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Abstract

A finite group G is called a DCI-group if two Cayley digraphs over G are isomorphic
if and only if their connection sets are conjugate by a group automorphism. We prove that
the group C5

2 × Cp, where p is a prime, is a DCI-group if and only if p 6= 2. Together
with the previously obtained results, this implies that a group G of order 32p, where p is a
prime, is a DCI-group if and only if p 6= 2 and G ∼= C5

2 × Cp.
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1 Introduction
LetG be a finite group and S ⊆ G. The Cayley digraph Cay(G,S) overGwith connection
set S is defined to be the digraph with vertex set G and arc set {(g, sg) : g ∈ G, s ∈ S}.
Two Cayley digraphs over G are called Cayley isomorphic if there exists an isomorphism
between them which is also an automorphism ofG. Clearly, two Cayley isomorphic Cayley
digraphs are isomorphic. The converse statement is not true in general (see [3, 10]). A
subset S ⊆ G is called a CI-subset if for each T ⊆ G the Cayley digraphs Cay(G,S)
and Cay(G,T ) are isomorphic if and only if they are Cayley isomorphic. A finite group
G is called a DCI-group (CI-group, respectively) if each subset of G (each inverse-closed
subset of G, respectively) is a CI-subset.
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The investigation of DCI-groups was initiated by Ádám [1] who conjectured, in our
terms, that every cyclic group is a DCI-group. This conjecture was disproved by Elspas and
Turner in [10]. The problem of determining of finite DCI- and CI-groups was suggested
by Babai and Frankl in [5]. For more information on DCI- and CI-groups we refer the
readers to the survey paper [21].

In this paper we are interested in abelian DCI-groups. The cyclic group of order n
is denoted by Cn. Elspas and Turner [10] and independently Djoković [8] proved that
every cyclic group of prime order is a DCI-group. The fact that Cpq is a DCI-group for
distinct primes p and q was proved by Alspach and Parsons in [3] and independently by
Klin and Pöschel in [17]. The complete classification of cyclic DCI-groups was obtained
by Muzychuk in [23, 24]. He proved that a cyclic group of order n is a DCI-group if and
only if n = k or n = 2k, where k is square-free.

Denote the class of all finite abelian groups where every Sylow subgroup is elementary
abelian by E. From [18, Theorem 1.1] it follows that every DCI-group is the coprime
product (i.e. the direct product of groups of coprime orders) of groups from the following
list:

Ckp , C4, Q8, A4, H o 〈z〉,

where p is a prime, H is a group of odd order from E, |z| ∈ {2, 4}, and hz = h−1 for every
h ∈ H . One can check that the class of DCI-groups is closed under taking subgroups. So
one of the crucial steps towards the classification of all DCI-groups is to determine which
groups from E are DCI.

The following non-cyclic groups from E are DCI-groups (p and q are assumed to be
distinct primes): C2

p [2, 14]; C3
p [2, 9]; C4

2 , C5
2 [7]; C4

p , where p is odd [15] (a proof for
C4
p with no condition on p was given in [22]); C5

p , where p is odd [13]; C2
p × Cq [18];

C3
p ×Cq [27]; C4

p ×Cq [20]. The smallest example of a non-DCI-group from E was found
by Nowitz [28]. He proved that C6

2 is non-DCI. This implies that Cn2 is non-DCI for every
n ≥ 6. Also Cn3 is non-DCI for every n ≥ 8 [33] and Cnp is non-DCI for every prime p
and n ≥ 2p+ 3 [32].

In this paper we find a new infinite family of DCI-groups from E which are close to
the smallest non-DCI-group from E. The main result of the paper can be formulated as
follows.

Theorem 1.1. Let p be a prime. Then the group C5
2 × Cp is a DCI-group if and only if

p 6= 2.

Theorem 1.1 extends the results obtained in [18, 20, 27] which imply that the group
Ckp × Cq is a DCI-group whenever p and q are distinct primes and k ≤ 4. Note that the
“only if” part of Theorem 1.1, in fact, was proved by Nowitz in [28]. The next corollary
immediately follows from [18, Theorem 1.1] and Theorem 1.1.

Corollary 1.2. Let p be a prime. Then a group G of order 32p is a DCI-group if and only
if p 6= 2 and G ∼= C5

2 × Cp.

To prove Theorem 1.1, we use the S-ring approach. An S-ring over a group G is a
subring of the group ring ZG which is a free Z-module spanned by a special partition
of G. If every S-ring from a certain family of S-rings over G is a CI-S-ring then G is
a DCI-group (see Section 4). The definition of an S-ring goes back to Schur [31] and
Wielandt [34]. The usage of S-rings in the investigation of DCI-groups was proposed by
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Klin and Pöschel [17]. Most recent results on DCI-groups were obtained using S-rings
(see [15, 18, 19, 20, 27]).

