII‖+
1, and by repeated application of Lemma 2.4 we get D′(G′) = 2. As |H ′| < |G′|, we infer
again from Lemma 2.4 that D′(G2H) = D′(G′2H ′) = 2.

In the second case, i.e., when n2m2 < n1, suppose first that

m1 = |HI | ≤ 2|GI |
(
2‖GI‖ − 1

)
− |GI |+ 2.

Then D′(GI2HI) ≤ 2 since the assumptions of Lemma 3.3 are satisfied whenever |GI | ≤
|HI |. Recall that also D′(GII2HII) = 2 and graphs GI2HI and GII2HII are relatively
prime. Hence D′(G2H) = 2 by Lemma 2.3. Otherwise, if m1 > 2|GI |

(
2‖GI‖ − 1

)
−

|GI |+ 2, then we arrive at the sequence of inequalities

m1 < n1n2m2 ≤ n21 < 2n1(2n1 − 1)− n1 + 2 ≤ 2|GI |
(
2‖GI‖ − 1

)
− |GI |+ 2 < m1,

which is impossible.
Then suppose that |GI | = n1 > m1 = |HI | (and still n2m2 < n1). Let G′′ = GI and

H ′′ = GII2HI2HII . Clearly, |G′′| ≤ |H ′′| since |G| ≤ |H|. Moreover, we have

|H ′′| = n2m2m1 < n1m1 < n21 < 2|G
′′|(2‖G′′‖ − 1

)
− |G′′|+ 2.

It follows from Lemma 3.3 that D′(G2H) = D′(G′′2H ′′) = 2.
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[12] M. Pilśniak, Edge motion and the distinguishing index, preprint Nr MD 076, http://www.
ii.uj.edu.pl/preMD.
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Abstract

The Distinguishing Chromatic Number of a graph G, denoted χD(G), was first defined
in [5] as the minimum number of colors needed to properly colorG such that no non-trivial
automorphism φ of the graph G fixes each color class of G. In this paper,

1. We prove a lemma that may be considered a variant of the Motion lemma of [15]
and use this to give examples of several families of graphs which satisfy χD(G) =
χ(G) + 1.

2. We give an example of families of graphs that admit large automorphism groups in
which every proper coloring is distinguishing. We also describe families of graphs
with (relatively) very small automorphism groups which satisfy χD(G) = χ(G)+1,
for arbitrarily large values of χ(G).

3. We describe non-trivial families of bipartite graphs that satisfy χD(G) > r for any
positive integer r.

Keywords: Distinguishing chromatic number, automorphism group of a graph, Motion Lemma, weak
product of graphs.
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1 Introduction
For a graph G = (V,E) let us denote by Aut(G), its full automorphism group. A labeling
of vertices of a graph G, h : V (G) → {1, . . . , r} is said to be distinguishing (or r-
distinguishing) provided no nontrivial automorphism of the graph preserves all of the vertex
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labels. The distinguishing number of the graph G, denoted by D(G), is the minimum r
such that G has an r-distinguishing labeling (see [1]).

Collins and Trenk introduced the notion of the Distinguishing Chromatic Number
in [5], as the minimum number of colors r, needed to color the vertices of the graph so
that the coloring is both proper and distinguishing. In other words, the Distinguishing
Chromatic Number is the least integer r such that the vertex set can be partitioned into sets
V1, V2, . . . , Vr such that each Vi is independent in G, and for every I 6= π ∈ Aut(G) there
exists some color class Vi such that π(Vi) 6= Vi.

The problem of determining the distinguishing chromatic number of a graph G, or at
least good bounds for it, has been one of considerable interest in recent times ([4, 13,
5, 2, 3]). Clearly, the notion of the distinguishing chromatic number begins to get more
interesting only if the graph admits a large group of automorphisms, in which case, it can
vary substantially from the usual chromatic number. It is known (see [5]) that χD(G) = |V |
if and only if G is complete multipartite. Consequently, it is simple to see that there exist
graphsGwith χ(G) = k, χD(G) = l+k, for any k, l, since for instance, a disjoint union of
a clique of size k andK1,l achieves the same. Some upper bounds for χD(G) (for instance,
a version of Brooks’ theorem for the distinguishing chromatic number) appear in [4], which
also includes the inequality χD(G) ≤ D(G)χ(G). However, in many interesting large
naturally occurring families of graphs, we have χD(G) ≤ χ(G) + 1 (see [3, 2, 5, 4]).

In this paper, we seek to address three aspects of the problem of determining χD(G)
for a given graph G. Firstly, we prove a lemma that may be considered a variant of what
is now well known as the motion lemma, first introduced in [15]. The motion lemma
basically says that if every nontrivial automorphism of a graph moves ‘many’ vertices then
its distinguishing number is small. A similar lemma also appears in the context of graph
endomorphisms and ‘endomorphism breaking’ in [12]. As a result of our variant of the
Motion lemma, we give examples of several families of graphs G satisfying χD(G) =
χ(G) + 1.

Secondly, we contrast the relation between the size of the automorphism groupAut(G)
of a graph with its distinguishing chromatic number χD(G). A result describing an upper
bound for χD(G) in terms of the prime factors of |Aut(G)| appears in [4]. However, our
perspective is somewhat different. We demonstrate families of vertex transitive graphs G
with large chromatic number, and χD(G) = χ(G) + 1 even though |Aut(G)| is not very
large (we have |Aut(G)| = O(|V |3/2)). As a contrast, we also demonstrate a family of
graphs with arbitrarily large chromatic number, with ‘super large’ automorphism groups
for which every proper coloring of G with χ(G) colors is in fact distinguishing. This latter
example also addresses a point raised in [3] and these contrasting results indicate that the
relation between |Aut(G)| and χD(G) can tend to be haphazard.

Finally, as we indicated earlier, while it is simple to give (the trivial) examples of graphs
G with χ(G) = r, χD(G) = r + s, for any r, s, non-trivial examples are a little harder to
come by. Clearly, adding a copy (not necessarily disjoint) of a large complete multipartite
graph to an arbitrary graph achieves this goal but we shall consider such examples ‘trivial’
since the reason for the blowing-up of the distinguishing chromatic number is trivially
attributed to the presence of the complete multipartite component. While it seems simple
to qualitatively ascribe the notion of what constitutes a nontrivial example in this context,
we find it a bit tedious to describe it precisely. Our last result in this paper describes
what we would like to believe constitutes a nontrivial family of bipartite graphs G such
that χD(G) > r, for any r ≥ 2. It turns out that large complete bipartite graphs do



N. Balachandran and S. Padinhatteeri: χD(G), |Aut(G)|, and a variant of the Motion Lemma 91

appear as induced subgraphs in our examples, but that alone does not guarantee that the
distinguishing chromatic number necessarily increases. Furthermore, what makes these
nontrivial in our opinion, is the fact that the distinguishing chromatic number of these
graphs is more than what one might initially guess.

The rest of the paper is organized as follows. In Section 2, we state and prove what we
regard as a variant of the motion lemma and use this to establish instances of families of
graphs with χD(G) = χ(G) + 1 in Section 3. In Section 4, we describe two families of
graphs — G1 and G2 — with rather contrasting properties. For G ∈ G1, we have χD(G) =
χ(G) + 1 even though |Aut(G)| = O(|V |3/2); for G ∈ G2, |Aut(G)| = ω(e|V |) and
yet every proper χ(G) coloring of G is in fact distinguishing. In Section 5, we describe a
family of bipartite graphs for which χD(G) > r, for any r ≥ 2. The Section 6 contains
some concluding remarks and open questions.

2 A Variant of the Motion Lemma
Following [15], we recall that the motion of an automorphism φ ∈ Aut(G) is defined as

m(φ) := {v ∈ G : φ(v) 6= v}

and the motion of a graph G is defined as

m(G) := min
φ∈Aut(G)

φ6=I

m(φ).

The Motion lemma of [15] states that for a graph G, if m(G) > 2 log2 |Aut(G)| then
G is 2−distinguishable. We prove a slightly more general criterion to obtain a similar
conclusion for the distinguishing chromatic number.

For a graph G with full automorphism group Aut(G), let G ⊂ Aut(G) be a subgroup
of the automorphism group. For A ∈ G and S ⊆ V (G) we define FixA(S) = {v ∈ S :
A(v) = v} and FA(S) = |FixA(S)|. Let F (S) := max

A∈G
A6=I

FA(S).

Definition 2.1. The Orbit of a vertex v with respect to an automorphism A is the set

OrbA(v) := {v,Av,A2v, . . . Ak−1v}

where Akv = v.

Lemma 2.2 (A variant of the motion lemma). Let C be a proper coloring of the graph
G with χ(G) colors and let C1 be a color class in C. Let G be the subgroup of Aut(G)
consisting of all automorphisms that fix the color class C1. For each A ∈ G, let θA denote
the total number of distinct orbits induced by the automorphism A in the color class C1. If
for some integer t ≥ 2,

f(G) =
∑
A∈G

tθA−|C1| < r

where r is the least prime dividing |G|, then χD(G) ≤ χ(G) + t − 1. In particular, if
F (C1) < |C1| − 2 logt |G| then this conclusion holds.

Remark: Instead of G, one can consider the subgroup of G consisting of all nontrivial
automorphisms that fix all the color classes of the proper coloring C. The proof in that case
is identical to the present one.
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Proof. Let 1 be the color assigned in the color class C1 and suppose that the symbols
2, . . . , t denote labels different from the color labels of the vertices in the proper coloring
C. For each v ∈ C1, pick uniformly and independently, an element in {1, 2, . . . , t} and
color v using that color. Keep the coloring of all other vertices intact. This creates t − 1
additional color classes. This new coloring C ′ of G is clearly proper; we claim that with
positive probability, it is also distinguishing.

For A ∈ G, let BA denote the event that A fixes every color class. Observe that if A
fixes a color class containing a vertex v, then all other vertices in the set OrbA(v) are also
in the same color class. Moreover the probability that OrbA(v) is in the same color class
of v, equals t1−|OrbA(v)|. Then

P(BA) =
∏
θA

t1−|OrbA(v)| = tθA−|C1|

LetN ⊂ G denote the set of all automorphisms which fixes every color class in C ′ and
let N = |N |. Then note that the expectation

E(N) ≤
∑
A∈G

1

t|C1|−θA
(2.1)

By the hypothesis of the lemma, E(N) ≤ f(G) < r, hence with positive probability
N < r. Since N is in fact a subgroup of G, N divides |G|, so with positive probability, the
coloring C ′ is such that N = {I}, which implies that C ′ is distinguishing. Note that C ′ is
a coloring with χ(G) + t− 1 colors.

In particular, since θA ≤ F (C1) + |C1|−F (C1)
2 it follows from Equation (2.1) that

E(N) ≤
∑
A∈G

t
F (C1)−|C1|

2 = |G|t
F (C1)−|C1|

2 .

Thus, if F (C1) < |C1| − 2 logt |G| then there exists a distinguishing proper χ(G) + t− 1
coloring of the graph.

3 Examples
3.1 Levi graphs

In this subsection, we restrict our attention to Desarguesian projective planes and consider
the Levi graphs of these projective planes, which are the bipartite incidence graphs corre-
sponding to the set of points and lines of the projective plane. It is well known [11] that
the theorem of Desargues is valid in a projective plane if and only if the plane can be con-
structed from a three dimensional vector space over a skew field, which in the finite case
reduces to the three dimensional vector spaces over finite fields.

In order to describe the graphs we are interested in, we set up some notation. Let Fq
denote the finite field of order q, and let us denote the vector space F3

q over Fq by V . Let P
be the set of 1-dimensional subspaces of V and L, the set of 2-dimensional subspaces of V .
We shall refer to the members of these sets by points and lines respectively. The Levi graph
of order q, denoted by LGq , is a bipartite graph defined as follows: V (LGq) = P ∪ L,
where this describes the partition of the vertex set; a point p is adjacent to a line l if and
only if p ∈ l.
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The Fundamental Theorem of Projective Geometry [11] states that the full group of au-
tomorphisms of the projective plane PG(2,Fq) is induced by the group of all non-singular
semi-linear transformations PΓL(F3

q). If q = pn for a prime number p, PΓL(F3
q)
∼=

PGL(F3
q) o Gal(Fq/Fp). In particular, if q is a prime, we have PΓL(F3

q)
∼= PGL(F3

q).

The upshot is that LGq admits a large group of automorphisms, namely, PΓL(F3
q).1

We first show that the distinguishing chromatic number for the Levi graphs LGq is pre-
cisely 3 in almost all the cases. This is reminiscent of the result of [6] for the distinguishing
number of affine spaces.

Theorem 3.1. χD(LGq) = 3 for all prime powers q ≥ 5.

Proof. Firstly, we consider the case when q ≥ 5 and q is prime and show that χD(LGq) ≤
3. Consider a 2-coloring of LGq by assigning color 1 to the point set P and color 2 to the
line set L. It is easy to see that an automorphism of LGq that maps P into itself and L into
itself corresponds to an automorphism of the underlying projective plane, and hence any
such automorphism is necessarily in PGL(F3

q) (by the preceding remarks).
In order to use Lemma 2.2, set G = PGL(F3

q) and observe that every A ∈ PGL(F3
q),

which is not the identity, fixes at most q + 2 points of LGq . Hence

θA ≤ q + 2 +
(q2 + q + 1)− (q + 2)

2
=
q2 + 2q + 3

2
.

Consequently,

f(G) <
(q8 − q6 − q5 + q3)

t(q2+1)/2
+ 1 (3.1)

Case 1: q ≥ 7.
For q = 7, t = 2, the right hand side of Equation (3.1) is approximately 1.16. Since the
right hand side of inequality Equation (3.1) is monotonically decreasing in q, it follows that
f(G) < 2 for q ≥ 7, hence by Lemma 2.2, LGq admits a proper distinguishing 3−coloring.
In particular, χD(LGq) = 3, for q ≥ 7, since clearly, χD(LGq) > 2.
Case 2: q = 5.
In this case, for t = 2 we actually calculate f(G) using the open source Mathematics
software SAGE to obtain f(G) ≈ 1.2; see the Appendix for the code with relevant expla-
nations. Again in this case, χD(LG5) = 3.

We also can prove that χD(LG2) = 4 and χD(LG3) ≤ 5; these proofs are included in
the Appendix for the sake of completeness.

If q = pn for n ≥ 2 and a prime p, we note that the cardinality of the automorphism
group of PG(2,Fq) equals

n|PGL(F3
q)| ≤ log2(q)|PGL(F3

q)|.

As in the prime case, we have

f(G) ≤ log2 q(q
8 − q6 − q5 + q3)

t
q2+1

2

+ 1.

For q = 8 and t = 2 the right hand side is approximately 1.01. By the same arguments
as in the preceding section, it follows that χD(LGq) = 3.

1It follows that this group is contained in the full automorphism group. The full group is larger since it also
includes maps induced by isomorphism of the projective plane with its dual.
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For q = 4 we calculate f(G) ≈ 1.2. for q = 4, and t = 3 using the same SAGE code
in the case q = 5 to make the actual computation, so we have χD(LG4) ≤ 4. We believe
that χD(LG4) = 3 though our methods fall short of proving this.

3.2 Levi graphs of order one

Suppose n, k ∈ N and 2k < n, consider the bipartite graphs G = G(L,R,E) where
L :=

(
[n]
k−1

)
corresponds to the set of k − 1 subsets of [n], R :=

(
[n]
k

)
corresponds to the k

subsets of [n], and u ∈ L, v ∈ R are adjacent if and only if u ⊂ v. We shall refer to these
graphs as Levi Graphs of order one and we shall denote them by LG1(k, n), or sometimes,
simply LG1. Note that for each u ∈ L, v ∈ R we have d(u) = n− k + 1 and d(v) = k.

It is clear that Sn ⊂ Aut(LG1). But in factAut(LG1) = Sn, and this is a fairly routine
exercise, so we skip these details.

We shall use Lemma 2.2 to determine the distinguishing chromatic number of LG1(k,
n). Following the notation of the lemma, set Fσ := {v ∈ R : σ(v) = v} for σ ∈ Sn and
let F = max

σ∈Sn
σ 6=I

|Fσ|.

Lemma 3.2. For n > 4, F ≤
(
n−2
k−2

)
+
(
n−2
k

)
and equality is attained if and only if σ is a

transposition (ij) for some i 6= j.

Proof. Firstly, it is easy to see that if σ = (12) then |Fσ| =
(
n−2
k−2

)
+
(
n−2
k

)
, so it suffices

to show that for any π that is not of the above form, |Fπ| < |Fσ|.
Suppose not, i.e., suppose π ∈ Sn is not an involution and |Fπ| is maximum. Write

π = O1O2 . . . Ot as a product of disjoint cycles with |O1| ≥ |O2| ≥ · · · ≥ |Ot|. Then
either |O1| > 2, or |O1| = |O2| = 2. If |O1| > 2, then suppose without loss of generality,
let O1 = (123 · · · ) If h ∈ Fπ then either {1, 2} ⊂ h or {1, 2} ∩ h = ∅. In either case we
observe that h ∈ Fσ as well. Therefore Fπ ⊆ Fσ. Furthermore, note that σ fixes the set
g = {1, 2, 4, . . . , k + 1}, while π does not. Hence |Fσ| > |Fπ|, contradicting that |Fπ| is
maximum. If |O1| = |O2| = 2, again without loss of generality let O1 = (12), O2 = (34).
Again, h ∈ Fπ implies that either {1, 2} ⊂ h or {1, 2} ∩ h = ∅, so once again, h ∈ Fσ ⇒
h ∈ Fπ . Furthermore, {1, 2, 3, 5, . . . , k+ 1} ∈ Fσ ∩Fπ, which contradicts the maximality
of |Fπ|.

For k ≥ 2 define n0(k) := 2k + 1 for k ≥ 3 and n0(2) := 6.

Theorem 3.3. χD(LG1(k, n)) = 3 for k ≥ 2 for n ≥ n0(k).

Proof. We deal with the cases k = 2, k = 3 first, and then consider the general case of
k > 3.

For k = 2, let A = {(1, 2), (2, 3), (2, 4), (3, 4), (4, 5), (5, 6), . . . , (n − 1, n)}, and
consider the coloring with the color classes being L,A,R \ A. Consider the graph G with
V (G) = [n] and E(G) = A. Observe that the only automorphism G admits is the identity.
Since a nontrivial automorphism that preserves all the color classes of this coloring must
in fact be a nontrivial automorphism of G, it follows that the coloring described is indeed
distinguishing.

If k = 3, note that the coloring described by the sets R,A,L \ A is proper and distin-
guishing for the very same reason.
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For the case k ≥ 4, we use Lemma 2.2 with t = 2 and G = Aut(LG1). From Lemma
3.2 we have F ≤

(
n−2
k−2

)
+
(
n−2
k

)
. Let C1 = R be the color class to be parted randomly and

assign color 3 to all vertices in L =
(

[n]
k−1

)
. Then we have,

f(G) ≤ |Aut(LG1)|2 1
2 (F−|C1|) + 1, (3.2)

where |C1| =
(
n
k

)
.

Therefore from Equation 3.2, we have

f(G) ≤ n!

2K
+ 1,

where K =
(n
k)−(n−2

k−2)−(n−2
k )

2 . For n > 2k it is not hard to show that n!
2K < 1 for n ≥

n0(k), so, by Lemma 2.2 we are through.

3.3 Weak product of graphs

The distinguishing chromatic number of a Cartesian product of graphs has been studied in
[3]. The fact that any graph can be uniquely (upto a permutation of the factors) factorized
into prime graphs with respect to the Cartesian product plays a pivotal role in determining
the full automorphism group. In contrast, an analogous theorem for the weak product only
holds under certain restrictions. In this subsection, we consider the n-fold weak product
of certain graphs and consider the problem of determining their distinguishing chromatic
number.

To recall the definition again, the weak product (or Direct product as it is sometimes
called) of graphsG,H denotedG×H , is defined as follows: V (G×H) = V (G)×V (H).
Vertices (g1, h1), (g2, h2) are adjacent if and only if {g1, g2} ∈ E(G) and {h1, h2} ∈
E(H). We first collect a few basic results on the weak product of graphs following [9]. For
more details we refer the interested reader to the aforementioned handbook.

Define an equivalence relation R on V (G) by setting xRy if and only if N(x) = N(y)
where N(x) denotes the set of neighbors of x. A graph G is said to be R − thin if each
equivalence class of R is a singleton, i.e., no distinct x, y ∈ V (G) have the same set of
neighbors. A graph G is prime with respect to the weak product, or simply prime, if it is
nontrivial and G ∼= G1 ×G2 implies that either G1 or G2 equals Ks

1 , where Ks
1 is a single

vertex with a loop on it. Observe that Ks
1 ×G ∼= G.

Before we state our main theorem of this subsection, we state two useful results regard-
ing the weak product of graphs. If G is connected, nontrivial, and non-bipartite then the
same holds for G×n. This is a simple consequence of a theorem of Weischel (see [9] for
more details ). The other useful result is the following theorem which also appears in [9].

Theorem 3.4. Suppose φ is an automorphism of a connected nonbipartite R− thin graph
G that has a prime factorization G ∼= G1×G2× . . .×Gk . Then there exist a permutation
π of {1, 2, . . . , k}, together with isomorphisms φi : Gπ(i) → Gi, such that

φ(x1, x2, . . . , xk) = (φ1(xπ(1)), φ2(xπ(2)), . . . , φk(xπ(k))).

We are now in a position to state our main result regarding the distinguishing chromatic
number for a weak product of prime graphs. An analogous result for the cartesian product
of graphs, under milder assumptions, appears in [3].



96 Ars Math. Contemp. 12 (2017) 89–109

Theorem 3.5. Let G be a connected, nonbipartite, R − thin, prime graph on at least 3

vertices. Denote byG×n the n-fold product ofG, i.e., G×n :=

n-times︷ ︸︸ ︷
G×G× . . .×G. Suppose

further thatG admits a proper χ(G) coloring with a color class C1 such that no non-trivial
automorphism of G fixes every vertex of C1. Then χD(G×n) ≤ χ(G) + 1 for n ≥ 4.

Proof. Let G be connected, non-bipartite, R− thin, and prime. We first claim that

Aut(G×n) ∼= Aut(G) o Sn,

the wreath product ofAut(G) and Sn. To see this, note that ifG isR− thin one can easily
check that G×n is also R− thin. Moreover since every connected non-bipartite nontrivial
graph admits a unique prime factorization for the weak product (see [9]), it is a simple
application of Theorem 3.4 to see that Aut(G×n) ∼= Aut(G) o Sn. This proves the claim.

Suppose χ(G) = r and let {Ci : i ∈ [r]} be a proper coloring of G. Then Ci ×
G×n−1, i ∈ [r] is a proper r coloring of the graph G×n, so χ(G×n) ≤ r. On the other
hand, the map g → (g, g . . . , g) is a graph embedding of G in G×n, so χ(G×n) = r.
Let us denote the aforementioned color classes of G×n by C ′i, i ∈ [r]. We claim that
χD(G×n) ≤ r + 1 and show this as a consequence of Lemma 2.2.

By hypothesis there exist a color class, say C1 in G such that no nontrivial automor-
phism fixes each v ∈ C1. Consider C ′1 = C1 ×G×n−1 and for each element in C ′1 assign
a value from {1, r + 1} uniformly and independently at random. This describes a proper
(r + 1)−coloring of G×n. By Lemma 2.2, we have

f(G) ≤ n!|Aut(G)|n2
F−T

2 + 1 (3.3)

where T = |C1 ×G×n−1|, G = n!|Aut(G)|n and F is as in Lemma 2.2.
Claim: If there exists a nontrivial automorphism of G×n which fixes each color class

C ′i, i = 1 . . . , r, then it cannot also fix each vertex of C ′1.
To prove the claim, suppose ψ is an automorphism of G×n which fixes C ′i for each i ∈

[r], and also fixes C ′1 point-wise. By Theorem 3.4, there exist φ1, φ2, . . . , φn ∈ Aut(G)
and π ∈ Sn such that

ψ(x1, x2, . . . , xn) = (φ1(xπ(1)), φ2(xπ(2)), . . . , φn(xπ(n))) (3.4)

for all (x1, x2, . . . , xn) ∈ G×n. Now note that if ψ fixes C ′1 point-wise then φ1 fixes C1

point-wise. Indeed,

ψ(x1, x2, . . . , xn) = (x1, x2, . . . , xn)

⇐⇒ (φ1(xπ(1)), φ2(xπ(2)), . . . , φn(xπ(n))) = (x1, x2, . . . , xn)

⇐⇒ φi(xπ(i)) = xi for all i ∈ [r]. (3.5)

Since Equation (3.5) holds for all vertices (x1, x2, . . . , xn) ∈ G×n with x1 ∈ C1 and
xi ∈ G , 2 ≤ i ≤ n, we conclude that π = I , φi = I , for 2 ≤ i ≤ n, and φ1 acts trivially
on C1. But then by the hypothesis on G, it follows that φ1 = I in G and hence ψ = I .

We now show that F ≤ (|C1| − 2)|G|n−1.
We adopt similar notations as in Lemma 2.2 and for simplicity, let us denote |G| = m.

For ψ ∈ Aut(G×n) we shall write ψ = (φ1, φ2, . . . , φn : π) to denote the map

ψ(x1, x2, . . . , xn) = (φ1(xπ(1)), φ2(xπ(2)), . . . , φn(xπ(n)))
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as in Equation (3.4) (see Theorem 3.4). Suppose ψ fixes the vertex (x1, x2, . . . , xn) ∈
G×n. In particular we have xπ(i) = φ−1

i (xi) for all i. It then follows that for all k, we have

φ−1
πk(i)

(
xπk(i)

)
= xπk+1(i)

for each i. Consequently, if π has t cycles in its disjoint cycle representation then ψ can fix
at most |C1|mt−1 vertices in C ′1.

If π 6= I , then t < n, and in this case, since m ≥ 3, n ≥ 4, we have |C1|mt−1 ≤
(|C1| − 2)mn−1. If π = I , then ψ is non-trivial if and only if φi 6= I for some i. In this
case φi(xi) = xi for all i, so (x1, x2, . . . , xn) is fixed by ψ if and only if xi ∈ Fixφi for

all i. Consequently, Fψ′ =
n∏
i=1

Fφi . Observe that if φi is not a transposition then it moves

at least three vertices, say x, y and z in G. In particular, ψ does not fix any vertex of the
form (x1, x2, . . . , g, . . . , xn) , where g ∈ {x, y, z} and appears in the ith position. Thus, it
follows that

Fψ ≤ |C1|mn−2(m− 3).

If φi is a transposition for some i > 1 then it is easy to see that Fψ ≤ (|C1| − 3)mn−1 <
(|C1| − 2)mn−1. Finally, if φ1 is a transposition, then again F ≤ (|C1| − 2)mn−1. This
proves the claim.

Setting F = (|C1| − 2)mn−1 , T = |C1|mn−1 in Equation (3.3) gives us

f(G) ≤ n!|Aut(G)|n

2mn−1 + 1.

It is a simple calculation to see that the first term in the above expression is less than 1 for
all m ≥ 3 and n ≥ 4. This completes the proof.

Corollary 3.6. χD(K×nr ) = r + 1 for n ≥ 4, and r ≥ 3.

Proof. First note that for r ≥ 3, Kr is prime, non-bipartite, and R − thin. Hence by
Theorem 3.5 it follows that χD(K×nr ) ≤ r+ 1. A result of Greenwell and Lovász (see [8])
tells us that all proper r−colorings for K×nr are induced by colorings of the factors Kr. In
particular, it implies that χD(K×nr ) > r.

4 χD(G) versus |Aut(G)|
As indicated in the introduction, one aspect of the problem of the distinguishing chromatic
number of particular interest is the contrasting behavior of the distinguishing chromatic
number vis-á-vis the size of the automorphism group. Our sense of contrast here is to
describe the size of the automorphism group as a function of the order of the graph.

First, note that one can give somewhat trivial examples of graphs with χD(G) >
χ(G) > k for any k and with a very small automorphism group as follows. Start with
an arbitrary rigid graph, i.e. a graph with no non-trivial automorphism, with chromatic
number larger than k. Now fix an edge e = {x, y} and ‘blow up’ the vertices x, y by small
disjoint subsets X,Y respectively, and replace the edge e by the complete bipartite graph
on the sets X,Y . The new graph satisfies χD(G) > χ(G) rather trivially and one can
ensure that by picking small subsets X,Y we can ensure that the full automorphism group
is not too large either.
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In some sense, these examples are not very interesting because the fact that the distin-
guishing chromatic number exceeds the chromatic number for these graphs is attributable
to a ‘local’ reason. It however becomes a more intriguing problem if we insist that the
graph is also vertex transitive.

Our first theorem in this section gives examples of vertex transitive graphs that admit
‘small’ automorphism groups, and yet have χD(G) > χ(G) and with arbitrarily large
values of χ(G).

Theorem 4.1. Given k ∈ N, there exists a sequence of graphs Gni
satisfying

1. χ(Gni
) > k,

2. χD(Gni) > χ(Gni),

3. Gni
is vertex transitive and |Aut(Gni

)| = O(n
3/2
i ).

Proof. Let q ≥ k be prime and suppose S ⊂ Fq is a subset of size q−1
2 . We define the

graph GS as follows: The vertices of V (GS) are the points of the affine plane AG(2, q);
u = (u1, u2) and v = (v1, v2) are adjacent inGS if and only if v1 6= u1 and (v2−u2)(v1−
u1)−1 ∈ S. We denote (v2 − u2)(v1 − u1)−1 by s(u, v). For α, β ∈ Fq , consider the set
lβα := {(β + x, β + xα) : x ∈ Fq}. We shall call the sets lβα as lines in what follows.
Observe that, for each α ∈ S and β ∈ Fq , the sets lβα is a clique of size q, so χ(GS) ≥ q.
We shall denote the independent sets 2 {(β, x + β) : x ∈ Fq} by lβ∞. Similarly, if α /∈ S
the set lβα is an independent set of size q, the collection {lβα : β ∈ Fq} describes a proper
q-coloring of GS , hence χ(GS) = q.
Claim: χD(GS) > q. LetC = {C1, C2, . . . , Cq} be a proper q−coloring ofGS . We claim
that each Ci is a line, i.e., for each 1 ≤ i ≤ q we have Ci = lβα for some α /∈ S, β ∈ Fq .

Observe that for α ∈ S, the collection C = {lβα|β ∈ Fq} partitions the vertex set of GS
into cliques of size q. Therefore, in any proper q-coloring of GS , each color class contains
exactly q vertices.

Next, we recall a result of Rédei [14] which states that for a prime number q if X ⊂
AG(2, q) such that |X| = q andX is not a line then the set S(X) = {s(x, y)|x 6= y, x, y ∈
X} has size at least q+3

2 .

If a color class Ci is not a line then by the theorem of Rédei, |S(Ci)| ≥ (q+3)
2 and since

|S| = q−1
2 this implies that S(Ci)∩S 6= ∅. But then this contradicts that Ci is independent

in GS .
In particular, any proper q-coloring C of GS must be a partition of the form {lβα : β ∈

Fq} with α ∈ (Fq ∪ {∞}) \ S. Then the map

φα(x, y) = (x+ 1, y + α) if α 6=∞,
φ∞(x, y) = (x, y + 1)

is a nontrivial automorphism that fixes each color class of C. This establishes that
χD(GS) > q and proves the claim.

Now, we shall show that for a suitable choice of S, GS has a relatively small automor-
phism group. Our choice of subset S shall be a uniformly random subset of Fq .

Note that our earlier proof of the claim in fact shows that any maximum independent set
corresponds to a line in AG(2, q). We now make the observation that all maximum sized

2These are independent in GS since ∞ /∈ Fq .
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cliques also correspond to certain lines in AG(2, q). Indeed, suppose X is a maximum
clique of size q which does not correspond to a line. Again, by Rédei’s theorem we have
|S(X)| ≥ q+3

2 . SinceX is a clique, S(X) ⊂ S, but this contradicts the fact that |S| = q−1
2 .

Consequently, if φ ∈ Aut(GS) then since maximum cliques (respectively, maximum
independent sets) are mapped into maximum cliques (resp. maximum independent sets), it
follows that φ is a bijective map on F2

q which maps affine lines into affine lines in AG(2, q)
(as a consequence of [14]). Hence, it follows that Aut(GS) ⊂ AGL(2, q) (see [11]). In
other words, any φ ∈ Aut(GS) can be written as A + b̄ for some A ∈ Aut0(GS) and
b̄(= φ(0, 0)) ∈ F2

q , where Aut0(GS) ⊂ Aut(GS) is the subgroup of automorphisms
which fix the vertex (0, 0) ∈ V (GS).

The following lemma shows that for a random choice of the set S, the automorphism
group Aut(GS) is not very large.

Lemma 4.2. Suppose S is picked uniformly at random from the set of all q−1
2 subsets of

Fq . Then asymptotically almost surely, Aut(GS) = {λI + b̄ : λ ∈ F∗q , b̄ ∈ V (GS)}.
Consequently, |Aut(GS)| = q2(q − 1) asymptotically almost surely.

Here by the phrase asymptotically almost surely we mean that the probability that
Aut(GS) = {λI + b̄ : λ ∈ F∗q , b̄ ∈ V (GS)} approaches 1 as q →∞.

Proof. Since we have already observed that Aut(GS) ⊂ AGL(2, q), every φ ∈ Aut(GS)
can be written in the form φ(x, y) = A(x, y) + (b1, b2) for some b1, b2 ∈ Fq and A ∈

Aut0(GS). Here, A ∈ GL(2, q) corresponds to a matrix
(
a b
c d

)
for a, b, c, d ∈ Fq with

ad− bc 6= 0.
We introduce the symbol∞ and adopt the convention that a+∞ =∞, a ·∞ =∞ for

a 6= 0, and a
0 =∞ for a 6= 0. For φ ∈ Aut(GS), define a map fφ : Fq∪{∞} → Fq∪{∞}

as follows:

fφ(α) =
dα+ c

a+ bα
, if α 6= −a

b
,

fφ

(
−a
b

)
= ∞,

fφ(∞) =
d

b
.

