
  Informatica 28 (2004) 159–165 159
  

Using Finite-State Transducer Theory for Representation of Very 
Large Scale Lexicons 
 
Matej Rojc, Zdravko Kačič 
Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova 17, Maribor, Slovenia 
Phone: +386 2 220 7223, Fax: +386 2 2511 178  
matej.rojc@uni-mb.si,  kacic@uni-mb.si 
 
Keywords: finite-state transducers, natural language resources, multilingual text-to-speech synthesis, morphology, 
lexicons 

Received: September 17, 2002 

In multilingual text-to-speech synthesis systems, many external extensive natural language resources 
are used, especially in the text processing part. Therefore it is very important that representation of 
these resources is time and space efficient. It is also very important that language resources for new 
languages can be easily incorporated into the system, without modifying the common algorithms 
developed for multiple languages. In this regard the use of large external language resources represents 
an important problem because of the needed space and slow lookup-time. In the paper a method and 
results of compiling large lexicons, with an example of compiling German phonetic and morphology 
lexicons (CISLEX), into corresponding finite-state transducers (FSTs) are presented. Each lexicon 
consisted of about 300.000 words. Representation of large lexicons using finite-state transducers is 
mainly motivated by considerations of space and time efficiency. For both lexicons a great reduction in 
size and optimal access time was achieved. The starting size for German phonetic lexicon was 12.53 MB 
and 18.49 MB for morphology lexicon. The final size of the corresponding FST was only 2.78 MB for 
the phonetic lexicon and 6.33 MB for the morphology lexicon. At the same time the look-up time is 
optimal, since it depends only on the length of the input word and not on the size of the lexicon. Using 
such representation, the integration of lexicons for new languages into the multilingual TTS system is 
easy and does not require any changes of algorithms that use such lexicons. 

1 Motivation 
Finite-state machines are already used in many areas of 
natural language processing. From the computational 
point of view, their use is mainly motivated by conside-
rations of space and time efficiency. Linguistically, the 
finite-state machines [6][8][10][11] allow one to describe 
easily most of the relevant local phenomena in the lan-
guage. They provide also compact representation of ex-
ternal language specific resources needed for knowledge 
representation in the automatic text-to-speech synthesis 
systems. These features of finite-state machines are of 
major importance especially when we are dealing with 
multilingual text processing in text-to-speech synthesis 
systems (TTS systems). 
 
In multilingual text-processing module for the multilin-
gual TTS system, external natural language resources 
(e.g., phonetic, morphology lexicons etc.) represent an 
important problem, regarding the memory usage and 
time needed for lookup process.  
 
In the following sections we are presenting an approach 
for compiling such lexicons into finite-state transducers 
that represent their time and space optimal representa-
tion. The effect of using finite-state transducers for repre-
sentation of external natural language resources is great 
reduction of the memory usage required by the lexicons 

and the optimal access time (required for obtaining in-
formation) that is independent from the size of the lexi-
cons. The whole compilation process into finite-state 
transducers will be presented and at the end results 
obtained for the German lexicons described.  

2 Finite-state automata and  
finite-state transducers 

2.1 Finite-state automata (FSA) 
Finite-state automata (FSA) [6] can be seen simply as an 
oriented graph with labels on each arc. Fundamental 
theoretical properties make FSAs very flexible, powerful 
and efficient. FSAs can be seen as defining a class of 
graphs and also as defining languages. 

 
Definition 
A finite-state automaton A is a 5-tuple ( EFiQ ,,,,Σ ) 
where Σ  is a finite set called the alphabet, Q is a finite 
set of states, Qi∈  is the initial state, QF ⊆  is the set 
of final states and { } xQQxE )( ∈∪Σ⊆ is the set of 
edges.  



160 Informatica 28 (2004) 159–165  M. Rojc et al. 

FSAs have been shown to be closed under union, Kleen 
star, concatenation, intersection and complementation, 
thus allowing for natural and flexible descriptions. In 
addition to their flexibility due to their closure properties, 
FSAs can also be turned into canonical forms that allow 
for optimal time and space efficiency.  

2.2 Finite-state transducer (FST) 
FSTs [9] can be interpreted as defining a class of graphs, 
a class of relations on strings, or a class of transductions 
on strings. On the first interpretation, an FST can be seen 
as an FSA, in which each arc is labelled by a pair of 
symbols rather than by a single symbol. 
 
