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Abstract

We present a general method for calculating the genus distributions of those infinite
families of graphs that are obtained by iteratively amalgamating copies of some base graphs
along their root-edges. We presume that the partitioned genus distributions of these base
graphs are known and that their root-edges have 2-valent endpoints. We analyze and adapt
the use of recombinant strands, partials, and productions for deriving simultaneous recur-
rences for genus distributions.
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1 Introduction
In this paper, we illustrate a general method that enables us to deal with recursively de-
fined infinite families of graphs, the calculation of whose genus distributions has not been
hitherto possible without the new methods in this paper. In particular, we demonstrate how
to calculate the genus distribution of an arbitrary chain of copies of one or more graphs,
that results from the iterative amalgamation along their root-edges. This may be done for
edge-linked chains constructed by using copies of different types of graphs or by using
multiple copies of the same graph. We can produce genus distributions for various infinite
families of 3-regular graphs in this manner, apart from many other infinite classes. An-
other contribution of this paper is an easily understood method in §6 for constructing pairs
of non-homeomorphic graphs with the same genus distribution. Moreover, the results of
this paper are used by [9] to construct a quadratic-time algorithm for calculating the genus
distribution of any 3-regular outerplanar graph.

Prior research on counting imbeddings on various orientable and non-orientable sur-
faces includes [3], [4], [5], [10], [11], [13], [16], [17], [18], [19], [21], [23], [24], [25],
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[26], [27], [28], [29], [30], and [31]. Prior work on counting graph imbeddings in a
minimum-genus surface includes [2], [7], [6], and [15]. The second installment of this
paper [22] demonstrates how to calculate the genus distribution of a graph that results from
self-amalgamation along its root-edges.

In this paper we assume a basic background and familiarity with topological graph
theory (see [14] or [32]). We denote an orientable surface of genus i by Si and the number
of imbeddings of a graph G on the surface Si by gi(G). Unless indicated otherwise, an
imbedding will be considered 2-cellular and orientable, and a graph will be considered
connected. We use the abbreviation fb-walk for face-boundary walk. We allow a graph to
contain multiple adjacencies and self-loops. We refer the reader to [14] or [1] for a more
detailed guide to the terminology assumed here.

We designate two edges of a graph as the root-edges or roots of a double-edge-rooted
graph. We presently require a root-edge to have 2-valent endpoints. The edge-amalga-
mation of a pair of double-rooted graphs (G, e, d) and (H, g, f) is the graph obtained by
merging the roots d and g. We denote this operation by an asterisk:

(G, e, d) ∗ (H, g, f) = (W, e, f)

where W is the merged graph and e and f are its roots. There are two different ways of
amalgamating edges d and g, depending on how the endpoints of d are paired up with the
endpoints of g. This information is not captured in our notation, and it is obvious from
context what is intended for a particular scenario. Insofar as the genus distributions are
concerned, we will establish in this paper that graphs resulting from either way of edge-
amalgamation have identical genus distributions.

The definition of edge-amalgamation for graphs carries over naturally to the edge-
amalgamation of graph imbeddings. The imbeddings of the graphW = G∗H are obtained
by combining the rotation systems for the graphs G and H in all possible ways. Thus, each
imbedding ιW of the graph W induces unique imbeddings ιG and ιH of the graphs G and
H , respectively, such that the rotation system corresponding to ιW is consistent with the
rotation systems corresponding to ιG and ιH .

Another useful concept is that of a strand, which we define to be an open subwalk of
an fb-walk that runs between any two occurrences of the endpoints of a root-edge e, such
that there are no occurrences of the edge e or the endpoints of e in its interior.

We analyze the effects of amalgamating two graph imbeddings by using rules called
productions, which we describe later.

2 Partitioned genus distributions
In order to explain what a production is, we first describe ways to categorize an imbedding
of a double-rooted graph. We are primarily interested here in the fb-walks incident on the
root-edges, as the crux of our work focuses on how these fb-walks change in response to the
amalgamation operation on the graphs. Each root-edge has two 2-valent endpoints, so each
root has either two distinct face-boundaries incident on it, or the same fb-walk is incident
on both sides of it. Accordingly, we use the mnemonic d for double and s for single in
defining the double-root partials in Table 1. Note that the subscript i in the definitions
refers to the genus of the surface Si.