Observe that fφ is trivial if and only if b = c = 0 and a = d.
Let x = (x1, x2), y = (y1, y2) be two adjacent vertices in GS . Since φ(x) is adjacent

to φ(y), we have

s(φ(x), φ(y)) =
c(y1 − x1) + d(y2 − x2)

a(y1 − x1) + b(y2 − x2)
=
d · s(x, y) + c

b · s(x, y) + a
.

Observe that y1 − x1 is nonzero since s(x, y) ∈ S. Therefore we have,

s(φ(x), φ(y)) = fφ(s(x, y)). (4.1)

Also note that if φ 6= λI then for µ ∈ Fq and k ∈ N, setting

f
(k)
φ (µ) := fφ ◦ fφ ◦ · · · ◦ fφ︸ ︷︷ ︸

k−fold

(µ) = µ
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yields a quadratic equation in µ, so there are at most two values of µ ∈ Fq satisfying
f

(k)
φ (µ) = µ. In other words, for each positive integer k, the map fφ admits at most two

orbits of size k. Moreover if A ∈ Aut(GS) then by equation (4.1), fA(S) = S.
Consider the event E: There exist a nontrivial automorphism A ∈ Aut0(GS) such that

fA is not the identity map. Observe that E is the union of the events EA where the event
EA is described as follows: For any A ∈ GL(2, q) where A 6= λI , λ 6= 0, S is the union
of fA orbits. Recall that fA is not the trivial map if and only if A 6= λI for any λ 6= 0.

By a favorable automorphism, we shall mean an automorphism A ∈ Aut0(GS), A 6=
λI such that S is union of fA orbits. By the preceding discussion, it follows that a favorable
automorphism of GS induces a partition Λ of q−1

2 in which there are at most two parts of
any size. Therefore the number of favorable automorphisms is at most twice the number
of integer partition of q−1

2 in which there are at most two parts of any size which is clearly
less than 2p( q−1

2 ), where p(n) denotes the partition function. By the asymptotics of the
partition function of Hardy-Ramanujan (see [10]),

p(t) ∼ 1

4t
√

3
exp

(
π

√
2t

3

)
,

where t = (q − 1)/2. So in particular, for any A ∈ Aut0(GS) the probability that fA is
nontrivial is less than p(t)

(
q
t

)−1
. Consequently,

P(E) ≤ (q2 − 1)(q2 − q)2p(t)(
q
t

) → 0 as q →∞.

Hence asymptotically almost surely, every S ⊂ Fq satisfies Aut0(GS) = {λI : λ ∈ Fq}.
The second statement follows trivially from this conclusion and this completes the proof of
the lemma.

Resuming the proof of the theorem, let S be a subset of Fq of size q−1
2 such that

Aut(GS) = {λI + b̄ : λ ∈ F∗q , b̄ ∈ V (GS)}; such a choice for S exists by the preceding
lemma. For such S, the distinguishing chromatic number ofGS is greater than its chromatic
number. Furthermore, since GS admits all translations in AG(2, q) as automorphisms it
follows that it is vertex transitive.

In fact, the graph GS satisfies χD(GS) = χ(GS) + 1 as we shall see now.

Theorem 4.3. Let S ⊂ Fq be a set of size q−1
2 such that Aut0(GS) = {λI : λ ∈ Fq}.

Then χD(GS) = q + 1.

Proof. For 1 6= γ /∈ S, consider the coloring of GS described by the color classes {lβγ :
β ∈ Fq}. Assign the color q + 1 to only the vertex (0, 0) ∈ V (GS). This forms a q + 1
coloring of GSwhich is obviously a proper coloring. To show that this is distinguishing,
let φ be a color fixing nontrivial automorphism of GS . By Theorem 4.2, φ maps (x, y) to
(ax + b1, ay + b2) for some a, b1, b2 ∈ Fq . Since φ fixes (0, 0) we have b1 = b2 = 0 and
a 6= 1. This implies φ = aI and hence it is not color fixing; indeed φ maps (1, 1) to (a, a)
and (a, a) /∈ l1γ .

Our second result in this section describes a family of graphs with very large automor-
phism groups - much larger than exponential in |V (G)|, but for which χD(G) = χ(G). As



N. Balachandran and S. Padinhatteeri: χD(G), |Aut(G)|, and a variant of the Motion Lemma 101

was proven in [2], we already know that the Kneser graphs K(n, r) with r ≥ 3 satisfy the
same. However, one might also expect that in such cases, distinguishing proper colorings
are perhaps rare, or at the very least, that there do exist minimal proper, non-distinguishing
colorings of G. It turns out that even this is not true.

Theorem 4.4. Let K(n, r) denote the complement of the Kneser graph, i.e., the vertices of
K(n, r) correspond to r element subsets of [n] and two vertices are adjacent if and only if
their intersection is non-empty. Then for n ≥ 2r and r ≥ 3 χD(K(n, r)) = χ(K(n, r)).
Moreover, every proper coloring of K(n, r) is in fact distinguishing.

Proof. First, observe that since Aut(K(n, r)) ' Sn for n ≥ 2r, the full automorphism
group of K(n, r) is also Sn.

Consider a proper coloring c of K(n, r) into color classes C1, C2, . . . , Ct. Note that
for any two vertices v1, v2 in the same color class, v1 ∩ v2 = ∅. If possible, let σ ∈ Sn
be a non-trivial automorphism which fixes Ci for each i. Without loss of generality let
σ(1) = 2. Observe that for the vertex v1 = (1, 2, . . . , r), its color class has no other
vertex containing 1 or 2, so σ maps {1, 2, , . . . , r} to {1, 2, . . . , r}. Again, with the vertex
v2 = {1, 3, . . . , r+1}, which is in color classC2 6= C1, σ maps v2 into {2, σ(3), . . . , σ(r+
1)} 6= v2, so σ(v2) ∩ v2 = ∅ by assumption. However, since σ(i) ∈ {1, 2, . . . , r} for each
3 ≤ i ≤ r this yields a contradiction.

5 Bipartite graphs with large χD(G)

In this section we describe a family of bipartite graphs whose distinguishing chromatic
number is greater than any integer k, where k ≥ 4.

As we described in the introduction, the sense of non-triviality of these examples arises
from a couple of factors. Our examples contain several copies of Kr,s as induced sub-
graphs. That by itself does not imply that the distinguishing chromatic number is at least
r + s but it is suggestive. What makes these families nontrivial is the fact that the distin-
guishing chromatic number of these graphs is in fact r + s+ 1.

Again, in order to describe these graphs, let q ≥ 5 be a prime power, and let Π :=
(P,L) be a Desarguesian projective plane of order q. As is customary, we denote by [r],
the set {1, 2 . . . , r}.

The graph which we denote LGq ⊗Kr,s has vertex set V (LGq ⊗Kr,s) = (P × [r])t
(L × [s]), and for p ∈ P, l ∈ L, and (i, j) ∈ [r] × [s] we have (p, i) adjacent to (l, j) if
and only if p ∈ l. Another way to describe this graph goes as follows. The weak product
LGq × Kr,s is bipartite and consists of two isomorphic bipartite components. The graph
LGq ⊗Kr,s is one of the connected components.

For each point p there are r copies of p in the graph LGq ⊗ Kr,s; we call the set
{(p, i)|i ∈ [r]} the fiber of p, and denoted it by F (p). Similarly we denote by F (l), the set
F (l) = {(l, i) : i ∈ [s]}, and shall call this the fiber of l. Each vertex (p, i) (resp. (l, j)) of
LGq ⊗Kr,s has degree r(q + 1) (resp. s(q + 1)).

Theorem 5.1. χD(LGq⊗Kr,s) = r+ s+ 1, where r, s ≥ 2 and q ≥ 5 is a prime number.

Proof. Firstly, we show that χD(LGq ⊗Kr,s) > r + s.
If possible, let C be an (r + s)-proper distinguishing coloring of LGq ⊗Kr,s and let

Ci, i ∈ [r + s] be the color classes of C in LGq ⊗Kr,s. We claim:
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1. For each p ∈ P , each vertex of F (p) gets a distinct color. The same also holds for
each l ∈ L and each vertex of F (l).

2. If CP and CL denote the sets of colors on the vertices of
⋃
p∈P

F (p) and
⋃
l∈L

F (l)

respectively, then CP ∩ CL = ∅ and |CP | = r, |CL| = s. Consequently, for each i,
either F (p) ∩ Ci 6= ∅ for each p ∈ P or F (l) ∩ Ci 6= ∅ for each l ∈ L.

We shall first prove each of the claims made above.

1. For p ∈ P suppose F (p) contains two elements, say (p, i) and (p, j), with the same
color. Consider the map φ that swaps (p, i) with (p, j) and fixes all other vertices.
It is easy to see that φ is a graph automorphism which fixes each color class Ci
contradicting the assumption that C is distinguishing. The argument for the part
regarding vertices in the fiber F (l) is identical.

2. Let l ∈ L and p ∈ l. By claim 1 each vertex in F (p) has a distinct color. Since
|F (p)| = r we may assume without loss of generality let (p, i) gets color i for i ∈ [r].
In that case, no vertex of F (l) can be colored using any color in [r]. Furthermore,
by the same reasoning as above, each vertex of F (l) is colored using a distinct color,
so we may assume again that (l, i) is colored r + i for i = 1, 2 . . . , s. Since there
is a unique line through any two points, no vertex of the form (p′, j) gets a color

in
r+s
∪

i=r+1
Ci. Similarly, no vertex of the form (l′, j) belongs to

r
∪
i=1

Ci. Therefore,

all points and their fibers belongs to
r
∪
i=1

Ci and all lines with their fibers belongs to
r+s
∪

i=r+1
Ci.

From claims 1 and 2 above, we conclude that for each p ∈ P , Ci ∩ F (p) 6= ∅ for
i ∈ [r]. Otherwise, since |F (p)| = r, there exist an i ∈ [r] such that |Ci∩F (p)| ≥ 2,
contradicting claim 1. Similar arguments show that for each l ∈ L, Ci+r ∩F (l) 6= ∅
for i ∈ [s].

To showC is not a distinguishing coloring we produce a nontrivial automorphism ofLGq⊗
Kr,s which fixes each Ci for i = 1, 2, . . . , r + s. We first set up some terminology. For
i ∈ [r], we call a vertex in the fiber of p its ith vertex if its color is i and shall denote it pi.
Similarly, we shall call a vertex in the fiber of l its ith point if its color is i + r and shall
denote it by li.

Let ψ ∈ Aut(LGq) be a nontrivial automorphism such that ψ(P) = P so that it also
satisfies ψ(L) = L. Let σ be defined on V (LGq ⊗Kr,s) by σ(vi) = ψ(v)i for v ∈ P tL.
It is clear that σ is a color preserving map. Moreover σ preserves adjacency in LGq⊗Kr,s;
indeed, v is adjacent to w in LGq if and only if F (v) ∪ F (w) forms a Kr,s as a subgraph
of LGq ⊗Kr,s and ψ ∈ Aut(LGq). Therefore σ is a nontrivial automorphism which fixes
the color classes, thereby showing that χD(LGq ⊗Kr,s) > r + s.

We now claim that χD(LGq ⊗Kr,s) ≤ r + s+ 1. For 1 ≤ i ≤ r − 1, assign the color
i to the points {(p, i) : p ∈ P} and for r + 1 ≤ j ≤ r + s let {(l, j) : l ∈ L} be colored j.
Recall that LGq admits a distinguishing 3-coloring in which every vertex of L is given the
same color, and the point set P is partitioned into P1,P2 that correspond to the other two
color classes (Theorem 3.1). We split the set {(p, r) : p ∈ P} into Cr := {(p, r)|p ∈ P1}
and Cr+s+1 := {(p, r) : p ∈ P2} and designate these sets as color classes r and r + s+ 1
respectively.
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It is easy to see that the above coloring is proper since adjacent vertices get different
colors. To see that it is distinguishing, let µ be a nontrivial automorphism which fixes each
color class. Since µ fixes each color class as a set, and µ is nontrivial, in particular, µ fixes
the set {(p, r) : p ∈ P}, and also fixes each set {(l, i) : l ∈ L} for r+ 1 ≤ i ≤ r+ s, so in
particular, µ induces a nontrivial automorphism, ν, on LGq = Cr ∪ Ci+r for each i ∈ [s],
which is non-distinguishing. But this contradicts Theorem 3.1, and so we are through.

6 Concluding Remarks
• It is possible to consider other Levi graphs arising out of other projective geome-

tries (affine planes, incidence bipartite graphs of 1-dimensional subspaces versus k
dimensional subspaces in an n dimensional vector space for some k etc). Many of
our results and methods work in those contexts as well and it should be possible to
prove similar results there as well, as long as the full automorphism group is not
substantially larger. For instance, in the case of the incidence graphs of k sets ver-
sus l-sets of [n], it is widely believed (see [7], chapter 1) that in most cases, the full
automorphism group of the generalized Johnson graphs is indeed Sn though it is not
known with certainty.

• As stated earlier, we believe that χD(LG4) = 3 though we haven’t been able to
show the same. Similarly, we believe χD(LG3) = 4. One can, by tedious arguments
considering several cases, show that a monochromatic 3-coloring of LG3 is not a
proper distinguishing coloring. For related details on what a monochromatic coloring
is, see the Appendix.

• We were able to show χD(K×nr ) = r+ 1 since in this case, all proper r colorings of
K×nr are of a specific type. For an arbitrary (prime) graph H , it is not immediately
clear if χD(H×n) > χ(H). It would be interesting to find some characterization of
graphs H with χD(H×n) = χ(H) + 1 for large n.

• For a given k ∈ N, we obtained nontrivial examples of family of vertex-transitive
graphs G with arbitrarily large chromatic number which have χD(G) > χ(G) and
with |Aut(G)| somewhat small. It is an interesting question to seek infinite families
of vertex-transitive graphs G with χD(G) > χ(G) > k for any prefixed k, while
|Aut(G)| = Ok(|G|).

• While we have attempted to construct non-trivial families of bipartite graphs with
large distinguishing chromatic number, it would be interesting to construct nontriv-
ial examples of graphs with arbitrary chromatic number, and arbitrarily large distin-
guishing chromatic number.

Acknowledgement

We would like to thank the anonymous referees for helpful suggestions and comments that
have helped in improving the clarity of the paper.

References
[1] M. O. Albertson and K. L. Collins, Symmetry breaking in graphs, Electron. J. Combin. 3

(1996), #R18.



104 Ars Math. Contemp. 12 (2017) 89–109

[2] Z. Che and K. L. Collins, The distinguishing chromatic number of kneser graphs, Electron. J.
Combin. 20(1) (2013), #P23.

[3] J. Choi, S. G. Hartke and H. Kaul, Distinguishing chromatic number of cartesian producs of
graphs, SIAM J. Discrete Math. 24 (2010), 82–100.

[4] K. L. Collins, M. Hovey and A. N. Trenk, Bounds on the distinguishing chromatic number,
Electron. J. Combin. 16 (2009), #R88.

[5] K. L. Collins and A. N. Trenk, The distinguishing chromatic number, Electron. J. Combin. 13
(2006), #R16.

[6] M. Conder and T. Tucker, Motion and distinguishing number two, Ars Mathematica Contem-
poranea 4 (2011), 63–72.

[7] C. Godsil and G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics 207,
Springer-Verlag, New York, 2001.

[8] D. Greenwell and L. Lovász, Application of product coloring, Acta Math. Acad. Sci. Hungar.
25(3-4) (1974), 335–340, doi:10.1007/BF01886093.

[9] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Discrete Mathematics
and its Applications, Taylor & Francis Group, LLC, Boca Raton, 2nd edition, 2011.

[10] G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London
Math. Soc. 17 (1918), 75–115, doi:10.1112/plms/s2-17.1.75.

[11] D. R. Hughes and F. C. Piper, Projective Planes, Graduate Texts in Mathematics 6, Springer-
verlag, New York, 1973.

[12] W. Imrich, R. Kalinowski, F. Lehner and M. Pilśniak, Endomorphism breaking in graphs, Elec-
tron. J. Combin. 21(1) (2014), #P 1.16.

[13] C. Laflamme and K. Seyffarth, Distinguishing chromatic number of bipartite graphs, Electron.
J. Combin. 16 (2009), #R76.

[14] Rédei, Lacunary polynomials over finite fields, volume MR 50 # 4548, North-Holland publish-
ing Co., Amsterdam-London; American Elsevier publishing Co., Inc., New York, 1973.

[15] A. Russell and R. Sundaram, A note on the asympotics and computational complexity of graph
distinguishability, Electron. J. Combin. 5 (1998), #R23.



N. Balachandran and S. Padinhatteeri: χD(G), |Aut(G)|, and a variant of the Motion Lemma 105

7 Appendix
7.1 The Levi graph LG2

Firstly, we remark that the upper bound χD(G) ≤ 2∆−2 wheneverG is bipartite andG �
K∆−1,∆,K∆,∆, which appears in [13], gives χD(LGq) ≤ 2q. In particular, χD(LG2) ≤
4. We shall show that in fact χD(LG2) = 4.

We first set up some notation, let {e1, e2, e3} be the standard basis of the vector space
V with e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). For g, h, k ∈ Fq, a vector v ∈ V
is denoted by (g, h, k) if v = ge1 + he2 + ke3. A point p ∈ P is denoted by (g, h, k)
if p =< ge1 + he2 + ke3 > . Thus, there are q2 points in the form (1, h, k) such that
h, k ∈ Fq, q points in the form of (0, 1, k) such that k ∈ Fq and finally the point (0, 0, 1)
to account for a total of q2 + q + 1 points in PG(2,Fq).

We start with the following definition.

Definition 7.1. A coloring of the Levi graph is said to be monochromatic if all the vertices
in one set of the vertex partition have the same color.

Lemma 7.2. LG2 does not have a proper distinguishing monochromatic 3-coloring.

Proof. Assume that LG2 has a proper distinguishing monochromatic 3-coloring. Without
loss of generality let the line setL be colored with a single color, say red. Call the remaining
two colors blue and green, say, which are the colors assigned to the vertices in P . We shall
refer to the set of points that are assigned a particular color, say green, as the color class
Green. By rank of a color class C (denoted r(C)), we mean the rank of the vector subspace
generated by C. Observe that a nontrivial linear map T that fixes the color class Green,
must necessarily also fix the color class Blue, so any such linear map would correspond to
an automorphism that preserves each color class.
For any 2-coloring of P (which has 7 points), one of the two color class has fewer than
four points. Without loss of generality, assume that this is the color class Green. Firstly, if
r(Green) ≤ 2 then consider a basisB of V which contains a maximal linearly independent
set of points in color class Green. If r(Green) = 2, then the linear map T obtained by
swapping the elements of the color class Green in B, and fixing every other basis element
is a non-trivial linear transformation of V which necessarily fixes the color class Green.
If r(Green) = 1, then consider the map T which fixes the green point of B and swaps
the other two (necessarily Blue) is a nontrivial linear transform that fixes the color class
Green. Finally, if r(Green) = 3, then let T be the map that swaps two of them and fixes
the third. Again, this map is a nontrivial linear map that fixes every color class.

We now set up some notation. Denote the points in LG2 by e1, e2, e3, e1 + e2, e1 + e3,
e2 + e3 and e1 + e2 + e3 (see Figure1) and denote the lines in the following way:

1. l1 : 〈e1, e2〉 the line ( two dimensional subspace) spanned by e1 and e2.

2. l2 : 〈e1, e3〉.
3. l3 : 〈e2, e3〉.
4. l4 : 〈e1, e2 + e3〉.
5. l5 : 〈e2, e1 + e3〉.
6. l6 : 〈e3, e1 + e2〉.
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Figure 1: Fano plane

7. l7 : 〈e1 + e3, e2 + e3〉.

Theorem 7.3. χD(LG2) = 4.

Proof. By the remark at the beginning of the section, we have χD(LG2) ≤ 4, so it suffices
to show χD(LG2) > 3. We first claim that if LG2 has a proper distinguishing 3-coloring,
then three linearly independent points (points corresponding to three linearly independent
vectors) get the same color.
Suppose the claim is false. Then each monochrome set C of points satisfies r(C) ≤ 2.
Since any set of four points contains three linearly independent points and |V (LG2)| = 7,
a 3-coloring yields a monochrome set of points of size exactly three. Denote this set by E
and observe that E in fact corresponds to a line lE ∈ L. Since any two lines intersect, no
line is colored the same as the points of E. If p, p′ ∈ P \E are colored differently, then the
line lp,p′ cannot be colored by any of the three colors contradicting the assumption. Con-
sequently, every point in P \E must be colored the same if the coloring were to be proper.
But then this gives a color class with four points which contains three linearly independent
points contradicting that the claim was false. Without loss of generality, suppose e1, e2, e3

are all colored red. Since l7 contains the points e1 + e2, e2 + e3 and e1 + e3, these three
points cannot all have different colors. Hence at least two of these three points are in the
same color class.

Without loss of generality, assume that e1 + e2 and e2 + e3 have the same color. Now
observe that the map σ defined by σ(e1) = e3, σ(e3) = e1, σ(e2) = e2, induces an
automorphism of LG2 that fixes every color class within P . Furthermore σ swaps l1 with
l3 and l4 with l6 and fixes all the other lines. If the sets of lines {l4, l6} and {l1, l3} are both
monochrome in L, then note that σ fixes every color class contradicting that the coloring
in question is distinguishing. Thus we consider the alternative, i.e., the possibilities that
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the lines l1 and l3 (resp. l4 and l6) are in different color classes, and in each of those cases
produce a non-trivial automorphism fixing every color class.

Case I : l4 and l6 have different colors, say blue and green respectively. In this case,
the point set witnesses at most two colors and none of the points of P \ {e1 + e3} can be
colored blue or green. Moreover, by Lemma 7.2, all the seven points cannot be colored red
(note that e1, e2, e3 are colored red). Consequently, e1 + e3 is colored, say blue, and all
the other points are colored red. The l7, l5 and l2 are all colored green since all these three
lines contain the point e1 + e3. As mentioned above, we shall in every case that may arise,
describe a non-trivial automorphism σ that fixes each color class. As before, we shall only
describe its action on the set {e1, e2, e3}.
Sub case 1 : l1 is colored blue. Then σ(e1) = e1, σ(e2) = e2 + e3, σ(e3) = e3 fixes
e1 + e3, swaps l1 with l4 and fixes l3. Consequently, it fixes every color class.
Sub case 2 : l1 is colored green and l3 is colored blue. In this case, σ(e1) = e2, σ(e2) =
e1, σ(e3) = e1+e2+e3 does the job. Sub case 3 : l1 and l3 are both colored green. In this
case, the only line which is colored blue is l4. Then σ(e1) = e2 + e3, σ(e2) = e2, σ(e3) =
e1 + e2, does the job.
From the above it follows that l4 and l6 cannot be in different color classes. So, we now
consider the other possibility, namely that l1 and l3 are in different color classes.

Case II: l6 and l4 have the same color but l1 and l3 are in different color classes, say
blue and green respectively. Here we first note that e1 + e2 and e2 + e3 are necessarily red
because they belong to l1 and l3 respectively. Again, we are led to three subcases:
Sub case 1 : e1 + e3 and e1 + e2 + e3 are both colored blue. Here, it is a straightforward
check to see that every l 6= l1 is colored green. Then, one can check that σ(e1) = e1 +
e2, σ(e2) = e2, σ(e3) = e3 fixes every color class.
Sub case 2 : The point e1 + e3 is colored red and e1 + e2 + e3 is colored blue. Again,
one can check in a straightforward manner, that for all 3 ≤ i ≤ 6, li is colored green. If
l2 is blue then σ(e2) = e3, σ(e3) = e2, σ(e1) = e1 does the job. If l2 is colored green,
σ(e1) = e2, σ(e2) = e1, σ(e3) = e3 does the job.
Sub case 3 : e1+e2+e3 is colored red and e1+e3 is colored blue. Here we first observe that
l2, l3, l5, l7 are all necessarily green. Also, by the underlying assumption (characterizing
Case II), l4, l6 bear the same color. In this case, σ(e1) = e1 +e2, σ(e3) = e2 +e3, σ(e2) =
e2, does the job. This exhausts all the possibilities, and hence we are through.

7.2 The Levi graph LG3

As remarked earlier, it is not too hard to show that χ(LGq) ≤ 6, so the same holds for
q = 3 as well. The next theorem shows an improvement on this result.

Theorem 7.4. χD(LG3) ≤ 5.

Proof. As indicated earlier we denote the points p ∈ P as mentioned in the beginning of
this section. A line corresponding to the subspace {(x, y, z) ∈ P : ax + by + cz = 0}
is denoted (a,b, c). We color the graph using the colors 1, 2, 3, 4, 5 as in Figure 2 (the
color is indicated in a rectangular box corresponding to the vertex) It is straightforward to
check that the coloring is proper. For an easy check we provide below, a table containing
adjacencies of each p ∈ P .

Here the first row lists all the points in the projective plane of order 3. The column
corresponding to the vertex p ∈ P lists the set of lines l ∈ L such that p ∈ l, so that the
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Figure 2: LG3

Points→ 100 110 010 120 112 121 012 122 011 111 101 102 001
Lines 001 001 001 001 011 011 011 012 012 012 010 010 010
↓ 011 120 100 110 120 121 122 122 121 120 122 121 120

012 121 101 111 101 102 100 101 100 102 102 101 100
010 122 102 112 112 110 111 110 112 111 112 111 110

columns are the adjacency lists for the vertices in P . To see that this coloring is distin-
guishing, firstly, observe that the line 001 is the only vertex with color 1. Therefore, any
automorphism φ that fixes every color class necessarily fixes this line. Consequently, the
points on 001 are mapped by φ onto themselves. Since each point on 001 bears a different
color, it follows that φ fixes each p ∈ 001. In particular, for 1 ≤ i ≤ 4, φ maps each set
{li1, li2, li3} onto itself. Here, {lij , 1 ≤ j ≤ 3} denotes the set of lines adjacent to the ith

point of 001. But again note that by the coloring indicated, the vertices lij and lij′ have
different colors for each i, so φ(lij) = lij for each pair (i, j) with 1 ≤ i ≤ 4, 1 ≤ j ≤ 3.
Now it is a straightforward check to see that φ = I .

7.3 SAGE code to calculate f(G) when G = PGL(F3q)

SAGE has inbuilt functions that allow us to list the elements of PGL(F3
q) and to write

down the disjoint cycle decomposition of a given permutation. For σ ∈ PGL(F3
q) the dis-

joint cycle decomposition, including its fixed points gives θσ , the total number of distinct
orbits induced by σ as in Lemma 2.2. Now it is easy to calculate P(Bσ) and sum over
PGL(F3

q). The SAGE code that we used for the calculation is given below, note that the
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text in the square bracket is an explanation of the corresponding line in the code.
#!/usr/bin/env sage -python
import sys
from sage.all import *
p = int(input("Enter p = " ))
t = float(input("Enter t = " ))
etot = p**2 + p + 1 [Total number of points in LGp.]
y = 0
G = PGL(3,p) [Automorphism group of PG(3, p).]
n = int(G.order()) [cardinality of G.]
for i in range(1, n):

g = G[i]
s = Set(g.cycle_tuples(singletons=True)) [Set of disjoint cycles of g ∈ G including sin-

gleton.]
og = s.cardinality() [Gives total number of distinct orbits induced by ‘g′. That is θg in

Lemma 2.2.]
ex = float(etot - og) [|C − 1| − θg as in the proof of Lemma 2.2.]
pg = 1 / float(t**ex)
y = float(pg + y)

print "tot prob is",y
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Abstract

Let G be a group acting faithfully and transitively on Ωi for i = 1, 2. A famous
theorem by Burnside implies the following fact: If |Ω1| = |Ω2| is a prime and the rank
of one of the actions is greater than two, then the actions are equivalent, or equivalently
|(α, β)G| = |Ω1| = |Ω2| for some (α, β) ∈ Ω1 × Ω2.

In this paper we consider a combinatorial analogue to this fact through the theory of
coherent configurations, and give some arithmetic sufficient conditions for a coherent con-
figuration with two homogeneous components of prime order to be uniquely determined
by one of the homogeneous components.

Keywords: Coherent configurations, association schemes, prime order, symmetric designs.
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1 Introduction
A famous theorem by Burnside states that each transitive permutation group of prime de-
gree with rank greater than two is Frobenius or regular. Since any Frobenius group of prime
degree is a subgroup of one-dimensional affine group, it follows that such a permutation
group is uniquely determined by its rank and degree up to equivalence of group actions.
Especially, if a group acts faithfully, transitively but not 2-transitively on each of two sets
of the same prime size, then the two actions are equivalent. Let us formulate this fact in the
following two paragraphs.
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Let G be a group acting transitively on Ωi for i = 1, 2. Then G acts on Ωi × Ωj by

(α, β)g = (αg, βg) for (α, β) ∈ Ωi × Ωj and g ∈ G,

for all i, j = 1, 2. It is well-known that (e.g., see [6, Lemma 1.6B]) the following are
equivalent:

(a) The action of G on Ω1 is equivalent to that on Ω2;

(b) There exists (α, β) ∈ Ω1 × Ω2 such that Gα = Gβ ;

(c) There exists (α, β) ∈ Ω1 × Ω2 such that |(α, β)G| = |Ω1| = |Ω2|.

Note that the rank of the action ofG on Ωi is equal to the number of orbits ofG on Ωi×Ωi,
and if G acts faithfully on Ωi, then G can be identified with a permutation group of Ωi.

Suppose that G acts faithfully on Ωi with i = 1, 2 and |Ω1| = |Ω2| is a prime. Then,
as mentioned in the first paragraph, these actions are equivalent if the rank of one of the
actions is greater than two, and so there exists an orbit R of G on Ω1 × Ω2 such that
|R| = |Ω1| = |Ω2|.

In this paper we consider a combinatorial analogy to this fact through the theory of
coherent configurations. The concept of coherent configurations was first introduced by
Higman who published a series of papers (e.g., [11], [12], [13]) to associate a lot of impor-
tant criterions with group actions.

Here we define a coherent configuration, its intersection numbers and its fibers accord-
ing to the notations as in [7].

Definition 1.1. Let V be a finite set and R a partition of V × V . We say that the pair
C = (V,R) is a coherent configuration if it satisfies the following:

1. The diagonal relation ∆V is a union of elements ofR where we denote {(u, u) | u ∈
U} by ∆U for a set U .

2. For each R ∈ R its transpose Rt = {(u, v) | (v, u) ∈ R} is an element ofR.

3. For all R,S, T ∈ R there exists a constant cTRS such that

cTRS = |R(u) ∩ St(v)| for all (u, v) ∈ T ,

where we denote by T (w) the set {z ∈ V | (w, z) ∈ T} for w ∈ V and T ∈ R.

The constants cTRS are called the intersection numbers. A subset X of V is called a
fiber of C if ∆X ∈ R. We denote the set of all fibers of C by Fib(C). By Definition 1.1(i),
V is partitioned into the fibers of C, and by Definition 1.1(i),(iii),R is partitioned into{

RX,Y | X,Y ∈ Fib(C)
}

where RX,Y =
{
R ∈ R | R ⊆ X × Y

}
.

Let U be a union of fibers of C. Then the pair(
U, {R ∈ R | R ⊆ U × U}

)
,

is also a coherent configuration, which is denoted by CU .
For R ∈ RX,Y we denote c∆X

RRt by dR. Then, by two-way counting we have

|R| = dR|X| = dRt |Y |. (1.1)
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ForX ∈ Fib(C), CX is nothing but an association scheme, i.e., a coherent configuration
with only one fiber (see [2] or [20] for its background). For short we shall write RX,X as
RX and CX is called a homogeneous component of C.

A general question here is formulated as follows: what can be said about the coherent
configuration if its homogeneous components are known. For example, it is a well-known
fact that the coherent configuration corresponds to a system of linked block designs if
|RX | = 2 for all X ∈ Fib(C). After the seminal Hanaki-Uno theorem on association
schemes of prime order (see [10] or Theorem 3.1), it seems quite natural to ask on a possible
structure of a coherent configuration each homogeneous component of which is of prime
order. The following is our first main result answering to this question:

Theorem 1.2. Let X,Y ∈ Fib(C) such that |X| = |Y | is a prime. Then |RX,Y | ∈
{1, |RX |}. In particular, if |RX,Y | > 1, then

|RX,Y | = |RX | = |RY |.

In order to state our second main theorem we need to recall the following observation.
LetG be a group acting on a finite set Ω. ThenG acts on Ω×Ω componentwise, and an orbit
of G on Ω× Ω is called an orbital (or 2-orbit) of G. We denote the set of orbitals of G by
OG. Then it is well-known that CG = (Ω,OG) is a coherent configuration, and Fib(CG) is
the set of orbits of G on Ω. In this sense, a coherent configuration is a combinatorial object
to generalize the orbitals of a group action.

Now we assume that C = (V,R) is a coherent configuration with exactly two fibers X ,
Y . Then (1.1) proves the equivalence of the first two statements of the following (see [16]
for the remaining):

(d) There exists R ∈ RX,Y such that |R| = |X| = |Y |.
(e) 1 ∈ {dR | R ∈ RX,Y } ∩ {dR | R ∈ RY,X}.

(f) C is isomorphic to CX
⊗
T2 where Tn =

(
{1, 2, . . . , n},

{
{(i, j)} | 1 ≤ i, j ≤ n

})
(see Section 2 for the definition of isomorphism and

⊗
).

We notice the following:
(d) is a combinatorial analogy to (c), and such R is a matching between X and Y ; (e)
is a simple arithmetic condition on intersection numbers; (f) implies that CX and CY are
isomorphic, and C is uniquely determined by CX .