Definition 
A finite-state transducer T is a 6-tuple 
( EFiQ ,,,, ,21 ΣΣ ) such that: 

• 1Σ  is a finite alphabet, namely the input alphabet, 
• 2Σ is a finite alphabet, namely the output alphabet, 
• Q is a finite set of states, 
• Qi∈  is the initial state, 
• QF ⊆  is the set of final states, 

• xQxQxE *
2

*
1 ΣΣ⊆  is the set of edges. 

 
As with FSAs, FSTs are also powerful because of the 
various closure and algorithmic properties. In the paper 
we adhere to the following conventions when describing 
an FST: final states are depicted by bold circle; ε repre-
sents the empty string; the initial state (labelled 0) is the 
leftmost state appearing in the figure. 

2.3 Use of FSMs for time and space opti-
mal Lexicon representation 

When representing lexicons by automata, in general, 
many entries share the same codes (strings, representing 
some piece of information). The number of codes is then 
small compared to the number of entries. Newly develo-
ped lexicons are more and more accurate and the number 
of codes can increase considerably. The increase in 
number of codes also increases the smallest possible size 
of such lexicons. During the construction of the 
automaton one needs to distinguish different codes, 
therefore space required for an efficient hashing of the 
codes can also become costly.  
 
Available lexicons that were used in this experiment 
suggest that the representation by automata would be 
less appropriate. Since morphological and phonetic lexi-
cons can be viewed as a list of pairs of strings, their rep-
resentation using finite-state transducers [10] seems to 
be very appropriate. The results given at the end of this 
paper also confirm this assumption. Representation of 
lexicons using finite-state transducers on the other hand 
also provides reverse look-up capability.  
 
In the multilingual TTS system morphological and pho-
netic lexicons represent part of the external natural lan-

guage dependent resources used by multilingual text-
processing engine. It is desired that language indepen-
dent modules for morphology analysis and grapheme-to-
phoneme conversion inside the multilingual text-proce-
ssing engine use common algorithms for multiple lan-
guages. This is possible when external natural language 
dependent resources are represented as finite-state trans-
ducers. Integration of new lexicons for new languages in 
the whole TTS system is then very easy, since only 
compilation procedure (off-line) has to be performed. 

3 Compilation process of large scale 
lexicons into finite-state transdu-
cers 

3.1 Lexicons preparation 
The methods used in the compilation of large scale lexi-
cons into finite-state transducers (FST) assume that the 
lexicons are given as large lists of strings and not as a set 
of rules as considered by Mehryar Mohri [3] for in-
stance. Obviously morphological and phonetic lexicons 
can be viewed as a list of pairs of strings and their repre-
sentation using finite-state transducers seems to be very 
appropriate.  In Fig. 1 some items from German phonetic 
and morphology lexicons are shown. 
 
As with automata, direct construction of the sequential 
transducer representing a large-scale lexicon, is not 
possible because the construction leads to a blow up for 
a large number of entries.  To avoid this, splitting the 
lexicon into several parts is performed. Then the 
construction of the corresponding sequential transducers 
including minimization operation follows. Using union, 
determinization, and minimization operations, only one 
transducer representing the whole lexicon is obtained at 
the end (Fig.2). 

3.2 Determinization of finite-state trans-
ducers 

The algorithm used is close to the powerset construction 
used for determinizing automata [3]. The main diffe-
rence is that here one needs to provide states of the sets 
with strings. These strings correspond to a delay in the 
emission that is due to the fact that outputs correspond-
ing to a given input can be different. Therefore only the 
longest common prefix of outputs can be kept and sub-
sets represent actually pairs (state, string). The pseudo-
code for the algorithm to determinize a transducer T1 is 
given in Fig. 3. 
 

"Abte 
"E p - t @ 
"Abten 
"E p - t @ n 
"Abtissin 
E p - t "I - s I n 
"Abtissinnen 
E p - t "I - s I - n @ n 



USING FINITE-STATE TRANSDUCER THEORY...  Informatica 28 (2004) 159–165 161 

 

"Ackern 
"E - k 6 n 
"Aderchen 
"E: - d 6 - C @ n 
"Aderchens 
"E: - d 6 - C @ n s 
....... 

a) 
"Abte 
abt.mask(NS1,NP12)#0:amM:gmM:nmM 
"Abten 
abt.mask(NS1,NP12)#0:dmM 
"Abtissin 
"Abtissin.fem(NS0,NP5)#0:aeF:deF:geF:neF 
"Abtissinnen 
"Abtissin.fem(NS0,NP5)#0:amF:dmF:gmF:nmF 
"Acker 
acker.mask(NS2,NP11)#0:amM:gmM:nmM 
"Aderchen 
"Aderchen.neut(NS2,NP0)#0:aeN:amN:deN:dmN:gm
N:neN:nmN 
"Aderchens 
"Aderchen.neut(NS2,NP0)#0:geN 
......... 

b) 
Figure 1: German phonetic (a) and morphology lexicons 
(b). German morphology lexicon is coded according to 

CISLEX specification [5]. 
 