Moreover, the fb-walk incident once or twice on one root-edge might also be inci-
dent on the other root-edge. Thereby arises the need for refinement of these partials into
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Partial Counts these imbeddings in Si

ddi(G, e, f) e and f both occur on two fb-walks
dsi(G, e, f) e occurs on two fb-walks and f on one fb-walk
sdi(G, e, f) e occurs on one fb-walk and f on two fb-walks
ssi(G, e, f) e occurs on one fb-walk and f on one fb-walk

Table 1: Double-root partials of (G, e, f).

sub-partials. We will later see that this abstraction may necessitate an additional level of
refinement to facilitate the calculation of genus distributions of double-rooted open chains.
For this reason we term the sub-partials at the first level of abstraction as the first-order
sub-partials. We now proceed to define these sub-partials:

First-order Sub-partials of (G, e, f)

The following three numbers are the sub-partials of ddi(G, e, f):

dd0
i (G, e, f) = the number of imbeddings of type-ddi such that

neither fb-walk at e is incident on f .

dd′i(G, e, f) = the number of imbeddings of type-ddi such that
exactly one fb-walk at e is incident on f .

dd′′i (G, e, f) = the number of imbeddings of type-ddi such that
both fb-walks at e are incident on f .

We observe, by definition, that

ddi(G) = dd0
i (G) + dd′i(G) + dd′′i (G)

Similarly, the sub-partials of dsi(G, e, f) and sdi(G, e, f) are as follows:

ds0i (G, e, f) = the number of imbeddings of type-dsi such that
neither fb-walk at e is incident on f .

ds′i(G, e, f) = the number of imbeddings of type-dsi such that
exactly one fb-walk at e is incident on f .

sd0
i (G, e, f) = the number of imbeddings of type-sdi such that

the fb-walk at e is not incident on f .

sd′i(G, e, f) = the number of imbeddings of type-sdi such that
the fb-walk at e is incident on f .

Thus,

dsi(G) = ds0i (G) + ds′i(G) and sdi(G) = sd0
i (G) + sd′i(G)

Finally, the partial ssi(G, e, f) has these sub-partials:

ss0i (G, e, f) = the number of imbeddings of type-ssi such that
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the fb-walk at e is not incident on f .

ss1i (G, e, f) = the number of imbeddings of type-ssi such that
removing the two occurrences of the edge e from
the fb-walk breaks it into two strands, exactly
one of which contains both occurrences of f .

ss2i (G, e, f) = the number of imbeddings of type-ssi such that
removing the two occurrences of the edge e from
the fb-walk breaks it into two strands, each
containing an occurrence of f .

Clearly,

ssi(G) = ss0i (G) + ss1i (G) + ss2i (G)

The set of partials/sub-partials as defined above constitutes a partitioned genus distribu-
tion. It follows from the definition that

gi(G) = ddi(G) + dsi(G) + sdi(G) + ssi(G)

Single-root partials of (G, e)

Similarly, the imbeddings of single-rooted graphs can be differentiated into two distinct
types depending on whether the two occurrences of the root-edge are in the same or in
different fb-walks of an imbedding. Thus, the number gi(G, e) is the sum of the following
single-root partials:

si(G, e) = The number of imbeddings of G such that
e occurs twice on the same fb-walk.

di(G, e) = The number of imbeddings of G such that
e occurs on two different fb-walks.

3 Modeling edge-amalgamation
Let p and q be any of the partials such as those discussed above. Then a production ex-
presses how an imbedding of the single-rooted graph (G, e) of type p on surface Si and
an imbedding of the double-rooted graph (H, g, f) of type q on surface Sj amalgamate on
root-edges e and g to give certain types of imbeddings of the single-rooted graph (W, f).
This is represented as

pi(G) ∗ qj(H) −→ c1uk1(W ) + c2vk2(W ) + c3wk3(W ) + c4zk4(W )

where c1, c2, c3, c4 are integer constants and k1, k2, k3, k4 are integer-valued functions of i
and j. Such a production can be read as follows:

An imbedding of the graph (G, e) of type p on surface Si and an imbedding
of the graph (H, g, f) of type q on surface Sj amalgamate on edges e and g to
give c1, c2, c3 and c4 imbeddings of the graph (W, f) having types u, v, w and
z, respectively, on surfaces Sk1 , Sk2 , Sk3 and Sk4 .
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Remark 3.1. Clearly, since we have 2 single-root partials for G and 10 first-order double-
root sub-partials forH , if we set out to derive all possible productions with these, we would
need to write out 20 productions. While these are not so many in number, their derivations
are fairly routine, and so we will derive only those productions that are necessary for de-
veloping our examples.