The text of the paper is organized in the following way. In Section 2 we provide defi-
nitions and basic facts concerned with S-rings. Section 3 contains a necessary information
on isomorphisms of S-rings. In Section 4 we discuss CI-S-rings and their relation with
DCI-groups. We also prove in this section a sufficient condition of CI-property for S-rings
(Lemma 4.4). Section 5 is devoted to the generalized wreath and star products of S-rings.
Here we deduce from previously obtained results two sufficient conditions for the general-
ized wreath product of S-rings to be a CI-S-ring (Lemma 5.5 and Lemma 5.8). Section 6
and 7 are concerned with p-S-rings and S-rings over a group of order pk, where p is a prime
and GCD(p, k) = 1, (so-called non-powerful order) respectively. In Section 8 we provide
properties of S-rings over the groups Cn2 , n ≤ 5, and prove that all S-rings over these
groups are CI. The material of this section is based on computational results obtained with
the help of the GAP package COCO2P [16]. Finally, in Section 9 we prove Theorem 1.1.

Notation. Let G be a finite group and X ⊆ G. The element
∑
x∈X x of the group ring

ZG is denoted by X .
The set {x−1 : x ∈ X} is denoted by X−1.
The subgroup of G generated by X is denoted by 〈X〉; we also set rad(X) = {g ∈ G :

gX = Xg = X}.
Given a set X ⊆ G the set {(g, xg) : x ∈ X, g ∈ G} of arcs of the Cayley digraph

Cay(G,X) is denoted by A(X).
The group of all permutations of G is denoted by Sym(G).
The subgroup of Sym(G) consisting of all right translations of G is denoted by Gright.
The set {K ≤ Sym(G) : K ≥ Gright} is denoted by Sup(Gright).
For a set ∆ ⊆ Sym(G) and a section S = U/L ofG we set ∆S = {fS : f ∈ ∆, Sf =

S}, where Sf = S means that f permutes the L-cosets in U and fS denotes the bijection
of S induced by f .

If K ≤ Sym(Ω) and α ∈ Ω then the stabilizer of α in K and the set of all orbits of K
on Ω are denoted by Kα and Orb(K,Ω) respectively.

If H ≤ G then the normalizer of H in G is denoted by NG(H).
The cyclic group of order n is denoted by Cn.
The class of all finite abelian groups where every Sylow subgroup is elementary abelian

is denoted by E.

2 S-rings
In this section we give a background of S-rings. In general, we follow [20], where the most
part of the material is contained. For more information on S-rings we refer the readers
to [6, 25].

Let G be a finite group and ZG the integer group ring. Denote the identity element of
G by e. A subring A ⊆ ZG is called an S-ring (a Schur ring) over G if there exists a
partition S(A) of G such that:

(1) {e} ∈ S(A),

(2) if X ∈ S(A) then X−1 ∈ S(A),

(3) A = SpanZ{X : X ∈ S(A)}.
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The elements of S(A) are called the basic sets of A and the number rk(A) = |S(A)| is
called the rank of A. If X,Y ∈ S(A) then XY ∈ S(A) whenever |X| = 1 or |Y | = 1.

Let A be an S-ring over a group G. A set X ⊆ G is called an A-set if X ∈ A. A
subgroup H ≤ G is called an A-subgroup if H is an A-set. From the definition it follows
that the intersection of A-subgroups is also an A-subgroup. One can check that for each
A-set X the groups 〈X〉 and rad(X) are A-subgroups. By the thin radical of A we mean
the set defined as

Oθ(A) = {x ∈ G : {x} ∈ S(A)}.

It is easy to see that Oθ(A) is an A-subgroup.

Lemma 2.1 ([11, Lemma 2.1]). Let A be an S-ring over a group G, H an A-subgroup of
G, and X ∈ S(A). Then the number |X ∩Hx| does not depend on x ∈ X .

Let L� U ≤ G. A section U/L is called an A-section if U and L are A-subgroups. If
S = U/L is an A-section then the module

AS = SpanZ {Xπ : X ∈ S(A), X ⊆ U} ,

where π : U → U/L is the canonical epimorphism, is an S-ring over S.

3 Isomorphisms and schurity
Let A and A′ be S-rings over groups G and G′ respectively. A bijection f : G → G′ is
called an isomorphism from A to A′ if

{A(X)f : X ∈ S(A)} = {A(X ′) : X ′ ∈ S(A′)},

where A(X)f = {(gf , hf ) : (g, h) ∈ A(X)}. If there exists an isomorphism from A to
A′ then we say that A and A′ are isomorphic and write A ∼= A′.