German
phonetic
lexicon

German
morphologic

lexicon
300.000 items

300300

1.step

3030 

2.step

33 

3.step

FST
(lexicon)

FST
(lexicon)

number of sub-lexicons

 
Figure 2: Lexicons preparation. 

 
At each step a new state q2 is considered as can be seen 
in line 5. State q2 is a final state only if it contains a pair 
(q,w),  where q is final in T1. String w is the final output 
at the state q2. In line 10, each input label a of the 
transitions leaving the states of the subset q2 is 
considered. A transition is constructed from state q2 to 
state δ2(q2,a) with output σ2(q2,a). Output σ2(q2,a) 
represents the longest common prefix of the output 
labels of all the transitions leaving the states q of q2 with 
input label a, when left concatenated with their delayed 
string w. State δ2(q2,a) is the subset made of pairs 
(q’,w’). Here q’ is a state reached by one of the 
transitions with input label a in T1 and w’ = [σ2(q2,a)]-

1wσ1(q,a,q’) is the delayed string that could not be out-
puted earlier in the algorithm. String [σ2(q2,a)]-

1wσ1(q,a,q’) is a well defined string since [σ2(q2,a)] is a 
prefix of all wσ1(q,a,q’) as can be seen from line 10. 
 

In Fig. 5 we can see the result of using the determiniza-
tion algorithm on transducer from Fig. 4 (obtained using 
union operation). In this example the number of states of 
the determinized transducer T2 is already less than in T1.  
Experiments showed that this method is very efficient in 
constructing transducers for representation of large lexi-
cons. The disadvantage of this algorithm is that the out-
puts are pushed toward final states, which creates a long 
delay in emission. But fortunately sequential transducers 
can be minimized as we will show in the next section. An 
important characteristic of the minimization algorithm is 
that it pushes back outputs as much as possible toward 
the initial state. In such a way we can eliminate the 
problem just mentioned.  

 
Determinize_transducer( T1,T2) 
1 F2 ← Ø 
2 i2  ← { }U

1Ii

)(i,
∈

ε  

3 Q2 ← { i2} 
4 while Q ≠ Ø 
5  do q2 ← head[Q] 
6  ) F  qsuch that  q  w)(q, exists (there if 12 ∈∈      
7         { }2 22 q F  Fthen ∪←    
8                  w )(q2 2 ←φ  
9 for each a such that (q,w) ∈ q2 and δ1(q,a) de-

fined do 

10     
⎥⎦
⎤

⎢⎣
⎡ ′⋅←

∈∈
),,(ΛΛ 

  a),(q

1w)(q,q')(Ja)(q,

22

11

qaqw
a

σ

σ

δ

       

11     [ ]{ }U
)(J  )qw,(q,

1
1

22

22

2

)),,(),(,( 

  a),(q

a

qaqwaqq
∈′

− ′⋅′← σσ

δ
 

12 state) new a is a),(q(δ if 22  
13     )),(Enqueue(Q,then 22 aqδ  
14 Dequeue(Q) 

 
Figure 3: Pseudocode for determinization algorithm [3]. 

0

43

“A/”E

1

2

8

5 6

9 10 11 12 14

7

13

ε/ε

ε/ε

ε/ε

“A/”E

“A/”E

b/p

b/p

t/-

t/-

e/t

e/t

ε/@

n/@ ε/n

 
 
Figure 4: Union operation done on a few word items in the 

German phonetic lexicon (T1). 
 



162 Informatica 28 (2004) 159–165  M. Rojc et al. 

0 1 2 3 4

7

5
“A/”E b/p t/- e/t

6

ε/@

n/@
ε/n

0 1 2 3 4

7

5“A/”E b/p-t@ t/ε e/ε

6

ε/ε

n/n
ε/ε

 
 

Figure 5:  Finite-state transducers T2 (above) and T3 
(below) obtained after performing determinization and 

prefixation algorithms on finite-state transducer showed 
in Fig. 4. 