Theorem 3.2. Let (G, e) be a single-edge-rooted graph and (H, g, f) a double-edge-
rooted graph, where each of the root-edges has two 2-valent endpoints. Then the following
two productions, which cover all possible cases of edge-amalgamation where the imbed-
ding of H is of type dd′′, hold true.

di(G) ∗ dd′′j (H) −→ 2di+j(W ) + 2si+j+1(W ) (3.1)

si(G) ∗ dd′′j (H) −→ 4di+j(W ) (3.2)

Proof. When an imbedding of (G, e) is amalgamated with an imbedding of (H, g, f), the
fb-walks on edges e and g are broken into strands that recombine into new fb-walks in the
resulting imbedding of W , i.e., the imbedding whose rotations at all vertices are consistent
with those of the imbeddings of G and H . On the amalgamated edge there are two possi-
bilities for the rotations at each of its two endpoints. Figure 1 demonstrates the changes in
the fb-walks resulting from recombining the strands. In all four cases there is a decrease of
2 vertices and 1 edge after the amalgamation.

Figure 1: di(G) ∗ dd′′j (H) −→ 2di+j(W ) + 2si+j+1(W )

The first and the last imbedding of W show a decrease of 1 face, as only one fb-walk at
edge e combines with only one fb-walk at edge g. These are d-type imbeddings of W . By
using the Euler polyhedral equation, we can see that the genus of the resulting imbedding
of W is the sum of the genera of the imbeddings of G and H .

The second and the third imbedding of W show a decrease of 3 faces as the 2 fb-walks
at e and the 2 at g are merged into a single fb-walk. Both of these imbeddings are s-type
imbeddings of W . By the Euler polyhedral equation, we can see that the genus of the
resulting imbedding of W is the sum of the genera of the imbeddings of G and H with an
additional increment of one.

Production (3.2) similarly follows from the Euler polyhedral equation and yields imbed-
dings of type d in all four cases for imbeddings of W as evident from Figure 2.
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Figure 2: si(G) ∗ dd′′j (H) −→ 4di+j(W )

Theorem 3.3. Let (G, e) be a single-edge-rooted graph and (H, g, f) a double-edge-
rooted graph, where each of the root-edges has two 2-valent endpoints. Then the following
productions, which cover all possible cases of edge-amalgamation where the imbedding of
H is of type ss0 or ss1, hold true.

di(G) ∗ ss0j (H) −→ 4si+j(W ) (3.3)

si(G) ∗ ss0j (H) −→ 4si+j(W ) (3.4)

di(G) ∗ ss1j (H) −→ 4si+j(W ) (3.5)

si(G) ∗ ss1j (H) −→ 4si+j(W ) (3.6)

Proof. For Productions (3.3) and (3.4), the fb-walk at edge f remains unaffected by the
amalgamation. Thus, all four imbeddings of W induced by the amalgamation of an imbed-
ding of G with an imbedding of H are s-type imbeddings. An examination of the recom-
binant strands tells us that the amalgamation merges two faces incident at the root-edges.
This is shown for Production (3.3) in Figure 3. Production (3.4) also has a similar illustra-
tion which we omit.

Figure 3: di(G) ∗ ss0j (H) −→ 4si+j(W )

The same is also true for the Productions (3.5) and (3.6). We leave the proof of Produc-
tion (3.5) to the reader and demonstrate it for Production (3.6) in Figure 4.
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Figure 4: si(G) ∗ ss1j (H) −→ 4si+j(W )

Theorem 3.4. Let (G, e) be a single-edge-rooted graph and (H, g, f) a double-edge-
rooted graph, where all roots have two 2-valent endpoints. Then the following productions
hold true:

di(G) ∗ dd0
j (H) −→ 2di+j(W ) + 2di+j+1(W )

si(G) ∗ dd0
j (H) −→ 4di+j(W )

di(G) ∗ dd′j(H) −→ 2di+j(W ) + 2di+j+1(W )

si(G) ∗ dd′j(H) −→ 4di+j(W )

di(G) ∗ ds0j (H) −→ 2si+j(W ) + 2si+j+1(W )

si(G) ∗ ds0j (H) −→ 4si+j(W )

di(G) ∗ ds′j(H) −→ 2si+j(W ) + 2si+j+1(W )

si(G) ∗ ds′j(H) −→ 4si+j(W )

di(G) ∗ sd0
j (H) −→ 4di+j(W )

si(G) ∗ sd0
j (H) −→ 4di+j(W )

di(G) ∗ sd′j(H) −→ 4di+j(W )

si(G) ∗ sd′j(H) −→ 4di+j(W )

di(G) ∗ ss2j (H) −→ 2di+j(W ) + 2si+j(W )

si(G) ∗ ss2j (H) −→ 4si+j(W )

Proof. We omit the proof for the sake of brevity.