In this paper we aim to obtain the analogous conclusion (d)–(f) to (a)–(c). The follow-
ing is our second main result to generalize the fact as in the first paragraph under certain
arithmetic conditions on intersection numbers:

Theorem 1.3. Suppose that C = (V,R) is a coherent configuration with exactly two fibers
X , Y satisfying

|X| = |Y | is a prime, |RX,X | > 2 and |RX,Y | > 1. (1.2)

Then there exists R ∈ RX,Y such that |R| = |X| = |Y | if one of the following conditions

holds with k =
|X| − 1

|RX,X | − 1
:

(i) |RX,X | > k2(k + e− 2) where e is the number of prime divisors of k;
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(ii) k ∈ {q, 2q, 3q} for some prime power q;

(iii) k = 4q for some prime power q with 3 - q + 1.

Let us show the reason why we exclude the case of |RX,X | = 2. Each symmetric
design induces the coherent configuration with exactly two fibers and eight relations (see
[14] or [16, Example 1.3]), and if the design is a non-trivial one on a prime number of
points, like the Fano plane, then the induced coherent configuration does not satisfy (d)–
(f).

Of course, if |RX,Y | = 1, then none of (d)–(f) hold, while C is the direct sum of CX
and CY (see [16] for the definition of direct sum).

Remark 1.4. Applying Theorem 1.3 for CX∪Y with |X| < 100 we obtain the same con-
clusion as Theorem 1.3 except for the case (|X|, k) = (71, 35) (see Section 5 for the
details).

Suppose that

(|X|, k) = (71, 35) and 1 /∈ {dR | R ∈ RX,Y }. (1.3)

Then by Theorem 1.2, |RX,Y | = 3. The three elements ofRX,Y must form three symmet-
ric designs whose parameters (v, k, λ) are (71, 35, 17), (71, 21, 6) and (71, 15, 3), respec-
tively. Though each of such symmetric designs exists (see [1], [3], [5], [9] and [17] or [4,
II.6.24,VI.16.30]), it does not guarantee the existence of a coherent configuration satisfying
(1.3).

In [14], Higman gave a result to eliminate the case of (|X|, k) = (71, 35) as in the
previous paragraph. But, the proof given in [14, (3.2)] contains a serious gap, so the result
may not be recognized to be true, while we have not found any counterexample. We would
be able to disprove [14, (3.2)] if there exists a coherent configuration satisfying (1.3).

In Section 2 we prepare several basic results on intersection numbers and introduce
the concepts of complex products and equitable partitions. In Section 3 we give a proof
of Theorem 1.2. In Section 4 we give a proof of Theorem 1.3. We add Section 5 for the
elimination of coherent configurations on at most 200 points satisfying (1.2).

2 Preliminaries
Throughout this section we assume that C = (V,R) is a coherent configuration.

Let Ci = (Vi,Ri) be a coherent configurations, i = 1, 2.
An isomorphism from C1 to C2 is defined to be a bijection ψ : V1 ∪ R1 −→ V2 ∪ R2

such that for all u, v ∈ V1 and R ∈ R1,

(u, v) ∈ R⇐⇒
(
ψ(u), ψ(v)

)
∈ ψ(R).

We say that C1 is isomorphic to C2 and denote it by C1 ' C2 if there exists an isomorphism
from C1 to C2.

We set
R1 ⊗R2 =

{
R1 ⊗R2 | R1 ∈ R1, R2 ∈ R2

}
,

where
R1 ⊗R2 =

{(
(u1, u2), (v1, v2)

)
| (u1, v1) ∈ R1, (u2, v2) ∈ R2

}
.
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Then
(
V1 × V2,R1 ⊗R2

)
is a coherent configuration called the tensor product of C1 and

C2 and denoted by C1
⊗
C2.

Following [20] we define the complex product on the power set ofR. For all subsets S
and T ofR we define the complex product ST of S and T to be the subset{

R ∈ R | ∃(S, T ) ∈ S × T ; cRST > 0
}
.

The complex product is an associative binary operation on the power set of R where the
proof is parallel to that for association schemes (see [20]). For convenience we shall write
S{T}, {S}T and {S}{T} as ST , ST and ST , respectively.

In this paper we need intersection numbers cTRS for R ∈ RX,Y , S ∈ RY,Z and T ∈
RX,Z under the assumption |X| = |Y | = |Z|. The following is a collection of simplified
equations on such intersection numbers (see [19] or [16, Lemma 2.2] for general formed
equations 1). For U ⊆ R we shall write dU instead of

∑
U∈U dU .

Lemma 2.1. For all X , Y , Z ∈ Fib(C) with |X| = |Y | = |Z| and all R ∈ RX,Y ,
S ∈ RY,Z and T ∈ RX,Z we have the following:

1. dRdS =
∑

T∈RX,Z

cTRSdT ;

2. cTRSdT = cRTStdR = cSRtT dS and lcm(dR, dS) | cTRSdT ;

3. |{U ∈ R | cURS > 0}| ≤ gcd(dR, dS), i.e., |RS| ≤ gcd(dR, dS);

4. |X| = dRX,X
= dRX,Y

.

The following lemmata were proved in [18, Lemma 2.3, Lemma 2.2]2:

Lemma 2.2. For all S, T ∈ RX,Y with |X| = |Y |, we have

SSt ∩ TT t ⊆ {∆X} if and only if cRStT ≤ 1 for each R ∈ R.

Lemma 2.3. Let Z ∈ Fib(C) such that |Z| is a prime. Then for each R ∈ RZ \ {∆Z} we
have:

1. dR = k where k =
|Z| − 1

|RZ | − 1
;

2.
∑
S∈RZ

cRSSt = k − 1.

According to [8] or [15] we define an equitable partition of a homogeneous component.

Definition 2.4. Let X ∈ Fib(C) and Π = {C1, C2, . . . , Cm} be a partition of X , i.e.,

X =

m⋃
i=1

Ci, Ci ∩ Cj 6= ∅ if i 6= j, and Ci 6= ∅ for each i = 1, 2, . . . ,m.

An element of Π is called a cell. We say that Π is an equitable partition of CX if, for all
i, j = 1, 2, . . . ,m and each R ∈ RX , |R(x) ∩ Cj | is constant whenever x ∈ Ci.

1We missed to assume that all fibers of C have the same size at Lemma 2.2 in [16] where the lemma is used
only for such coherent configurations in [16].

2Though it is a statement for association schemes, a parallel way to the proof can be applied for balanced
coherent configurations.
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For example, {X} and {{x} | x ∈ X} are equitable partitions of CX .
For each Y ∈ Fib(C) and each y ∈ Y we define

Πy :=
{
T (y) | T ∈ RY,X

}
. (2.1)

Then Πy is an equitable partition of CX , since

|R(x) ∩ S(y)| = cTRSt whenever x ∈ T (y).

3 Proof of Theorem 1.2
In [10] Hanaki and Uno proved the following brilliant theorem:

Theorem 3.1. All non-principal irreducible characters of an association scheme of prime
order are algebraic conjugate and of degree one.

The following proposition is obtained as a consequence of the previous theorem:

Proposition 3.2. Let C = (V,R) be an association scheme of prime order and Π be an
equitable partition of C. Then |Π| ≡ 1 mod |R| − 1.

Proof. Let A denote the adjacency algebra of C over C. Then the subspace W spanned by
the characteristic vectors of the cells in Π is a left A-module with respect to the ordinary
matrix product. Since A is semi-simple, W is a direct sum of irreducible submodules.

Note that the subspace spanned by the all-one vector is anA-submodule ofW affording
the principal character, and its multiplicity is one.

Since the character afforded by W is integral valued, it is left invariant from any al-
gebraic conjugate action. It follows from Theorem 3.1 that all non-principal irreducible
submodules of W have the same multiplicity, say m. Since

dimC(W ) = |Π| and dimC(A) = |R|,

it follows that

|Π| = 1 +m(|R| − 1).

Proof of Theorem 1.2. Let C = (V,R) be a coherent configuration with X , Y ∈ Fib(C)
such that |X| = |Y | is a prime. Recall that Πy is an equitable partition of CX where y ∈ Y .
By (2.1), |Πy| = |RX,Y |. Then it follows from Proposition 3.2 that

|RX,Y | ≡ 1 mod |RX | − 1.

Since |RX,Y | ≤ |RX | (see [13, p.223] or [16, Proposition 2.7]), |RX,Y | ∈ {1, |RX |}.
Applying the first statement for CY with |RX,Y | ≤ |RY |, we obtain the second statement.
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4 Proof of Theorem 1.3
For the remainder of this paper we assume that C = (V,R) is a coherent configuration with
X , Y ∈ Fib(C) such that

m = |X| = |Y | is a prime, r = |RX | > 2 and |RX,Y | > 1.

By Theorem 1.2, we have

r = |RX | = |RX,Y | = |RY |.

For the remainder of this paper we set

k =
m− 1

r − 1
.

By Lemma 2.3(i) the multi-set (dR | R ∈ RZ) withZ ∈ {X,Y } coincides with (1, k, . . . , k)
by a suitable ordering. In this section we aim to show that 1 ∈ {dR | R ∈ RX,Y }, which
implies that the multi-set (dR | R ∈ RX,Y ) coincides with (1, k, . . . , k) by a suitable or-
dering, since the complex product SR is a singleton with dSR = dS whenever S ∈ RX
and dR = 1 by Lemma 2.1(iii).

Lemma 4.1. For all S, T ∈ RX,Y with S 6= T we have the following:

(i) dSdS ≡ dS mod k;

(ii) dSdT ≡ 0 mod k.

Proof. (i) Applying Lemma 2.1(i) for S and St with dS = dSt and c∆X

SSt = dS , we obtain
that

dSdS = dS + k
∑

T∈RX,X

T 6=∆X

cTSSt .

(ii) Applying Lemma 2.1(i) for S and T t with dT = dT t and ∆X /∈ ST t, we obtain
that

dSdT = k
∑

T∈RX,X

cTST t .

We set

S1 := {T ∈ RX,Y | k - dT }, S2 := {T ∈ RX,Y | dT = k} and

S3 := {T ∈ RX,Y | k | dT , k < dT }.

Lemma 4.2. Let k = pα1
1 · · · pαe

e where pi are the distinct prime divisors of k and αi are
positive integers. Then we have the following:

1. For each i = 1, . . . , e there exists a unique S ∈ RX,Y such that pi - dS;

2. |S1| ≤ e;
3. k|S3|+ dS1 ≤ 1 + k(e− 1).
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Proof. (i) By Lemma 2.1(iv) and Lemma 2.3(i),

m = 1 + (r − 1)k ≡ 1 mod pi.

Since m = dRX,Y
, there exists an S ∈ RX,Y such that pi - dS . The uniqueness of such S

is a direct consequence of Lemma 4.1(ii).
(ii) The correspondence given in (i) gives a function from {p1, p2, . . . , pe} to S1. It

remains to show that this function is onto.
Let S ∈ S1. By the definition of S1, there exists pi such that piαi does not divide dS .

By Lemma 4.1(i),
dSdS ≡ dS mod k.

Therefore dS(dS − 1) is divided by k. Since dS and dS − 1 are relatively prime, pαi
i - dS

implies that pi - dS . It follows from (i) that dS lies in the range of the function.
(iii) Note that r = |S1|+ |S2|+ |S3| and

m =
∑

S∈RX,Y

dS =

3∑
i=1

dSi ≥ dS1 + k|S2|+ 2k|S3|.

Since k|S2|+ k|S3| = k(r − |S1|) and m = 1 + k(r − 1), it follows that

1 + k(|S1| − 1) ≥ dS1 + k|S3|.

By (ii), we have
1 + k(e− 1) ≥ dS1 + k|S3|.

This completes the proof of (iii).

Lemma 4.3. We have max{dS | S ∈ RX,Y } ≤ k ·min{dS | S ∈ RX,Y }.

Proof. Let S, T ∈ RX,Y such that

dS = min{dS | S ∈ RX,Y } and dT := max{dS | S ∈ RX,Y }.

Then T ∈ RS for some R ∈ RX since T ∈ RXS. Applying Lemma 2.1(i) we have
dT ≤ kdS .

For S ∈ RX,Y we define

US :=
{
R ∈ RX | RtR ∩ SSt = {∆X}

}
.

Lemma 4.4. For each S ∈ RX,Y we have the following:

1. r − |US | ≤ (dS − 1)(k − 1).

2. If R ∈ US − {∆X}, then k divides dT for each T ∈ RS.

3. If USS ∩ S2 = ∅, then r < dS(k + e− 2).

Proof. (i) Note that

RX − US =
⋃

R1∈SSt−{∆X}

{R ∈ RX | R1 ∈ RtR}.
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By Lemma 2.1(iii) with c∆X

SSt > 0,

|SSt − {∆X}| ≤ dS − 1.

It follows from Lemma 2.3(ii) that

|{R ∈ RX | R1 ∈ RtR}| ≤
∑
R∈R

cR1

RtR = k − 1.

This implies that
r − |US | = |RX − US | ≤ (dS − 1)(k − 1).

(ii) It is an immediate consequence of Lemma 2.1(ii) and Lemma 2.2.
(iii) Suppose that

USS ∩ S2 = ∅.

Then we have
USS ⊆ RX,Y − S2.

It follows from (ii) that
(US − {∆X})S ⊆ S3.

By Lemma 4.2(iii) and Lemma 4.3,

dS3 ≤ dSk|S3| ≤ dS [1 + k(e− 1)− dS1 ]. (4.1)

On the other hand, applying Lemma 2.2 and Lemma 2.1(iv) for the first inequality and (i)
for the second one,

dUSS ≥ 1 + (|US | − 1)k − dS ≥ 1 + [r − (dS − 1)(k − 1)− 1]k. (4.2)

Since (US − {∆X})S ⊆ S3,

dUSS − dS ≤ d(US−{∆X})S ≤ dS3 .

It follows from (4.1) and (4.2) that

1 + [r − (dS − 1)(k − 1)− 1]k − dS ≤ dS [1 + k(e− 1)− dS1 ],

and hence,

r ≤ dS
k

[2 + k(e− 1)− dS1 ]− 1

k
+ (dS − 1)(k − 1) + 1.

Thus,

r ≤ dS [
2

k
+ e− 1− dS1

k
+ k − 1]− k + 2− 1

k
< dS(k + e− 2).

This completes the proof of (iii).

Proposition 4.5. If r > k2(k + e − 2) where e is the number of prime divisors of k, then
1 ∈ {dS | S ∈ RX,Y }.
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Proof. We claim that
min{dS | S ∈ RX,Y } ≤ k.

If not, then
1 + k(r − 1) = m =

∑
S∈RX,Y

dS > kr,

a contradiction.
By Lemma 4.3,

max{dS | S ∈ RX,Y } ≤ k2.

Applying the contraposition of Lemma 4.4(iii) we have USS ∩ S2 6= ∅ for each S ∈ RX,Y ,
and hence, T ∈ RS for some R ∈ US and T ∈ S2. Since dT = k and cTRS = 1 by
Lemma 2.2, dS divides k for each S ∈ RX,Y . This implies that |S3| = 0.

We claim |S1| = 1. Suppose not. Since 1 + (r − 1)k = m = dS1 + k(r − |S1|),

1 + k|S1| ≤ k +
∑
S∈S1

dS ≤ k + k/2 + k/2 + (|S1| − 2)k,

a contradiction. By the claim we have S1 = {S} for some S ∈ RX,Y . Since

1 + k(r − 1) = m = k|S2|+ dS = k(r − 1) + dS ,

we have dS = 1. This completes the proof.

Lemma 4.6. If S, T ∈ RX,Y with ST t = {R}, then

cR1

RRt ≥ dT for each R1 ∈ SSt and cR2

RtR ≥ dS for each R2 ∈ TT t.

Proof. Let y ∈ Y , x1, x2 ∈ St(y) and z ∈ T t(y). Note that (xi, z) ∈ R for i = 1, 2
since ST t = {R}. Since z ∈ T t(y) is arbitrarily taken, we have T t(y) ⊆ R(x1) ∩R(x2),
which proves the first statement. By the symmetric argument the second statement can be
proved.

Proposition 4.7. There exist no S, T ∈ RX,Y such that

ST t = {R}, dS + dT ≥ k + 1 and 1 < dS < dT . (4.3)

Proof. Suppose that S, T ∈ RX,Y satisfies (4.3).
We claim that SSt = {∆X , R1} for some R1 ∈ RX − {∆X}. Suppose not, i.e.,

SSt − {∆X} has at least two elements R1, R2. By Lemma 2.1(i),

k2 = dRdRt ≥ k + cR1

RRtdR1
+ cR2

RRtdR2
= k + cR1

RRtk + cR2

RRtk.

It follows from Lemma 4.6 and dS + dT ≥ k + 1 that

k2 ≥ k(k + 2),

a contradiction.
We claim that SSt∩TT t = {∆X , R1}. Suppose not, i.e., SSt∩TT t = {∆X}. Then,

by Lemma 2.2, cRST t = 1. It follows from Lemma 2.1(i) that k = dR = dSdT , which
contradicts dS + dT ≥ k + 1 and 1 < dS < dT .
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We claim that R = Rt. Suppose not, i.e., R 6= Rt. Then, by Lemma 2.3(ii),

k − 1 =
∑

R2∈RX

cR1

R2Rt
2
≥ cR1

RRt + cR1

RtR ≥ dS + dT ≥ k + 1,

a contradiction.
We claim that TT t = {∆X , R1}. If R2 ∈ TT t − {∆X , R1}, then cR2

RR ≥ dS by
Lemma 4.6 with R = Rt. By Lemma 2.1(i),

k2 = dRdR ≥ k + cR1

RRk + cR2

RRk,

which implies that k ≥ 1 + dT + dS , a contradiction to dS + dT ≥ k + 1.
We claim that cR1

R1Rt
1
≥ dT − 2. By the previous claim, for all z1, z2 ∈ T t(y) with

z1 6= z2 we have (z1, z2) ∈ R1. Thus,

cR1

R1Rt
1

= |R1(z1) ∩R1(z2)| ≥ |T t(y)− {z1, z2}| ≥ dT − 2.

Since cR1

R1Rt
1

+ cR1

RRt ≥ dT − 2 +dT ≥ k by Lemma 4.6, it follows from Lemma 2.3(ii)

that R = R1. Thus, cRRRt = k − 1 since 1 < dS and

St(y) ∪ T t(y) \ {x1, x2} ⊆ R(x1) ∩R(x2) for x1, x2 ∈ St(y).

Since {∆X , R} is closed under the complex product, 1 + k divides |X|. Since |X| is a
prime, it follows that {∆X , R} = RX , and hence |RX | = 2, a contradiction.

Lemma 4.8. Suppose that k = 4q for some prime power q and 1 /∈ {dS | S ∈ RX,Y }.
Then |S3| = 0, |S1| = 2, and {dS | S ∈ S1} = {3q, q + 1}.

Proof. By Lemma 4.2(iii) and the assumption, |S3| = 0. By Lemma 4.2(ii), |S1| ≤ 2. Let
S ∈ S1. Then, by Lemma 4.1, dS ≡ 1 mod q. By the assumption, 1 < dS < 4q. Since
dS ≤ dS1 ≤ 1 + 4q Lemma 4.2(iii), it follows from Lemma 4.1 that

dS ∈ {q + 1, 3q + 1}.

Let T ∈ RX,Y with S 6= T . Since dSdT ≡ 0 mod 4q by Lemma 4.1, q | dT . Since
m = 1 + k(r − 1) = dS1 + dS2 = dS + dT + k(r − 2), we have dS + dT = k + 1.
Therefore, we conclude from Proposition 4.7 that {dS | S ∈ S1} = {3q, q + 1}.

Proof of Theorem 1.3. (i) is a direct consequence of Proposition 4.5.
(ii) Suppose on the contrary that

1 /∈ {dS | S ∈ RX,Y }.

Note that e ≤ 2 if k ∈ {q, 2q, 3q} for some prime power q. By Lemma 4.2(iii), |S3| = 0,
and dS1 ≤ k + 1. Since

1 + k(r − 1) = dS1 + dS2 ≤ k + 1 + dS2 ,

we have dS2 ≥ k(r − 2), and, hence, |S2| ≥ r − 2.
Suppose k = q. Then the statement follows from Lemma 4.2(iii) since e = 1.
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Suppose k = 2q. Then |S1| ≤ 2 and {dS | S ∈ S1} = {q, q+1} by Lemma 4.2(ii),(iii)
and Lemma 4.1. Without loss of generality we assume that

S1 = {S, T}, dS = q + 1 and dT = q.

Since q and q + 1 are relatively prime, it follows from Lemma 2.1(iii) that ST t = {R} for
some R ∈ R, which contradicts Proposition 4.7.

Suppose k = 3q. Then we have either

{dS | S ∈ S1} = {q, 2q + 1} or {dS | S ∈ S1} = {2q, q + 1}.

The first case is done by Proposition 4.7.
For the last case we assume that S1 = {S, T}, dS = q + 1 and dT = 2q. By

Lemma 2.1(i),(ii), SSt = {∆X , R} for some R ∈ R with R = Rt. This implies that
k = dR is even since |X| is an odd prime, so q is a power of two. Thus, dS and dT are
relatively prime. Therefore, the statement follows from Lemma 2.1(iii) and Proposition 4.7.

(iii) Suppose k = 4q. Then, by Lemma 4.8, {dS | S ∈ RX,Y } = {q, 3q + 1}
or {dS | S ∈ RX,Y } = {3q, q + 1}. The statement follows from the assumption and
Proposition 4.7.

5 Appendix
In this section we show how Theorem 1.3 is applied to small configurations CX∪Y with
|X| = |Y | < 100.

First, we denote byM the set of primes m less than 100.
Second, we take the set K of positive integers k such that

k | m− 1 for some m ∈M with k < m− 1 and

k /∈ {q, 2q, 3q | q is a prime power} ∪ {4q | q is a prime power with 3 - q + 1}.

Then K = {20, 30, 35, 44}.

Lemma 5.1. If k = 20, then 1 ∈ {dS | S ∈ RX,Y }.

Proof. Suppose not. By Lemma 4.8, {dS | S ∈ S1} = {15, 6}. Let S ∈ RX,Y with
dS = 6. By Lemma 2.1(ii), 6 | cRSStk for R ∈ SSt \ {∆X}. Thus, 3 | cRSSt , which
contradicts Lemma 2.1(ii).

Lemma 5.2. Suppose that each element of RY = {∆Y , R,R
′} is symmetric and Πx =

{C1, C2, C3} is the equitable partition of (Y,RY ) as in Section 2 for x ∈ X . We define

{βij}1≤i,j≤3 and {γij}1≤i,j≤3

such that βij = |R(y) ∩ Cj | with y ∈ Ci and γij := |R′(y) ∩ Cj | with y ∈ Ci. Then we
have the following:

1. For each i we have
∑3
j=1 βij = k;

2. For all i, j with i 6= j we have βij + γij = |Cj |;
3. For each i we have βii + γii = |Ci| − 1;
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4. For all i, j we have |Ci|βij = βji|Cj |;
5. We have β11 + β22 + β33 = k − 1.

Proof. The first four statements can be proved by checking the definition of equitable par-
titions and using a double-way counting for (Ci × Cj) ∩R.

Let A be the adjacency algebra of CY and W the subspace spanned by the character-
istic vectors of the cells of Πx. Then W is a left A-module corresponding to the algebra
homomorphism defined by AR 7→ (βij), AR′ 7→ (γij).

We claim that W affords the regular character. Let χ be the character afforded by W ,
i.e., the value of the adjacency matrix of R is equal to

∑3
i=1 βii. Note that the character

afforded by W is integral valued but not a sum of principal character. Since dim(W ) = 3,
it follows that χ is the sum of irreducible characters ofA. This implies that χ is the regular
character of A, and, hence, the trace of the matrix (βij) is equal to k− 1 by Lemma 2.3(ii)
with Lemma 2.1(ii).

Proposition 5.3. If (k,m) = (30, 61), then 1 ∈ {dS | S ∈ RX,Y }.

Proof. Suppose not.
By Lemma 4.2(ii),(iii), |S1| ≤ 3 and |S3| ≤ 1. if |S3| = 1, then 2k ≤ dS3 < m =

2k + 1, a contradiction. Thus, |S3| = 0.
Since |S2| ≤ 1, it follows from Lemma 4.1 that the following are only possible cases

of {dS | S ∈ RX,Y }:

{30, 25, 6}; {30, 15, 16}; {30, 10, 21};{15, 36, 10};{15, 6, 40}.

The first three cases do not occur by Proposition 4.7 since each of them contains a pair
of relatively prime numbers.

Note that {|Ci| | i = 1, 2, 3} = {dS | S ∈ RX,Y } where Πx = {C1, C2, C3} as in
Lemma 5.2. Without loss of generality we may assume that

Ci = Si(x) for i = 1, 2, 3.

From now on we shall use Lemma 5.2 many times without mentioning.
Suppose that

(|C1|, |C2|, |C3|) = (10, 15, 36).

Since |C2|β23 = |C3|β32, we have 12 | β23. If β23 ∈ {0, 36}, then |S2S
t
3| = 1, which

contradicts Proposition 4.5. Replacing R ∈ RY by R′ if necessary we may assume that
β23 = 24, and hence, β32 = 10.

Since
|C1|β13 = |C3|β31,

we have 18 | β13. If β13 ∈ {0, 36}, then |S3S
t
1| = 1, which contradicts Proposition 4.7.

Thus, β13 = 18, and, hence, β31 = 5.
By Lemma 5.2(i),

β33 = 15, β21 + β22 = 6 and β11 + β12 = 12.

By Lemma 5.2(v), β11 + β22 = 23. Thus, β12 + β21 = 19, which contradicts 10β12 =
15β21. Therefore, (dS , dT , dU ) = (10, 15, 36) does not occur.
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Suppose
(|C1|, |C2|, |C3|) = (15, 6, 40).

Since |C2|β23 = |C3|β32, we have 20 | β23. If β23 ∈ {0, 40}, then |S2S
t
3| = 1, which

contradicts Proposition 4.7. We may assume that β23 = 20, and hence, β32 = 3.
Since

|C1|β12 = |C2|β21,

we have 5 | β21. By Lemma 5.2(i),

β21 + β22 + 20 = 30.

Thus, 5 | β22. Replacing R ∈ RY by R′ if necessary we may assume that β22 = 5, and
hence, β21 = 5 and β12 = 2.

By Lemma 5.2(i),(v), we have

β11 + β13 = 28, β31 + β33 = 27 and β11 + β33 = 24.

Thus, β13 + β31 = 31, which contradicts 15β13 = 40β31.
This completes the proof.

Proposition 5.4. If (k,m) = (44, 89), then 1 ∈ {dS | S ∈ RX,Y }.

Proof. Suppose not. By Lemma 4.8, the following is a unique possible case of {dS | S ∈
RX,Y }:

{12, 33, 44}.
Without loss of generality we may assume that

Ci = Si(y) for i = 1, 2, 3 and (|C1|, |C2|, |C3|) = (12, 33, 44).

Since 12β12 = 33β21, β12 ∈ {0, 11, 22, 33}. Proposition 4.7 forces β12 ∈ {11, 22}, and
we may assume that β12 = 22 by replacing R ∈ RY by R′. Then β21 = 8.

Note that 11 divides β13 and so does β11 by Lemma 5.2(i). We divide our consideration
into the following two cases β11 = 11 or 0.

Suppose β11 = 11. Then β13 = 11 and β31 = 3. By Lemma 5.2(i),(v),

β22 + β23 = 36, β32 + β33 = 41 and β22 + β33 = 32.

Therefore, β23 + β32 = 45, which contradicts 33β23 = 44β32.
Suppose β11 = 0. Then

β13 = 22 and β31 = 6.

By Lemma 5.2(i),(v),

β22 + β23 = 36, β32 + β33 = 38 and β22 + β33 = 43.

Therefore, β23 + β32 = 34, which contradicts 33β23 = 44β32.
This completes the proof.

Lemma 5.5. If (k,m) = (35, 71) then {dS | S ∈ RX,Y } = {15, 21, 35}.

Proof. Applying Lemma 4.2(i),(iii) and Lemma 4.1 we conclude that {15, 21, 35} is a
unique case of {dS | S ∈ RX,Y }.

We notice that the lemmata given in this section justify the elimination given in Intro-
duction.
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Abstract

Let G be a connected graph of order n having ε(G) end-vertices. Given a positive
integer t, we denote by S(G, t) the t-th generalized Sierpiński graph of G. In this note we
show that if every internal vertex of G is a cut vertex, then the strong metric dimension of
S(G, t) is given by

dims(S(G, t)) =
ε(G)

(
nt − 2nt−1 + 1

)
− n+ 1

n− 1
.

Keywords: Strong metric dimension, Sierpiński graphs.
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1 Introduction
For two vertices u and v in a connected graph G, the interval IG[u, v] between u and v is
defined as the collection of all vertices that belong to some shortest u− v path. A vertex w
strongly resolves two vertices u and v if v ∈ IG[u,w] or u ∈ IG[v, w]. A set S of vertices
in a connected graph G is a strong metric generator for G if every two vertices of G are
strongly resolved by some vertex of S. The smallest cardinality of a strong metric generator
ofG is called strong metric dimension and is denoted by dims(G). After the publication of
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the first paper [16], the strong metric dimension has been extensively studied. The reader
is invited to read, for instance, the following works [10, 11, 12, 13, 15] and the references
cited therein. For some basic graph classes, the strong metric dimension is easy to compute.
For instance, dims(G) = n − 1 if and only if G is the complete graph of order n. For the
cycle Cn of order n the strong dimension is dims(Cn) = dn/2e and if T is a tree with l(T )
leaves, its strong metric dimension equals l(T )− 1 (see [16]).

Given a connected graph G and two vertices x, y ∈ V (G), we denote by dG(x, y) the
distance from x to y. A vertex u of G is maximally distant from v if for every vertex w in
the open neighborhood of u, dG(v, w) ≤ dG(u, v). If u is maximally distant from v and v
is maximally distant from u, then we say that u and v are mutually maximally distant. The
boundary of G = (V,E) is defined as ∂(G) = {u ∈ V : there exists v ∈ V such that u, v
are mutually maximally distant}. For some basic graph classes, such as complete graphs
Kn, complete bipartite graphs Kr,s, cycles Cn and hypercube graphs Qk, the boundary
is simply the whole vertex set. It is not difficult to see that this property holds for all 2-
antipodal1 graphs and also for all distance-regular graphs. Notice that the boundary of a
tree consists exactly of the set of its leaves. A vertex of a graph is a simplicial vertex if the
subgraph induced by its neighbors is a complete graph. Given a graph G, we denote by
σ(G) the set of simplicial vertices of G. Notice that σ(G) ⊆ ∂(G).

We use the notion of strong resolving graph introduced in [13]. The strong resolving
graph2 of G is a graph GSR with vertex set V (GSR) = ∂(G) where two vertices u, v are
adjacent in GSR if and only if u and v are mutually maximally distant in G. There are
some families of graph for which its resolving graph can be obtained relatively easily. For
instance, we emphasize the following cases.

• If ∂(G) = σ(G), then GSR
∼= K|∂(G)|. In particular, (Kn)SR

∼= Kn and for any
tree T with l(T ) leaves, (T )SR

∼= Kl(T ).

• For any 2-antipodal graph G of order n, GSR
∼=
⋃n

2
i=1K2. In particular, (C2k)SR

∼=⋃k
i=1K2.

• (C2k+1)SR
∼= C2k+1.

A set S of vertices of G is a vertex cover of G if every edge of G is incident with at
least one vertex of S. The vertex cover number of G, denoted by α(G), is the smallest
cardinality of a vertex cover of G. Oellermann and Peters-Fransen [13] showed that the
problem of finding the strong metric dimension of a connected graphG can be transformed
to the problem of finding the vertex cover number of GSR.

Theorem 1.1. [13] For any connected graph G, dims(G) = α(GSR).

It was shown in [13] that the problem of computing dims(G) is NP-hard. This suggests
finding the strong metric dimension for special classes of graphs or obtaining good bounds
on this invariant. In this note we study the problem of finding exact values or sharp bounds
for the strong metric dimension of Sierpiński graphs with pendant vertices.

1The diameter of G = (V,E) is defined as D(G) = maxu,v∈V {d(u, v)}. We recall that G = (V,E) is
2-antipodal if for each vertex x ∈ V there exists exactly one vertex y ∈ V such that dG(x, y) = D(G).

2In fact, according to [13] the strong resolving graph G′
SR of a graph G has vertex set V (G′

SR) = V (G) and
two vertices u, v are adjacent in G′

SR if and only if u and v are mutually maximally distant in G. So, the strong
resolving graph defined here is a subgraph of the strong resolving graph defined in [13] and can be obtained from
the latter graph by deleting its isolated vertices.
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2 Preliminaries on generalized Sierpiński graphs
Let G be a non-empty graph of order n and vertex set V (G). We denote by V t(G) the set
of words of size t on alphabet V (G). The letters of a word u of length t are denoted by
u1u2 . . . ut. The concatenation of two words u and v is denoted by uv. Klav̌zar and Mi-
lutinović introduced in [6] the graph S(Kn, t) whose vertex set is V t(Kn), where {u, v}
is an edge if and only if there exists i ∈ {1, . . . , t} such that:

(i) uj = vj , if j < i; (ii) ui 6= vi; (iii) uj = vi and vj = ui if j > i.

When n = 3, those graphs are exactly Tower of Hanoi graphs. Later, those graphs
have been called Sierpiński graphs in [7] and they were studied by now from numerous
points of view. The reader is invited to read, for instance, the following recent papers
[2, 5, 4, 7, 8, 9] and references therein. This construction was generalized in [3] for any
graph G, by defining the t-th generalized Sierpiński graph of G, denoted by S(G, t), as the
graph with vertex set V t(G) and edge set defined as follows. {u, v} is an edge if and only
if there exists i ∈ {1, . . . , t} such that:

(i) uj = vj , if j < i;

(ii) ui 6= vi and {ui, vi} ∈ E(G);

(iii) uj = vi and vj = ui if j > i.
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Figure 1: A graph G and the generalized Sierpiński graph S(G, 2)

Figure 1 shows a graph G and the Sierpiński graph S(G, 2), while Figure 2 shows the
Sierpiński graph S(G, 3).