The group of all isomorphisms from A onto itself contains a normal subgroup

{f ∈ Sym(G) : A(X)f = A(X) for every X ∈ S(A)}

called the automorphism group of A and denoted by Aut(A). The definition implies that
Gright ≤ Aut(A). The S-ring A is called normal if Gright is normal in Aut(A). One can
verify that if S is an A-section then Aut(A)S ≤ Aut(AS). Denote the group Aut(A) ∩
Aut(G) by AutG(A). It easy to check that if S is an A-section then AutG(A)S ≤
AutS(AS). One can verify that

AutG(A) = (NAut(A)(Gright))e.

Let K ∈ Sup(Gright). Schur proved in [31] that the Z-submodule

V (K,G) = SpanZ{X : X ∈ Orb(Ke, G)},

is an S-ring over G. An S-ring A over G is called schurian if A = V (K,G) for some
K ∈ Sup(Gright). One can verify that given K1,K2 ∈ Sup(Gright),

if K1 ≤ K2 then V (K1, G) ≥ V (K2, G). (3.1)
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If A = V (K,G) for some K ∈ Sup(Gright) and S is an A-section then AS = V (KS , S).
So if A is schurian then AS is also schurian for every A-section S. It can be checked that

V (Aut(A), G) ≥ A (3.2)

and the equality is attained if and only if A is schurian.
An S-ring A over a group G is defined to be cyclotomic if there exists K ≤ Aut(G)

such that S(A) = Orb(K,G). In this case we write A = Cyc(K,G). Obviously, A =
V (GrightK,G). So every cyclotomic S-ring is schurian. If A = Cyc(K,G) for some
K ≤ Aut(G) and S is an A-section then AS = Cyc(KS , S). Therefore if A is cyclotomic
then AS is also cyclotomic for every A-section S.

Two permutation groupsK1 andK2 on a set Ω are called 2-equivalent if Orb(K1,Ω
2) =

Orb(K2,Ω
2) (here we assume that K1 and K2 act on Ω2 componentwise). In this case we

write K1 ≈2 K2. The relation ≈2 is an equivalence relation on the set of all subgroups of
Sym(Ω). Every equivalence class has a unique maximal element with respect to inclusion.
Given K ≤ Sym(Ω), this element is called the 2-closure of K and denoted by K(2). If
A = V (K,G) for some K ∈ Sup(Gright) then K(2) = Aut(A). An S-ring A over G is
called 2-minimal if

{K ∈ Sup(Gright) : K ≈2 Aut(A)} = {Aut(A)}.

Two groups K1,K2 ≤ Aut(G) are said to be Cayley equivalent if Orb(K1, G) =
Orb(K2, G). In this case we write K1 ≈Cay K2. If A = Cyc(K,G) for some K ≤
Aut(G) then AutG(A) is the largest group which is Cayley equivalent toK. A cyclotomic
S-ring A over G is called Cayley minimal if

{K ≤ Aut(G) : K ≈Cay AutG(A)} = {AutG(A)}.

It is easy to see that ZG is 2-minimal and Cayley minimal.

4 CI-S-rings
Let A be an S-ring over a group G. Put

Iso(A) = {f ∈ Sym(G) : f is an isomorphism from A onto an S-ring over G}.

One can see that Aut(A) Aut(G) ⊆ Iso(A). However, the converse statement does not
hold in general. The S-ring A is defined to be a CI-S-ring if Aut(A) Aut(G) = Iso(A).
It is easy to check that ZG and the S-ring of rank 2 over G are CI-S-rings.

Put
Sup2(Gright) = {K ∈ Sup(Gright) : K(2) = K}.

The group M ≤ Sym(G) is said to be G-regular if M is regular and isomorphic to G.
Following [15], we say that a group K ∈ Sup(Gright) is G-transjugate if every G-regular
subgroup of K is K-conjugate to Gright. Babai proved in [4] the statement which can
be formulated in our terms as follows: a set S ⊆ G is a CI-subset if and only if the
group Aut(Cay(G,S)) is G-transjugate. The next lemma provides a similar criterion for a
schurian S-ring to be CI.

Lemma 4.1. LetK ∈ Sup2(Gright) and A = V (K,G). Then A is a CI-S-ring if and only
if K is G-transjugate.
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Proof. The statement of the lemma follows from [15, Theorem 2.6].

Let K1,K2 ∈ Sup(Gright) such that K1 ≤ K2. Then K1 is called a G-complete
subgroup of K2 if every G-regular subgroup of K2 is K2-conjugate to some G-regular
subgroup ofK1 (see [15, Definition 2]). In this case we writeK1 �G K2. The relation�G
is a partial order on Sup(Gright). The set of the minimal elements of Sup2(Gright) with
respect to �G is denoted by Supmin

2 (Gright).

Lemma 4.2 ([20, Lemma 3.3]). Let G be a finite group. If V (K,G) is a CI-S-ring for
every K ∈ Supmin

2 (Gright) then G is a DCI-group.