3.3 Minimization of finite-state transdu-
cers 

Sequential transducers allow very fast look-up. But 
transducers can also be minimized. Minimization algo-
rithms help to make them also space efficient 
[1][2][4][7]. The whole minimization procedure for se-
quential transducers consists actually of two different 
algorithms. One is algorithm for computation of the pre-
fix of a non-deterministic automaton [4] and the other is 
classical algorithm for minimization of automata [1][2].  
In this section we will present the algorithm for compu-
tation of the prefix, as it is independent of the concept of 
sequential transducers and will describe the entire algo-
rithm that allows derivation of minimal sequential trans-
ducers.  
 
In the algorithm described, we use the following nota-
tion: 
 
• GT the transpose of G (the automaton obtained from 

G by reversing each transition); 
• Trans[u] the set of transitions leaving u ∈ V; 
• TransT[u] the set of transitions entering u ∈ V; 
• t.v the vertex reached by t and t.l its label, for any 

transition t in Trans[u] (resp. in TransT[u]), u ∈ V; 
• out-degree[u] the number of edges leaving u ∈ V; 
• in-degree[u] the number of edges entering u ∈ V; 
• E the set of edges of G. 
 
1. First we compute πu, the greatest common prefixes 

of all its leaving transitions: 
 

         [ ] [ ]

else;                                                  

F, u  if     ).( )X .(  

u

uTrans t.vuTrans t 
scc  .scc  .

επ

π

←

∉Λ∧Λ←
∉∈

∈∈
ltlt

vtvt
tu

     

 
2. Then if πu ≠ ε, we can make a change of variables: 

Yu ←  πuXu. This second step is equivalent to storing 
the value πu and solving the system modified by the 
following operations: 

 

 
[ ]
[ ] .  t.l   t.l,uTrans t 

 t.l,      t.l,uTrans t 

u
T

-1
u

π

π

←∈∀

←∈∀
                 

 
The number of times these two operations are performed 
can be limited by storing in array N the number of empty 
labels leaving each state u of the strongly connected 
component scc. While N[u] ≠ 0, there is no use to 
perform these operations as the value of πu is ε. Also in 
the case that N[u] = 0 right after the computation of πu, 
the πu will remain equal to ε, as changes of variables will 
only affect suffixes of the transitions leaving u. This in-
formation can be stored using an array F, in order to 
avoid performing step 1 in such situations or when u is a 
final state. In the algorithm we use a queue Q containing 
the set of states u with N[u] = F[u] = 0 for which the 
two operations above need to be performed, and an array 
INQ indicating for each state u whether it is in queue Q.  
 
The above operations are started by initializing N and F 
to 0 for all states in scc, and by enqueuing in queue Q an 
arbitrarily chosen state u of the strongly connected com-
ponent scc. Each time the transition of a state v of 
TransT[u] is modified, v is added to Q if N[v] = F[u] = 
0. The property of SCC’s (strongly connected compo-
nent) and the initialization of N and F assure that each 
state of scc will be enqued at least once. Steps 1 and 2 
are operated until queue Q = ∅. This must happen as, 
except for the first time, step 1 is performed for a state u 
if N[u] = 0. After the computation of the greatest co-
mmon prefix we can have N[u] = 0 and then u will 
never be enqueued again, or N[u] ≠ 0 and then a new 
non empty factor πu of P(u) has been identified. It is ob-
viously then, that each state u is enqueued at most 
(|P(u)|+2) times in Q, and after at most (|Pmax|+2) 
steps we have Q = ∅. 
 
Prefix_Computation(G) 
1 for each u ∈ V(GSCC)   
2 do for each v ∈ SCC[u] 
3     do N[v] ← INQ[v] ← F[v] ← 0 
4 Q ← v    
5 INQ[v] ← 1 
6 while Q ≠ 0/  
7     do v ← head[Q] 
8          Dequeue(Q) 
9          INQ[v] ← 0 
10          p ← GCP(G,v) 
11          for each t ∈ TransT[v] 
12             do if(p ≠ ε) 
13                  then if(t.v ∈ SCC[v] and N[t.v] > 0  
                                     and t.l = ε and F[t.v] = 0) 
14                           then N[t.v] ← N[t.v] – 1 
15                           t.l ← t.l p 
16                   if(N[t.v] = 0 and INQ[t.v] = 0 and  
                                         F[t.v] = 0) 
17                           then Enqueue(Q,t.v) 
18                           INQ[t.v] = 1 

 
Figure 6: Pseudocode for the prefixation algorithm on 

finite-state transducers [4]. 