Notice that if {u, v} is an edge of S(G, t), there is an edge {x, y} of G and a word
w such that u = wxyy . . . y and v = wyxx . . . x. In general, S(G, t) can be constructed
recursively from G with the following process: S(G, 1) = G and, for t ≥ 2, we copy
n times S(G, t − 1) and add the letter x at the beginning of each label of the vertices
belonging to the copy of S(G, t − 1) corresponding to x. Then for every edge {x, y} of
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G, add an edge between vertex xyy . . . y and vertex yxx . . . x. See, for instance, Figure 2.
Vertices of the form xx . . . x are called extreme vertices. Notice that for any graph G of
order n and any integer t ≥ 2, S(G, t) has n extreme vertices and, if x has degree d(x) in
G, then the extreme vertex xx . . . x of S(G, t) also has degree d(x). Moreover, the degrees
of two vertices yxx . . . x and xyy . . . y, which connect two copies of S(G, t−1), are equal
to d(x) + 1 and d(y) + 1, respectively.
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Figure 2: The generalized Sierpiński graph S(G, 3) with the base graph G shown in Figure
1.

To the best of our knowledge, [14] is the first published paper studying the generalized
Sierpiński graphs. In that article, the authors obtained closed formulae for the Randić index
of polymeric networks modelled by generalized Sierpiński graphs. In this note we consider
the case where every internal vertex of G is a cut vertex and we obtain a closed formula for
the strong metric dimension of S(G, t).

3 The strong metric dimension of S(G, t)

The following basic lemma will become an important tool to prove our main results.

Lemma 3.1. Let G be a connected graph. If v is a cut vertex of G, then v 6∈ ∂(G).

Proof. Let v ∈ V (G) be a cut vertex and x ∈ V (G)−{v}. LetG1 be the connected compo-
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nent ofG−{v} containing x and letG2 be a connected component ofG−{v} different from
G1. Since there exists y ∈ V (G2) which is adjacent to v in G and dG(x, v) < dG(x, y),
we conclude that x and v are not mutually maximally distant in G.

An end-vertex is a vertex of a graph that has exactly one edge incident to it, while a
support vertex is a vertex adjacent to an end-vertex.

Theorem 3.2. Let G be a connected graph and let ε(G) be the number of end-vertices of
G. Then,

dims(G) ≥ ε(G)− 1.

Moreover, if every vertex of degree greater than one is a cut vertex, then the bound is
achieved.

Proof. Let G be a connected graph. Since the set Ω(G) of end-vertices of G is a subset of
∂(G) and the subgraph of GSR induced by Ω(G) is a clique, we conclude that α(GSR) ≥
ε(G)− 1. Hence, by Theorem 1.1 we obtain the lower bound.

Now, if every vertex of degree greater than one is a cut vertex, by Lemma 3.1 we have
that ∂(G) is equal to the set of end-vertices of G. Then GSR

∼= K|ε(G)| and so Theorem
1.1 leads to dims(G) = ε(G)− 1.

From now on, we will say that a vertex of degree greater than one in a graph G is an
internal vertex of G. We shall show that if every internal vertex of G is a cut vertex, then
the bound above is achieved for S(G, t). To begin with, we state the following lemma.

Lemma 3.3. Let G be a graph of order n having ε(G) end-vertices. For any positive
integer t, the number of end-vertices of S(G, t) is

ε(S(G, t)) =
ε(G)

(
nt − 2nt−1 + 1

)
n− 1

.

Proof. In this proof, we denote by Sup(G) the set of support vertices of G. Also, if x ∈
Sup(G), then εG(x) will denote the number of end-vertices of G which are adjacent to x.

Let t ≥ 2. For any x ∈ V (G), we denote by Sx(G, t − 1) the copy of S(G, t − 1)
corresponding to x in S(G, t), i.e., Sx(G, t − 1) is the subgraph of S(G, t) induced by
the set {xw : w ∈ V t−1(G)}, which is isomorphic to S(G, t − 1). To obtain the result,
we only need to determine the contribution of Sx(G, t − 1) to the number of end-vertices
of S(G, t), for all x ∈ V (G). By definition of S(G, t), there exists an edge of S(G, t)
connecting the vertex xy . . . y of Sx(G, t − 1) with the vertex yx . . . x of Sy(G, t − 1) if
and only if x and y are adjacent in G. Hence, an end-vertex xy . . . y of Sx(S(G, t − 1) is
adjacent in S(G, t) to a vertex yx . . . x of Sy(G, t− 1) if and only if y is an end-vertex of
G and x is its support vertex. Thus, if x ∈ Sup(G), then the contribution of Sx(G, t−1) to
the number of end-vertices of S(G, t) is ε(S(G, t− 1))− εG(x) and, if x 6∈ Sup(G), then
the contribution of Sx(G, t−1) to the number of end-vertices of S(G, t) is ε(S(G, t−1)).
Then we obtain,

ε(S(G, t)) = (n− | Sup(G)|)ε(S(G, t− 1)) +
∑

x∈Sup(G)

(ε(S(G, t− 1))− εG(x))

= nε(S(G, t− 1))− ε(G).
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Now, since ε(S(G, 1)) = ε(G), we have that

ε(S(G, t)) = ε(G)
(
nt−1 − nt−2 − · · · − n− 1

)
= ε(G)

(
nt−1 −

(
nt−1 − 1

)
n− 1

)
.

Therefore, the result follows.

The following result is a direct consequence of Theorem 3.2 and Lemma 3.3.

Theorem 3.4. Let G be a connected graph of order n having ε(G) end-vertices and let t
be a positive integer. Then

dims(S(G, t)) ≥
ε(G)

(
nt − 2nt−1 + 1

)
− n+ 1

n− 1
.

As we will show in Theorem 3.6, the bound above is tight.

Lemma 3.5. Let G be a connected graph and let t be a positive integer. If every internal
vertex of G is a cut vertex, then every internal vertex of S(G, t) is a cut vertex.

Proof. As above, for any x ∈ V (G), we denote by Sx(G, t − 1) the copy of S(G, t −
1) corresponding to x in S(G, t). We proceed by induction on t. Let S(G, 1) = G be
a connected graph such that every internal vertex is a cut vertex and assume that every
internal vertex of S(G, t − 1) is a cut vertex. We differentiate two cases for any internal
vertex xw of S(G, t), where x ∈ V (G) and w ∈ V t−1(G).

Case 1. w has degree one in S(G, t− 1). In this case xw has degree two in S(G, t).
Hence, xw is adjacent to x1w′, for some x1∈ V (G)−{x}, and thenw = x1x1. . . x1,
w′ = xx . . . x, x1 is an end-vertex of G and x is the support of x1. As a result,
{xw, x1w′} is the only edge connecting vertices in Sx1

(G, t− 1) to vertices outside
the subgraph Sx1(G, t− 1). Therefore, xw is a cut vertex of S(G, t).

Case 2. w is a cut vertex of S(G, t− 1). In this case, we take two connected compo-
nents C1 and C2 obtained by removing w from S(G, t − 1). Suppose, for con-
tradiction purposes, that xw is not a cut vertex of S(G, t). Then there exist two
neighbours x1, xk of x and a sequence of subgraphs Sx1(G, t − 1), Sx2(G, t −
1), . . . , Sxk

(G, t − 1) such that x1 . . . x1 ∈ V (C1), xk . . . xk ∈ V (C2) and there
exists an edge of S(G, t) connecting Sxi

(G, t − 1) to Sxi+1
(G, t − 1), for all i ∈

{1, 2, . . . , k}. Note that the only vertices connecting Sxi
(G, t− 1) and Sxi+1

(G, t−
1) are xixi+1xi+1 . . . xi+1 and xi+1xixi . . . xi, where xi and xi+1 are adjacent inG.
Hence, x, x1, x2, . . . , xk, x is a cycle in G, and so there is a cycle in S(G, t − 1) of
the form Pxx1

,Px1x2
,Px2x3

, . . . , Pxk−1xk
, Pxkx, where Pxixi+1

is the path of order
2t−1 from xixi . . . xi to xi+1 xi+1 . . . xi+1 composed by binary words on alphabet
{xi, xi+1} (the paths Pxx1

and Pxkx are defined by analogy) and we identify the
vertex xixi . . . xi of two consecutive paths Pxi−1xi and Pxixi+1 to form the cycle.
As a result, there are two disjoint paths from x1x1 . . . x1 to xkxk. . . . xk, which con-
tradicts the fact that x1x1 . . . x1 ∈ V (C1) and xkxk. . . . xk ∈ C2. Therefore, xw is
a cut vertex of S(G, t).

According to the two cases above, we conclude the proof by induction.
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Our next result is obtained from Theorem 3.2 and Lemma 3.5.

Theorem 3.6. Let G be a connected graph of order n having ε(G) end-vertices and let t
be a positive integer. If every internal vertex of G is a cut vertex, then

dims(S(G, t)) =
ε(G)

(
nt − 2nt−1 + 1

)
− n+ 1

n− 1
.

Obviously, if the base graph is a tree, then we can apply the formula above. In particular,
we would emphasize the following particular case of this result, where K1,r denotes the
star graph of r leaves and Pr denotes the path graph of order r.

Corollary 3.7. For any integers r, t ≥ 2,

• dims(S(K1,r, t)) = (r + 1)t−1(r − 1).

• dims(S(Pr, t)) =
2rt − 4rt−1 − r + 3

r − 1
.

Let G be a graph of order n and letH = {H1, H2, . . . ,Hn} be a family of graphs. The
corona product graph G�H is defined as the graph obtained from G andH by taking one
copy of G and joining by an edge each vertex of Hi with the ith-vertex of G. These graphs
were defined by Frucht and Harary in [1].

Corollary 3.8. Let G be a graph of order n and letH = {H1, H2, . . . ,Hn} be a family of
empty graphs of order ni, respectively. Then for any positive integer t,

dims(S(G�H, t)) =
n′(n+ n′)t−1(n+ n′ − 2)− n+ 1

n+ n′ − 1
,

where n′ =

n∑
i=1

ni.
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Math. Soc. 66 (2002), 369–384, doi:10.1017/S0004972700040235, http://dx.doi.org/
10.1017/S0004972700040235.
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Abstract

The thickness θ(G) of a graph G is the minimum number of planar subgraphs into
whichG can be decomposed. In this paper, we provide a new upper bound for the thickness
of the complete tripartite graphs Kn,n,n (n ≥ 3) and obtain θ(Kn,n,n) =

⌈
n+1
3

⌉
, when

n ≡ 3 (mod 6).

Keywords: Thickness, complete tripartite graph, planar subgraphs decomposition.

Math. Subj. Class.: 05C10

1 Introduction
The thickness θ(G) of a graph G is the minimum number of planar subgraphs into which
G can be decomposed. It was defined by Tutte [11] in 1963, derived from early work on
biplanar graphs [2, 10]. It is a classical topological invariant of a graph and also has many
applications to VLSI design, graph drawing, etc. Determining the thickness of a graph
is NP-hard [7], so the results about thickness are few. The only types of graphs whose
thicknesses have been determined are complete graphs [1, 3], complete bipartite graphs [4]
and hypercubes [5]. The reader is referred to [6, 8] for more background on the thickness
problems.

In this paper, we study the thickness of complete tripartite graphs Kn,n,n, (n ≥ 3).
When n = 1, 2, it is easy to see thatK1,1,1 andK2,2,2 are planar graphs, so the thickness of
both ones is one. Poranen proved θ(Kn,n,n) ≤

⌈
n
2

⌉
in [9] which was the only result about

the thickness of Kn,n,n, as far as the author knows. We will give a new upper bound for
θ(Kn,n,n) and provide the exact number for the thickness of Kn,n,n, when n is congruent
to 3 mod 6, the main results of this paper are the following theorems.

Theorem 1.1. For n ≥ 3, θ(Kn,n,n) ≤
⌈
n+1
3

⌉
+ 1.

Theorem 1.2. θ(Kn,n,n) =
⌈
n+1
3

⌉
when n ≡ 3 ( mod 6).
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2 The proofs of the theorems
In [4], Beineke, Harary and Moon determined the thickness of complete bipartite graph
Km,n for almost all values of m and n.

Lemma 2.1. [4] The thickness of Km,n is
⌈

mn
2(m+n−2)

⌉
except possibly when m and n are

odd, m ≤ n and there exists an integer k satisfying n =
⌊ 2k(m−2)

m−2k
⌋
.

Lemma 2.2. For n ≥ 3, θ(Kn,n,n) ≥
⌈
n+1
3

⌉
.

Proof. Since Kn,2n is a subgraph of Kn,n,n, we have θ(Kn,n,n) ≥ θ(Kn,2n). From
Lemma 2.1, the thickness of Kn,2n (n ≥ 3) is

⌈
n+1
3

⌉
, so the lemma follows.

For the complete tripartite graph Kn,n,n with the vertex partition (A,B,C), where
A = {a0, . . . , an−1}, B = {b0, . . . , bn−1} and C = {c0, . . . , cn−1}, we define a type
of graphs, they are planar spanning subgraphs of Kn,n,n, denoted by G[aibj+ick+i], in
which 0 ≤ i, j, k ≤ n− 1 and all subscripts are taken modulo n. The graph G[aibj+ick+i]
consists of n triangles aibj+ick+i for 0 ≤ i ≤ n− 1 and six paths of length n− 1, they are

a0bj+1ck+2a3bj+4ck+5 . . . a3ibj+3i+1ck+3i+2 . . . ,

cka1bj+2ck+3a4bj+5 . . . ck+3ia3i+1bj+3i+2 . . . ,

bjck+1a2bj+3ck+4a5 . . . bj+3ick+3i+1a3i+2 . . . ,

a0ck+1bj+2a3ck+4bj+5 . . . a3ick+3i+1bj+3i+2 . . . ,

bja1ck+2bj+3a4ck+5 . . . bj+3ia3i+1ck+3i+2 . . . ,

ckbj+1a2ck+3bj+4a5 . . . ck+3ibj+3i+1a3i+2 . . . .

Equivalently, the graph G[aibj+ick+i] is the graph with the same vertex set as Kn,n,n and
edge set

{aibj+i−1, aibj+i, aibj+i+1, aick+i−1, aick+i, aick+i+1 | 1 ≤ i ≤ n− 2}

∪{bj+ick+i−1, bj+ick+i, bj+ick+i+1 | 1 ≤ i ≤ n− 2}

∪{a0bj , a0bj+1, an−1bj+n−2, an−1bj+n−1}

∪{a0ck, a0ck+1, an−1ck+n−2, an−1ck+n−1)}

∪{bjck, bjck+1, bj+n−1ck+n−2, bj+n−1ck+n−1}.

Figure 1(a) illustrates the planar spanning subgraph G[aibici] of K5,5,5.
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Figure 1: A planar subgraphs decomposition of K5,5,5

Theorem 2.3. When n = 3p+ 2 (p is a positive integer), θ(Kn,n,n) ≤ p+ 2.

Proof. When n = 3p + 2 (p is a positive integer), we will construct two different planar
subgraphs decompositions of Kn,n,n according to p is odd or even, in which the number of
planar subgraphs is p+ 2 in both cases.

Case 1. p is odd. Let G1, . . . , Gp be p planar subgraphs of Kn,n,n where
Gt = G[aibi+3(t−1)ci+6(t−1)], for 1 ≤ t ≤ p+1

2 ; and Gt = G[aibi+3(t−1)ci+6(t−1)+2],
for p+3

2 ≤ t ≤ p and p ≥ 3. From the structure of G[aibj+ick+i], we get that no two
edges in G1, . . . , Gp are repeated. Because subscripts in Gt, 1 ≤ t ≤ p are taken modulo
n, {3(t− 1) (mod n) | 1 ≤ t ≤ p} = {0, 3, 6, . . . , 3(p− 1)}, {6(t− 1) (mod n) | 1 ≤ t ≤
p+1
2 } = {0, 6, . . . , 3(p−1)} and {6(t−1)+2 (mod n) | p+3

2 ≤ t ≤ p} = {3, 9, . . . , 3(p−
2)}, the subscript sets of b and c in Gt, 1 ≤ t ≤ p are the same, i.e.,
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{i+ 3(t− 1) (mod n) | 1 ≤ t ≤ p}

= {i+6(t− 1) (mod n) | 1 ≤ t ≤ p+ 1

2
} ∪ {i+6(t− 1) + 2 (mod n) | p+ 3

2
≤ t ≤ p}.

Furthermore, if there exists t ∈ {1, . . . , p} such that aibj is an edge in Gt, then aicj is an
edge in Gk for some k ∈ {1, . . . , p}. If the edge aibj is not in any Gt, then neither is the
edge aicj in any Gt, for 1 ≤ t ≤ p.

From the construction of Gt, the edges that belong to Kn,n,n but not to any Gt, 1 ≤
t ≤ p, are

a0b3(t−1)−1, a0c3(t−1)−1, 1 ≤ t ≤ p (1)

an−1b3(t−1), an−1c3(t−1), 1 ≤ t ≤ p (2)

aibi−3, aibi−2, 0 ≤ i ≤ n− 1 (3)

aici−3, aici−2, 0 ≤ i ≤ n− 1 (4)

bici+3(t−1)−1, bici+3(t−1), 0 ≤ i ≤ n− 1 and t =
p+ 3

2
(5)

b3(t−1)c6(t−1)−1, b3(t−1)−1c6(t−1), 1 ≤ t ≤ p+ 1

2
(6)

b3(t−1)c6(t−1)+1, b3(t−1)−1c6(t−1)+2,
p+ 3

2
≤ t ≤ p and p ≥ 3 (7)

LetGp+1 be the graph whose edge set consists of the edges in (3) and (5), andGp+2 be
the graph whose edge set consists of the edges in (1), (2), (4), (6) and (7). In the following,
we will describe plane drawings of Gp+1 and Gp+2.
(a) A planar embedding of Gp+1.
Place vertices b0, b1, . . . , bn−1 on a circle, place vertices ai+3 and ci+n+1

2
in the middle of

bi and bi+1, join each of ai+3 and ci+n+1
2

to both bi and bi+1, we get a planar embedding
of Gp+1. For example, when p = 1, n = 5, Figure 1(b) shows the subgraph G2 of K5,5,5.
(b) A planar embedding of Gp+2.
Firstly, we place vertices c0, c1, . . . , cn−1 on a circle, join vertex ai+3 to ci and ci+1, for
0 ≤ i ≤ n− 1 , so that we get a cycle of length 2n. Secondly, join vertex an−1 to c3(t−1)
for 1 ≤ t ≤ p, with lines inside of the cycle. Let `t be the line drawn inside the cycle
joining an−1 with c6(t−1)−1 if 1 ≤ t ≤ p+1

2 or with c6(t−1)+1 if p+3
2 ≤ t ≤ p (p ≥ 3). For

1 ≤ t ≤ p, insert the vertex b3(t−1) in the line `t. Thirdly, join vertex a0 to c3(t−1)−1 for
1 ≤ t ≤ p, with lines outside of the cycle. Let `′t be the line drawn outside the cycle joining
a0 with c6(t−1) if 1 ≤ t ≤ p+1

2 or with c6(t−1)+2 if p+3
2 ≤ t ≤ p (p ≥ 3). For 1 ≤ t ≤ p,

insert the vertex b3(t−1)−1 in the line `′t. In this way, we can get a planar embedding of
Gp+2. For example, when p = 1, n = 5, Figure 1(c) shows the subgraph G3 of K5,5,5.

Summarizing, when p is an odd positive integer and n = 3p+2, we get a decomposition
of Kn,n,n into p+ 2 planar subgraphs G1, . . . , Gp+2.

Case 2. p is even. Let G1, . . . , Gp be p planar subgraphs of Kn,n,n where
Gt = G[aibi+3(t−1)ci+6(t−1)+3], for 1 ≤ t ≤ p

2 ; andGt = G[aibi+3(t−1)ci+6(t−1)+2], for
p+2
2 ≤ t ≤ p. With a similar argument to the proof of Case 1, we can get that the subscript

sets of b and c in Gt, 1 ≤ t ≤ p are the same, i.e.,
{i+ 3(t− 1) (mod n) | 1 ≤ t ≤ p}

= {i+ 6(t− 1) + 3 (mod n) | 1 ≤ t ≤ p

2
} ∪ {i+ 6(t− 1) + 2 (mod n) | p+ 2

2
≤ t ≤ p}.
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From the construction of Gt, G p
2

and G p+2
2

have n − 2 edges in common, they are
bi+3( p+2

2 −1)
ci+6( p+2

2 −1)+1, 1 ≤ i ≤ n − 1 and i 6= n − 4, we can delete them in one
of these two graphs to avoid repetition.

The edges that belong to Kn,n,n but not to any Gt, 1 ≤ t ≤ p, are

a0b3(t−1)−1, a0c3(t−1)−1, 1 ≤ t ≤ p (8)

an−1b3(t−1), an−1c3(t−1), 1 ≤ t ≤ p (9)

aibi−3, aibi−2, 0 ≤ i ≤ n− 1 (10)

aici−3, aici−2, 0 ≤ i ≤ n− 1 (11)

bici−1, bici, bici+1, 0 ≤ i ≤ n− 1 (12)

b3(t−1)c6t−4, 1 ≤ t ≤ p

2
(13)

b3(t−1)c6t−5,
p+ 2

2
< t ≤ p (14)

b3(t−1)−1c6t−3, 1 ≤ t < p

2
(15)

b3(t−1)−1c6t−4,
p+ 2

2
≤ t ≤ p (16)

Let Gp+1 be the graph whose edge set consists of the edges in (10), (11) and (12), and
Gp+2 be the graph whose edge set consists of the edges in (8), (9), (13), (14), (15) and
(16). We draw Gp+1 in the following way. Firstly, place vertices b0, c0, b1, c1, . . . , bn−1,
cn−1 on a circle C, join vertex ci to bi and bi+1, we get a cycle of length 2n. Secondly,
place vertices a0, a2, . . . , an−2 on a circle C ′ in the unbounded region defined by the circle
C such that C is contained in the closed disk defined by C ′, place vertices a1, a3, . . . , an−1
on a circle C ′′ contained in the bounded region of C. Join ai to bi−3, bi−2, ci−3, and ci−2,
join bi to ci+1. We can get a planar embedding of Gp+1, so it is a planar graph. Gp+2

is also planar because it is a subgraph of a graph homeomorphic to a dipole (two vertices
joined by some edges). For example, when p = 2, n = 8, Figure 2(c) and Figure 2(d) show
the subgraphs G3 and G4 of K8,8,8 respectively.

Summarizing, when p is an even positive integer and n = 3p+ 2, we obtain a decom-
position of Kn,n,n into p+ 2 planar subgraphs G1, . . . , Gp+2.

Theorem follows from Cases 1 and 2.

From the proof of Theorem 2.3, we draw planar subgraphs decompositions of K5,5,5

and K8,8,8 as illustrated in Figure 1 and Figure 2 respectively.
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Figure 2: A planar subgraphs decomposition of K8,8,8

Proof of Theorem 1.1. Because graph Kn−1,n−1,n−1 is a subgraph of Kn,n,n,
θ(Kn−1,n−1,n−1) ≤ θ(Kn,n,n), by Theorem 2.3, θ(Kn,n,n) ≤ p + 2 also holds, when
n = 3p or n = 3p+ 1 (p is a positive integer), the theorem follows. �

Proof of Theorem 1.2. When n = 3p is odd, i.e., n ≡ 3 (mod 6), we decompose Kn,n,n

into p + 1 planar subgraphs G1, . . . , Gp+1, where Gt = G[aibi+3(t−1)ci+6(t−1)], for 1 ≤
t ≤ p. With a similar argument to the proof of Theorem 2.3, we can get that the subscript
sets of b and c in Gt, 1 ≤ t ≤ p are the same, i.e.,

{i+ 3(t− 1) (mod n) | 1 ≤ t ≤ p} = {i+ 6(t− 1) (mod n) | 1 ≤ t ≤ p}.

If the edge aibj is in Gt for some t ∈ {1, . . . , p}, then there exists k ∈ {1, . . . , p} such that
aicj is in Gk. If the edge aibj is not in any Gt, then neither is the edge aicj in any Gt, for
1 ≤ t ≤ p.

From the construction of Gt = G[aibi+3(t−1)ci+6(t−1)], we list the edges that belong
to Kn,n,n but not to any Gt, 1 ≤ t ≤ p, as follows.

a0b3(t−1)−1, a0c6(t−1)−1, 1 ≤ t ≤ p (17)

an−1b3(t−1), an−1c6(t−1), 1 ≤ t ≤ p (18)

b3(t−1)c6(t−1)−1, b3(t−1)−1c6(t−1), 1 ≤ t ≤ p (19)

Let Gp+1 be the graph whose edge set consists of the edges in (17), (18) and (19). It is
easy to see that Gp+1 is homeomorphic to a dipole and it is a planar graph.

Summarizing, when p is an odd positive integer and n = 3p, we obtain a decomposi-
tion of Kn,n,n into p + 1 planar subgraphs G1, . . . , Gp+1, therefor θ(Kn,n,n) ≤ p + 1.
Combining this fact and Lemma 2.2, the theorem follows. �
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Figure 3: A planar subgraphs decomposition of K3,3,3

According to the proof of Theorem 1.2, we draw a planar subgraphs decomposition of
K3,3,3 as shown in Figure 3.

For some other θ(Kn,n,n) with small n, combining Lemma 2.2 and Poranen’s result
mentioned in Section 1, we have θ(K4,4,4) = 2, θ(K6,6,6) = 3. Since there exists a
decomposition of K7,7,7 with three planar subgraphs as shown in Figure 4, Lemma 2.2
implies that θ(K7,7,7) = 3. We also conjecture that the thickness of Kn,n,n is

⌈
n+1
3

⌉
for

all n ≥ 3.
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Abstract

Huang and Wu in [IEEE Transactions on Computers 46 (1997), pp. 484–490] intro-
duced the balanced hypercubeBHn as an interconnection network topology for computing
systems. In this paper, we completely determine the full automorphism group of the bal-
anced hypercube. Applying this, we first show that the n-dimensional balanced hypercube
BHn is arc-transitive but not 2-arc-transitive whenever n ≥ 2. Then, we show that BHn

is a lexicographic product of an n-valent graph Xn and the null graph with two vertices,
where Xn is a Zn−12 -regular cover of the n-dimensional hypercube Qn.

Keywords: Automorphism group, balanced hypercube, Cayley graph, arc-transitive.

Math. Subj. Class.: 05C25, 20B25

1 Introduction
The hypercube is widely known as one of the most popular interconnection networks for
parallel computing systems. As a variant of the hypercube, the balanced hypercube was
proposed by Huang and Wu [8] to enhance some properties of the hypercube. An n-
dimensional balanced hypercube, denoted by BHn, is defined as follows.

Definition 1.1. For n ≥ 1,BHn has 4n vertices, and each vertex has a unique n-component
vector on {0, 1, 2, 3} for an address, also called an n-bit string. A vertex (a0, a1, . . . , an−1)
is connected to the following 2n vertices:{

((a0 + 1)(mod 4), a1, . . . , ai−1, ai, ai+1, . . . , an−1),
((a0 − 1)(mod 4), a1, . . . , ai−1, ai, ai+1, . . . , an−1),

∗This work was supported by the National Natural Science Foundation of China (11271012, 11571035,
11231008) and the Fundamental Research Funds for the Central Universities (2015JBM110).
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{
((a0 + 1)(mod 4), a1, . . . , ai−1, (ai + (−1)a0)(mod 4), ai+1, . . . , an−1),
((a0 − 1)(mod 4), a1, . . . , ai−1, (ai + (−1)a0)(mod 4), ai+1, . . . , an−1),

for 1 ≤ i ≤ n− 1.
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Figure 1: Two balanced hypercubes: BH1 and BH2

By now, various properties of the balanced hypercube, such as, Hamiltonian laceabil-
ity, bipanconnectivity, super connectivity etc. have been extensively investigated in the
literature [7, 8, 9, 14, 16, 17, 18, 19]. In many situations, it is highly desired to use inter-
connection networks which are highly symmetric. This often simplifies the computational
and routing algorithms. It has been shown that the balanced hypercube is vertex-transitive
and arc-transitive (see [14, 22]). When dealing with the symmetry of graphs, the goal
is to gain as much information as possible about the structure of the full automorphism
groups. Recently, several publications have been put into investigation of automorphism
groups of Cayley graphs having connection with interconnection networks (see, for exam-
ple, [5, 10, 20, 21]).

In [22], it was proved that BHn is an arc-transitive Cayley graph.

Definition 1.2. For n ≥ 1, let Hn be an abelian group defined as follows:

Hn = 〈y〉 × 〈z1〉 × 〈z2〉 × . . .× 〈zn−1〉 ∼= Z2 × Z4 × Z4 × . . .× Z4.

The generalized dihedral group of Hn, denoted by Dih(Hn), is the semi-direct product of
Hn by a group 〈x〉 of order 2 with the involution x inverting every element in Hn. Let
Gn = Dih(Hn) = Hn o 〈x〉 and let S = {x, xy, xzi, xyzi | i = 1, 2, . . . , n− 1}. Let Γn
be the following Cayley graph:

Γn = Cay(Gn, S). (1.1)

Proposition 1.3. [22, Theorem 3.7] For each n ≥ 1, BHn
∼= Γn is arc-transitive.

Definition 1.4. Let Ln be a subgroup of Hn defined by

Ln = 〈z1〉 × 〈z2〉 × . . .× 〈zn−1〉 ∼= Z4 × Z4 × . . .× Z4︸ ︷︷ ︸
n−1

.
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Let Tn = Dih(Ln) = Ln o 〈x〉. Clearly, Tn is a subgroup of Gn of index 2. Set Ω =
{x, xzi | i = 1, 2, . . . , n− 1}, and define Xn as the following Cayley graph:

Xn = Cay(Tn,Ω). (1.2)

For convenience, in what follows we shall always let Γn = BHn. In [3], the authors
proved the following result.

Proposition 1.5. [3, Theorem 3.4] For each n ≥ 1,BHn
∼= Xn[2K1], whereXn is defined

as following:
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Figure 2: Another layout of BH2

By Proposition 2.1, it is easy to see that Aut(BHn) = Z2 oAut(Xn) ∗. So, to determine
the automorphism group of BHn, the key is to determine the automorphism group of Xn.
In this paper, we prove that Xn is a 2-arc-transitive normal Cayley graph, and Aut(Xn) =
R(Tn) o Aut(Tn,Ω) ∼= Tn o Sn.

As the automorphism group of BHn is known, one may ask: Does BHn have a
stronger symmetry property? In this paper, we show that BHn is arc-transitive but not
2-arc-transitive.

As another application, we prove that Xn is a Zn−12 -regular cover of the hypercube
Qn. This, together with the fact BHn

∼= Xn[2K1], gives a theoretical explanation of the
relationship between BHn and Qn.

2 Preliminaries
In this section, we shall introduce some notations, terminology and preliminary results.
Throughout this paper only undirected simple connected graphs without loops and mul-
tiple edges are considered. Unless stated otherwise, we follow Bondy and Murty [2] for
terminology and definitions.

Let n be a positive integer. Denote by Zn the cyclic group of order n, by Sn the sym-
metric group of degree n and byKn,n the complete bipartite graph of order 2n and valency
n, respectively. We also use nK1, Kn and Cn to denote the null graph, the complete graph
and the cycle with n vertices, respectively.

In a parallel computing system, processors are connected based on a specific intercon-
nection network. An interconnection network is usually represented by a graph in which
vertices represent processors and edges represent links between processors. LetG be a sim-
ple undirected connected graph. We denote by Aut(G) the full automorphism group of G,
and by V (G) and E(G) the sets of vertices and edges of G, respectively. For u, v ∈ V (G),
denote by {u, v} the edge incident to u and v in G. For a vertex v in a graph G, use NG(v)
to denote the neighborhood of v, that is, the set of vertices adjacent to v.
∗One can also obtain this by using [4, Theorem 5.7]. We thank a referee for pointing out this.
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An s-arc in a graph G is an ordered (s + 1)-tuple (v0, v1, . . . , vs−1, vs) of vertices of
G such that vi−1 is adjacent to vi for 1 ≤ i ≤ s and vi−1 6= vi+1 for 1 ≤ i ≤ s − 1.
A graph G is said to be s-arc-transitive if Aut(G) is transitive on the set of s-arcs in
G. In particular, 0-arc-transitive means vertex-transitive, and 1-arc-transitive means arc-
transitive or symmetric. A graph G is edge-transitive if Aut(G) acts transitively on E(G).
Clearly, every arc-transitive graph is both edge-transitive and vertex-transitive.

2.1 Wreath products of groups

For a set V and a group G with identity element 1, an action of G on V is a mapping
V ×G→ V , (v, g) 7→ vg , such that v1 = v and (vg)h = vgh for v ∈ V and g, h ∈ G. The
kernel of G acting on V is the subgroup of G fixing V pointwise. For two groups K,H , if
H acts on K (as a set) such that (xy)h = xhyh for any x, y ∈ K and h ∈ H , then H is
said to act on K as a group. In this case, we use K oH to denote the semi-direct product
of K by H with respect to the action.

LetH be a permutation group on a finite set ∆. For convenience, let ∆ = {1, 2, · · · , n}.
Let G be a permutation group on a finite set Φ, and let

N = G×G× · · · ×G︸ ︷︷ ︸
n times

.

We define the action of H on N as following:

∀h ∈ H, (g1, g2 · · · , gn)h = (g1h−1 , g2h−1 , · · · , gnh−1 ), gi ∈ G, i = 1, 2, · · · , n.

Then the semi-direct product of N by H with respect to this action is called the wreath
product of G and H , denoted by G oH . Clearly,

G oH = {(g1, g2, · · · , gn;h) | gi ∈ G, h ∈ H}.