Remark 4.3. The condition that V (K,G) is a CI-S-ring for every K ∈ Supmin
2 (Gright)

is equivalent to, say, that every schurian S-ring over G is a CI-S-ring. The latter condition
means that every 2-closed overgroup of Gright is G-transjugate. However, 2-closed over-
group of Gright may not be the automorphism group of a Cayley digraph over G. So the
condition that the automorphism group of every Cayley digraph overG isG-transjugate or,
equivalently, that G is a DCI-group, seems weaker than the condition of Lemma 4.2. It is
a natural question whether there exists a DCI-group for which the condition of Lemma 4.2
does not hold.

We finish the section with the lemma that gives a sufficient condition for an S-ring to
be a CI-S-ring. In order to formulate this condition, we need to introduce some further
notations. Let A be a schurian S-ring over an abelian group G and L a normal A-subgroup
of G. Then the partition of G into the L-cosets is Aut(A)-invariant. The kernel of the
action of Aut(A) on the latter cosets is denoted by Aut(A)G/L. Since Aut(A)G/L is a
normal subgroup of Aut(A), we can form the group K = Aut(A)G/LGright. Clearly,
K ≤ Aut(A). From [15, Proposition 2.1] it follows that K = K(2).

Lemma 4.4. Let A be a schurian S-ring over an abelian group G, L an A-subgroup of G,
and K = Aut(A)G/LGright. Suppose that both AG/L and V (K,G) are CI-S-rings and
AG/L is normal. Then A is a CI-S-ring.

Proof. Firstly we prove that the group Aut(A)G/L isG/L-transjugate. Suppose that F is a
G/L-regular subgroup of Aut(A)G/L. The S-ring AG/L is a CI-S-ring by the assumption
of the lemma. So Lemma 4.1 implies that the group Aut(AG/L) isG/L-transjugate. Since
F ≤ Aut(A)G/L ≤ Aut(AG/L), we conclude that F and (G/L)right are Aut(AG/L)-
conjugate. However, AG/L is normal and hence F = (G/L)right. Therefore Aut(A)G/L

is G/L-transjugate.
Now let us show that K �G Aut(A). Let H be a G-regular subgroup of Aut(A).

Then HG/L is abelian transitive subgroup of Aut(A)G/L and hence HG/L is regular on
G/L. Therefore HG/L ∼= (G/L)right = (Gright)

G/L. There exists γ ∈ Aut(A) such that
(HG/L)γ

G/L

= (G/L)right = (Gright)
G/L because Aut(A)G/L is G/L-transjugate. This

yields that Hγ ≤ K. Thus, K �G Aut(A).
Finally, let us prove that Aut(A) is G-transjugate. Again, let H be a G-regular sub-

group of Aut(A). Since K �G Aut(A), there exists γ ∈ Aut(A) such that Hγ ≤
K. The S-ring V (K,G) is a CI-S-ring by the assumption of the lemma. So K is G-
transjugate by Lemma 4.1. Therefore Hγ and Gright are K-conjugate and hence H and
Gright are Aut(A)-conjugate. Thus, Aut(A) is G-transjugate and A is a CI-S-ring by
Lemma 4.1.
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It should be mentioned that the proof of Lemma 4.4 is similar to the proof of [20,
Lemma 3.6].

5 Generalized wreath and star products
Let A be an S-ring over a group G and S = U/L an A-section of G. An S-ring A is called
the S-wreath product or the generalized wreath product of AU and AG/L if L E G and
L ≤ rad(X) for each basic set X outside U . In this case we write A = AU oS AG/L and
omit S when U = L. The construction of the generalized wreath product of S-rings was
introduced in [12].

The S-wreath product is called nontrivial or proper if L 6= {e} and U 6= G. An S-ring
A is said to be decomposable if A is the nontrivial S-wreath product for some A-section S
of G; otherwise A is said to be indecomposable. We say that an A-subgroup U < G has
a gwr-complement with respect to A if there exists a nontrivial normal A-subgroup L of G
such that L ≤ U and A is the S-wreath product, where S = U/L.

Lemma 5.1 ([19, Theorem 1.1]). Let G ∈ E, A an S-ring over G, and S = U/L an A-
section of G. Suppose that A is the nontrivial S-wreath product and the S-rings AU and
AG/L are CI-S-rings. Then A is a CI-S-ring whenever

AutS(AS) = AutU (AU )S AutG/L(AG/L)S .

In particular, A is a CI-S-ring if

AutS(AS) = AutU (AU )S or AutS(AS) = AutG/L(AG/L)S .

Lemma 5.2 ([19, Proposition 4.1]). In the conditions of Lemma 5.1, suppose that AS =
ZS. Then A is a CI-S-ring. In particular, if U = L then A is a CI-S-ring.

Lemma 5.3 ([20, Lemma 4.2]). In the conditions of Lemma 5.1, suppose that at least
one of the S-rings AU and AG/L is cyclotomic and AS is Cayley minimal. Then A is a
CI-S-ring.