To illustrate our technique, we present the derivation of the genus distribution of the
historically significant family of closed-end ladders [5].

4 Application: closed-end ladder
Let L0 be the closed-end ladder with end-rungs but no middle-rung. It is equivalent under
barycentric sub-division to the four cycle C4, with the two non-adjacent edges serving as
the root-edges. Let Ln be the closed-end ladder with n middle rungs; one end-rung is
trisected, and the middle third serves as a single root-edge. Thus, Ln = Ln−1 ∗ L0 (for
n ≥ 1). See Figure 5.
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Figure 5: Closed-end ladders.

Remark 4.1. For L1 = L0 ∗L0, it is understood here that the first amalgamand is single-
rooted whereas the second is double-rooted.

Applying the face-tracing algorithm [14] on L0 reveals that dd′′0 is the only non-zero
partial of L0. Theorem 3.2 lists the productions necessary for edge-amalgamation when
the second amalgamand is a dd′′-type imbedding, and it has the following implications:

Theorem 4.2. Let (Ln−1, f) = (Ln−1, e)∗ (L0, g, f), where each of the root-edges e, g, f
has two 2-valent endpoints. Then,

dk(Ln) =
∑k

i=0
(2di(Ln−1) + 4si(Ln−1))× dd′′k−i(L0) (4.1)

sk(Ln) =
∑k−1

i=0
2di(Ln−1)× dd′′k−1−i(L0) (4.2)

Proof. Production (3.1) indicates that amalgamating a d-type imbedding of the single-
rooted graph Ln−1 on Si with a dd′′-type imbedding of L0 on surface Sj induces four
imbeddings of the single-rooted graph Ln, two on the surface Si+j and two on the surface
Si+j+1. This explains the terms

∑k
i=0 2di(Ln−1) × dd′′k−i(L0) of Equation (4.1) and ac-

counts for the Equation (4.2). The terms
∑k

i=0 4si(Ln−1)× dd′′k−i(L0) of Equation (4.1)
follow from the Production (3.2).

Since dd′′i (L0) = 1 for i = 0 and 0 otherwise, we obtain the recurrences:

dk(Ln) = (2dk(Ln−1) + 4sk(Ln−1))× dd′′0(L1) = 2dk(Ln−1) + 4sk(Ln−1)

sk(Ln) = 2dk−1(Ln−1)× dd′′0(L1) = 2dk−1(Ln−1)

which are analogous to the forms of recurrences obtained for cobble-stone paths in [5], and
which can be solved identically to produce this formula, which was also first computed by
[5].

gi(Ln) =

{
2n−1+i

(
n+1−i

i

)
2n+2−3i
n+1−i for i ≤ n+1

2 ,

0 otherwise

5 Application: open chains of copies of L̈2

Let L̈2 be the graph obtained from the ladder L2 by trisecting the two side-rungs and
designating the middle third of these trisected edges as root-edges. Let G0 be a single-
rooted graph homeomorphic to L̈2, with the middle third of the only trisected side-rung
serving as a root-edge. We can form an open chain, Gn, of copies of L̈2 by taking Gn =
Gn−1 ∗ L̈2 (for n ≥ 1) as shown in Figure 6.
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Figure 6: Open chains of copies of L̈2.