Moreover, G oH can be viewed as a permutation group on Φ×∆ as following:

(x, i)(g1,g2,··· ,gn;h) = (xgi , ih).

Let G and H be two graphs. The lexicographic product G[H] is defined as the graph
with vertex set V (G)×V (H) and for any two vertices (u1, v1), (u2, v2) ∈ V (G)×V (H),
they are adjacent in G[H] if and only if either u1 = u2 and v1 is adjacent to v2 in H , or u1
is adjacent to u2 in G. In view of [13, Theorem.], we have the following.

Proposition 2.1. [13, Theorem.] LetX and Y be two graphs. Then Aut(X[Y ]) = Aut(Y )o
Aut(X) if and only if

(1) if there are two distinct vertices u, v ∈ V (X) such that NX(u) = NX(v), then Y is
connected;

(2) if there are two distinct vertices u, v ∈ V (X) such thatNX(u)∪{u} = NX(v)∪{v},
then the complement Y of Y is connected.

2.2 Cayley graphs

Let G be a permutation group on a set Ω and α ∈ Ω. Denote by Gα the stabilizer of α
in G, that is, the subgroup of G fixing the point α. We say that G is semiregular on Ω if
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Gα = 1 for every α ∈ Ω and regular if G is transitive and semiregular. Given a finite
group G and an inverse closed subset S ⊆ G \ {1}, the Cayley graph Cay(G,S) on G
with respect to S is defined to have vertex set G and edge set {{g, sg} | g ∈ G, s ∈ S}.
A Cayley graph Cay(G,S) is connected if and only if S generates G. Given a g ∈ G,
define the permutation R(g) on G by x 7→ xg, x ∈ G. Then R(G) = {R(g) | g ∈ G},
called the right regular representation of G, is a permutation group isomorphic to G. It is
well-known that R(G) ≤ Aut(Cay(G,S)). So, Cay(G,S) is vertex-transitive. In general,
a vertex-transitive graph X is isomorphic to a Cayley graph on a group G if and only if its
automorphism group has a subgroup isomorphic to G, acting regularly on the vertex set of
X (see [1, Lemma 16.3]).

For two inverse closed subsets S and T of a group G not containing the identity 1, if
there is an α ∈ Aut(G) such that Sα = T then S and T are said to be equivalent, denoted
by S ≡ T . The following proposition is easy to obtain.

Proposition 2.2. If S and T are equivalent then Cay(G,S) ∼= Cay(G,T ).

A Cayley graph Cay(G,S) is said to be normal if R(G) is normal in Aut(Cay(G,S))
(see [15]). Let Cay(G,S) be a Cayley graph on a group G with respect to a subset S of G.
Set A = Aut(Cay(G,S)) and Aut(G,S) = {α ∈ Aut(G) | Sα = S}.

Proposition 2.3. [15, Proposition 1.5] The Cayley graph Cay(G,S) is normal if and only
if A1 = Aut(G,S), where A1 is the stabilizer of the identity 1 of G in A.

2.3 Covers of graphs

An important tool in studying symmetry properties of graphs is the covering technique.
An epimorphism ℘ : X̃ → X of graphs is called a regular covering projection if there is
a semiregular subgroup CT(℘) of the automorphism group Aut(X̃) of X̃ whose orbits in
V (X̃) coincide with the vertex fibers ℘−1(v), v ∈ V (X), and the arc and edge orbits of
CT(℘) coincide with the arc fibers ℘−1((u, v)), u ∼ v, and the edge fibers ℘−1({u, v}),
u ∼ v, respectively. In particular, we call the graph X̃ a regular cover of the graph X . The
semiregular group CT(℘) is the covering transformation group. If CT(℘) is isomorphic to
an abstract group N then we speak of X̃ as a regular N -cover of X . For more results on
the covering of graphs, we refer the reader to [6, 12].

Let X be a connected k-valent graph and let G ≤ Aut(X) act transitively on the 2-arcs
of X . Let N be a normal subgroup of G. The quotient graph XN of X relative to N is
defined as the graph with vertices the orbits of N in V (X) and with two orbits adjacent if
there is an edge in X between those two orbits. In view of [11, Theorem 9], we have the
following.

Proposition 2.4. If N has more than two orbits in V (X), then N is semiregular on V (X),
XN is a k-valent graph with G/N as a 2-arc-transitive group of automorphisms, and X is
a regular N -cover of XN .

3 Automorphism group of the balanced hypercube
In this section, we shall determine the full automorphism group of the balanced hypercube.
From Proposition 1.5 we know that Γn ∼= Xn[2K1], and by Proposition 2.1, Aut(Γn) ∼=
Z2 o Aut(Xn). So, the key step is to determine the automorphism group of Xn.
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Lemma 3.1. For n ≥ 1, Xn is a 2-arc-transitive normal Cayley graph, and furthermore,
Aut(Xn) = R(Tn) o Aut(Tn,Ω), where R(Tn) ∼= Tn = Dih(Zn−14 ) and Aut(Tn,Ω) ∼=
Sn.

Proof. Clearly, X1
∼= K2 and X2

∼= C8. It is easy to see that the statement is true for these
two cases. In what follows, assume that n ≥ 3. We first prove the following two claims.

Claim 1 Aut(Tn,Ω) ∼= Sn.
Since Ω generates Tn, Aut(Tn,Ω) acts faithfully on Ω, and hence Aut(Tn,Ω) ≤ Sn.
It is easy to verify that xz1, z−11 zi(2 ≤ i ≤ n − 1), z−11 generate Tn and they satisfy

the same relations as x, zi(1 ≤ i ≤ n− 2), zn−1. This implies that the map

α : x 7→ xz1, zi 7→ z−11 zi+1(1 ≤ i ≤ n− 2), zn−1 7→ z−11 ,

induces an automorphism of Tn. Clearly, for each 1 ≤ i ≤ n − 2, (xzi)
α = xzi+1, and

x 7→ xz1 and (xzn−1)α = x. This implies that α cyclicly permutates the elements in Ω,
and so α ∈ Aut(Tn,Ω).

Similarly, for each 2 ≤ i ≤ n− 1, we define a map as the following:

βi : x 7→ x, z1 7→ zi, zi 7→ z1, zj 7→ zj(1 ≤ i, j ≤ n− 1 and i 6= j).

Then βi induces an automorphism of Tn, and furthermore, βi interchanges xz1 and xzi
and fixes all other elements in Ω. Hence, βi ∈ Aut(Tn,Ω) and by elementary group theory,
we obtain that the subgroup generated by βi(2 ≤ i ≤ n − 1) is isomorphic to Sn−1.
Since Sn−1 is maximal in Sn, one has 〈α, βi | 2 ≤ i ≤ n − 1〉 ∼= Sn. It follows that
Aut(Tn,Ω) = 〈α, βi | 2 ≤ i ≤ n− 1〉 ∼= Sn.

Claim 2 For any xzi, there are (n−2) 6-cycles inXn passing through the 2-arc (x, 1, xzi),
namely, Ci,j = (1, x, z−1j , xziz

−1
j , z−1j zi, xzi, 1) with j 6= i and 1 ≤ j ≤ n− 1.

By Claim 1, Aut(Tn,Ω) acts 2-transitively on Ω. It is well-known that a vertex-transi-
tive graph is 2-arc-transitive if and only if the vertex-stabilizer Aut(Xn)v is 2-transitive on
the set of vertices adjacent to v. So, Xn is 2-arc-transitive. To prove the claim, it suffices
to show that the statement is true for the case when i = 1.

First, for any 2 ≤ j ≤ n − 1, one may easily check that C1,j = (1, x, z−1j , xz1z
−1
j ,

z1z
−1
j , xz1, 1) is a 6-cycle passing through the 2-arc (x, 1, xz1). Let C ′ be an arbitrary

6-cycle passing through (x, 1, xz1). Then there exist s1, s2, t1, t2 ∈ Ω such that C ′ =
(1, x, s1x, s2s1x = t2t1xz1, t1xz1, xz1, 1), where s1 6= x, s2 6= s1, t1 6= xz1 and t1 6= t2.
Clearly, s1 = xzj for some 1 ≤ j ≤ n−1. In the rest of the proof of Claim 2 the following
well-known fact will be frequently used.

Fact Every element in 〈z1〉 × 〈z2〉 × . . .× 〈zn−1〉 can be uniquely written in the following
form

za11 za22 . . . z
an−1

n−1 , ai ∈ Z4(1 ≤ i ≤ n− 1).

If s2 = x, then xxzjx = t2t1xz1. It follows that zjx = t2t1xz1 and hence zjz1 = t2t1.
If t2 = x, then t1 = xzk for some 1 ≤ k ≤ n − 1, and so zjz1 = zk. By Fact, this is
impossible. If t2 = xz` for some 1 ≤ ` ≤ n − 1, then we have either t1 = x or t1 = xzp
for some 1 ≤ p ≤ n− 1. For the former, we have zjz1 = z−1` , and for the latter, we have
t2t1 = xz`xzp = z−1` zp = zjz1. From the above Fact, both of these cannot happen.
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If s2 = xzi for some 1 ≤ i ≤ n − 1, then xzixzjx = t2t1xz1. It follows that
z−1i zjx = t2t1xz1 and hence z−1i zjz1 = t2t1. If t1 = xzk and t2 = xzp for some
1 ≤ k, p ≤ n − 1, then t2t1 = z−1p zk = z−1i zjz1. This is also impossible. If t1 = x and
t2 = xzp for some 1 ≤ p ≤ n−1, then t2t1 = z−1p = z−1i zjz1. This is also impossible. So,
we must have t1 = xzk and t2 = x for some 1 ≤ k ≤ n− 1. Then t2t1 = zk = z−1i zjz1.
Clearly, s1 6= s2. Then zk = zj and zi = z1. That is s2 = xz1, t2 = x, t1 = s1 = xzj . It
follows that C ′ = C1,j = (1, x, z−1j , xz1z

−1
j , z−1j z1, xz1, 1).
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Figure 3: 6-cycles passing through (x, 1, xzi)

Now we are ready to complete the proof. Let A = Aut(Xn) and let A1 be the stabilizer
of the identity 1 inA. LetA∗1 be the kernel ofA1 acting on Ω. ThenA∗1 fixes every element
in Ω. For any xzi (1 ≤ i ≤ n − 1), by Claim 2, there are exactly (n − 2) 6-cycles in
Xn passing through the 2-arc (x, 1, xzi), namely, Ci,j = (1, x, z−1j , xziz

−1
j , z−1j zi, xzi, 1)

with j 6= i and 1 ≤ j ≤ n−1 (see Fig. (3)). Note that the neighborhood of x is {1, z−1i | 1 ≤
i ≤ n− 1} and the neighborhood of xzi is {1, zi, z−1j zi | 1 ≤ i, j ≤ n− 1, j 6= i}. Since
there are no 6-cycles passing through z−1i , x, 1, xzi and zi, it follows that A∗1 fixes z−1i and
zi (1 ≤ i ≤ n− 1).

By [3, Lemma 4.2], Xn has girth 6, and so Ci,j is the unique 6-cycle passing through
z−1j , x, 1, xzi, z

−1
j zi. AsA∗1 fixes z−1j , x, 1 and xzi,A∗1 must fix z−1j zi. By the arbitrariness

of i, j, we obtain thatA∗1 fixes every vertex of the set {z−1i , zi, z
−1
j zi | 1 ≤ i, j ≤ n−1, j 6=

i}which is just the set of vertices at distance 2 from the identity 1. By the vertex-transitivity
and connectivity of Xn, A∗1 fixes all vertices of Xn. It follows that A∗1 = 1, and so A1

acts faithfully on Ω. Therefore, A1 . Sn. By Claim 1, Aut(Tn,Ω) ∼= Sn, and since
Aut(Tn,Ω) ≤ A1, one has Aut(Tn,Ω) = A1. By Proposition 2.3, Xn is normal, and so
A = R(Tn) o Aut(Tn,Ω). �

Now we are ready to determine the automorphism group of BHn.

Theorem 3.2. For n ≥ 1, Aut(BHn) = Z2 o (Tn o Sn).

Proof. By Proposition 1.5, BHn
∼= Xn[2K1]. By Proposition 2.1, Aut(BHn) ∼= Z2 o

Aut(Xn). From Theorem 3.1 we obtain that Aut(Xn) = R(Tn)oAut(Tn,Ω) ∼= TnoSn.
It follows that Aut(BHn) = Z2 o (Tn o Sn). �
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4 Related results
As the automorphism group of BHn is known, we can obtain more information about the
symmetry properties of BHn. By Proposition 1.3, BHn is arc-transitive, and by Theo-
rem 3.1, Xn is 2-arc-transitive. It is natural to ask: whether BHn has much stronger sym-
metry property? We answer this in negative by showing that BHn is not 2-arc-transitive.

Theorem 4.1. For n ≥ 2, BHn is arc-transitive but not 2-arc-transitive.

Proof. Suppose, by way of contradiction, thatBHn is 2-arc-transitive. Recall thatBHn =
Cay(Gn, S). Then the vertex-stabilizer Aut(BHn)1 of the identity 1 of Gn in Aut(BHn)
is 2-transitive on S. That is, for any two distinct ordered pairs from S×S, say (u1, v1) and
(u2, v2), there exists α ∈ Aut(BHn)1 such that (u1, v1)α = (u2, v2). In particular, there
exists α ∈ Aut(BHn)1 such that (x, xy)α = (x, xz1). This implies that x and xz1 have
the same neighborhood because x and xy have the same neighborhood. However, from
[22, Lemma 3.8], we see that xy is the unique vertex which has the same neighborhood as
x, a contradiction. �

By Proposition 1.5, BHn
∼= Xn[2K1]. As a consequence of Theorem 3.1, we can also

prove that Xn is a Zn−12 -regular cover of the hypercube Qn. This reveals the relationship
between the balanced hypercube BHn and the hypercube Qn.

Lemma 4.2. For n ≥ 1, let N = Zn2 . Let G = Cay(N,S) be a connected n-valent Cayley
graph. Then G is isomorphic to the n-dimensional hypercube Qn.

Proof. It is well-known that Qn is a Cayley graph on N with respect to the subset

T = {(1, 0, 0, · · · , 0), (0, 1, 0, · · · , 0), · · · , (0, 0, 0, · · · , 1)}.

Viewing N as an n-dimensional vector space on the field Z2, one may see that T is a basis
of N . Since G is an n-valent Cayley graph, one has |S| = n, and since G is connected, one
has N = 〈S〉. This means that S is also a basis of N . So, there is an automorphism of N
which maps S to T . By Proposition 2.2, G ∼= Qn, as desired. �

Theorem 4.3. For n ≥ 3, Xn is a Zn−12 -regular cover of Qn.

Proof. By Theorem 3.1, R(Tn) is normal in Aut(Xn). Remember that Tn = Dih(Ln) =
Ln o 〈x〉, where

Ln = 〈z1〉 × . . .× 〈zn−1〉 ∼= Z4 × . . .× Z4︸ ︷︷ ︸
n−1 times

,

and x is an involution inverting every element in Ln. Set Z = 〈R(z21)〉× . . .×〈R(z2n−1)〉.
Then

Z ∼= Z2 × . . .× Z2︸ ︷︷ ︸
n−1 times

,

and Z is just the center of R(Tn). It follows that Z is characteristic in R(Tn). Since
R(Tn)E Aut(Xn), one has Z E Aut(Xn). Consider the quotient graph Yn of Xn relative
to Z. Clearly, Z is semiregular on the vertex-set of Xn, and so it has more than 2 orbits on
V (X). Since Xn is 2-arc-transitive, by Proposition 2.4, Yn is also an n-valent graph with
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Aut(Xn)/Z as a 2-arc-transitive automorphism group, and Xn is a Z-regular cover of Yn.
To complete the proof, it suffices to prove that Yn ∼= Qn.

Noting that Z E R(Tn) and R(Tn) is regular on V (Xn), R(Tn)/Z is regular on
V (Yn). It follows that Yn is a Cayley graph on R(Tn)/Z. As R(Tn) = Dih(Ln), one
has R(Tn)/Z ∼= Zn2 . Since Yn has valency n, by Lemma 4.2, one has Yn ∼= Qn. �

Conclusion
In [14], the authors introduced the balanced hypercube to enhance some properties of the
hypercube. Graph symmetry is an important factor in the design of an interconnection
network. In 1997, it has been shown that the balanced hypercube is vertex-transitive. Re-
cently, it was shown that the balanced hypercube is also arc-transitive. However, the full
automorphism group of the balanced hypercube remained unknown. In this paper, we
solve this problem. As applications, we first analyze the symmetry properties of the bal-
anced hypercube and show that the balanced hypercube is not 2-arc-transitive. Then, we
give a theoretical explanation of the relationship between the balanced hypercube and the
hypercube.

Acknowledgements: The authors are indebted to the anonymous referees for many valu-
able comments and constructive suggestions.
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Abstract

It is shown that the chromatic number χ(G) = k of a uniquely colorable Cayley graph
G over a group Γ is a divisor of |Γ| = n. Each color class in a k-coloring of G is a coset
of a subgroup of order n/k of Γ. Moreover, it is proved that (k − 1)n is a sharp lower
bound for the number of edges of a uniquely k-colorable, noncomplete Cayley graph over
an abelian group of order n. Finally, we present constructions of uniquely colorable Cayley
graphs by graph products.

Keywords: Vertex coloring, color classes, Cayley graph.

Math. Subj. Class.: 05C15, 05C25

1 Introduction
A proper k-coloring of an undirected graph G = (V,E) with vertex set V = V (G) and
edge set E = E(G) is a map f : V → C from V into a set C with |C| = k elements
(’colors’) such that any two adjacent vertices are assigned different colors. If not otherwise
stated a k-coloring is always understood to be a proper k-coloring. A graphG is k-colorable
if it admits a k-coloring. The chromatic number χ(G) is the smallest number k for which
G is k-colorable. An optimal coloring of G is a χ(G)-coloring of G. The color class of
the coloring f : V → C with respect to color c ∈ C consists of all vertices x ∈ V with
f(x) = c. If f is a k-coloring of G, then the color classes of f constitute a partition of
V into at most k disjoint stable sets which means that any two elements of these sets are
nonadjacent. The graph G is uniquely colorable if every optimal coloring of G induces the
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same partition into color classes. If G is uniquely colorable, then we mean by the color
classes of G the color classes of an optimal coloring of G.

Let us point out some previous work on uniquely colorable graphs. Harary et al. [11]
construct new ones from given uniquely colorable graphs. Bollobas [4] presents a lower
bound for the minimal degree δ(G) which forces G to be uniquely colorable. Hillar and
Windfeldt [13] give an algebraic characterization of uniquely k-colorable graphs, which
partly originates in ideas of Lovász [16] and Bayer [3]. They also apply commutative
algebra to develop an algorithm for recognizing unique colorability. Xu [19] establishes a
sharp lower bound for the number of edges of a uniquely k-colorable graph on n vertices:

|E| ≥ (k − 1)n −
(
k

2

)
. (1.1)

Daneshgar [7] and Daneshgar, Naserasr [8] concentrate on cliques in uniquely colorable
graphs. Special classes of uniquely colorable graphs are investigated by Akbari et al. [1],
Chao and Chen [5], Chartrand and Geller [6].

The Cayley graph G = Cay(Γ, S) over the finite (multiplicative) group Γ with shift set
(or symbol) S ⊆ Γ has vertex set V = V (G) = Γ and edge set

E = E(G) = {{x, y} : x, y ∈ Γ, xy−1 ∈ S}.

To avoid loops we demand that the unit element e ∈ Γ is not in S. To makeG undirected we
require that S is self-inverse, S−1 = S, which means that s ∈ S always implies s−1 ∈ S.
For general properties of Cayley graphs we refer to Godsil and Royle [9]. Circulant graphs
are Cayley graphs over cyclic groups. We represent the cyclic group of order n by the
additive group Zn of integers modulo n, Zn = {0, 1, . . . , n− 1}. A well-known circulant
graph is the unitary Cayley graph

Xn = Cay(Zn, Un) with Un = {x ∈ Zn : gcd(x, n) = 1}.

Here gcd(x, n) denotes the greatest common divisor of x and n and Un is the set of mul-
tiplicative units of Zn considered as a ring. In [15] we proved for n > 1 that χ(Xn) = p,
where p is a smallest prime divisor of n. Bašić and Ilić [2] remarked in passing that Xn

is uniquely p-colorable. This remark encouraged us to look closer at uniquely colorable
Cayley graphs in general.

In this paper we show that the chromatic number χ(G) = k of a uniquely colorable
Cayley graph G over a group Γ is a divisor of the number of elements |Γ| = n of Γ. Each
color class of G is a coset of some subgroup of order n/k of Γ. For a uniquely colorable,
noncomplete Cayley graph over an abelian group the estimate (1.1) on its number of edges
can be improved to |E| ≥ (k − 1)n. For every divisor k of n, 1 < k < n, we construct
a uniquely k-colorable circulant graph on n vertices with the minimal number of (k − 1)n
edges. In the final section, extending a result of Greenwell and Lovász [10], we present a
general method for constructing uniquely colorable graphs by graph products, which can
especially be applied to Cayley graphs.

2 Necessary conditions
A graph G = (V,E) is transitive if for any two vertices x, y ∈ V there is an automorphism
τ of G with τ(x) = y. Transitive graphs are regular. We call G weakly transitive if we
require the existence of an automorphism τ of G with τ(x) = y only for adjacent vertices
x and y.
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Lemma 2.1. Let the graphG = (V,E) be weakly transitive und uniqely k-colorable. Then
χ(G) = k is a divisor of |V | = n and every color class of G has n/k elements.

Proof. We may assume k > 1. Let C1, C2 be an arbitrary pair of color classes of G.
Since χ(G) = k there exists a pair x, y of adjacent vertices x ∈ C1 and y ∈ C2. As G
is weakly transitive we know that there is an automorphism τ of G with τ(x) = y. Every
automorphism of a uniquely colorable graph G maps each color class of G to another color
class of G. Therefore, x ∈ C1, y ∈ C2 and τ(x) = y imply τ(C1) = C2 and |C1| = |C2|.
Every color class C of G has the same number of |C| elements. As the color classes
partition the vertex set V into k disjoint sets of equal size |C|, we have |V | = n = k|C|,
which proves the lemma.

Let G = Cay(Γ, S) be a Cayley graph. Define the bijection τa : Γ → Γ for a ∈ Γ by
τa(x) = xa. We verify for x, y ∈ Γ:

x, y adjacent in G ⇔ xy−1 ∈ S ⇔ (xa)(ya)−1 ∈ S ⇔ τa(x), τa(y) adjacent in G.

For a = x−1y we have τa(x) = y. This shows that H(Γ) = {τa : a ∈ Γ} is a subgroup of
the automorphism group Aut(G) that operates transitively on the vertices of G. As Cayley
graphs are transitive, Lemma 2.1 can especially be applied to Cayley graphs.

Theorem 2.2. For a uniquely colorable Cayley graph G = Cay(Γ, S) the following state-
ments are true.

1. The chromatic number χ(G) = k divides the number |V (G)| = |Γ| = n of vertices
of G.

2. Every color class C of G is a left coset of a subgroup U(C) ⊆ Γ of order |U(C)| =
n
k .

3. For any two distinct color classes C1 and C2 of G there exists an element γ ∈ Γ
such that U(C2) = γU(C1)γ−1. If Γ is abelian, then every color class C of G has
the same subgroup U(C).

Proof. 1. This is a consequence of Lemma 2.1.
2. Suppose that C = {a1, . . . , ar}, r = n/k, is a color class of G. Define

U = U(C) = {a−1
i aj : i, j ∈ {1, . . . , r}}.

We prove that U is a subgroup of Γ.
The unit element e = a−1

i ai belongs to U . For x = a−1
i aj ∈ U we have x−1 =

a−1
j ai ∈ U . Assume that x = a−1

i aj ∈ U and y = a−1
s at ∈ U . We are going to show

xy ∈ U . The automorphism τx of G maps ai to aj , τx(ai) = aix = aj . From the unique
colorability of G we conclude τx(C) = C and analogously τy(C) = C. For arbitrary
ζ ∈ C we have

τx(ζ) = ζx = ζ1 ∈ C,
τy(ζ1) = ζ1y = ζxy = ζ2 ∈ C,

xy = ζ−1ζ2 ∈ U.

Next, we show C = a1U , the left coset of U represented by a1. For every ai ∈ C we have
ai = a1(a−1

1 ai) ∈ a1U , which implies C ⊆ a1U . Suppose

z ∈ a1U, z = a1a
−1
i aj = a1x, x = a−1

i aj for some i, j ∈ {1, . . . , r}.
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As above we see τx(C) = C. Therefore, z = a1x = τx(a1) ∈ C, C = a1U .
3. Let C1 = aU1 and C2 = bU2 be different color classes of G, U1 = U(C1),

U2 = U(C2). For the automorphism τd of G with d = a−1b we have τd(a) = b. The
unique colorability of G implies τd(C1) = C2, hence

C2 = C1d, bU2 = aU1a
−1b

and therefore
U2 = ζU1ζ

−1 with ζ = b−1a.

If Γ is abelian, we conclude U2 = U1.

Corollary 2.3. IfG = Cay(Zn, S) is a uniquely colorable circulant graph, then χ(G) = k
is a divisor of n. The color classes of G are the residue classes modulo k in Zn. If S is
extended by elements s′ ∈ Zn, s′ 6≡ 0 modulo k, to a self-inverse set S′, then G′ =
Cay(Zn, S

′) is also a uniquely colorable graph with χ(G′) = k.

Proof. According to Theorem 2.2, the color classes of G are the cosets of a subgroup
U ⊆ Zn, |U | = n/k. The (additive) cyclic group Zn has exactly one subgroup of order
n/k that is 〈k〉 = {0, k, . . . , (n/k − 1)k}, the cyclic subgroup generated by k. The cosets
of 〈k〉 are the residue classes modulo k in Zn. The graph G′ = Cay(Zn, S

′) is constructed
from G by adding edges between different color classes. So the graph remains uniquely
colorable with the same chromatic number.

Problem 2.4. Is there a uniquely colorable Cayley graph over a nonabelian group such that
different color classes are left cosets of different subgroups?

Theorem 2.5. Let G = Cay(Γ, S) be a uniquely colorable Cayley graph over the abelian
group Γ, |Γ| = n, χ(G) = k < n. Then we have:
The subgraph ofG induced by any two color classes ofG is uniquely colorable and regular
of degree l ≥ 2. Moreover, |E(G)| ≥ (k − 1)n. This bound is sharp.

Proof. The subgraph induced by any color classes ofGmust be uniquely colorable because
otherwise G would not have this property. Consider arbitrary different color classes C and
D of G. According to Theorem 2.2(3) they are cosets C = aU , D = bU of the same
subgroup U = {u1, . . . , ur} ⊆ Γ, r = n/k. Without loss of generality let au1 be a vertex
of maximum degree l in the subgraph G1 = G(C ∪ D) induced by C ∪ D in G. The
neighbors of au1 in G1 must lie in bU . Let these be bui1 , . . . , buil . For u ∈ U we apply
the automorphism τu of G defined by τu(x) = xu to au1 and its neighbors in G1 and
conclude:

au1u ∈ aU is adjacent to bui1u, . . . , builu ∈ bU for every u ∈ U.

As au1u runs through all elements of aU for u ∈ U , we see that all vertices in aU must
have the same degree l in G1. The same holds for the vertices of bU since the r vertices of
bU have rl edges in G1 and the maximum degree of G1 is l.

It is easy to see (cf. Theorem 1 in [11]) that the subgraph G1 = G(C ∪D) induced by
any two color classes C,D of G must be connected. This implies

l
n

k
= |E(G1)| ≥ |V (G1)| − 1 = 2

n

k
− 1
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so that

l ≥ 2− k

n
> 1.

As l is an integer we have l ≥ 2. This implies for |S|, the degree of regularity of G,
|S| ≥ 2(k − 1). Finally, we estimate the number of edges of G:

|E(G)| = 1

2
|S|n ≥ (k − 1)n.

Examples in the next section (see Corollary 3.4) will show that this bound is sharp.

3 Uniquely colorable Cayley graphs with few edges
For the next theorem recall that the clique number ω(G) of a graph G is the largest number
of vertices in a complete subgraph of G. The clique number ω(G) of the complementary
graph G of G is also known as the independence number or stability number of G.

Theorem 3.1. Let U be a subgroup of the (additive) abelian group Γ, |U | = |Γ|/k, k > 1
a divisor of |Γ|. Moreover, let {r1, . . . , rk} be a system of distinct representatives of the
cosets of U in Γ. Define

S = {ri − rj : i, j ∈ {1, . . . , k}, i 6= j} and G = Cay(Γ, S).

Then we have:

1. χ(G) = ω(G) = k.

2. χ(G) = ω(G) = |Γ|
k .

3. The cosets of U in Γ are the color classes of an optimal coloring of G.

Proof. From the definition of the representatives r1, . . . , rk we deduce S∩U = ∅. Suppose
that x, y belong to the same coset ri + U , 1 ≤ i ≤ k. Then we can find elements
u1, u2 ∈ U such that x = ri + u1 and y = ri + u2. Now x − y = u1 − u2 ∈ U implies
x − y 6∈ S, which means that x and y are not adjacent in G. The cosets of U partition the
vertex set Γ of G into k stable sets, i.e. sets of pairwise nonadjacent vertices. So we have

ω(G) ≤ χ(G) ≤ k.

On the other hand r1, . . . , rk induce a clique of size k in G. This proves claims 1 and 3.
Let U = {u1, . . . , ut}, t = |Γ|/k. The sets

Kj = {ri + uj : i = 1, . . . , k}, 1 ≤ j ≤ t,

induce cliques of size k inG, and therefore stable sets of size k inG. To show that these sets
are pairwise disjoint, we assume x ∈ Kj1∩Kj2 for j1 6= j2. We can find i1, i2 ∈ {1, . . . , k}
such that

x = ri1 + uj1 = ri2 + uj2 .

Hence,
ri1 − ri2 = uj2 − uj1 ∈ U.
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From S ∩ U = ∅ we deduce i1 = i2, which implies j1 = j2 contrary to our assumption.
The sets Kj , 1 ≤ j ≤ t, constitute a partition of the vertex set Γ of G into t = |Γ|/k stable
sets of G. Therefore, we have

ω(G) ≤ χ(G) ≤ |Γ|
k
.

Finally, claim 2 follows from the fact that every coset of U induces a clique of size t =
|Γ|/k in G.

Theorem 3.1 gives a first impression of what symbol sets may potentially yield uniquely
colorable Cayley graphs. The next example, however, shows that the symbol set structure
mentioned there is not sufficient in general for unique colorability.

Example 3.2. We consider the integers modulo 12, Γ = Z12 = {0, 1, . . . , 11}. Let U =
〈4〉 = {0, 4, 8} be the cyclic subgroup of Z12 generated by 4. Then we have k = |Γ|/|U | =
4 and {r1, r2, r3, r4} = {0, 1, 6, 7} as a system of distinct representatives for the cosets of
U . We define

S = {ri − rj : i, j ∈ {1, . . . , 4}, i 6= j} = {1, 5, 6, 7, 11} and G = Cay(Γ, S).

According to Theorem 3.1 the cosets of U in Γ,

{0, 4, 8}, {1, 5, 9}, {2, 6, 10}, {3, 7, 11},

are the color classes of an optimal coloring of G. But there is another partition of Z12 into
four stable sets of G:

{0, 2, 4}, {1, 3, 5}, {6, 8, 10}, {7, 9, 11}.

Therefore, G is not uniquely colorable.

A more careful choice of the system of representatives will improve the situation.

Theorem 3.3. Let k be a divisor of n, 1 < k < n,

Sk,n = {1, 2, . . . , k− 1} ∪ {n− 1, n− 2, . . . , n− (k− 1)}, and Gk,n = Cay(Zn, Sk,n).

Then the circulant graph Gk,n is uniquely colorable with

χ(Gk,n) = ω(Gk,n) = k and χ(Gk,n) = ω(Gk,n) =
n

k
. (3.1)

The residue classes modulo k in Zn are the maximal stable sets of Gk,n and the color
classes of an optimal coloring of Gk,n.

Proof. The integers r1 = 0, r2 = 1, . . . , rk = k − 1 constitute a system of distinct
representatives for the cosets of the subgroup U = 〈k〉 generated by k in Zn. Modulo n we
have:

Sk,n = {ri − rj : i, j ∈ {1, 2, . . . , k}, i 6= j}.

Now Theorem 3.1 implies (3.1) and the fact that the cosets of U , i.e. the residue classes
modulo k in Zn, are the color classes of an optimal coloring of Gk,n. Let M be a stable
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set with a maximal number of vertices in Gk,n. We have |M | = n/k by (3.1). For every
x ∈ M the consecutive integers x + 1, . . . , x + k − 1 (modulo n) are adjacent to x and
therefore not in M . This implies that M is the residue class x+ 〈k〉 in Zn.

Let F be an optimal coloring of Gn,k, i.e. a coloring of the vertices of Gk,n with k
colors. Every color class of F must be a maximal stable set of Gn,k with n/k elements.
We have just shown that these sets are the cosets of U = 〈k〉 in Zn. Therefore, Gk,n is
uniquely colorable.

The graph Gk,n = Cay(Zn, Sk,n) is regular of degree |Sk,n| = 2(k− 1). This implies
|E(Gk,n)| = (k − 1)n. Hence we immediately obtain:

Corollary 3.4. For every divisor k of n, 1 < k < n, the graph Gk,n defined in Theorem
3.3 is a uniquely k-colorable, circulant graph with n vertices and the minimal number of
|E(Gk,n)| = (k − 1)n edges.

Example 3.5. Let Xn = Cay(Zn, Un) be the unitary Cayley graph on n vertices, Un =
{x ∈ Zn : gcd(x, n) = 1}. Suppose that p is the smallest prime divisor of n, 1 < p < n.
According to Theorem 3.3 we define

Sp,n = {1, 2, . . . , p− 1} ∪ {n− 1, n− 2, . . . , n− (p− 1)} and Gp,n = Cay(Zn, Sp,n).