USING FINITE-STATE TRANSDUCER THEORY...  Informatica 28 (2004) 159–165 163 

 

Once Q = ∅, it is easy to see that the system of equa-
tions has a trivial solution: ∀u ∈ scc, Xu = ε. It has a 
unique solution. Therefore, the system is resolved. Con-
catenating the factors πu involved in the changes of vari-
ables corresponding to the state u gives the value of 
P(u). The set of operations (2) are obviously equivalent 
to multiplying the label of each transition joining the 
states u and v, (v ∈ scc), at right by P(v) and at left by 
[P(u)]-1 if u is in scc. Thus the transformations described 
above do modify the transitions leaving or entering 
states of scc as desired. The above pseudocode gives an 
algorithm that computes p(G) from G. In the algorithm, 
V(GSCC) represents the set of states of the component 
graph of G. For each u in V(GSCC), SCC[u] stands for the 
strongly connected component corresponding to u. The 
function GCP(G,u) called in the algorithm is such that it 
returns p, which is the greatest common prefix of all 
transitions leaving u (p = ε if u ∈ F). It replaces each of 
these transitions by dividing them at left by p and counts 
and stores in N[u] the number of empty transitions. If 
N[u] = 0 after the computation of the greatest common 
prefix or if u is a final state, the F[u] becomes the value 
1.  
 
The computation of the greatest common prefix of n 
(n>1) words requires at most (|p|+1).(n-1) comparisons, 
where p is the result of this computation [4]. This opera-
tion consists of comparing the letters of the first word to 
those of the (n-1) others until a mismatch or end of a 
word occurs. The same comparisons allow to obtain the 
division at left by p and the number of empty transitions. 
In case only one transition leaves v, the computation of 
the greatest common prefix can be assumed to be in 
O(1). Therefore, the cost of a call of the function GCP 
for a state v (∈ V - F) is O((|p|+1)(out-degree(v)-1)+1). 
Here p is the greatest common prefix of the transitions 
leaving v.  
 

0 1 2 3 4
“A/”E b/p-t@ t/ε e/ε n/n

5
 

 
Figure 7: Finite-state transducer T4 obtained using 

minimization algorithm in the sense of automata from T3. 
 

Given a sequential transducer T, the application of the 
prefix computation algorithm [4] to the output automaton 
of T has no effect on the states of T or on its transition 
function. Only the output function σ of T is changed. A 
minimal ST, that computes the same function as T, can be 
obtained by applying the prefix computation algorithm to 
the output automaton of T, and also the minimization 
algorithm in the sense of automata, to the resulting trans-
ducer [1][2]. Fig. 5 (transducer T3 ) shows the result ob-
tained after performing prefix computation algorithm on 
sequential transducer T2 in particular case. The applica-
tion of the prefix computation algorithm on T2 leads to 
the transducer T3, which computes the same function. 
Only outputs differ from those of T2. In Fig. 7 the final 
obtained transducer is presented using minimization al-
gorithm in the sense of automata. 

4 Results 
For the lexicons compilation the German large scale 
phonetic and morphology lexicons (CISLEX) [5] were 
used. In compilation process a large set of proprietary 
programs written in C++ that perform efficiently many 
operations on finite-state transducers and finite-state 
automata including determinization, minimization, union, 
intersection, compaction, prefixation, local extension and 
others were used. 

1

3

5

7

9

S1

S4

0

5000

10000

15000

20000

DETERMINIZATION

UNION

PREFIX

MINIMIZATION

ALGORITHMS

FINITE-STATE TRANSDUCERS 

NUMBER OF 
STATES

 
a) 

 

1

3

5

7

9S1 S2 S
3

S4

0

1000

2000

3000

4000

5000

6000

UNION

DETERMINIZATION

PREFIX

MINIMIZATION

FINITE-STATE TRANSDUCERS

ALGORITHMS

NUMBER OF 
STATES

 
b) 

 
Figure 8: Achieved reduction of the number of states 

obtained in the first step of compilation process – 10 ran-
domly chosen transducers (a: phonetic lexicon. b: 

morphology lexicon.) 
 