Face-tracing of L̈2 demonstrates that its only non-zero-valued double-root first-order
sub-partials are dd′′0(L̈2), ss01(L̈2) and ss11(L̈2). Thus, the only productions we need for
calculating the genus distribution of an open chain of copies of L̈2 are those listed in Theo-
rems 3.2 and 3.3. These productions make contributions to dk(Gn) or sk(Gn) as captured
in the following equations:

dk(Gn) =
∑k

i=0

[
2di(Gn−1) ∗ dd′′k−i(L̈2) + 4si(Gn−1) ∗ dd′′k−i(L̈2)

]
sk(Gn) =

∑k

i=0

[
4di(Gn−1) ∗ ss0k−i(L̈2) + 4si(Gn−1) ∗ ss0k−i(L̈2)

+ 4di(Gn−1) ∗ ss1k−i(L̈2) + 4si(Gn−1) ∗ ss1k−i(L̈2)
]

+∑k−1

i=0

[
2di(Gn−1) ∗ dd′′k−1−i(L̈2)

]
=
∑k

i=0

[
4gi(Gn−1) ∗ ss0k−i(L̈2) + 4gi(Gn−1) ∗ ss1k−i(L̈2)

]
+∑k−1

i=0

[
2di(Gn−1) ∗ dd′′k−1−i(L̈2)

]

Genus distribution of Gn

Since dd′′0(L̈2) = 4, ss01(L̈2) = 4, ss11(L̈2) = 8, it follows that

dk(Gn) = 2dk(Gn−1) ∗ dd′′0(L̈2) + 4sk(Gn−1) ∗ dd′′0(L̈2)

sk(Gn) = 4gk−1(Gn−1) ∗ ss01(L̈2) + 4gk−1(Gn−1) ∗ ss11(L̈2)

+ 2dk−1(Gn−1) ∗ dd′′0(L̈2)
=⇒

dk(Gn) = 8gk(Gn−1) + 8sk(Gn−1) (5.1)
sk(Gn) = 48gk−1(Gn−1) + 8dk−1(Gn−1) (5.2)

As L̈2
∼= G0, the partitioned genus distribution of L̈2 implies that d0(G0) = 4 and

s1(G0) = 12. Therefore, we can iteratively plug values into Equations (5.1) and (5.2),
and thereby calculate the genus distributions given in Tables 2−4.
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k k = 0 k = 1 k = 2 k ≥ 3
dk(G1) 32 192 0 0
sk(G1) 0 224 576 0
gk(G1) 32 416 576 0

Table 2: Genus distribution of G1.

k k = 0 k = 1 k = 2 k = 3 k ≥ 4
dk(G2) 256 5120 9216 0 0
sk(G2) 0 1792 21504 27648 0
gk(G2) 256 6912 30720 27648 0

Table 3: Genus distribution of G2.

k k = 0 k = 1 k = 2 k = 3 k = 4 k ≥ 5
dk(G3) 2048 69632 417792 442368 0 0
sk(G3) 0 14336 372736 1548288 1327104 0
gk(G3) 2048 83968 790528 1990656 1327104 0

Table 4: Genus distribution of G3.

Remark 5.1. From Tables 2−4, the genus distributions for open chains of L̈2 appear to
support the unimodality conjecture that all graphs have unimodal genus distributions. The
amalgamation approach is likely to be useful in such contexts either by producing coun-
terexamples to the conjecture or by providing recurrences like Equations (5.1) and (5.2)
which may be instrumental in proving unimodality for certain families of graphs.

6 Non-homeomorphic graphs with identical genus distributions
The earliest published example for non-homeomorphic graphs with identical genus distri-
butions is given in [12]. [20] provides a more general method for generating such pairs.
We now discuss a simpler method for constructing such examples.

There are two ways of edge-amalgamating the graphs (G, e) and (H, f), depending on
how the endpoints of the root-edges e and f are paired. We observe that all the productions
for edge-amalgamation in Theorems 3.2 – 3.4 are independent of how the endpoints of the
respective root-edges are paired, that is, they are true for both possible pairings. Thus, for
both ways of pasting, we get the same genus distribution.

One can exploit this fact to construct pairs of non-homeomorphic graphs having the
same genus distribution. For instance, Figure 7 shows two non-homeomorphic graphs
resulting from the two ways of edge-amalgamating the same graphs. They have the same
genus distributions. To prove that they are non-isomorphic, consider the set of distances
between the two double adjacencies. Since these two graphs are 3-regular, they are also
non-homeomorphic.
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Figure 7: Non-homeomorphic graphs with the same genus distribution: 32 + 928g +
6720g2 + 7680g3 + 1024g4.

7 Second-order sub-partials
The first-order sub-partials that can be further partitioned into second-order sub-partials are
characterized by having an fb-walk incident on both roots, but not on all four occurrences of
these roots. In particular, these are dd′, dd′′, ds′ and sd′. In order to describe second-order
sub-partials, we imagine a “thickening” of the root-edges of the graph (G, e, f), and we
label the two “sides” of the thickened edge e as 1 and 2, and the two sides of the thickened
edge f as 3 and 4, as shown in Figure 8.