Then Gp,n is uniquely colorable and χ(Gp,n) = χ(Xn) = p. The unitary Cayley graph
Xn results from Gp,n by adding additional edges between different color classes of Gp,n.
So Xn and Gp,n are both uniquely colorable with the same color classes.

Problem 3.6. Is necessarily χ(G) = ω(G) for every circulant uniquely colorable Cayley
graph?

4 Constructing uniquely colorable graphs by graph products
The direct product X × Y of graphs X and Y has as its vertex set the cartesian product
V (X) × V (Y ). Vertices (x1, y1), (x2, y2) of X × Y are adjacent if x1 is adjacent to x2

in X and y1 is adjacent to y2 in Y . If X = Cay(Γ1, S1) and Y = Cay(Γ2, S2) are Cayley
graphs, then X×Y is a Cayley graph Cay(Γ, S) over the direct product Γ = Γ1×Γ2 with
shift set S = S1 × S2. A product X × Y of connected graphs is connected if both factors
have at least two vertices and at least one factor is not bipartite (see [14]). Every proper
n-coloring f : V (X) → Zn of X induces a proper n-coloring F : V (X) × V (Y ) → Zn

of X × Y by F (x, y) = f(x) for every x ∈ V (X), y ∈ V (y). As the same is true for Y
instead of X , we immediately see

χ(X × Y ) ≤ min{χ(X), χ(Y )}.

A famous conjecture of Hedetniemi ([12], [17]) states that always equality occurs. We
denote by 2K2 the graph consisting of two disjoint edges. A graph X is 2K2-free if it has
no induced subgraph 2K2. D. Turzik [18] showed that Hedetniemi’s conjecture is true if
one of the factors is 2K2-free.

Lemma 4.1. Let the graph X be 2K2-free and let c : V (X) × V (Y ) → Zn be a proper
n-coloring of X × Y . For y ∈ V (Y ) define the map cy : V (X)→ Zn by

cy(x) = c(x, y) for every x ∈ V (X).

If every cy , y ∈ V (Y ), is an improper coloring of X , then χ(Y ) ≤ n.
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Proof. The map cy is an improper coloring of X means that there are adjacent vertices
x1, x2 of X such that cy(x1) = cy(x2). Let ϕ(y) be the least value cy(x1) such that
there are adjacent vertices x1, x2 of X with cy(x1) = cy(x2). We show that ϕ is a proper
n-coloring of Y .

Let y1, y2 be adjacent vertices of Y . Assume ϕ(y1) = ϕ(y2). Then we find two pairs
x1, x2 and x3, x4 of adjacent vertices in X such that

cy1
(x1) = cy1

(x2) = ϕ(y1) = ϕ(y2) = cy2
(x3) = cy2

(x4),

c(x1, y1) = c(x2, y1) = c(x3, y2) = c(x4, y2). (4.1)

As x1, . . . , x4 do not induce a subgraph 2K2 in X , either {x1, x2} ∩ {x3, x4} = D 6= ∅
or D = ∅ and there is an edge between {x1, x2} and {x3, x4}. Suppose e.g. D = ∅ and
x1, x3 are adjacent. Then (x1, y1) and (x3, y2) are adjacent vertices of X × Y . But now
c(x1, y1) = c(x3, y2) in (4.1) contradicts the fact that c is a proper coloring of X × Y .
Similarly, the other cases lead to a contradiction.

The following theorem extends a result of Greenwell and Lovász [10].

Theorem 4.2. Let the graph X be uniquely n-colorable and 2K2-free. If Y is a connected
graph with chromatic number χ(Y ) > n, then X × Y is uniquely n-colorable.

Proof. We know χ(X × Y ) = m ≤ χ(X) = n. Let c : V (X) × V (Y ) → Zm be an
arbitrary proper m-coloring of X × Y . For y ∈ Y define cy : V (X)→ Zm by

cy(x) = c(x, y) for every x ∈ V (X).

If cy is an improper m-coloring of X for every y ∈ Y , then Lemma 2.1 implies χ(Y ) ≤
m ≤ n contradicting χ(Y ) > n. We conclude that there is a vertex y of Y such that cy
is a proper m-coloring of X . Moreover, m ≤ n = χ(X) implies m = n. Let u be any
neighbor of y in Y . Assume that there is a vertex x1 in X such that cu(x1) 6= cy(x1). As
cy is a proper n-coloring of the uniquely n-colorable graph X , all n colors except cy(x1)
appear in the range of cy at the neighbors of x1. In particular, we find a neighbor x2 of
x1 with cy(x2) = cu(x1), c(x2, y) = c(x1, u). But this is impossible, because (x2, y) is
adjacent to (x1, u) in X × Y and c is a proper coloring of this graph. Therefore, we have

cu(x) = cy(x) for every x ∈ V (X).

We may repeat the above argument for every neighbor of u. Continuing this way we reach
every vertex in the connected graph Y and achieve the following result:

c(x, y1) = c(x, y2) for every y1, y2 ∈ V (Y ) and every x ∈ V (X).

This implies that the color classes C1, . . . , Cn of the arbitrary n-coloring c of X × Y are
given by the uniquely determined color classes D1, . . . , Dn of X ,

Ci = Di × Y, for i = 1, . . . , n.

This means that X × Y is uniquely n-colorable.

In the following subsections we present some graph candidates for the application of
Theorem 4.2.
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4.1 Complete multipartite graphs

We call a graphX a completem-partite graph if its vertex set V (X) can be partitioned into
m nonempty, disjoint subsets (’color classes’) such that each vertex is adjacent to every
vertex which is not in his own class. Obviously, these graphs are uniquely m-colorable
and 2K2-free. If a complete m-partite graph is regular, then all color classes must have the
same size k. Such a graph can be represented as a Cayley graph over Zm × Zk.

Corollary 4.3. Let Xi be a complete mi-partite graph for i = 1, . . . , r, r ≥ 2, and
2 ≤ m1 ≤ m2 . . . ≤ mr. Then X = X1 × X2 × . . . × Xr has chromatic number
χ(X) = m1. The graph X is uniquely m1-colorable if and only if m1 < m2.

Proof. We have χ(X) ≤ min{m1, . . . ,mr} = m1. If we take one vertex from each
color class of Xi we get a clique Qi of size mi in Xi. Assume that Qi has vertex set
{1, 2, . . . ,mi}. Then the tuples (a, a, . . . , a) with the r-fold entry a ∈ {1, 2, . . . ,m1}
define a clique of size m1 in X . Thus we see χ(X) = m1.

If m1 < m2 we set Y = X2 × . . .×Xr. This graph is connected with χ(Y ) = m2 >
m1 = χ(X1). Therefore, we may apply Theorem 4.2 to the product X1 × Y and conclude
that it is uniquely m1-colorable.

If m1 = m2 = m, let f1 be an m-coloring of X1 and f2 be an m-coloring of X2. The
colorings of X induced by f1 and by f2 are distinct optimal colorings of X .

4.2 Complementary graphs of compass graphs

1

2

3

4

5

6

7

810

11

12

13

14

15

16

17
0

9
Figure 1

The compass graph CS(k, P ) is regular of degree 3 and has n = 6k vertices, k ≥ 2.
The vertices 0, 1, . . . , n − 1 are arranged in this order along a hamiltonian cycle. Every
vertex x divisible by 3 forms a triangle with the adjacent vertices x± 1 mod n. By P we
denote a partition of Zm = {0, 1, . . . ,m− 1}, m = 2k, in 2-element subsets which do not
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consist of two consecutive integers modulo m. For every {a, b} ∈ P we connect the ver-
tices 3a and 3b by an edge. Figure 1 displays CS(3, P ) with P = {{0, 3}, {1, 4}, {2, 5}}.

Obviously, every compass graph CS(k, P ) does not contain an induced cycle C4 of
length 4. This means for the complementary graph CS(k, P ) that it does not contain an in-
duced 2K2. The maximal cliques of CS(k, P ) are given by its triangles, which in CS(k, P )
define the maximal stable sets. To achieve an optimal coloring of CS(k, P ) we must take
the sets of vertices {x, x− 1, x + 1 mod n}, x ≡ 0 mod 3, as color classes. The graph
CS(k, P ) is uniquely 2k-colorable. These graphs are candidates for the graph X in Theo-
rem 4.2.

It seems to be difficult to decide generally which compass graphs are Cayley graphs.
The graph in Figure 1 is the only Cayley compass graph with 18 vertices. Similarly, we
found that there is a unique Cayley compass graph with 12, 24, 42, 48 or 54 vertices. But
there is definitely no such graph with 30 or 36 vertices. Again, we found a compass graph
with 60 vertices, which is a Cayley graph over the alternating group A5. But we do not
know if it is unique.

Infinite sequences of 2K2-free, uniquely colorable Cayley graphs can be constructed
by the following operations. The k-fold join, join(k,G), of a graph G consists of k disjoint
copies G1, . . . , Gk of G. For every i < j every vertex of Gi is connected by an edge to
every vertex of Gj . Let the n× n-matrix A be an adjacency matrix of G and Jk the k× k-
matrix with all entries equal to 1. The Kronecker product Jk×A is the (kn)× (kn)-matrix
which results from Jk by replacing every entry by A. The k-fold clone, clone(k,G), is the
graph with adjacency matrix Jk × A. We leave the proof of the following statement as an
exercise for the reader.

Proposition 4.4. If the Cayley graphG is 2K2-free and uniquely colorable then join(k,G)
and clone(k,G) are 2K2-free, uniquely colorable Cayley graphs for every integer k ≥ 2.
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Abstract

Digraphs are considered by means of eigenvalues of the matrix AAT , and similarly
ATA, where A is the adjacency matrix of a digraph. The common spectrum of these
matrices is called non-negative spectrum orN -spectrum of a digraph. Several properties of
the N -spectrum are proved. The notion of cospectrality is generalized, and some examples
of cospectral (multi)(di)graphs are constructed.
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1 Introduction
Spectral (di)graph theory means usage of linear algebra tools and techniques in the study
of (di)graphs. It is a very well developed mathematical field (see [8] or [6]) with many
applications (see, for example, [2] and [15]).

For any (di)graph matrix M , one can build a spectral (di)graph subtheory, and then
be able to study (di)graphs by means of eigenvalues of the matrix M . We will denote
these eigenvalues M -eigenvalues. In general case, in order to avoid confusion, to any
notion in the corresponding subtheory a prefix ’M ’ should be added. Frequently used
graph matrices are the adjacency matrix A, the Laplacian L = D − A and the signless
Laplacian Q = D + A, where D is a diagonal matrix of vertex degrees. The spectral
(di)graph theory then consolidates all these particular subtheories together with interaction
tools.

In this paper, digraphs are considered by means of eigenvalues of the matrix AAT ,
and similarly ATA, where A is the adjacency matrix of a digraph. The common spectrum
of these matrices is denoted N -spectrum and called non-negative spectrum of a digraph.
According to [5], the N -spectrum of a digraph was not considered in the mathematical
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literature so far. Since the matrices AAT and ATA appear in applications (see, for exam-
ple, [11] and [12]), we believe that introduced notion and presented results could be useful
to mathematicians and informaticians. Namely, N -spectrum can facilitate the examina-
tion of digraphs since frequently used adjacency matrix of a digraph is not symmetric in
general case, and therefore its spectrum consists of complex numbers. It is well known
that digraphs serve as models for different processes and phenomena in computer sciences,
where some spectrally based techniques are used in investigations. By this approach some
new conclusions and comparisons of existing results could be made.

The paper is organized as follows:
In Section 2 basic digraph terminology is given and some elementary facts related to

the matricesAAT andATA and their spectrum are pointed out. Since this paper represents
the first mathematical paper on the N -spectrum, elementary observations useful for further
work are presented in Section 3. In Section 4 the effect of certain digraph operations and
transformations on the N -spectrum is studied. One family of N -cospectral digraphs is de-
termined in this section. Structural similarity (i.e. values and layout of entries in the matrix)
of the matrix AAT of some digraph with the adjacency or the signless Laplacian matrix of
some multigraph, has motivated us to generalize the notion of cospectrality in Section 5.
The study of cospectrality with respect to different (multi)(di)graph matrices could be use-
ful in finding connections between different spectral subtheories that are based on these
matrices, and, what is more important, in finding new pairs of cospectral (multi)(di)graphs
in particular spectral subtheory. That way, certain pairs of multigraps that are cospectral
with respect to the adjacency matrix are found. The study of spectral subtheory based
on the signless Laplacian matrix is currently used (see, for example, [7]), so the paper is
concluded with some examples of digraphs and multigraphs whose N - and Q-spectrum,
respectively, are the same.

2 Preliminaries

Let D = (V (D), E(D)) be a digraph of order n with the set of vertices V (D) = {v1, v2,
. . . , vn}. The set of edges E(D) consists of ordered pairs of vertices, and we suppose that
the loops, i.e. the edges of the form (vi, vi) are permitted, but multiple edges are not. The
adjacency matrix A = [aij ] of D is the binary matrix of order n, such that aij = 1, if there
is an edge from vi to vj , and otherwise aij = 0.

If e = (vi, vj) is the edge of D, we say that vi is the initial vertex of e, while vj is the
terminal vertex. The vertex vj ∈ V (D) is the out-neighbour of the vertex vi ∈ V (D) if
there is the edge (vi, vj) ∈ E(D). The vertex vk ∈ V (D) is the in-neighbour of the vertex
vi ∈ V (D) if there is the edge (vk, vi) ∈ E(D). The out-degree of vertex vi, denoted
by outdegD(vi) or d+D(vi), is the number of edges of which it is the initial vertex, while
the in-degree of vi, denoted by indegD(vi) or d−D(vi), is the number of edges of which vi
is the terminal vertex. A loop at some vertex contributes 1 to both the in-degree and the
out-degree of that vertex.

Let us suppose that the edges of D are ordered as e1, e2, . . . , em. The in-incidence
matrix of D is the n by m matrix Bin = [bij ] such that bij = 1 if ej = (vk, vi) for some
vertex vk, and otherwise bij = 0. The out-incidence matrix Bout = [gij ] of the digraph D
is the n by m matrix such that gij = 1 if ej = (vi, vl) for some vertex vl, and otherwise
gij = 0. It is a matter of routine to check that A = BoutB

T
in holds.

The characteristic polynomial det(λI−A) of A is the characteristic polynomial of the
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digraph D, and the eigenvalues of A are the eigenvalues of D. For the remaining notation
and terminology related to digraphs, and also graphs, we refer the reader to [5], [2], [3],
[1], [8] and [6].

In this paper we are interested in the structural characteristics of a digraph D related
to the spectrum of matrices AAT and ATA, where A is the adjacency matrix of D. The
matrices AAT and ATA are non-negative, square and symmetric. One can easily check
that these matrices are positive semi-definite (see, for example, [14]), which means that
their eigenvalues are non-negative.

The entries of the matrices AAT and ATA are characterised by the following proposi-
tion (see [12]):

Proposition 2.1. The (i, j)-entry of the matrix AAT (ATA) of D is equal to the number of
common out-neighbours (in-neighbours) of vi and vj . Diagonal entries of the matrix AAT

(ATA) represent out-degrees (in-degrees) of the vertices of D.

According to the previous observations, one can introduce the following notation: Nout

= AAT andNin = ATA. The characteristic polynomial det(λI−Nin) ofNin is theNin-
characteristic polynomial of D, while the characteristic polynomial det(λI − Nout) of
Nout is the Nout-characteristic polynomial of D. Since the spectrum of Nout and Nin is
the same (see [14]), it can be denoted by the single name - the N -spectrum. Therefore, the
characteristic polynomialsN(x) of these matrices can be named theN -polynomials. How-
ever, we underline that through the investigation we mainly considered Nout(D) matrix of
D, whose spectrum is denoted by η1 ≥ η2 ≥ . . . ≥ ηn. The N -spectral radius ρN (D) of
D is defined to be the spectral radius of Nout(D), and similarly Nin(D).

Remark 2.2. For the N -spectrum η1, η2, . . . , ηn of a digraph D with m edges the follow-
ing holds:

• The numbers η1, η2, . . . , ηn are real and non-negative,

• η1 + η2 + . . .+ ηn = m,

• D is consisted of only isolated vertices if and only if η1 = η2 = . . . = ηn = 0.

3 Some basic results
In this section we give some elementary results that we will use in the subsequent sections.

Let us remind you that a digraph D is r-regular if the in-degree and the out-degree of
each its vertex are equal to r. By use of the basic combinatorial principles for counting
one can easily check that the row sum for each row of the matrix Nout(D) is equal to
r + r(r − 1) = r2. Now, we can prove the following lemma:

Lemma 3.1. N -spectral radius ρN (D) of a r-regular digraph D of order n is r2.

Proof. Since Nout(D) is the square, non-negative matrix with equal row sums, according
to Theorem of Frobenius (see [4]) the spectral radius of this matrix is r2.

Remark 3.2. The eigenvector that corresponds to the N -eigenvalue r2 of a r-regular di-
graph D is all-1 vector.
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Example 3.3. The complete digraph of order n is the digraph
↔
Kn in which for each pair of

vertices there is an edge, including a loop at each vertex. The N -characteristic polynomial
of this digraph is:

N ↔
Kn

(x) = (x− n2)xn−1,

and thus its N -spectrum is: n2, [0]n−1.

Here, and in the further text, an eigenvalue η of the multiplicity k is denoted by [η]k.
Let us now consider connected digraphs whose vertices do not have the common out-

neighbours. If D = (V (D), E(D)) is such a digraph, then indegD(vi) ≤ 1 must hold for
each vertex vi ∈ V (D).

Let us remind you that a rooted oriented tree, briefly rooted tree, is an oriented tree with
a specific vertex v1, called the root, such that for every other vertex vj the path connecting
v1 to vj is a directed path from v1 to vj . This means that D is connected, indeg(v1) = 0
and indegD(vi) = 1 for every other vertex vi of D, and vice versa according to Theorem
15.2 from [1]. It is obvious that vertices of a rooted tree do not have the common out-
neighbours.

If in a digraph D whose vertices do not have the common out-neighbours there are
at least two vertices such that their in-degrees are equal to 0, D would not have been
connected, i.e. D would consist of at least two connected components.

Since in a rooted tree there is unique vertex v1 such that indeg(v1) = 0, one can add
one extra edge to obtain a digraph where there is no pair of vertices with common out-
neighbours. We distinguish two possibilities: this extra edge is a loop at v1, i.e. (v1, v1) or
it is an edge (vx, v1), for exactly one vertex vx of a rooted tree. Hence, we can say that a
resulting digraph is a unicyclic digraph derived from a rooted tree (Figure 1).

Figure 1: Unicyclic digraphs whose vertices do not have the common out-neighbours

That way, the following proposition is proved:

Proposition 3.4. D is a connected digraph whose vertices do not have the common out-
neighbours if and only if it is a rooted tree or a unicyclic digraph that can be derived from
a rooted tree.

Remark 3.5. Since the matrixNout(D) of a connected digraphD such that there is no pair
of vertices with the common out-neighbours in D is the diagonal matrix of vertex degrees,
the N -spectrum of D is: outdegD(v1), outdegD(v2), . . . , outdegD(vn).
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Remark 3.6. The converse digraph Conv(D) of a digraph D is obtained by reversing the
direction of each edge ofD (see [2]). So, a digraph whose vertices do not have the common
in-neighbours is the converse digraph of a rooted tree or of a unicyclic digraph that can be
derived from a rooted tree.

Example 3.7. The N -characteristic polynomial of a rooted tree D is:

ND(x) = xl
∏

vi∈U(D)

(x− outdeg(vi)),

where l is the number of vertices vx such that outdegD(vx) = 0, while U(D) ⊂ V (D) is
the set of vertices whose out-degree is at least 1.

The digraph
→
Pn is the special case of a rooted oriented tree. If V (

→
Pn) = {v1, v2, . . . ,

vn} is the set of vertices of this digraph, then its set of edges consists of the pairs of vertices

(vi, vi+1), for i = 1, 2, . . . , n− 1. The N -characteristic polynomial of
→
Pn is:

N→
Pn

(x) = x(x− 1)n−1.

1-regular digraph
→
Cn is the special case of a unicyclic digraph derived from a rooted

tree. Its N -characteristic polynomial is:

N→
Cn

(x) = (x− 1)n. (3.1)

4 Some digraph operations and transformations
We open this section with the result related to theN -spectrum of the complement of a given
regular digraph.

The complement DC = (V (DC), E(DC)) of a digraph D = (V (D), E(D)) has the
vertex set V (DC) = V (D) and e ∈ E(DC) if and only if e /∈ E(D). Also, there is a
loop at vertex vi in DC if and only if there is no loop at vi in D. Similarly to the proof of
Theorem 2.1.2 from [6] for regular graphs we can prove the following:

Proposition 4.1. If the N -eigenvalues of a r-regular digraph D of order n are ηi(D), i =
1, 2, . . . , n, then the N -eigenvalues of DC are η1(DC) = (n− r)2 and ηi(DC) = ηi(D),
i = 2, 3, . . . , n.

Proof. If AD is the adjacency matrix of D and J is all-1 matrix, we find:

Nout(D
C) = J2 −ADJ − JAT

D +ADA
T
D = (n− 2r)J +Nout(D),

because the row sum for each row of AD is equal to r.

Let us denote by D
′

the digraph obtained from a connected digraph D by deleting the
edge (vi, vj). Then we have: Nout(D) = Nout(D

′
) +M . Here, M = [mpq] is the square

matrix of order n such that mii = 1 and mil = mli = 1 for each pair of vertices vi, vl such
that (vi, vj), (vl, vj) ∈ E(D), where l ∈ {1, 2, . . . , n} \ {i}.

Theorem 4.2. (Interlacing theorem - edge version) Let D be a connected digraph of
order n whose N -spectrum is η1(D) ≥ η2(D) ≥ · · · ≥ ηn(D), and there is at least one
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vertex vj inD such that indegD(vj) = 1. LetD
′

be a digraph obtained fromD by deleting
an edge (vi, vj). If the N -eigenvalues of D

′
are η1(D

′
) ≥ η2(D

′
) ≥ · · · ≥ ηn(D

′
), then

η1(D) ≥ η1(D
′
) ≥ η2(D) ≥ η2(D

′
) ≥ . . . ηn(D) ≥ ηn(D

′
) ≥ 0.

Proof. Since the spectrum of the matrix M consists of [1] and [0]n−1, the proof follows
from Courant-Weyl inequalities (see, for example [6]).

Remark 4.3. By considering Nin matrix of a digraph, one can prove that the previously
given Interlacing theorem holds also for a connected digraph D in which there is at least
one vertex vj such that outdegD(vj) = 1, and for its subdigraph D

′
obtained from D by

deleting an edge (vj , vi), for some vertex vi.

In general case, such the N -eigenvalue interlacing does not hold. Namely, we have the
following example.

Example 4.4. For the digraph D that is depicted on Figure 2 and the digraph D
′

that is
obtained from D by deleting the edge (1, 3), the N -interlacing property holds, i.e. for the
N -spectra of these digraphs we have the following inequalities: 4.390 ≥ 3.879 ≥ 1.838 ≥
1.653 ≥ 1 ≥ 1 ≥ 0.544 ≥ 0.468 ≥ 0.228 ≥ 0.

On the other hand, the N -eigenvalues of the digraphs D1 (Figure 2) and D
′

1, that is
obtained from D1 by deleting the edge (1, 3), are 5.303 ≥ 1.697 ≥ 1 ≥ 1 ≥ 0, and
similarly 4.115 ≥ 1.764 ≥ 1 ≥ 1 ≥ 0.139, so the N -interlacing property does not hold in
this case.

Figure 2: Digraphs D and D1 from Example 4.4

Now, we will consider a digraph D∗ obtained from a connected digraph D by adding a
pendant edge at the vertex vi of D (i.e. an edge of the form (vx, vi) such that indegD∗(vx)
= 0 and outdegD∗(vx) = 1, or an edge of the form (vi, vx) such that indegD∗(vx) = 1
and outdegD∗(vx) = 0).

The following statement obviously holds.

Proposition 4.5. Let D∗ denotes a digraph obtained from a connected digraph D of order
n by adding a pendant edge (vn+1, vi) at the vertex vi such that indegD(vi) = 0. Then the
N -characteristic polynomial of D∗ is: ND∗(x) = (x− 1)ND(x).

Let us denote by Dvk a digraph obtained from a digraph D by deleting the vertex vk,
and let µD(vi, vj) = 1, if (vi, vj) ∈ E(D), and otherwise µD(vi, vj) = 0, for i, j ∈
{1, 2, . . . , n}.
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Definition 4.6. The digraph Dout
(vk,vi)

is the out-(vk, vi)-shrinking of D if for the edge
(vk, vi) in E(D), V (Dout

(vk,vi)
) = V (Dvk) and

E(Dout
(vk,vi)

) = E(Dvk) ∪ {(vj , vi)|µD(vj , vk) = 1, for each j 6= k}.

It is obvious that Dout
(vk,vi)

is a multidigraph in general case, and that if indegD(vi) = 1

then the matrix Nout(D
out
(vk,vi)

) equals the matrix obtained from Nout(D) by deleting the
k-th row and the k-th column.

Theorem 4.7. Let D∗ denotes a digraph obtained from a connected digraph D of order
n by adding the pendant edge (vj , vi) at the vertex vi such that (vk, vi) ∈ E(D) and
indegD(vi) = 1. Then

ND∗(x) = (x− 1)ND(x)−NDout
(vk,vi)

(x),

where NDout
(vk,vi)

(x) is the N -characteristic polynomial of the digraph Dout
(vk,vi)

that is the

out-(vk, vi)-shrinking of a digraph D.

Proof. Since indegD∗(vi) = 2, we have

Nout(D
∗) =

(
Nout(D) r
rT 1

)
(n+1)×(n+1)

,

where r = (0, . . . , 0, 1︸︷︷︸
k

, 0, . . . , 0)T is the vector of order n. The only no null coordinate

of the vector r corresponds to the common out-neighbour of vk and vj . By expanding the
determinant of the matrix xI −Nout(D

∗) by the last row we get:

ND∗(x) = det (xI −Nout(D
∗)) = (x− 1)ND(x) + (−1)(n+1)+k · det (M |r) ,

where the matrix M is obtained from xI −Nout(D) by deleting the k-th column. Now, by
expanding the determinant of the matrix (M |r) by the last column, we have:

ND∗(x) =(x− 1)ND(x) + (−1)(n+1)+k(−1)k+n det
(
xI −M

′
)

=

(x− 1)ND(x)− det
(
xI −M

′
)
,

where M
′

is obtained from the matix Nout(D) by deleting the k-th row and k-th column.

The line digraph L(D) of a digraph D (see, for example [5]) is the digraph whose
vertices are the edges e1, e2, . . . , em of D such that there is an edge from ei to ej in L(D)
if and only if the terminal vertex of ei equals the initial vertex of ej in D. If an edge ep is
a loop at some vertex of D, then it becomes a loop at ep in L(D).

Some results on adjacency spectra and energies of iterated line graphs are exposed in
[13]. On the similar way, we can define iterated line digraphs. If D = L0(D) is a digraph
and L(D) = L1(D) is its line digraph, then Lk(D), k = 2, 3, . . . defined recursively by the
formula Lk(D) = L

(
Lk−1(D)

)
are the iterated line digraphs ofD. The line digraph of an

r-regular digraph is also r-regular digraph. More precisely, the line digraph L1(D) of an r-
regular digraphD of order n is the r1 = r-regular digraph of order n1 = nr. Consequently,
Lk(D), k = 2, 3, . . . is the rk = r-regular digraph of order nk = rnk−1 = rkn, where
nk−1 is the order of the digraph Lk−1(D).
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Theorem 4.8. The N -eigenvalues of the line digraph L(D) of a r-regular digraph D are:
[r2]n, [0](r−1)n.

Proof. We will determine the N -characteristic polynomial NL(D) of L(D) related to the
Nout(L(D)) matrix.

AsL = BT
inBout is the adjacency matrix of the line digraphL(D) ofD (see [5]), where

Bin and Bout are the in-incidence matrix and the out-incidence matrix of D, respectively,
we find: Nout(L(D)) = rBT

inBin. Here, we have that the diagonal matrix whose entries
are the out(in)-degrees of vertices in D is: ∆ = rI = BinB

T
in = BoutB

T
out.

According to Lemma 8.2.3. from [10] we get:

det
(
I −BinB

T
in

)
= det

(
I −BT

inBin

)
,

i.e.

det
(
In − x−1rIn

)
= det

(
Im − x−1

1

r
Nout(L(D))

)
.

Furthermore we have:

xm−n det (xIn − rIn) = det

(
xIm −

1

r
Nout(L(D))

)
,

and also

det ((x− r + 1)In − In) = xn−m
1

rm
det (rxIm −Nout(L(D))) .

According to (3.1) we find:

N→
Cn

(x− r + 1) = xn−m
1

rm
NL(D)(rx),

i.e.
NL(D)(x) = xm−n(x− r2)n,

and the proof follows.

Therefore the N -spectrum of the line digraph Lk(D) of a r-regular digraph D of order

n consists of
[
r2
]nk =

[
r2
]nrk

and [0]
(r−1)nk = [0]

(r−1)rkn, and hence we have the
following corollary:

Corollary 4.9. Let D1 and D2 be two r-regular digraphs of order n (not necessary N -
cospectral). Then for all k ≥ 1 digraphs Lk(D1) and Lk(D2) are N -cospectral.

This way, we found a family of N -cospectral mates (i.e. the digraphs whose N -spectra
are the same). We will continue examination of cospectrality in the next section.

5 Cospectrality relation
Let Dn

M be the set of (multi)(di)graphs D of order n with the associated spectrum σM (D)
related to some (multi)(di)graph matrix M . Let us introduce the relation ρ ⊆ Dn

M1
×Dn

M2

between sets Dn
M1

and Dn
M2

, for some (multi)(di)graph matrices M1 and M2 in the follow-
ing way: we say that the (multi)(di)graph D1 is in the relation ρ with the (multi)(di)graph
D2, i.e. D1ρD2 if and only if σM1

(D1) = σM2
(D2). So, the relation ρ is the cospec-

trality relation, while D1 and D2 form an (M1,M2)-cospectral mate. That way, we can
generalize the notion of cospectrality:
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Definition 5.1. Let M1 and M2 be some (multi)(di)graph matrices. If the (multi)(di)graph
D1 ∈ Dn

M1
is in the cospectrality relation ρ with the (multi)(di)graph D2 ∈ Dn

M2
, i.e. the

M1-spectrum of a (multi)(di)graph D1 is equal to the M2-spectrum of a (multi)(di)graph
D2, then D1 and D2 are called (M1,M2)-cospectral (multi)(di)graphs.

It is obvious that ρ is the equivalence relation on the set Dn
M , in which case (multi)(di)-

graphs D1 and D2 such that D1ρD2 are M -cospectral. As a result of the composition of
the cospectrality relations, one can get some new pairs of cospectral (multi)(di)graphs, as
follows.

Let us consider the set Dn
N of digraphs D of order n with the associated N -spectrum

σN (D). Clearly,N is related toNout orNin matrix of a digraph. Let us denote by GnA+ and
GnA− the sets of out-multigraphs and in-multigraphs, respectively with the corresponding
adjacency spectra. The in-multigraph M−D ∈ GnA− and the out-multigraph M+

D ∈ GnA+ are
associated to a digraph D ∈ Dn

N in the following way:

Definition 5.2. The in-multigraph M−D = (V (M−D ), E(M−D )) of a digraph D is the multi-
graph such that V (M−D ) = V (D), {vi, vj} ∈ E(M−D ) if and only if there is a vertex
vk ∈ V (D) such that (vk, vi), (vk, vj) ∈ E(D), and for each edge (vk, vi) in D there is a
loop at vi in M−D .

Definition 5.3. The out-multigraphM+
D = (V (M+

D ), E(M+
D )) of a digraphD is the multi-

graph such that V (M+
D ) = V (D), {vi, vj} ∈ E(M+

D ) if and only if there is a vertex vk
such that (vi, vk), (vj , vk) ∈ E(D), and for each edge (vi, vk) in D there is a loop at vi in
M+

D .

According to the previous definitions, one can notice the cospectrality relation, say
ρ−, between sets GnA− and Dn

N , and similarly the cospectrality relation, say ρ+, between
sets Dn

N and GnA+ . As the result of the composition of relations ρ+ and ρ− the pairs of
A-cospectral multigraphs M−D and M+

D are getting. That way we have:

Theorem 5.4. Multigraphs M−D and M+
D are A-cospectral.

So, the exposed construction is a way for obtaining new pairs of cospectral and not
necessarily isomorphic multigraphs.

Example 5.5. The adjacency matrix of the in-multigraph M−D , and similarly the out-
multigraph M+

D , that is associated to the digraph D (which is depicted on Figure 3) is:

A(M−
D ) = Nin(D) =


2 0 2 0
0 1 1 0
2 1 3 0
0 0 0 1

, and A(M+
D) = Nout(D) =


2 1 0 1
1 2 0 2
0 0 1 0
1 2 0 2

.

Remark 5.6. Multigraphs M−D and M+
D associated to a digraph D are simple graphs only

in the case when digraph D is a set of isolated vertices. If we permit existence of single

loops (i.e. loops of multiplicity one) in a simple graph, the primary digraph D can be
→
Cn

or
→
Pn. In this case, multigraphs M−D and M+

D are the sets of isolated loops or the disjoint
unions of isolated loops and a single isolated vertex, and therefore M−D and M+

D are not
only A-cospectral but also isomorphic.
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Figure 3: Digraph D from Example 5.5 and associated multigraphs M−D and M+
D , respec-

tively

There are many examples where the multigraphs M−D and M+
D associated to a given

digraph D are isomorphic, so the investigation of such multigraphs can be the subject of
future research. If a primary digraph D is such that if (vi, vj) ∈ E(D) then also (vj , vi) ∈
E(D), for all vi, vj ∈ V (D), it is obvious that the associated multigraphs M−D and M+

D

will be isomorphic. We also have:

Proposition 5.7. Multigraphs M−D and M+
D associated to a digraph D of prime order,

n > 2, with circulant adjacency matrix are isomorphic.