Lemma 5.4. Let A be an S-ring over an abelian group G. Suppose that A is the non-
trivial S = U/L-wreath product for some A-section S = U/L and L1 is an A-subgroup
containing L. Then B = V (K,G), where K = Aut(A)G/L1

Gright, is also the S-wreath
product.

Proof. Since K ≤ Aut(A), from Equations (3.1) and (3.2) it follows that

B = V (K,G) ≥ V (Aut(A), G) ≥ A.

So U and L are also B-subgroups.
Let C = ZU oS Z(G/L). The S-rings CU and CG/L are schurian and CS is 2-minimal

because CS = ZS. So C is schurian by [26, Corollary 10.3]. This implies that

C = V (Aut(C), G). (5.1)

Every element from Aut(C)e fixes every basic set of C and hence it fixes every L-
coset. Since L1 ≥ L, every element from Aut(C)e fixes every L1-coset. We conclude that
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Aut(C)e ≤ Aut(A)G/L1
and hence Aut(C) ≤ K. Now from Equations (3.1) and (5.1) it

follows that
C = V (Aut(C), G) ≥ V (K,G) = B. (5.2)

The group U is a B- and a C-subgroup. Due to Equation (5.2), every basic set of B
which lies outsideU is a union of some basic sets of C which lie outsideU . SoL ≤ rad(X)
for every X ∈ S(B) outside U . Thus, B is the S-wreath product.

Lemma 5.5. In the conditions of Lemma 5.1, suppose that: (1) every S-ring over U is a
CI-S-ring; (2) AG/L is 2-minimal or normal. Then A is a CI-S-ring.

Proof. Let B = V (K,G), whereK = Aut(A)G/LGright. From Lemma 5.4 it follows that
B is the S-wreath product. SinceL1 = L, the definition of B implies that BG/L = Z(G/L)
and hence BS = ZS. Clearly, BG/L is a CI-S-ring. The S-ring BU is a CI-S-ring by the
assumption of the lemma. Therefore B is a CI-S-ring by Lemma 5.2. The S-ring AG/L is
a CI-S-ring by the assumption of the lemma. Thus, A is a CI-S-ring by [20, Lemma 3.6]
whenever AG/L is 2-minimal and by Lemma 4.4 whenever AG/L is normal.

Let V and W be A-subgroups. The S-ring A is called the star product of AV and AW
if the following conditions hold:

(1) V ∩W EW ;

(2) each T ∈ S(A) with T ⊆ (W \ V ) is a union of some V ∩W -cosets;

(3) for each T ∈ S(A) with T ⊆ G \ (V ∪W ) there exist R ∈ S(AV ) and S ∈ S(AW )
such that T = RS.

In this case we write A = AV ? AW . The construction of the star product of S-rings
was introduced in [15]. The star product is called nontrivial if V 6= {e} and V 6= G. If
V ∩W = {e} then the star product is the usual tensor product of AV and AW (see [11,
p. 5]). In this case we write A = AV ⊗ AW . One can check that if A = AV ⊗ AW then
Aut(A) = Aut(AV )×Aut(AW ). If V ∩W 6= {e} then A is the nontrivial V/(V ∩W )-
wreath product. Indeed, let T ∈ S(A) such that T * V . If T ⊆ W \ V then V ∩W ≤
rad(T ) by Condition (2) of the definition. If T ⊆ G \ (V ∪W ) then T = RS for some
R ∈ S(AV ) and some S ∈ S(AW ) such that S ⊆W \V by Condition (3) of the definition.
Since V ∩W ≤ rad(S), we obtain V ∩W ≤ rad(T ).

Lemma 5.6. Let G ∈ E and A a schurian S-ring over G. Suppose that A = AV ?AW for
some A-subgroups V and W of G and the S-rings AV and AW/(V ∩W ) are CI-S-rings.
Then A is a CI-S-ring.

Proof. The statement of the lemma follows from [18, Proposition 3.2, Theorem 4.1].

Lemma 5.7 ([13, Lemma 2.8]). Let A be an S-ring over an abelian group G = G1 ×G2.
Assume that G1 and G2 are A-groups. Then A = AG1 ⊗ AG2 whenever AG1 or AG2 is
the group ring.

Lemma 5.8. In the conditions of Lemma 5.1, suppose that |G : U | is a prime and there
exists X ∈ S(AG/L) outside S with |X| = 1. Then A is a CI-S-ring.
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Proof. Let X = {x} for some x ∈ G/L. Due to G ∈ E, we conclude that |〈x〉| is prime.
So |〈x〉 ∩S| = 1 because x lies outside S. Since |G : U | is a prime, G/L = 〈x〉×S. Note
that A〈x〉 = Z〈x〉. Therefore

AG/L = Z〈x〉 ⊗AS

by Lemma 5.7.
Let ϕ ∈ AutS(AS). Define ψ ∈ Aut(G/L) in the following way:

ψS = ϕ, xψ = x.