Figure 8: Modeling second-order sub-partials.

Distinguishing which of these labeled sides come together in an fb-walk is an important
piece of information, which we would like to capture in our second-order sub-partial, as it is
essential for double-rooted edge-amalgamation. Thus, for example, a dd′-type imbedding
may combine the faces 1 and 3, faces 1 and 4, faces 2 and 3, or faces 2 and 4. Accordingly,
we define the second-order sub-partials for dd′ as illustrated in the top half of Figure 9.
We show the remaining sub-partials in the bottom half of the figure. We thus define the
second-order sub-partials as follows:

dd′i(G, e, f) = the number of imbeddings of type-dd′i such that
the sides 1 and 4 occur in the same fb-walk.

d̃d′i(G, e, f) = the number of imbeddings of type-dd′i such that
the sides 2 and 3 occur in the same fb-walk.

−→
dd′i(G, e, f) = the number of imbeddings of type-dd′i such that

the sides 1 and 3 occur in the same fb-walk.
←−
dd′i(G, e, f) = the number of imbeddings of type-dd′i such that

the sides 2 and 4 occur in the same fb-walk.
Similarly,

−→
dd′′i(G, e, f) = the number of imbeddings of type-dd′′i such that

the sides 1 and 4 occur in the same fb-walk and
the sides 2 and 3 in another.
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Figure 9: Models for second-order sub-partials.

←−
dd′′i(G, e, f) = the number of imbeddings of type-dd′′i such that

the sides 1 and 3 occur in the same fb-walk and
the sides 2 and 4 in another.

And finally,
−→
ds′i(G, e, f) = the number of imbeddings of type-ds′i such that

the sides 1,3,4 occur in the same fb-walk.
←−
ds′i(G, e, f) = the number of imbeddings of type-ds′i such that

the sides 2,3,4 occur in the same fb-walk.
−→
sd′i(G, e, f) = the number of imbeddings of type-sd′i such that

the sides 1,2,4 occur in the same fb-walk.
←−
sd′i(G, e, f) = the number of imbeddings of type-sd′i such that

the sides 1,2,3 occur in the same fb-walk.

A complete list of productions for edge-amalgamation using only double-root partials can
be derived in a manner akin to our method in §3. One could work out all 16 × 16 = 256
productions by using the first-order sub-partials and substituting the use of dd′, dd′′, ds′

and sd′ by their respective second-order sub-partials defined in this section. For the sake of
brevity, we list in Table 5 only the productions needed for the first of our target applications
in §8 and outline their proofs on our website [33]. We abbreviate the partials through
omission of the graphs G, H and W .
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Productions

dd0
i ∗
−→
dd′′j −→ 2dd0

i+j + 2ds0i+j+1

dd′i ∗
−→
dd′′j −→ dd0

i+j + dd′i+j + 2
−→
ds′i+j+1

d̃d′i ∗
−→
dd′′j −→ dd0

i+j + d̃d′i+j + 2
←−
ds′i+j+1

−→
dd′i ∗

−→
dd′′j −→ dd0

i+j +
−→
dd′i+j + 2

−→
ds′i+j+1

←−
dd′i ∗

−→
dd′′j −→ dd0

i+j +
←−
dd′i+j + 2

←−
ds′i+j+1

−→
dd′′i ∗

−→
dd′′j −→ dd′i+j + d̃d′i+j + 2ss2i+j+1←−

dd′′i ∗
−→
dd′′j −→

−→
dd′i+j +

←−
dd′i+j + 2ss2i+j+1

ds0i ∗
−→
dd′′j −→ 4dd0

i+j−→
ds′i ∗

−→
dd′′j −→ 2dd′i+j + 2

−→
dd′i+j←−

ds′i ∗
−→
dd′′j −→ 2d̃d′i+j + 2

←−
dd′i+j

sd0
i ∗
−→
dd′′j −→ 2sd0

i+j + 2ss0i+j+1−→
sd′i ∗

−→
dd′′j −→ sd0

i+j +
−→
sd′i+j + 2ss1i+j+1←−

sd′i ∗
−→
dd′′j −→ sd0

i+j +
←−
sd′i+j + 2ss1i+j+1

ss0i ∗
−→
dd′′j −→ 4sd0

i+j

ss1i ∗
−→
dd′′j −→ 2

−→
sd′i+j + 2

←−
sd′i+j

ss2i ∗
−→
dd′′j −→

−→
dd′′i+j +

←−
dd′′i+j +

−→
sd′i+j +

←−
sd′i+j

Table 5: A subset of the productions for the edge-amalgamation (G, e, d) ∗ (H, g, f).