Proof. Since Nin(D) and Nout(D) are circulant matrices with the same eigenvalues, ac-
cording to Theorem 1 from [9] they are permutationally similar.

For an integer n ≥ 2 and a set S ⊆ {1, 2, . . . , n− 1} the circulant digraph Cn(S) is a
digraph such that V (Cn(S)) = {1, 2, . . . , n} and E(Cn(S)) = {(i, i + j (modn)) : 1 ≤
i ≤ n, j ∈ S}. Circulant digraphs are of great interest in the graph and digraph theory and
their applications (see [2]).

Proposition 5.8. Multigraphs M−D and M+
D associated to a circulant digraph Cn(S) are

isomorphic.

Proof. Since the converse digraph Conv(Cn(S)) of Cn(S) is isomorphic to Cn(S) (ac-
cording to Proposition 2.14.1 from [2]) and since Nin(Cn(S)) = Nout(Conv(Cn(S))),
and similarly Nout(Cn(S)) = Nin(Conv(Cn(S))), the proof follows.

Example 5.9. The matrix Nout(D) of the 2-regular digraph D that is depicted on Figure 4
structurally corresponds to the signless Laplacian matrix Q(M) of the 2-regular graph M ,
also depicted on Figure 4, i.e.

Nout(D) =


2 1 1 0
1 2 0 1
1 0 2 1
0 1 1 2

 =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

+


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 = Q(M).
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That way, one can notice the cospectrality relation ρ ⊆ Dn
N × GnQ between set Dn

N of di-
graphs D of order n with the associated N -spectrum σN (D) and the set GnQ of multigraphs
M of order n with the associated Q-spectrum σQ(M).

Figure 4: Triplet of (N,A,Q)-cospectral digraph D, multigraph M−D = M+
D and graph

M , respectively

This one and similar examples have motivated us to examine some new (N,Q)-cospectral
mates. Furthermore, the multigraph M that makes (Q,N)-cospectral mate with a given
digraph D can be used in determining some isomorphic multigraphs M−D and M+

D , as
follows:

Proposition 5.10. Let D be a connected r-regular digraph of order n. If Nout(D) =
Q(M) holds for some multigraph M , then r = 0 or r = 2.

Proof. We have Nout(D) = rI + C, where row sum of C is r(r − 1) for each row.
If Nout(D) is the signless Laplacian matrix of some multigraph without loops, then

r = r(r − 1) holds, which implies r = 0 or r = 2. On the other hand, if Nout(D) is the
signless Laplacian matrix of a multigraph with loops, then the number of loops at some
vertex is (r − (r − 1)r)/2, which means that r = 0 or r = 2.

Remark 5.11. The statement from the previous proposition also holds in the case of the
matrixNin(D). Beside that, the multigraphM is the connected r-regular multigraph with-
out loops. Therefore, we conclude that multigraphs M−D and M+

D associated to some 2-
regular digraph D are isomorphic.

In order to examine (N,Q)-cospectrality, we will introduce some binary digraph op-
erations. Still, according to the nature and the mutual relationships between entries of
matrices Nout(D) and Q(M) of some digraph D and some multigraph M , respectively,
one can suspect poor variety in terms of the structure and the order (i.e. number of ver-
tices) of the (N,Q)-cospectral mates (that could be obtained by direct comparing of these
matrices).

Let D1 = (V (D1), E(D1)) and D2 = (V (D2), E(D2)) be two disjoint digraphs (i.e.
digraphs with no common vertices nor edges).

Definition 5.12. The out-join D1∇outD2 of two disjoint digraphs D1 = (V (D1), E(D1))
and D2 = (V (D2), E(D2)) is the digraph D = (V (D), E(D)) such that V (D) =
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V (D1) ∪ V (D2) and E(D) = E(D1) ∪ E(D2) ∪ {(u, v)|u ∈ V (D1), v ∈ V (D2)},
for each u ∈ V (D1) and v ∈ V (D2).

It is obvious that this digraph operation is not commutative, i.e. D1∇outD2 6= D2∇out

D1. Nout(D) matrix of the digraph D which is obtained by out-joining is:

Nout(D) = Nout(D1∇outD2) =

(
A1 J
O A2

)(
AT

1 OT

JT AT
2

)
=(

Nout(D1) + JJT (A2J
T )T

A2J
T Nout(D2)

)
,

where A1 and A2 are the adjacency matrices of digraphs D1 and D2, respectively, while J
is all-1 matrix. Each entry of the j-th row of the matrix A2J

T is equal to outdegD2
(uj),

where uj ∈ V (D2).
In the same way one can define:

Definition 5.13. The in-join D1∇inD2 of two disjoint digraphs D1 = (V (D1), E(D1))
and D2 = (V (D2), E(D2)) is the digraph D = (V (D), E(D)) such that V (D) =
V (D1) ∪ V (D2) and E(D) = E(D1) ∪ E(D2) ∪ {(v, u)|v ∈ V (D2), u ∈ V (D1)},
for each u ∈ V (D1) and v ∈ V (D2).

Definition 5.14. The join D1∇D2 of two disjoint digraphs D1 = (V (D1), E(D1)) and
D2 = (V (D2), E(D2)) is the digraph D with the vertex set V (D) = V (D1) ∪ V (D2),
whose set of edges is E(D) = (E(D1∇outD2) ∪ E(D1∇inD2)) \ (E(D1) ∪ E(D2)).

Proposition 5.15. Let D = D1∇outD2 be the digraph obtained by out-joining two con-
nected disjoint digraphs D1 and D2 of orders n1 and n2, respectively. If Nout(D) =
Q(M) holds for some multigraph M , then:

1. D1 is an isolated vertex, while D2 is a unicyclic digraph derived from a rooted tree.

2. D1 =
↔
K1, while D2 is a rooted tree;

3. D2 is an isolated vertex, and:

(a) if n1 = 1, then D1 =
↔
K1,

(b) if n1 = 2, then D1 is any of digraphs depicted on Figure 5,
(c) if n1 = 3, then D1 is 1-regular digraph,
(d) if n1 ≥ 4, then there is no digraph D1 such that the statement given by the

proposition holds.

Proof. Let us denote by V (D1) = {u1, u2, . . . , un1
} and V (D2) = {v1, v2, . . . , vn2

} the
sets of vertices of digraphs D1 and D2, respectively.

If Nout(D) = [nij ] is the signless Laplacian matrix of some multigraph M , then by
observing its rows n1 + 1, n1 + 2, . . . , n1 + n2, one can conclude that the number:

(1− n1) outdegD2(vp)−
n2∑

q=1,q 6=p

npq(Nout(D2)),
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Figure 5: Digraphs from Proposition 5.15

for each p = 1, 2, . . . , n2, is zero or even positive integer. This means that n1 = 1 and D2

is a digraph such that there are no vertices with the common out-neighbours or D2 is an
isolated vertex.

In the former case, by observing rows 1, 2, . . . , n1 of Nout(D), one concludes that:

outdegD1
(uk) + n2 −m2,

for each k = 1, 2, . . . , n1, is zero or even positive integer. Here m2 is the number of edges
of D2, and the proof for statements 1. and 2. follows.

If D2 is an isolated vertex, then by observing rows 1, 2, . . . , n1 of Nout(D), we get
that:

outdegD1
(uk)−

n1∑
l=1,l 6=k

nkl(Nout(D1))− n1 + 2, (5.1)

for each k = 1, 2, . . . , n1, is zero or even positive integer. Let us consider the structure of
D1.

If n1 = 1 or n1 = 2, statements (a) and (b) follows from (5.1) by direct computation.
If n1 = 3, then 3 ≥ outdegD1

(uk) ≥ 1 must hold for each k = 1, 2, 3. Let us suppose
that outdegD1

(u1) = 3. This implies indegD1
(u1) = indegD1

(u2) = indegD1
(u3) = 1,

and since the out-degree of u2 and u3 must be at least 1, (5.1) will be a negative num-
ber for at least one k. One can analyse the case when outdegD1(u1) = 2 the same
way. And finally, if outdegD1(u1) = 1, (5.1) is a non-negative integer if and only if∑3

l=2 n1l(Nout(D1)) = 0. Since the out-degree of each vertex in D1 must be at least 1,
D1 is 1-regular digraph.

Now, we will prove that there is no digraph Dn1 of order n1 ≥ 4 such that (5.1) is zero
or even positive integer. The proof will be carried out by use of the mathematical induction
on the number of vertices n1 of Dn1

.
If n1 = 4, analogously as in the case when n1 = 3, one can show that there is at least

one vertex, for example uk, inD4 such that outdegD4
(uk) <

∑4
l=1,l 6=k nkl(Nout(D4))+2,

where k ∈ {1, 2, 3, 4}. Let us suppose that in a digraph Ds of order s > 4 there is at least
one vertex such that (5.1) is a negative number. Let us consider a digraph Ds+1 of order
s + 1. By deleting an arbitrary vertex of Ds+1 we get a digraph Ds of order s, where,
according to the inductive hypothesis, we can find at least one vertex, say ux, such that

outdegDs
(ux) <

s∑
q=1,q 6=p

nxq(Nout(Ds)) + s− 2.
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If we return the removed vertex and all edges that are incident to it, we get the following
inequalities:

outdegDs+1
(ux) ≤ outdegDs

(ux) + 1 <

s∑
q=1,q 6=i

nxq(Nout(Ds)) + s− 2 + 1 ≤
s+1∑

q=1,q 6=p

nxq(Nout(Ds+1)) + s− 1.

Hence, according to the principle of the mathematical induction, when D2 is an isolated
vertex, there is no digraph D1 of order n1 ≥ 4 such that Nout(D) = Nout(D1∇outD2) =
Q(M).

Proposition 5.16. Let D = D1∇D2 be the digraph obtained by joining two connected
disjoint digraphs D1 and D2 of orders n1 and n2, respectively. If Nout(D) is the signless
Laplacian matrix of some multigraph, then:

1. D1 is an isolated vertex, while D2 is any of digraphs depicted on Figure 6;

2. D1 = D2 =
↔
K1;

3. there are no digraphs D1 and D2 of orders n1, n2 ≥ 3 such that the statement given
by the proposition holds.

Figure 6: Digraphs from Proposition 5.16

Proof. Let us denote by V (D1) = {v1, v2, . . . , vn1
} and V (D2) = {u1, u2, . . . , un2

} the
sets of vertices of digraphs D1 and D2, respectively. We have:

Nout(D) = Nout(D1∇D2) =

(
A1 JT

J A2

)(
AT

1 JT

J AT
2

)
=(

Nout(D1) + JTJ A1J
T + JTAT

2

(A1J
T + JTAT

2 )T Nout(D2) + JJT

)
,

where A1 and A2 are the adjacency matrices of digraphs D1 and D2, respectively.
If Nout(D) = [nij ] is the signless Laplacian matrix of some multigraph, we have:

(1− n2) outdegD1
(vi) + (2− n1)n2 −

n1∑
j=1,j 6=i

nij(Nout(D1))−m2 = 2w1, (5.2)

for some non-negative integer w1 and i = 1, 2, . . . , n1, and

(1− n1) outdegD2
(uk) + n1 (2− n2)−

n2∑
l=1,l 6=k

nij(Nout(D2))−m1 = 2w2, (5.3)
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for some non-negative integer w2 and k = 1, 2, . . . , n2, where m1 and m2 are the numbers
of edges of digraphs D1 and D2, respectively.

First, let us prove that n1 < 3. Since (5.2) means that:

(1− n2) outdegD1(vi) ≥ (n1 − 2)n2 +

n1∑
j=1,j 6=i

nij(Nout(D1)) +m2

holds for each i = 1, 2, . . . , n1, if we suppose that n1 ≥ 3, we get:

0 ≥ 1 +

n1∑
j=1,j 6=i

nij(Nout(D1)) +m2,

that is a contradiction. In the same way, one can prove that n2 < 3.
Statements 1. and 2. from the proposition one can get by direct analysis of (5.2) and

(5.3).
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Abstract

We define what appears to be a new construction. Given a graph G and a positive
integer k, the reduced kth power of G, denoted G(k), is the configuration space in which
k indistinguishable tokens are placed on the vertices of G, so that any vertex can hold
up to k tokens. Two configurations are adjacent if one can be transformed to the other
by moving a single token along an edge to an adjacent vertex. We present propositions
related to the structural properties of reduced graph powers and, most significantly, provide
a construction of minimum cycle bases of G(k).

The minimum cycle basis construction is an interesting combinatorial problem that
is also useful in applications involving configuration spaces. For example, if G is the
state-transition graph of a Markov chain model of a stochastic automaton, the reduced
power G(k) is the state-transition graph for k identical (but not necessarily independent)
automata. We show how the minimum cycle basis construction of G(k) may be used to
confirm that state-dependent coupling of automata does not violate the principle of micro-
scopic reversibility, as required in physical and chemical applications.

Keywords: Graph products, Markov chains, cycle spaces.

Math. Subj. Class.: 05C76, 60J27

1 Introduction
Time-homogenous Markov chains [19] are used as a mathematical formalism in applica-
tions as diverse as computer systems performance analysis [21], queuing theory in op-
erations research [18], simulation and analysis of stochastic chemical kinetics [12], and
biophysical modeling of ion channel gating [10].
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Many properties of a Markov chain, such its rate of mixing and its steady-state probabil-
ity distribution, can be numerically calculated using its transition matrix [24]. A continuous-
time Markov chain X(t) (t ≥ 0) with a finite number of states {1, . . . , η} is defined by an
initial probability distribution, πi(0) = Pr{X(0) = i}, and a transition matrix Q = (qij)
where 1 ≤ i, j ≤ η, qij ≥ 0 for i 6= j and qii = −∑j 6=i qij , so called because, for i 6= j,
qij = limdt→0 Pr{X(t + dt) = j|X(t) = i}/dt. The requirement that Q has zero row
sums,

∑
j qij = 0, corresponds to conservation of probability,

∑
i πi(t) = 1, in the ordi-

nary differential equation initial value problem, dπ/dt = πQ with initial condition π(0),
solved by the time-dependent discrete probability distribution π(t) = (π1(t), . . . , πη(t))
where πi(t) = Pr{X(t) = i}.

A CTMC with a single communicating class of η < ∞ states is irreducible, positive
recurrent, and has a unique steady-state probability distribution that solves π̄Q = 0 subject
to
∑
i π̄i = 1 (by the Perron-Frobenius theorem). The Perron vector and steady-state

distribution π̄ is the limiting probability distribution of the Markov chain, limt→∞ ‖π(t)−
π̄‖ = 0, for any initial condition satisfying conservation of probability,

∑
i πi(0) = 1. In

general, the calculation of steady-state distributions and other properties for Markov chains
with η states requires algorithms of O(η3) complexity.

Many open questions in the physical and biological sciences involve the analysis of sys-
tems that are naturally modeled as a collection of interacting stochastic automata [3,17,23].
Unfortunately, representing a stochastic automata network as a single master Markov chain
suffers from the computational limitation that the aggregate number of states is exponential
in the number of components. For example, the transition matrix for k coupled stochastic
automata, each of which can be represented by an v-state Markov chain, has η = vk states
and requires algorithms of O(v3k) complexity.

Many results are relevant to overcoming combinatorial state-space explosions of cou-
pled stochastic automata. For example, memory-efficient numerical methods may use ordi-
nary Kronecker representations of the master transition matrix Q =

∑
`

⊗k
n=1R`n where

the R`n are size v, and many are identity matrices, eliminating the need to generate and
store the size vk transition matrix [9]. Kronecker representations may be generalized to
allow for matrix operands whose entries are functions that describe state-dependent tran-
sition rates, i.e., Q =

⊕k
n=1 Fn and Fn(i, j) : ×kn=1Xn → R where Xn(t) is the state

of the nth automata [5]. Hierarchical Markovian models may be derived in an automated
manner and leveraged by multi-level numerical methods [7].

Redundancy in master Markov chains for interacting stochastic automata can often be
eliminated without approximation. Both lumpability at the level of individual automata
and model composition have been extensively researched, though the latter reduces the
state space in a manner that eliminates Kronecker structure [4, 6, 13]. To see this, consider
k identical and indistinguishable stochastic automata, each with v states, that interact via
transition rates that are functions of the global state, that is, Q =

⊕k
F where F (i, j) :

×v`=1 n` → R where n`(t) =
∑k
n=1 I{Xn(t) = `} is the number of automata in state

`. As defined Q, is size vk, however, states may be lumped using symmetry in the model
specification to yield an equivalent master Markov chain of size η =

(
k+v−1
k

)
. Although

model reduction in this spirit is intuitive and widely used in applications, the mathematical
structure of the transition graphs resulting from such contractions does not appear to have
been extensively studied.

More concretely, letG represent the transition graph for an v-state automaton with tran-
sition matrix Q = (qij). As required in many applications, we assume that Q is irreducible
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and that state transitions are reversible (qij > 0 ⇔ qji > 0, i 6= j). Thus, the transition
graphG corresponding toQ is simple (unweighted, undirected, no loops or multiple edges)
and connected (by the irreducibility of Q). The transition graph G has adjacency matrix
A(G) = (aij) where aii = 0, and for i 6= j, aij = 0 when qij = 0 and aij = 1 when
qij > 0.

The transition graph for the master Markov chain for k automata with transition graphs
Gn is the Cartesian graph productG12G22 · · ·2Gk. If these k automata are identical, the
transition graph for the master Markov chain is the kth Cartesian power of G, that is, the
k-fold product Gk = G2G2 · · ·2G. The focus of this paper is the k-th reduced power
ofG, i.e., the transition graph of the contracted master Markov chain for k indistinguishable
(but not necessarily independent) v-state automata with isomorphic transition graphs.

The remainder of this paper is organized as follows. In Sections 2–3 we formally define
the reduced power of a graph and interpret it as particular configuration space. Sections 4–
6 present our primary result, the construction of minimal cycle bases of reduced graph
powers. Section 7 explicates the relevance of these minimal cycle bases to applications
that do not allow state-dependent coupling of automata to introduce nonequilibrium steady
states.

2 Reduced Cartesian powers of a graph
There are several equivalent formulations of the reduced power of a graph. For the first
formulation, recall that given graphs G and H , their Cartesian product is the graph G2H
whose vertex set is the Cartesian product V (G)×V (H) of the vertex sets of G and H , and
whose edge set is

E(G2H) =
{

(x, u)(y, v) | xy ∈ E(G) and u = v, or x = y and uv ∈ E(H)
}
.

This product is commutative and associative [14]. For typographical efficiency we may
abbreviate a vertex (x, y) of G2H as xy if there is no danger of confusion.

The kth Cartesian power of a graph G is the k-fold productGk = G2G2 · · ·2G. The
symmetric group Sk acts on Gk by permuting the factors. Specifically, for a permutation
π ∈ Sk the map

(x1, x2, . . . , xk) 7→ (xπ(1), xπ(2), . . . , xπ(k))

is an automorphism of Gk. The kth reduced power of G is the graph that has as vertices
the orbits of this action, with two orbits being adjacent if Gk has an edge joining one orbit
to the other. Said more succinctly, the reduced kth power is the quotient Gk/Sk of Gk by
its Sk action.

Figure 1 shows a graph G next to G2 = G2G. The S2 action on G2 has as orbits
the singletons {aa}, {bb}, {cc}, {dd}, along with the pairs {ab, ba}, {ac, ca}, {ad, da},
{bc, cb}, {bd, db}, and {cd, dc}. Let us identify a singleton orbit such as {aa} with the
monomial aa = a2, and a paired orbit such as {ab, ba} with the monomial ab (with ab =
ba). The reduced power G(2) appears on the right of Figure 1. Note that two monomials
xy and uv are adjacent in G(2) provided that xy and uv have a common factor, and the
remaining two factors are adjacent vertices of G.

As each monomial xy corresponds uniquely to the 2-multiset {x, y} of vertices of G,
we can also define the reduced power G(2) as follows. Its vertices are the 2-multisets of
vertices of G, with two multisets being adjacent precisely if they agree in one element, and
the other elements are adjacent in G.
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a

b

c

d

G G2G

aa ba

ab bb

ac bc

ad bd

ca da

cb db

cc dc

cd dd

G(2)

a2

ab b2

ac bc

ad bd

c2

cd d2

Figure 1: A graph G, the Cartesian square G2 = G2G, and the reduced power G(2). For each
x ∈ V (G), the vertices {xv | v ∈ V (G)} induce a subgraph Gx ∼= G of G(2). These subgraphs are
shown dashed, dotted and solid in G(2). Note Gx and Gy intersect precisely at vertex xy if x 6= y.

In general, higher reduced powersG(k) can be understood as follows. Suppose V (G) =
{a1, a2, . . . , av}. Any vertex of G(k) is the Sk-orbit of some x = (x1, x2, . . . , xk) ∈
V (Gk). For each index 1 ≤ i ≤ v, say x has ni ≥ 0 coordinates equal to ai. Then∑v
i=1 ni = k, and the Sk-orbit of x consists precisely of those k-tuples in V (Gk) having

ni coordinates equal to ai, for 1 ≤ i ≤ v. This orbit – this vertex of G(k) – can then be
identified with either the degree-k monomial

an1
1 an2

2 · · · anv
v ,

or with the k-multiset

{ a1, a1, . . . , a1︸ ︷︷ ︸
n1

| a2, a2, . . . , a2︸ ︷︷ ︸
n2

| . . . . . . | av, av, . . . , av︸ ︷︷ ︸
nv

}, (2.1)

where v−1 dividing bars are inserted for clarity. We will mostly use the monomial notation
for V (G(k)), but will also employ the multiset phrasing when convenient. Let us denote the
set of monic monomials of degree k, with indeterminates V (G), asMk(G), withM0(G) =
{1}. The above, together with the definition of the Cartesian product, yields the following.

Definition 2.1. For a graph G with vertex set {a1, a2, . . . , av}, the reduced kth power
G(k) is the graph whose vertices are the monomials an1

1 an2
2 · · · anv

v ∈ Mk(G). For edges,
if aiaj is an edge of G, and f(a1, a2, . . . av) ∈ Mk−1(G), then aif(a1, a2, . . . , av) is
adjacent to ajf(a1, a2, . . . , av).

Figure 2 shows the three-cycle G = C3 and its reduced second and third powers.
Figure 3 shows the five-cycle and its reduced second and third powers.

The reduced power G(k) is not to be confused with the symmetric power of G, for
which each vertex represents a k-subset of V (G), and two k-subsets are joined if and only
if their symmetric difference is an edge of G [1, 2].

The multiset notation (2.1) gives a quick formula for the number of vertices of reduced
kth powers. This presentation describes the multiset as a list of length k+v−1 involving k
symbols ai, 1 ≤ i ≤ k, and v−1 separating bars. We can count the multisets by choosing k
slots for the ai’s and filling in the remaining slots with bars. Therefore, when |V (G)| = v,∣∣∣V (G(k)

)∣∣∣ =

(
k + v − 1

k

)
. (2.2)
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Figure 2: The three-cycle C3 and its second and third reduced powers C(2)
3 and C(3)

3 .

The number of vertices in Gk that are identified with vertex an1
1 an2

2 · · · anv
v ∈ V (G(k)) in

the quotient G(k) = Gk/Sk is given by the multinomial coefficient
(

k
n1 n2 ... nv

)
.

Definition 2.1 says that for each edge aiaj ofG, and for each monomial f ∈Mk−1(G),
there is an edge of G(k) from aif to ajf . Because there are

(
k+m−2
k−1

)
such monomials f ,∣∣∣E(G(k)

)∣∣∣ = |E(G)| ·
(
k + v − 2

k − 1

)
. (2.3)

3 Reduced graph powers as configuration spaces
The reduced power G(k) is the transition graph of the contracted master Markov chain for
k identical and indistinguishable v-state automata, each with transition graph G. Conse-
quently, an intuitive way of envisioning G(k) is to imagine it as a configuration space in
which k indistinguishable tokens are placed on the vertices of G, so that any vertex can
hold up to k tokens. The monomial an1

1 an2
2 · · · anv

v then represents the configuration in
which ni tokens are placed on each vertex ai. Two configurations are adjacent if one can
be transformed to the other by moving a single token along an edge of G to an adjacent
vertex. In this way G(k) is interpreted as the space of all such configurations. See [11] for
a related construction in which no vertex can hold more than one token.

The reduced power G(k) may also be interpreted as the reachability graph for a funda-
mental class of stochastic Petri nets with k tokens, v = |V (G)| places, and 2|E(G)| flow
relations (directed arcs) between places [8, 22]. The arc from place ai (origin) to place aj
(destination) has firing rate niqij given by the product of transition rate qij and the number
ni of tokens in the origin place. That is, the ai → aj firing time is the minimum of ni
exponentially distributed random variables with expectation 1/qij . The ai → aj firing rate
per token will be denoted qij [an1

1 an2
2 · · · anv

v ] when it is a function of the global state (token
configuration) of the stochastic Petri net.

The token interpretation can be helpful in deducing properties of reduced powers, such
as the following.
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Proposition 3.1. The vertex an1
1 an2

2 · · · anv
v of G(k) has degree

deg
(
an1
1 an2

2 · · · anv
v

)
=
∑
ni≥1

degG(ai).

Proof. The configuration an1
1 an2

2 · · · anv
v can be transformed to an adjacent configuration

only by moving a token on some vertex ai (with ni ≥ 1) to an adjacent vertex.

a

b

cd

e
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de

cd
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ce bd

ac

C
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5

C
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5

a3

abe

b3
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d3
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d2e
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bd2
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b2e

ad2
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be2

abdace
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Figure 3: The five-cycle C5 and its second and third reduced powers C(2)
5 and C(3)

5 .
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4 Cycle bases and minimum cycle bases
Here we quickly review the fundamentals of cycle spaces and bases. The following is
condensed from Chapter 29 of [14].

For a graph G, its edge space E (G) is the power set of E(G) viewed as a vector space
over the two-element field F2 = {0, 1}, where the zero vector is 0 = ∅ and addition is
symmetric difference. Any vector X ∈ E (G) is viewed as the subgraph of G induced on
X , so E (G) is the set of all subgraphs of G without isolated vertices. Thus E(G) is a
basis for E (G), and dim(E (G)) = |E(G)|. The vertex space V (G) of G is the power
set of V (G) as a vector space over F2. It is the set of all edgeless subgraphs of G and its
dimension is |V (G)|.

We define a linear boundary map δG : E (G)→ V (G) by declaring that δG(xy) = x+y
on the basis E(G). The subspace C (G) = ker(δG) is called the cycle space of G. It
contains precisely the subgraphs in E (G) whose vertices all have even degree (that is, the
Eulerian subgraphs). Because every such subgraph can be decomposed into edge-disjoint
cycles, each in C (G), we see that C (G) ⊆ E (G) is spanned by the cycles in G.

The dimension of C (G), denoted β(G), is called the (first) Betti number of G. If G is
connected, the rank theorem applied to δG yields

β(G) = |E(G)| − |V (G)|+ 1. (4.1)

A basis for the cycle space is called a cycle basis. To make a cycle basis of a connected
graph G, take a spanning tree T , so the set S = E(G)−E(T ) has |E(G)|− |V (G)|+ 1 =
β(G) edges. For each e ∈ S, let Ce be the unique cycle in T + e. Then the set B =
{Ce | e ∈ S} is linearly independent. As B has cardinality β(G), it is a basis (see Figure 4).

The elements of a cycle basis are naturally weighted by their number of edges. The
total length of a cycle basis B is the number `(B) =

∑
C∈B |C|. A cycle basis with the

smallest possible total length is called a minimum cycle basis, or MCB.

a2

e2

d2 c2

b2

ae

de

cd

bc

ab

be

ad

ce bd

ac

C
(2)
5

Figure 4: A spanning tree T of G = C
(2)
5 . The set S = E(G) − E(T ) has β(G) =

25 − 15 + 1 = 11 edges. For each e ∈ S, let Ce be the unique cycle in T + e. The set
{Ce | e ∈ S} is a cycle basis for G, but not a minimum cycle basis (see Figure 5).
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The cycle space is a weighted matroid where each elementC has weight |C|. Hence the
Greedy Algorithm [20] always terminates with an MCB: Begin with M = ∅; then append
shortest cycles to it, maintaining independence of M , until no further shortest cycles can
be appended; then append next-shortest cycles, maintaining independence, until no further
such cycles can be appended; and so on, until M is a maximal independent set. Then M
is an MCB.

Here is our primary criterion for determining if a cycle basis is an MCB. (See Exercise
29.4 of [14].)

Proposition 4.1. A cycle basis B = {B1, B2, . . . , Bβ(G)} for a graph G is an MCB if and
only if every C ∈ C (G) is a sum of basis elements whose lengths do not exceed |C|.

For graphs G and H , a weak homomorphism ϕ : G→ H is a map ϕ : V (G)→ V (H)
having the property that for each xy of G, either ϕ(x)ϕ(y) is an edge of H , or ϕ(x) =
ϕ(y). Such a map induces a linear map ϕ∗ : E (G) → E (H) defined on the basis E(G)
as ϕ∗(xy) = ϕ(x)ϕ(y) provided ϕ(x) 6= ϕ(y), and ϕ∗(xy) = 0 otherwise. Similarly we
define ϕ∗V : V (G) → V (H) as ϕ∗V (x) = ϕ(x) on the basis V (G). Thus we have the
following commutative diagram. (Check it on the basis E(G).)

E (G) E (H)

V (G) V (H)

δG δH

ϕ∗

ϕ∗V

From this, ϕ∗ restricts to a map C (G)→ C (H) on cycle spaces, because ifC ∈ C (G),
then δG(C) = 0, whence δHϕ∗(C) = ϕ∗V δG(C) = 0, meaning ϕ∗(C) ∈ ker(δH) =
C (H). Certainly if ϕ is a graph isomorphism, then ϕ∗ is a vector space isomorphism.

Of special interest will be the projections pi : Gk → G, where pi(x1, x2, . . . , xk) = xi.
These are weak homomorphisms and hence induce linear maps p∗i : C (Gk)→ C (G).

Another important map is the natural projection η : Gk → G(k) sending each k-tuple
x = (x1, x2, . . . , xk) to the monomial representing the Sk-orbit containing x. This map η∗

also is a weak homomorphism, inducing a linear map η∗ : C (Gk)→ C (G(k)).

Lemma 4.2. If G is connected, the map η∗ : C (Gk)→ C (G(k)) is surjective.

Proof. Because any element of C (G(k)) is an edge-disjoint union of cycles, it suffices to
show that any cycle C = f0f1 · · · fnf0 ∈ C (G(k)) equals η∗(C ′) for some C ′ ∈ C (Gk).
For each index i, let xiyi+1 ∈ E(Gk) be an edge for which η∗(xiyi+1) = η(xi)η(yi+1) =
fifi+1. (Each xi, yi is a k-tuple, and index arithmetic is modulo n.) Note that η(xi) =
η(yi), meaning xi and yi are in the same Sk-orbit, that is, yi equals xi with its coordinates
permuted.

We will argue that each pair yi, xi can be joined by a path Pi in Gk, with η∗(Pi) = 0.
This will prove the lemma because then

C ′ = P0 + x0y1 + P1 + x1y2 + P2 + . . .+ Pn + xny0 ∈ C (Gk)

satisfies η∗(C ′) = C.



R. H. Hammack and G. D. Smith: Cycle bases of reduced powers of graphs 191

Consider two vertices (. . . a . . . b . . .) and (. . . b . . . a . . .) ofGk that are identical except
for the transposition of two coordinates a and b. Take a path a = v0v1 · · · vq = b from a to
b in G. Now form the following two paths in Gk

Q = (. . . a . . . b . . .)(. . . v1 . . . b . . .)(. . . v2 . . . b . . .) . . . (. . . b . . . b . . .)
R = (. . . b . . . a . . .)(. . . b . . . v1 . . .)(. . . b . . . v2 . . .) . . . (. . . b . . . b . . .).

Concatenation of Q with the reverse of R is a path from (. . . a . . . b . . .) to (. . . b . . . a . . .).
Moreover η∗(Q+R) = 0 because the images of the jth edges ofQ andR are always equal;
hence the edges cancel in pairs. As yi and xi differ only by a sequence of transpositions
of their coordinates, the above construction can be used to build up a path Pi from yi to xi
with η(Pi) = 0.

We have seen that the projections pi : Gk → G induce linear maps C (Gk) → C (G).
But there seems to be no obvious way of defining a projectionG(k) → G. Still, it is possible
to construct a natural linear map p∗ : C (G(k)) → C (G). To do this, recall that any edge
of G(k) has form af bf where ab ∈ E(G) and f ∈ Mk−1(G). We begin by defining p∗

on the edge space. Put p∗(af bf) = ab for each edge af bf in the basis E(G(k)) and
extend linearly to a map p∗ : E (G(k)) → E (G). Note that

∑k
i=1 p

∗
i = p∗ ◦ η∗. (Confirm

it by checking it on the basis E(Gk) of E (Gk).) Now, if X ∈ C (G(k)), then Lemma 4.2
guarantees X = η∗(Y ) for some Y in the cycle space of Gk. Then p∗(X) = p∗(η∗(Y )) =∑k
i=1 p

∗
i (Y ) ∈ C (G).

We now have a linear map p∗ : C (G(k))→ C (G) for which p∗(af bf) = ab.
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Figure 5: The union {C5a} ∪B is an MCB for C (C
(2)
5 ) = C (C5 a)

⊕
S (C

(2)
5 ).
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5 Decomposing the cycle space of a reduced power
This section explains how to decompose the cycle space of a reduced power into the direct
sum of particularly simple subspaces.