Then ψ ∈ AutG/L(AG/L) because AG/L = Z〈x〉 ⊗AS . We obtain that

AutG/L(AG/L)S ≥ AutS(AS),

and hence AutG/L(AG/L)S = AutS(AS). Thus, A is a CI-S-ring by Lemma 5.1.

6 p-S-rings
Let p be a prime. An S-ring A over a p-group G is called a p-S-ring if every basic set of
A has a p-power size. Clearly, if |G| = p then A = ZG. In the next three lemmas G is a
p-group and A is a p-S-ring over G.

Lemma 6.1. If B ≥ A then B is a p-S-ring.

Proof. The statement of the lemma follows from [29, Theorem 1.1].

Lemma 6.2. Let S = U/L be an A-section of G. Then AS is a p-S-ring.

Proof. From Lemma 2.1 it follows that for every X ∈ S(A) the number λ = |X ∩ Lx|
does not depend on x ∈ X . So λ divides |X| and hence λ is a p-power. Let π : G→ G/L
be the canonical epimorphism. Note that |π(X)| = |X|/λ and hence |π(X)| is a p-power.
Therefore every basic set of AS has a p-power size. Thus, AS is a p-S-ring.

Lemma 6.3 ([13, Proposition 2.13]). The following statements hold:

(1) |Oθ(A)| > 1;

(2) there exists a chain of A-subgroups {e} = G0 < G1 < · · · < Gs = G such that
|Gi+1 : Gi| = p for every i ∈ {0, . . . , s− 1}.

Lemma 6.4. Let G be an abelian group, K ∈ Supmin
2 (Gright), and A = V (K,G). Sup-

pose that H is an A-subgroup of G such that G/H is a p-group for some prime p. Then
AG/H is a p-S-ring.

Proof. The statement of the lemma follows from [18, Lemma 5.2].

7 S-rings over an abelian group of non-powerful order
A number n is called powerful if p2 divides n for every prime divisor p of n. From now
throughout this section G = H × P , where H is an abelian group and P ∼= Cp, where p
is a prime coprime to |H|. Clearly, |G| is non-powerful. Let A be an S-ring over G, H1

a maximal A-subgroup contained in H , and P1 the least A-subgroup containing P . Note
that H1P1 is an A-subgroup.
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Lemma 7.1 ([20, Lemma 6.3]). In the above notations, if H1 6= (H1P1)p′ , the Hall p′-
subgroup of H1P1, then AH1P1

= AH1
?AP1

.

Lemma 7.2 ([27, Proposition 15]). In the above notations, if AH1P1/H1
∼= ZCp then

AH1P1 = AH1 ?AP1 .

Lemma 7.3 ([11, Lemma 6.2]). In the above notations, suppose that H1 < H . Then one
of the following statements holds:

(1) A = AH1
oAG/H1

with rk(AG/H1
) = 2;

(2) A = AH1P1
oS AG/P1

, where S = H1P1/P1 and P1 < G.

8 S-rings over Cn
2 , n ≤ 5

All S-rings over the groups Cn2 , where n ≤ 5, were enumerated with the help of the
GAP package COCO2P [16]. The list of all S-rings over these groups is available on the
web-page [30] (see also [35]). The next lemma is an immediate consequence of the above
computational results (see also [11, Theorem 1.2]).

Lemma 8.1. Every S-ring over Cn2 , where n ≤ 5, is schurian.

To prove Theorem 1.1, we will show that every schurian S-ring over C5
2 × Cp is CI.

Since the most of schurian S-rings over C5
2 ×Cp are generalized wreath or star products of

S-rings over its proper subgroups, we need to check that all schurian S-rings over proper
subgroups of C5

2 ×Cp are CI. In this section we will do it for G ∼= Cn2 , where n ≤ 5. Note
that G is a DCI-group by [2, 7] but this does not imply that every S-ring over G is CI (see
Remark 4.3). We will describe 2-S-rings overG using computational results and check that
all S-rings over G are CI. Until the end of the section G is an elementary abelian 2-group
of rank n and A is a 2-S-ring over G.

Lemma 8.2. Let n ≤ 3. Then A is cyclotomic. Moreover, A is Cayley minimal except for
the case when n = 3 and A ∼= ZC2 o ZC2 o ZC2.

Proof. The first part of the lemma follows from [20, Lemma 5.2]; the second part follows
from [20, Lemma 5.3].

Analyzing the lists of all S-rings over C4
2 and C5

2 available on the web-page [30], we
conclude that up to isomorphism there are exactly nineteen 2-S-rings over G if n = 4 and
there are exactly one hundred 2-S-rings over G if n = 5. It can can be established by
inspecting the above 2-S-rings one after the other that there are exactly fifteen decompos-
able and four indecomposable 2-S-rings over G if n = 4 and there are exactly ninety six
decomposable and four indecomposable 2-S-rings over G if n = 5.