During construction of corresponding finite-state trans-
ducers, the following algorithms were used: union, deter-
minization, prefix computation and classical minimiza-
tion algorithms of finite-state automaton (Aho, Sethi, and 
Ullman; Hopcroft; Watson) [1][2][12]. Prefix computa-
tion algorithm was used before minimization algorithms. 
It pushes the output labels towards the initial state as 
much as possible.  
 
All lexicons represent part of the language dependent 
external knowledge for morphology and grapheme-to-
phoneme modules in the multilingual text-to-speech 
processing system. The starting sizes of phonetic lexicon 
and morphology lexicon were 12.52 MB and 18.49 MB. 
Both lexicons contained 300.000 items. Final size of 
corresponding finite-state transducer was 2.78 MB 
(120.386 states) for the first one and 6.33 MB (183.123 
states) for the second. 

 
In the first step of compilation, the great reduction of the 
number of states was achieved, what is evident from Fig. 
8. This is also the reason, why we follow the procedure 
described under subsection 2.2 (Fig. 2). The number of 



164 Informatica 28 (2004) 159–165  M. Rojc et al. 

states decreased already after determinization algorithm 
as expected. The number of states obviously does not 
change after performing prefix computation algorithm. 
This algorithm works only on the output automaton of 
the corresponding transducer. It pushes back outputs as 
much as possible toward the initial state. The effect of 
prefix computation algorithm can be noticed only at the 
end of the compilation process, when much smaller fi-
nite-state transducers are obtained than in the case when 
only classical minimization algorithm after determiniza-
tion would be performed. The answer for that can be 
found from the Fig. 5 (transducers T2 and T3). In the 
transducer T3 we have after performing prefix computa-
tion algorithm newly created ε/ε transition labels. This 
empty transition labels are result of pushing back outputs 
toward the initial state. That’s why after performing 
minimization algorithm in the sense of automata much 
smaller transducers are obtained. 
 
In the Fig.9 we see that the number of output codes has 
increased after determinization and prefix computation 
algorithm were performed. In case that the prefix com-
putation would not be performed, final number of codes 
would be significantly smaller, but the final transducer 
would also be much bigger (more states and transitions). 
According to the experiments it only makes sense to have 
more codes and much smaller transducer.  
 
It is also interesting that in compilation of morphology 
lexicon, much more output codes is generated as in the 
case of phonetic lexicon (Fig. 9). The reason is that the 
morphology lexicon comprises much more information 
than the phonetic lexicon. 

 
In the second step of the compilation process, the same 
situation regarding the state reduction can be observed as 
in the first step (Fig. 10). Only reduction of the number 
of states is smaller and there is no significant increase of 
the number of output codes (Fig. 11).  
 
In Table 5 the final results for the obtained finite-state 
transducers for German phonetic and morphology 
lexicons are given. The number of input codes is the 
same for both lexicons and the number of output codes is 
two-times bigger in case of morphology lexicon. The 
reason is that the information field in the morphology 
lexicon is substantial longer (Fig. 1).  
 

1 2 3 4 5 6 7 8 9 10
S1

S40

100

200

300

400

500

600

MINIMIZATION

PREFIX

FINITE-STATE TRANSDUCERS

ALGORITHMS

DETERMINIZATION

UNION

NUMBER OF 
OUTPUT CODES

 
a) 

1 2 3 4 5 6 7 8 9 10
S1

S40

20

40

60

80

100

120

MINIMIZATION

PREFIX

DETERMINIZATION

UNION

FINITE-STATE TRANSDUCERS

ALGORITHMS

NUMBER OF 
OUTPUT CODES

 
b) 
 

Figure 9: Increasing number of output codes in the first 
step of compilation process – 10 randomly chosen trans-

ducers (a: phonetic lexicon. b: morphology lexicon.) 
 

1

3

5

7

9S
1

S
2

S
3

S
4

0

2000

4000

6000

8000

10000

12000

NUMBER OF 
STATES

FINITE-STATE TRANSDUCERS 

ALGORITHMS

DETERMINIZATION

UNION

PREFIX

MINIMIZATION

 
a) 

1
3

5
7

9
S1

S3

0

5000

10000

15000

20000

NUMBER OF
STATES

FINITE-STATE TRANSDUCERS

UNION

DETERMINIZATION

PREFIX

MINIMIZATION

ALGORITHMS

 
b) 
 

Figure 10: Achieved reduction of the number of states 
obtained in the second step of compilation process – 10 
randomly chosen transducers (a: phonetic lexicon. b: 

morphology lexicon.) 
 