To begin, notice that if f is a fixed monomial in Mk−1(G), then there is an embedding
G→ G(k) defined as x 7→ xf . Let us call the image of this map Gf . Notice that Gf is an
induced subgraph of G(k) and is isomorphic to G.

Proposition 5.1. For any fixed f ∈Mk−1(G), we have C (G(k)) = C (Gf)
⊕

ker(p∗).

Proof. Consider the map p∗ : C (G(k)) → C (G). Its restriction C (Gf) → C (G) is a
vector space isomorphism. The proof now follows from elementary linear algebra.

Next we define a special type of cycle in a reduced power. Given distinct edges ab and
cd of G and any f ∈ Mk−2(G), we have a square in G(k) with vertices acf, bcf, bdf, adf .
Let us call such a square a Cartesian square, and denote it as (ab2cd)f . See Figure 6.

acf

adf

bcf

bdf

Figure 6: A Cartesian square (ab2cd)f in G(k) with k ≥ 2.

We regard this as a cycle in the cycle space; it is the subgraph of G(k) that is precisely
the sum of edges acf bcf + bcf bdf + bdf adf + adf acf. (Observe that this sum is zero
if and only if ab = cd.) We remark that although a subgraph Gf may have squares, they
are not Cartesian squares because they do not have the form specified above. Define the
square space S (G(k)) to be the subspace of C (G(k)) that is spanned by the Cartesian
squares.

If S is a Cartesian square, then p∗(S) = 0, so S (G(k)) ⊆ ker(p∗). In the remainder
of the paper we will show that in fact S (G(k)) = ker(p∗), so that Proposition 5.1 gives
C (G(k)) = C (Gf)

⊕
S (G(k)). Simultaneously we will craft a simple MCB for G(k) by

concatenating MCBs of C (Gf) and S (G(k)). See Figure 5 for an example.

6 Cycle bases for reduced powers
This section describes a simple cycle basis for the reduced kth power of a graphG. IfG has
no triangles, this cycle basis will be an MCB. (We do not consider MCBs in the cases that
G has triangles because the applications we have in mind do not involve such situations.
Constructing MCBs when G has triangles would be an interesting research problem.)

Let G be a connected graph with v vertices and e edges. Recall that by Equations (2.2)
and (2.3), the graph G(k) has

(
k+v−1
k

)
vertices, identified with the monomials Mk(G), and

e
(
k+v−2
k−1

)
edges. Thus any cycle basis has dimension

β(G(k)) = e

(
k + v − 2

k − 1

)
−
(
k + v − 1

k

)
+ 1. (6.1)

We first examine the square space. Any pair of distinct edges ab and cd of G corre-
sponds to a Cartesian square (ab2cd)f , where f ∈ Mk−2(G), so there are

(
e
2

)(
k+v−3
k−2

)
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such squares. But this set of squares may not be independent. Our first task will be to
construct a linearly independent set of Cartesian squares.

To begin, put V (G) = {a1, a2, . . . , av}. Let T be a rooted spanning tree ofG with root
a1, and arrange the indexing so its order respects a breadth-first traversal of T , that is, for
each i the vertex ai is not closer to the root than any aj for which j < i (see Figure 7).

a1

a2

a3

a4

a5

a6
a7

a8

a9

a10 . . .

a11 . . .

Figure 7: A rooted spanning tree T of G with V (G) = {a1, a2, . . . , av}, root a1, and
indexing that respects a breadth-first traversal of T .

With this labeling, any edge of T is uniquely determined by its endpoint aj that is
furthest from the root. For each 2 ≤ i ≤ v, let ej be the edge of T that has endpoints ai
and aj , with aj further from the root than ai. Let Mk−2(a1, a2, . . . aj) denote the monic
monomials of degree k − 2 in indeterminates a1, a2, . . . , aj , with 1 ≤ j ≤ v. Define the
following sets of Cartesian squares in G(k).

Υ = {(ei2ej)f | 2 ≤ i < j ≤ v, f ∈Mk−2(a1, a2, . . . , aj)} ,
Ω = {(a`am2ej)f | a`am ∈ E(G)−E(T ), 2 ≤ j ≤ v, f ∈Mk−2(a1, a2, . . . , aj)} .

Shortly we will show that Υ∪Ω is linearly independent. But first a few quick informal
words about why we would expect this to be the case. Suppose k ≥ 3 and take three
distinct edges aiaj , a`am and apaq in G, and let f ∈ Mk−3(G). Figure 8 indicates that
these edges result in a cube in the kth reduced power. Each of the six square faces of this
cube is in the square space. But the faces are dependent because any one of them is a sum
of the others. Call a square face such as (aiaj2a`am)aqf a “top square” of a cube if the
monomial aqf involves an indeterminate at with t > max{i, j, `,m}. Sets Υ and Ω are
constructed so as to contain no top squares.

aia`aqf

aia`apf

aja`aqf

aja`apf

aiamaqf

aiamapf

ajamaqf

ajamapf

Figure 8: A Cartesian cube (aiaj2a`am2apaq)f in the reduced power G(k).
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(A configuration of the type illustrated in Figure 8 may not always be a cube in the
combinatorial sense. The reader is cautioned that if aiaj , a`am and apaq are the edges of
a triangle in G, then two of the diagonally opposite vertices of the “cube” are the same, as
in K(3)

3 , shown in Figure 2. Here there is only one cube, which takes the form of a central
vertex connected to the six vertices of a hexagon. This will cause no difficulties in what
follows, even if we entertain the possibility that G does indeed have triangles.)

There is another kind of dependency that is ruled out in the definition of Υ and Ω, and
we now sketch it. First, imagine G2. Consider two cycles A and B in G each having
exactly one edge not in T , say aiaj and a`am, respectively. Envision A2B is as a torus in
G2 with square faces, each edge shared by two faces. In adding up all the faces, the edges
cancel in pairs, giving 0, so the squares are dependent. Removing the face aiaj2a`am
removes the dependency. Such squares aiaj2a`am show up in G(2)f ⊆ G(k) as squares
(aiaj2a`am)f with aiaj , apaq ∈ E(G)− E(T ). Sets Υ and Ω contain no such squares.

Proposition 6.1. The set B = Υ ∪ Ω is linearly independent.

Proof. We first show that Υ is linearly independent. Let X =
∑

(ei2ej)fn be a sum of
elements of Υ. Form the forest F ⊆ T consisting of all edges ei and ej that appear as edges
of a squares in this sum, and let ab be an edge of F for which b is a leaf. Then any term
(a`am2ab)fn of the sum is the unique square in the sum containing the edge a`bfn ambfn.
Because no term can cancel this edge, we get X 6= 0, so Υ is linearly independent.

To see that Ω is linearly independent, consider a sum X =
∑

(a`am2ej)fn of squares
in Ω. Again form a forest F ⊆ T of the edges ej and let ab be as before. Then any
term (a`am2ab)fn is the unique square in the sum containing the edge a`bfn ambfn.
Then X 6= 0 because no other term in the sum can cancel this edge; hence Ω is linearly
independent.

Now we argue that the spans of Υ and Ω have zero intersection. By the previous para-
graph, any nonzero linear combination of squares in Ω has edges of form (a`am2ab)fn,
with a`am ∈ E(G) − E(T ). But no linear combination of squares in Υ has such edges.
Hence the spans have zero intersection, so B is linearly independent.

Our next task is to show that B is actually a basis for the square space. In fact, we will
show more: it is also a basis for ker(p∗), and S (G(k)) = ker(p∗). Our dimension counts
will involve finding |Υ| and |Ω|, and for this we use the following formulas. The first is
standard; both are easily verified with induction.

(
r
r

)
+
(
r+1
r

)
+
(
r+2
r

)
+ · · · +

(
r+n
r

)
=

(
r+n+1
r+1

)
(6.2)

0
(
r
r

)
+ 1
(
r+1
r

)
+ 2
(
r+2
r

)
+ · · · + n

(
r+n
r

)
= n

(
r+n+1
r+1

)
−
(
r+n+1
r+2

)
(6.3)

Take an edge ej of T with 3 ≤ j. From its definition, Υ has (j − 2)
(
k+j−3
k−2

)
squares of

form (ei2ej)f . We reckon as follows, using Equations (6.2) and (6.3) as appropriate.
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|Υ| =

v∑
j=3

(j − 2)

(
k + j − 3

k − 2

)

=

v∑
j=1

(j − 2)

(
k + j − 3

k − 2

)
+ 1

=

v∑
j=1

(j − 1)

(
k + j − 3

k − 2

)
−

v∑
j=1

(
k + j − 3

k − 2

)
+ 1

= (v − 1)

(
k + v − 2

k − 1

)
−
(
k + v − 2

k

)
−
(
k + v − 2

k − 1

)
+ 1

= (v − 1)

(
k + v − 2

k − 1

)
−
(
k + v − 1

k

)
+ 1. (6.4)

Now, given and edge ej of T with 2 ≤ j, the set Ω has β(G)
(
k+j−3
k−2

)
squares of form

(a`am2ej)f . Consequently

|Ω| = β(G)

v∑
j=2

(
k + j − 3

k − 2

)

= β(G)

 v∑
j=1

(
k + j − 3

k − 2

)
− 1


= β(G)

(
k + v − 2

k − 1

)
− β(G). (6.5)

Proposition 6.2. The set B = Υ ∪ Ω is a basis for the square space of the reduced kth
power of G. Moreover, the square space equals ker(p∗).

Proof. By Proposition 6.1, the set B is linearly independent; and it is a subset of the square
space by construction. We saw earlier that the square space is a subspace ker(p∗). To finish
the proof we show that ker(p∗) has dimension |B|. By the rank theorem applied to the
surjective map p∗ : C (G(k))→ C (G) we have dim ker(ϕ∗) = β(G(2))−β(G). This with
Equations (6.1), (6.4) and (6.5), as well as the fact that (v − 1) + β(G) = e, gives

|B| = |Υ|+ |Ω|

= (v − 1)

(
k + v − 2

k − 1

)
−
(
k + v − 1

k

)
+ 1 + β(G)

(
k + v − 2

k − 1

)
− β(G)

= e

(
k + v − 2

k − 1

)
−
(
k + v − 1

k

)
+ 1− β(G)

= β(G(2))− β(G)

= dim ker(p∗).

Therefore B is a basis for both S (G(k)) and ker(p∗).

If k = 2, then B = {ab2cd | ab, cd ∈ E(G)} − {ab2cd | ab, cd ∈ E(G) − E(T )},
so |B| =

(
e
2

)
−
(
β(G)
2

)
. It is interesting to note that if β(G) ≤ 1, then

(
β(G)
2

)
= 0 and B

consists of all squares in the square space; in all other cases it has fewer squares.
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e2

e5

e4

e3

a1

a2

a3a4

a5
T ⊂ C5

ab

de

cd

bc

ae
a

b

cd

e
C5

abe

abc

bcd

ade

a2b

ab2

bd2

b2e

ad2

a2c

ace

bce

acd

bde

C
(3)
5 (ab2bc)a ∈ Υ

(ae2bc)b ∈ Ω

(ae2bc)a ∈ Ω

(ab2de)c ∈ Υ

(cd2de)b ∈ Υ(ab2cd)d ∈ Υ

(cd2de)a ∈ Υ

(ab2de)d ∈ Υ

Figure 9: With T as indicated, the sets of squares Υ and Ω form a basis B = Υ ∪ Ω of
the square space of C(3)

5 . Here Υ = {(ab2bc)f | f ∈ {a, b, c}} ∪ {(ab2cd)f, (bc2cd)f |
f ∈ {a, b, c, d}} ∪{(ab2de)f, (bc2de)f, (cd2de)f | f ∈ {a, b, c, d, e}}. Also Ω =
{(ae2ab)f | f ∈ {a, b}} ∪ {(ae2bc)f | f ∈ {a, b, c}} ∪ {(ae2cd)f | f ∈ {a, b, c, d}} ∪
{(ae2de)f | f ∈ {a, b, c, d, e}}. Note |Υ| = 24 and |Ω| = 14. The square (ab2cd)e /∈ B
is the “top square” of the Cartesian cube ab2cd2de.

We now can establish the main result of this section, namely a construction of an MCB
for the reduced kth power. Take an f ∈Mk−1(G). Propositions 5.1 and 6.2 say

C (G(k)) = C (Gf)
⊕

S (G(k)). (6.6)

To any cycle C = c1c2 . . . cn inG, there corresponds cycle Cf = c1f c2f . . . cnf inG(k).

Theorem 6.3. Take a cycle basis C = {C1, C2, . . . , Cβ(G)} for G, and let B be the
basis for S (G(k)) constructed above. Fix f ∈ Mk−1(G) and put C f = {C1f, C2f, . . . ,
Cβ(G)f}. Then C f ∪B is a cycle basis for G(k). If C is an MCB for G, and G has no
triangles, then this basis is an MCB for G(k).

Proof. That this is a cycle basis follows immediately from Equation (6.6).
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Now suppose C is an MCB for G, and that G has no triangles. It is immediate that
G(k) has no triangles either. The proof is finished by applying Proposition 4.1. Take any
C ∈ C (G(k)), and write it as

C =
∑
i∈I

Gi +
∑
j∈J

Bj ,

where theGi are from C f and theBj are from B. According to Proposition 4.1, it suffices
to show thatC has at least as many edges as any term in this sum. CertainlyC is not shorter
than any square Bj (by the triangle-free assumption). To see that it is not shorter than any
Gi in the sum, apply p∗ to the above equation to get

p∗(C) =
∑
i∈I

p∗(Gi) .

Because p∗ : C (Gf)→ C (G) is an isomorphism, the terms p∗(Gi) are part of an MCB for
G, and thus |p∗(C)| ≥ |p∗(Gi)| = |Gi| for each i, by Proposition 4.1. Also |C| ≥ |p∗(C)|
(as some edges may cancel in the projection) so |C| ≥ |Gi|.

Although Theorem 6.3 gives a simple MCB for reduced powers of a graph that has no
triangles, the constructed basis is definitely not minimum if triangles are present. Several
different phenomena account for this. Consider the case k = 2. First, if G has triangles,
then for each vertex x of G, the second reduced power contains a copy Gx of G. These
copies are pairwise edge-disjoint; an MCB would have to capitalize on triangles in each of
these copies at the expense of squares in the square space. Moreover, as Figure 2 demon-
strates, some of the squares in the square space will actually be sums of two triangles. The
figure also shows that for a triangle ∆ = abc in G, we do not get just the three triangles
∆a, ∆b and ∆c, but also a fourth triangle ab bc ca not belonging to any Gx. We do not
delve into this problem here.

7 Discussion
We have defined what appears to be a new construction, the kth reduced power of a graph,
G(k), and have presented a theorem for construction of minimal cycle bases of G(k).

When G is the transition graph for a Markov chain, G(k) is the transition graph for
the configuration space of k identical and indistinguishable v-state automata with transi-
tion graph G. Symmetry of model composition allows for interactions among stochastic
automata, so long as the transition rates qij for i, j ∈ {1, 2, · · · , v}, i 6= j are constant
or functions of the number of automata n`(t) in each state, 0 ≤ n`(t) ≤ k, 1 ≤ ` ≤ v.
G(k) does not pertain if transition rates depend on the state of any particular automaton,
Xn(t) ∈ {1, 2, · · · , v}, n ∈ {1, 2, · · · , k}, as this violates indistinguishability.

For concreteness, consider a stochastic automata network composed of three identical
automata, each with transition graph C5 and generator matrix,

Q =


� qab[·] 0 0 qae
qba � qbc 0 0
0 qcb � qcd 0
0 0 qdc � qde
qea 0 0 qed �

 (7.1)
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where �’s indicate the values required for zero row sum, qii = −∑j 6=i qij < 0, and qab[·]
indicates a functional transition rate that depends on the global state of the three automata.
Assume constant transition rates qbc = qcd = qde = qea = µ > 0 and qba = qcb = qdc =
qed = qae = ν > 0. Further assume that the automata may influence one another through
the state-dependent transition rate,

qab[·] = λ+ α (na[·]− 1) + β nb[·] + γ nc[·] + δ nd[·] + ε ne[·], (7.2)

where α, β, γ, δ, ε ≥ 0 and [·] denotes the global state ap11 a
p2
2 · · · apvv that is the functional

transition rate’s argument. The transition rate qab : Mk(a1, a2, · · · , av)→ R is a function
of the global state via n` : Mk(a1, a2, · · · , av) → N defined by n`[a

p1
1 a

p2
2 · · · apvv ] =

p`. The three automata are uncoupled when α, β, γ, δ, ε = 0 because this eliminates the
dependence of qab[·] on the global state.

(In this model specification, coupling an isolated component automaton to itself is
equivalent to absence of coupling. Because qab[·] is the rate of an a → b transition, qab[·]
is only relevant when the isolated automaton is in state a. This functional transition rate
has the property that qab[a] = λ when α, β, γ, δ, ε > 0 because nx[y] = 1 for x = y and
0 otherwise.)

The transition matrix for the master Markov chain Q(3) is defined by the model spec-
ification in the previous paragraph. For example, the transition rate from global state
ad2 to global state abd is q(3)[ad2, abd] = 2µ because nd[ad2] = 2 and qdb = µ is
not a function of the global state. Other examples are q(3)[c3, c2d] = nc[c

3]qcd = 3ν,
q[a2c, a2d] = nc[a

2c]qcd = ν,

q(3)[abe, b2e] = na[abe]qab[abe]

= λ+ α (na[abe]− 1) + β nb[abe] + γ nc[abe] + δ nd[abe] + ε ne[abe]

= λ+ β + ε

q(3)[a3, a2b] = na[a3]qab[a
3]

= 3
(
λ+ α (na[a3]− 1) + β nb[a

3] + γ nc[a
3] + δ nd[a

3] + ε ne[a
3]
)

= 3 (λ+ 2α)

q(3)[a2c, abc] = na[a2c]qab[a
2c]

= 2
(
λ+ α (na[a2c]− 1) + β nb[a

2c] + γ nc[a
2c] + δ nd[a

2c] + ε ne[a
2c]
)

= 2 (λ+ α+ γ) .

This process of unpacking the model specification yields a master Markov chain with η =(
k+v−1
k

)
=
(
3+5−1

3

)
= 35 states. The master Markov chain has 210 transition rates qij > 0

corresponding (in pairs) to the 5
(
3+5−2
3−1

)
= 105 edges of the master transition graph C(3)

5 .
The construction of minimal cycle bases of G(k) provided by Theorem 6.3 is espe-

cially relevant to stochastic automata networks that arise in physical chemistry and bio-
physics [15]. For many applications in these domains, the principle of microscopic re-
versibility requires that the stationary distribution of uncoupled automata satisfying global
balance, π̄Q = 0 subject to

∑
i π̄i = 1, also satisfies a stronger condition known as de-

tailed balance,
π̄i
∑
i6=j

qij =
∑
j 6=i

qjiπ̄j .
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n`[i`f ]q`m[i`f ]

ni[imf ]qij [imf ]

nm[jmf ]qm`[jmf ]

nj [j`f ]qji[j`f ]

nm[imf ]qm`[imf ]

nj [jmf ]qji[jmf ]

n`[j`f ]q`m[j`f ]

ni[i`f ]qij [i`f ]

i`f

imf

j`f

jmf

Figure 10: Many cycles of the directed, weighted transition graph for a master Markov
chain for k coupled v-state automata correspond to Cartesian squares (ij2`m)f of the
minimal cycle basis for the undirected, unweighted transition graphG(k), where i, j, `,m ∈
{a1, a2, · · · , av} and f ∈Mk−2(a1, a2, · · · , av).

In other words, nonequilibrium steady states are forbidden. Markov chains have this prop-
erty when the transition rates satisfy the Kolmogorov criterion, namely, equality of the
product of rate constants in both directions around any cycle in the transition matrixQ [16].
For an isolated automaton with transition graph C5 and transition matrix (7.1), the Komol-
ogorov criterion is

qab[a] qbc qcd qde qea = qae qed qdc qcb qba. (7.3)

Substituting the transition rates of the model specification, both those that are constant as
well as qab[a] = λ (7.2), yields the following condition on model parameters,

λµ4 = ν5, (7.4)

that ensures the stationary distribution of an isolated automaton will satisfy detailed bal-
ance.

By constructing the minimal cycle basis of C(3)
5 , we may verify that the master Markov

chain for three uncoupled automata, each with transition graph C5, also exhibits micro-
scopic reversibility under the same parameter constraints.

To see this, recall that the minimal cycle basis of C(3)
5 has 39 linearly independent

cycles. Microscopic reversibility for the master Markov chain for three uncoupled automata
requires that, given (7.4) and α, β, γ, δ, ε = 0, 39 Komolgorov criteria are satisfied, each
corresponding to a Ci in the MCB for C(3)

5 .
One cycle in the MCB for C(3)

5 takes the form C5f for fixed f ∈M2(a, b, c, d, e). The
Kolmogorov criterion for this cycle is

na[af ]qab[af ] · nb[bf ]qbc[bf ] · nc[cf ]qcd[cf ] · nd[df ]qde[df ] · ne[ef ]qea[ef ]

= na[af ]qae[af ] · ne[ef ]qed[ef ] · nd[df ]qdc[df ] · nc[cf ]qcb[cf ] · nb[bf ]qba[bf ],

where, for typographical efficiency, here and below, we drop the superscripted (3) on the
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transition rates q(3)[·, ·] of Q(3). Canceling identical terms of the form nx[xf ] gives

qab[af ] · qbc[bf ] · qcd[cf ] · qde[df ] · qea[ef ] = qae[af ] · qed[ef ] · qdc[df ] · qcb[cf ] · qba[bf ].

When this expression is evaluated, the result is another instance of (7.4), which is satisfied
by assumption.

The remaining 38 Ci in the MCB for C(3)
5 are Cartesian squares (see Figure 10) that

yield Kolmogorov criteria of the form,

ni[imf ]qij [imf ] · nm[jmf ]qm`[jmf ] · nj [j`f ]qji[j`f ] · n`[i`f ]q`m[i`f ]

= nm[imf ]qm`[imf ] · ni[i`f ]qij [i`f ] · n`[j`f ]q`m[j`f ] · nj [jmf ]qji[jmf ],

where f ∈ M1(a, b, c, d, e). For x 6= y, nx[xyf ] = nx[x] + nx[y] + nx[f ] = 1 + nx[f ],
so this criterion simplifies to

(1 + ni[f ])qij [imf ] · (1 + nm[f ])qm`[jmf ] · (1 + nj [f ])qji[j`f ] · (1 + n`[f ])q`m[i`f ]

= (1 + nm[f ])qm`[imf ] · (1 + ni[f ])qij [i`f ] · (1 + n`[f ])q`m[j`f ] · (1 + nj [f ])qji[jmf ].

Canceling identical terms of the form (1 + nx[f ]) gives

qij [imf ] qm`[jmf ] qji[j`f ] q`m[i`f ] = qm`[imf ] qij [i`f ] q`m[j`f ] qji[jmf ] (7.5)

for (ij2`m)f ∈ B = Υ ∪ Ω with f ∈ M1(a1, a2, . . . , av). When the automata are not
coupled, α, β, γ, δ, ε = 0, the transition rates are not functions of the global state, and every
factor on the left hand side has an equal partner on the right. Consequently, the 38 squares
of B correspond to cycles in Q(3) that satisfy Komolgorov criteria.

We have shown that every cycle in the MCB for C(3)
5 , given by C5a ∪B, corresponds

to a cycle in Q(3) that satisfies a Komolgorov criterion. For every cycle in Q(3), there is a
representative in the cycle space C (C

(3)
5 ) that is a linear combination (over the field F2) of

elements of the MCB. It follows that every cycle in the master Markov chain satisfies the
Komolgorov criterion. Thus, we conclude that the master Markov chain for three uncou-
pled automata exhibits microscopic reversibility provided an isolated automaton has this
property. This property is expected, and yet important for model verification.

In many applications, it is important to establish whether or not model composition (i.e.,
the process of coupling the automata) results in a master Markov chain with nonequilibrium
steady states, in spite of the fact that an isolated component automaton satisfies detailed
balance. Such nonequilibrium steady states may be objects of study or, alternatively, the
question may be relevant because the master Markov chain is not physically meaningful
when model composition introduces the possibility of nonequilibrium steady states [15].

Our construction of minimal cycle bases of reduced graph powers provides condi-
tions sufficient to ensure that model composition does not introduce nonequilibrium steady
states. In general, it is sufficient that (7.5) hold of every Cartesian square (ij2`m)f of the
MCB for the undirected, unweighted transition graph G(k). In the example under discus-
sion, many of these Komolgorov criteria do not involve the functional transition rate qab[·];
these conditions are satisfied without placing any constraints on the coupling parameters
α, β, γ, δ, ε. The remaining constraints take the form

qab[amf ] qm`[bmf ] qba[b`f ] q`m[a`f ] = qm`[amf ] qab[a`f ] q`m[b`f ] qba[bmf ] (7.6)
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for `m ∈ {bc, cd, de, ae}. The Cartesian squares of concern are elements of the set
{(ab2`m)f | `m ∈ {bc, cd, de}} ⊂ Υ and (ae2ab)f ∈ Ω. Note that `m 6= ab and, con-
sequently, qm`[bmf ] = qm`[amf ], q`m[a`f ] = q`m[b`f ] and qba[b`f ] = qba[bmf ] = ν.
Thus, (7.6) simplifies to

qab[a`f ] = qab[amf ] `m ∈ {bc, cd, de, ae}. (7.7)

To see how this requirement constrains the coupling parameters α, β, γ, δ, ε, we expand
both sides of (7.7) using (7.2), for example,

qab[a`f ] = λ+ α(na[a`f ]− 1) + βnb[a`f ] + γnc[a`f ] + δnd[a`f ] + εne[a`f ]

= λ+ αna[`f ] + βnb[`f ] + γnc[`f ] + δnd[`f ] + εne[`f ]

where we used na[a`f ] = 1 + na[`f ]. Subtracting both sides of (7.7) by λ + αna[f ] +
βnb[f ] + γnc[f ] + δnd[f ] + εne[f ] and using nx[`f ] = nx[`] + nx[f ] we obtain

αna[`]+βnb[`]+γnc[`]+δnd[`]+εne[`] = αna[m]+βnb[m]+γnc[m]+δnd[m]+εne[m]

for `m ∈ {bc, cd, de, ae}. These four equations yield four parameter constraints that ensure
detailed balance in the master Markov chain for the three coupled stochastic automata, for
example, `m = bc gives

αna[b] +βnb[b] + γnc[b] + δnd[b] + εne[b] = αna[c] +βnb[c] + γnc[c] + δnd[c] + εne[c],

which implies that β = γ. Substituting `m = cd, de and ae, we find γ = δ, δ = ε and
α = ε, respectively. We conclude that α = β = γ = δ = ε.

In our example, the three automata are coupled when one or more of α, β, γ, δ, ε is
positive. The analysis of Cartesian squares in the MCB for C(3)

5 shows that coupling the
three automata in the manner specified by (7.2) will introduce nonequilibrium steady states
unless the coupling parameters are equal. This result is intuitive because

∑
i ni[·] = k = 3

and, consequently, equal coupling parameters α = β = γ = δ = ε correspond to a
functional transition rate that, for every global state, evaluates to the constant qab[·] =
λ+ α(k − 1) = λ+ 2α.

The simplicity of this parameter constraint is a consequence of evaluating (7.5) in the
context of the example model specification. In general, the resulting constraints may be
more complex and less restrictive. Any choice of model parameters that simultaneously
satisfies

qij [imf ] qm`[jmf ] qji[j`f ] q`m[i`f ] = qm`[imf ] qij [i`f ] q`m[j`f ] qji[jmf ]

for (ij2`m)f ∈ B = Υ ∪ Ω with f ∈ Mk−2(a1, a2, . . . , av) are conditions sufficient to
ensure that the process of model composition (i.e., coupling k identical and indistinguish-
able v-state automata) does not introduce a violation of microscopic reversibility.
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[11] R. Fabila-Monroy, D. Flores-Peñaloza, C. Huemer, F. Hurtado, J. Urrutia and D. R. Wood,
Token graphs, Graphs Combin. 28 (2012), 365–380.

[12] D. Gillespie, Stochastic simulation of chemical kinetics, Annu. Rev. Phys. Chem. 58 (2007),
35–55.

[13] O. Gusak, T. Dayar and J.-M. Fourneau, Lumpable continuous-time stochastic automata net-
works, European J. Oper. Res. 148 (2003), 436–451.
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Dan Archdeacon (11 May 1954 to 18 February 2015)

Professor Dan Archdeacon was a world-renowned
mathematician, an intellectually engaging teacher,
and a highly respected colleague. His research inter-
ests were in graph theory, combinatorics, and theo-
retical computer science. He published over seventy
refereed papers in these fields, a majority of them in
topological graph theory. His dissertation entitled
“A Kuratowski Theorem for the Projective Plane”
contains a proof of a ground-breaking and highly
cited theorem which gives the extension of the Ku-
ratowski theorem for the projective plane. This re-
sult has not been superseded.

His service to the mathematical community is
widely appreciated. For over a decade, he was an
editor of the Journal of Combinatorial Theory, Se-
ries B, and then he managed the offices of Journal
of Graph Theory as its managing editor. He also served as a referee to over 30 journals
in his field, and with Jeff Dinitz, he organised seven workshops in the Vermont Summer
School on Combinatorics and Graph Theory. He started and maintained an online com-
pendium of open problems in topological graph theory, which was an inspiration to several
generations of the researchers in the field.

For most of his career, Dan taught at the University of Vermont, where he was named
a University Scholar for the 2003/04 academic year. He was a Fulbright Teaching Fellow
at the Riga Commerce School (Latvia), and visiting professor at the University of Auck-
land (New Zealand), Yokohama National University (Japan), the Technical University of
Denmark, and the Open University (UK). He was an invited speaker at mathematics con-
ferences across the globe. His talks were entertaining and always well attended.

Some of us had the privilege of working with Dan for more than two decades, on
projects that resulted in many joint papers. Doing research with Dan was always a fantastic
experience, both mathematically and socially. Dan was a very quick and sharp thinker.
When tackling a research problem he quickly plunged into the absolute depth of the matter,
but kept thinking in terms of a bigger picture of the situation at all stages. He was a true
visionary, outlining avenues of research followed by others. At the same time he was
a person with a great sense of humour, highly intelligent and very pleasant. He will be
missed by an entire generation of scholars.

Dan visited Slovenia twice. In June 1999, he participated at the 4th Slovenian Interna-
tional Graph Theory Conference at Lake Bled, speaking of the representativity of planar
graphs. During his second visit, in January 2014, he was already fighting cancer, but with
the same optimism that he showed in his energy and passion for research. He spoke about
toroidal triangulations being geometric, and initiated a problem on generalisation of Gauss
words, which led to his last paper, published in this issue of Ars Mathematica Contempo-
ranea.

Drago Bokal, Bojan Mohar, Jozef Širáň
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7th PhD Summer School in Discrete Mathematics
Rogla, Slovenia, July 23 – July 29, 2017

https://conferences.famnit.upr.si/event/2/

SUMMER SCHOOL PROGRAMME: Aimed at bringing PhD students to several open prob-
lems in the active research areas, two minicourses (10 hours of lectures each) will be given
on the following topics:

• Theory of pseudo-Boolean functions and binary optimization,

Endre Boros, (MSIS and RUTCOR, Rutgers University, New Jersey, USA)

• A hundred years of Graph theory,

Robin Wilson, (Open University, London, UK)

VENUE: Rogla is a highland in the north-eastern part of Slovenija, located 130 km by
road from Slovenian capital Ljubljana. At around 1500m above sea level, the beautiful
natural scenery of Rogla provides pleasant climate conditions and stimulating working
environment.

ORGANIZED BY University of Primorska, UP IAM and UP FAMNIT, in collaboration with
Centre for Discrete Mathematics UL PeF and Slovenian Society for Discrete and Applied
Mathematics.
SCIENTIFIC COMMITTEE: K. Kutnar, A. Malnič, D. Marušič, Š. Miklavič, T. Pisanski, P.
Šparl, B. Zgrablić.
ORGANIZING COMMITTEE: B. Frelih, A. Hujdurović, B. Kuzman, R. Požar.
Sponsored by Slovenian National Research Agency (ARRS) and Ministry of Education,
Science and Sport (MIZS).

For more information, visit our website or email your inquiry to sygn@upr.si.
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Petra Šparl Award 2018: Call for nominations

The Petra Šparl Award has been established to recognise (in each even-numbered year)
the best paper published recently by a young woman mathematician in one of the two
journals Ars Mathematica Contemporanea (AMC) and The Art of Discrete and Applied
Mathematics (ADAM).

The award is named in memory of Dr Petra Šparl, a talented woman mathematician with
a promising future who worked in graph theory and combinatorics, but died mid-career in
2016 after a battle with cancer.

This award consists of a certificate with the recipient’s name, and an invitation to give a
lecture at the Mathematics Colloquium at the University of Primorska, and to give lectures
at the University of Maribor and University of Ljubljana.

The Petra Šparl Award Committee is now calling for nominations for the first award.

ELIGIBILITY: Each nominee must be a woman author or co-author of a paper published
either in AMC or ADAM in the last five years, who was at most 40 years old at the time of
the paper’s first submission.

NOMINATION FORMAT: Each nomination should specify the following:

(a) the name, birth-date and affiliation of the candidate;

(b) the title and other bibliographic details of the paper for which the award is
recommended;

(c) reasons why the candidate’s contribution to the paper is worthy of the award,
in at most 500 words; and

(d) names and email addresses of one or two referees who could be consulted
with regard to the quality of the paper.

PROCEDURE: Nominations should be submitted by email to any one of the three members
of the Petra Šparl Award Committee (see below), by 31 August 2017.

AWARD COMMITTEE:

Marston Conder: m.conder@auckland.ac.nz
Asia Ivić Weiss: weiss@mathstat.yorku.ca
Aleksander Malnič: Aleksander.Malnic@guest.arnes.si
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