Lemma 8.3. Let n ∈ {4, 5} and A indecomposable. Then A is normal. If in addition
n = 5 then A ∼= ZC2 ⊗A′, where A′ is indecomposable 2-S-ring over C4

2 .

Proof. Let n = 4. One can compute |Aut(A)| and |NAut(A)(Gright)| using the GAP
package COCO2P [16]. It turns out that for each of the four indecomposable 2-S-rings
over G the equality

|Aut(A)| = |NAut(A)(Gright)|
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is attained. So every indecomposable 2-S-ring over G is normal whenever n = 4.
Let n = 5. The straightforward check for each of the four indecomposable 2-S-rings

over G yields that A = AH ⊗ ZL, where H ∼= C4
2 , L ∼= C2, and AH is indecomposable

2-S-ring. Clearly, ZL is normal. By the above paragraph, AH is normal. Since Aut(A) =
Aut(AH)×Aut(AL), we obtain that A is normal.

Note that if p > 2 then Lemma 8.3 does not hold. In fact, if p > 2 then there exists an
indecomposable p-S-ring over C5

p which is not normal (see [13, Lemma 6.4]).

Lemma 8.4. Let n ≤ 5. Then A is normal whenever one of the following statements holds:

(1) A is indecomposable;

(2) |G : Oθ(A)| = 2;

(3) n = 4 and A ∼= (ZC2 o ZC2)⊗ (ZC2 o ZC2).

Proof. If n ≤ 3 and A is indecomposable then A = ZG by [20, Lemma 5.2]. Clearly,
in this case A is normal. If n ∈ {4, 5} and A is indecomposable then A is normal by
Lemma 8.3. There are exactly n − 1 2-S-rings over G for which Statement (2) of the
lemma holds. For every A isomorphic to one of these 2-S-rings and for A ∼= (ZC2 oZC2)⊗
(ZC2 o ZC2) one can compute |Aut(A)| and |NAut(A)(Gright)| using the GAP package
COCO2P [16]. It turns out that in each case the equality |Aut(A)| = |NAut(A)(Gright)|
holds and hence A is normal.

Lemma 8.5. Let n = 4. Then A is cyclotomic.

Proof. If A is decomposable then A is cyclotomic by [20, Lemma 5.6]. If A is indecom-
posable then A is normal by Lemma 8.3. This implies that

Aut(A)e = (NAut(A)(Gright))e ≤ Aut(G).

The S-ring A is schurian by Lemma 8.1. So from Equation (3.2) it follows that A =
V (Aut(A), G) and hence A = Cyc(Aut(A)e, G).

Lemma 8.6. Let n = 5. Suppose that A is decomposable and |Oθ(A)| = 8. Then A is
cyclotomic.

Proof. Let A be the nontrivial S-wreath product for some A-section S = U/L. Note that
|U | ≤ 16, |G/L| ≤ 16, and |S| ≤ 8. The S-rings AU , AG/L, and AS are 2-S-rings by
Lemma 6.2. So each of these S-rings is cyclotomic by Lemma 8.2 whenever the order of
the corresponding group is at most 8 and by Lemma 8.5 otherwise. Since |Oθ(A)| = 8, we
conclude that |S| ≤ 4 or |S| = 8 and |Oθ(AS)| ≥ 4. In both cases AS is Cayley minimal
by Lemma 8.2. This implies that

AutU (AU )S = AutG/L(AG/L)S = AutS(AS).

Now from [20, Lemma 4.3] it follows that A is cyclotomic.
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In the next two lemmas we establish some properties of decomposable 2-S-rings over
G ∼= C5

2 whose thin radical is of size 2 or 4. These properties will be used in the proof of
Theorem 1.1. The statements of Lemma 8.7 and Lemma 8.8 can be verified by analysis of
computational results obtained with the help of the GAP package COCO2P [16]. For every
decomposable 2-S-ring A with |Oθ(A)| ∈ {2, 4} overG (see the list [30]), we compute all
A-subgroups, automorphism groups, and Cayley automorphism groups of some restrictions
and quotients.

Lemma 8.7. Let n = 5. Suppose that A is decomposable and |Oθ(A)| = 4. Then one of
the following statements holds:

(1) there exists an A-subgroup L ≤ Oθ(A) of order 2 such that A = ZOθ(A) oS AG/L,
where S = Oθ(A)/L;

(2) |AutG(A)| ≥ |AutU (AU )| for every A-subgroup U with |U | = 16 and U ≥
Oθ(A);

(3) A is normal;

(4) there exist an A-subgroup L ≤ Oθ(A) and X ∈ S(A) such that |L| = |X| = 2,
L 6= rad(X), and AG/L is normal.