In general, when amalgamating copies of a base graph, some of the partials of the base
graph may be zero-valued. Accordingly, we can eliminate a lot of unnecessary work and
use this good fortune to derive a smaller subset of productions relevant to our particular
application. The productions in Table 5 lead to Theorem 7.1.

Theorem 7.1. Let (W, e, f) = (G, e, d) ∗ (H, g, f), where each of the root-edges e, d, g, f
has two 2-valent endpoints and the imbeddings of the graph H are of type

−→
dd′′. Then,

dd0
k(W ) =

∑k

i=0
(2dd0

i (G) + dd′i(G) + 4ds0i (G))×
−→
dd′′k−i(H) (7.1)

dd′k(W ) =
∑k

i=0
(dd′i(G) +

−→
dd′′i(G) + 2

−→
ds′i(G))×

−→
dd′′k−i(H) (7.2)

d̃d′k(W ) =
∑k

i=0
(d̃d′i(G) +

−→
dd′′i(G) + 2

←−
ds′i(G))×

−→
dd′′k−i(H) (7.3)

−→
dd′k(W ) =

∑k

i=0
(
−→
dd′i(G) +

←−
dd′′i(G) + 2

−→
ds′i(G))×

−→
dd′′k−i(H) (7.4)

←−
dd′k(W ) =

∑k

i=0
(
←−
dd′i(G) +

←−
dd′′i(G) + 2

←−
ds′i(G))×

−→
dd′′k−i(H) (7.5)

−→
dd′′k(W ) =

∑k

i=0
ss2i (G)×

−→
dd′′k−i(H) (7.6)

←−
dd′′k(W ) =

∑k

i=0
ss2i (G)×

−→
dd′′k−i(H) (7.7)
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ds0k(W ) =
∑k−1

i=0
2dd0

i (G)×
−→
dd′′k−1−i(H) (7.8)

−→
ds′k(W ) =

∑k−1

i=0
2(dd′i(G) +

−→
dd′i(G))×

−→
dd′′k−1−i(H) (7.9)

←−
ds′k(W ) =

∑k−1

i=0
2(d̃d′i(G) +

←−
dd′i(G))×

−→
dd′′k−1−i(H) (7.10)

sd0
k(W ) =

∑k

i=0
(2sd0

i (G) + sd′i(G) + 4ss0i (G))×
−→
dd′′k−i(H) (7.11)

−→
sd′k(W ) =

∑k

i=0
(
−→
sd′i(G) + 2ss1i (G) + ss2i (G))×

−→
dd′′k−i(H) (7.12)

←−
sd′k(W ) =

∑k

i=0
(
←−
sd′i(G) + 2ss1i (G) + ss2i (G))×

−→
dd′′k−i(H) (7.13)

ss0k(W ) =
∑k−1

i=0
2sd0

i (G)×
−→
dd′′k−1−i(H) (7.14)

ss1k(W ) =
∑k−1

i=0
2sd′i(G)×

−→
dd′′k−1−i(H) (7.15)

ss2k(W ) =
∑k−1

i=0
2dd′′i (G)×

−→
dd′′k−1−i(H) (7.16)

Proof. Consider the production:

dd0
i (G) ∗

−→
dd′′j(H) −→ 2dd0

i+j(W ) + 2ds0i+j+1(W )

It indicates that each dd0-type imbedding of G on Si when amalgamated with a
−→
dd′′-type

imbedding of H on surface Sj , induces two imbeddings of W having type dd0 on surface
Si+j and two of type ds0 on surface Si+j+1.

These contributions account for the term
∑k

i=0 2dd0
i × dd′′k−i in Equation (7.1) and for

the Equation (7.8). Taking into account all contributions made by the productions in Table
5, the result follows.

8 Application: closed-end ladders
We showed in §4 how to compute the single-root partials for the genus distribution of
closed-end ladders. We can accomplish the same for double-root partials of closed-end
ladders.

Remark 8.1. In [22], we use these double-root partials for calculating genus distributions
of closed chains which are “cycles” of copies of a given base graph. The two closed chains
corresponding to closed-end ladders are circular ladders and Möbius ladders.