 FST1 FST2 
Number of input codes 61 61 
Number of output codes 34.879 87.204 
Size of output vocabulary  343 KB 3.6 MB 
Number of states 112.498 169.613 
Number of transitions 200.801 325.839 
Size of ASCII file 6.6 MB 11.53 MB 
Size of bin file 2.78 MB 6.33 MB 

Table 5: The final finite-state transducers 
representing German phonetic (FST1) and 

German morphology lexicon (FST2). 



USING FINITE-STATE TRANSDUCER THEORY...  Informatica 28 (2004) 159–165 165 

 

1 2 3 4 5 6 7 8 9 10
S1

S40
500

1000
1500

2000

2500

3000

3500

4000

NUMBER OF 
OUTPUT CODES

FINITE-STATE TRANSDUCERS

ALGORITHMS

MINIMIZATION

PREFIX

DETERMINIZATION

UNION
 

a) 

1 2 3 4 5 6 7 8 9 10
S1

S40

1000

2000

3000

4000

5000

6000

FINITE-STATE TRANSDUCERS

NUMBER OF
OUTPUT CODES

MINIMIZATION

PREFIX

DETERMINIZATION

UNION

ALGORITHMS

 
b) 
 

Figure 11: Increasing number of output codes in the 
second step of compilation process – 10 randomly cho-

sen transducers (a: phonetic lexicon. b: morphology 
lexicon.) 

5 Conclusion 
Performing determinization of finite-state transducer 
obviously results in significant decrease in number of 
states. One disadvantage of the determinization algo-
rithm is that the outputs are pushed toward final states 
that create a long delay in emission. But using prefix 
calculation algorithm before classical minimization al-
gorithms for automata, the problem can be efficiently 
resolved. An important characteristic of this algorithm is 
that it pushes back outputs as much as possible toward 
the initial state. As expected, the number of states re-
mains unchanged after performing prefix calculation 
algorithm. The efficiency of this algorithm can be seen 
only after performing classical minimization algorithm, 
when much smaller number of states is obtained than in 
case if only determinization and minimization algo-
rithms would be performed. From table 5 it can be seen 
that finite-state transducers can efficiently represent 
large lexicons. They provide fast look-up time, double 
side look-up, and compactness. 

6 References 
[1] Bruce William Watson, Taxonomies and Toolkits of 

Regular Language Algorithms, PhD Thesis, Eindho-
ven University of Technology and Computing Sci-
ence, 1995. 

[2] Watson, B.W., A taxonomy of finite automata mini-
mization algorithms, Computing Science Report 
93/44, Eindhoven University of Technology, The 
Nederlands, 1993. 

[3] Mehryar Mohri, On Some Applications of Finite-
State Automata Theory to Natural Language Proce-
ssing, Natural Language Engineering 1, Cambridge 
University Press, 1996. 

[4] Mehryar Mohri, Minimization Algorithms for Se-
quential Transducers, Theoretical Computer Sci-
ence, 234:177-201, March 2000. 

[5] Guenthner, F.&P. Maier, Das CISLEX Woerterbuch 
system, CIS-Bericht-94-76. 

[6] Aho, Alfred V., John E. Hopcroft, and Jeffrey D. 
Ullman, The design and analysis of computer algo-
rithms. Addison Wesley: Reading, MA 1974. 

[7] Bauer, W, On minimizing finite automata, EATCS 
Bulletin, 35 1988. 

[8] Berstel, Jean and Cristophe Reutenauer, Rational 
Series and Their Languages, Springer-Verlag: Ber-
lin-New York 1988. 

[9] Crochemore, Maxime, Transducers and repetitions, 
Theoretical Computer Science, 45 1986. 

[10] Hopcroft, John E. and Jeffrey D. Ullman, Intoduc-
tion to Automata Theory, Languages, and Computa-
tion. Addison Wesley: Reading MA 1979. 

[11] Kuich, Werner and Arto Salomaa, Semirings, Auto-
mata, Languages, Number 5 in EATCS Monographs 
on Theoretical Computer Science. Springer Verlag, 
Berlin, Germany 1986. 

[12] Mehryar Mohri, Language Processing with 
Weighted Transducers, In Proceedings of the 8th 
annual Traitement Automatique des Langues 
Naturelles (TALN 2001). Tours, France, July 2001. 

 