By face-tracing we know that all partials for L0 are zero-valued except for
−→
dd′′0(L0),

whose value is 1. This is the vital piece of information which we utilized in selecting the
16 productions that we chose to derive for this application and that we listed in Table 5,
from amongst a total of 256 productions. We can use the value of this partial and iteratively
apply Theorem 7.1 to obtain the partitioned genus distribution for the closed-end ladders.
The reader will observe that the values for gk(Ln) agree with the values first obtained by
[5]. For the sake of completion, we include the table of partitioned genus distributions for
L0 through L5 in [33].

The reader may also observe that the same results could have also been achieved using
first-order sub-partials and may question the need for using second-order sub-partials for
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amalgamating double-rooted graphs. However, in general, with more complex applications
requiring amalgamations of double-rooted graphs having higher degrees, one is likely to
need the additional information captured in second-order sub-partials. One such application
is calculating the genus distribution of an open chain of copies of the complete bipartite
graph K3,3.

9 Application: open chains of copies of K3,3

We omit the proof and list only the results computed by using our technique. In particular,
we list only the non-zero columns.

Figure 10: Open chains G0 = K3,3, G1 = G0 ∗K3,3, G2 = G1 ∗K3,3.

Gn G0 G1 G2

k 1 2 2 3 4 3 4 5 6

dd0
k 0 0 1656 0 0 262976 436224 0 0

dd′k 4 0 344 440 0 13296 78064 31040 0
d̃d′k 4 0 344 440 0 13296 78064 31040 0
−→
dd′k 6 0 280 440 0 13808 78064 31040 0
←−
dd′k 6 0 280 440 0 13808 78064 31040 0
−→
dd′′k 0 0 24 144 0 144 2160 5184 0
←−
dd′′k 6 0 24 144 0 144 2160 5184 0
ds0k 2 0 424 1040 0 58784 339488 171392 0
−→
ds′k 2 0 104 1016 0 4384 68256 158336 0
←−
ds′k 2 0 104 1016 0 4384 68256 158336 0
sd0

k 2 0 424 1040 0 58784 339488 171392 0
−→
sd′k 2 0 116 1088 0 4336 68688 160064 0
←−
sd′k 2 0 92 944 0 4432 67824 156608 0
ss0k 0 0 96 664 0 12928 133312 280576 0
ss1k 0 12 32 704 2016 1408 36416 230336 214272
ss2k 2 12 8 168 288 32 1440 8640 6912

gk 40 24 4352 9728 2304 466944 1875968 1630208 221184

Table 6: Genus distributions of open chains of copies of K3,3.
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10 Conclusions
The methods highlighted in this paper enable us to formulate recurrences that specify the
partitioned genus distributions for an arbitrarily large graph, constructed by iteratively link-
ing smaller graph units of known partitioned genus distributions on root-edges that have
two 2-valent endpoints. These smaller graphs may have arbitrarily large degrees at ver-
tices on which the root-edges are not incident. In this manner, one can construct open
chains consisting of copies of the same graph. Similarly, one can interleave copies of many
distinct graphs. We learn how to do this efficiently by using single-root partials and double-
root first-order sub-partials. We also introduce second-order sub-partials in the interest of
accomplishing the same using only double-root sub-partials. This enables us to lay the
ground for self-amalgamation, which we cover in the second installment of this paper [22].

We examine as applications of our techniques open chains of copies of the closed-
end ladder L̈2 and of K3,3. In revisiting the closed-end ladders, we bring to the reader’s
attention how, in some cases, it may be possible to solve the recurrences and obtain closed
formulas. We discuss how the results in this paper can aid one in generating examples of
non-homeomorphic pairs of graphs that have identical genus distributions.

Moreover, in combination with methods from [8], we can develop the relationship of
the partitioned genus distribution of edge-linked open chains to other graphs by explor-
ing edge operations such as contracting, splitting, edge-addition and edge-deletion. The
techniques developed here can also be used creatively as in [9], which presents a quadratic-
time algorithm for computing the genus distribution of any cubic outerplanar graph. These
techniques are also likely to be helpful in finding a counterexample to the unimodality
conjecture, if such a counterexample exists.

Further avenues for research include edge-amalgamation on roots with higher-valent
endpoints, and analysis of the recurrences for properties such as the unimodality of genus
distributions.
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