Lemma 8.8. Let n = 5. Suppose that A is decomposable, |Oθ(A)| = 2, and there exists
X ∈ S(A) with |X| > 1 and | rad(X)| = 1. Then |X| = 4 and one of the following
statements holds:

(1) A ∼= B o ZC2, where B is a 2-S-ring over C4
2 ;

(2) |AutG(A)| ≥ |AutU (AU )| for every A-subgroup U with |U | = 16;

(3) there exists an A-subgroup L such that |L| ∈ {2, 4} and AG/L is normal.

Lemma 8.9. Let D ∈ E such that every S-ring over a proper section of D is CI, D an
S-ring over D, and S = U/L a D-section. Suppose that D is the nontrivial S-wreath
product. Then D is a CI-S-ring whenever D/L ∼= Ck2 for some k ≤ 4 and DD/L is a
2-S-ring.

Proof. The S-ring DD/L is cyclotomic by Lemma 8.2 whenever |D/L| ≤ 8 and by
Lemma 8.5 whenever |D/L| = 16. The S-ring DS is a 2-S-ring by Lemma 6.2. If
DS � ZC2 o ZC2 o ZC2 then DS is Cayley minimal by Lemma 8.2. The S-rings DU and
DD/L are CI-S-rings by the assumption of the lemma. So D is a CI-S-ring by Lemma 5.3.

Assume that
DS
∼= ZC2 o ZC2 o ZC2.

In this case |D/L| = 16, |S| = 8, and there exists the least DS-subgroupA of S of order 2.
Every basic set of DD/L outside S is contained in an S-coset because D(D/L)/S

∼= ZC2.
So rad(X) is a DS-subgroup for every X ∈ S(DD/L) outside S. If | rad(X)| > 1 for
everyX ∈ S(DD/L) outside S then DD/L is the S/A-wreath product becauseA is the least
DS-subgroup. This implies that D is the U/π−1(A)-wreath product, where π : D → D/L
is the canonical epimorphism. One can see that |D/π−1(A)| ≤ 8 and |U/π−1(A)| ≤
4. The S-rings DD/π−1(A) and DU/π−1(A) are 2-S-rings by Lemma 6.2. The S-ring
DD/π−1(A) is cyclotomic by Lemma 8.2 and the S-ring DU/π−1(A) is Cayley minimal by
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Lemma 8.2. The S-rings DU and DD/π−1(A) are CI-S-rings by the assumption of the
lemma. Thus, D is a CI-S-ring by Lemma 5.3.

Suppose that there exists a basic set X of DD/L outside S with | rad(X)| = 1. If
DD/L is decomposable then

AutD/L(DD/L)S = AutS(DS)

by [20, Lemma 5.8]. Therefore D is a CI-S-ring by Lemma 5.1.
If DD/L is indecomposable then DD/L is normal by Lemma 8.3. So all conditions of

Lemma 5.5 hold for D. Thus, D is a CI-S-ring.

Lemma 8.10. Let n ≤ 5. Then every S-ring over G is a CI-S-ring.

Proof. Every S-ring over G is schurian by Lemma 8.1. So to prove the lemma, it is suf-
ficient to prove that B = V (K,G) is a CI-S-ring for every K ∈ Supmin

2 (Gright) (see
Remark 4.3). The S-ring B is a 2-S-ring by Lemma 6.4. If n ≤ 4 then B is CI by [20,
Lemma 5.7]. Thus, if n = 4 then the statement of the lemma holds.

Let n = 5. Suppose that B is indecomposable. Then the second part of Lemma 8.3
implies B ∼= ZC2⊗B′, where B′ is indecomposable 2-S-ring overC4

2 . Since B is schurian
by Lemma 8.1 and every S-ring over an elementary abelian group of rank at most 4 is CI
by the above paragraph, we conclude that B is a CI-S-ring by Lemma 5.6.

Now suppose that B is decomposable, i.e. B is the nontrivial S = U/L-wreath product
for some B-section S = U/L. Clearly, |G/L| ≤ 16. The S-ring BG/L is a 2-S-ring by
Lemma 6.2. Since every S-ring over an elementary abelian group of rank at most 4 is CI,
B is a CI-S-ring by Lemma 8.9.

9 Proof of Theorem 1.1
Let G = H × P , where H ∼= C5

2 and P ∼= Cp, where p is a prime. These notations are
valid until the end of the paper. If p = 2 then G is not a DCI-group by [28]. So in view of
Lemma 4.2, to prove Theorem 1.1, it is sufficient to prove the following theorem.

Theorem 9.1. Let p be an odd prime and K ∈ Supmin
2 (Gright). Then A = V (K,G) is a

CI-S-ring.

The proof of Proposition 9.1 will be given at the end of the section. We start with the
next lemma concerned with proper sections of G.

Lemma 9.2. Let S be a section of G such that S 6= G. Then every schurian S-ring over S
is a CI-S-ring.

Proof. If S ∼= Cn2 for some n ≤ 5 then we are done by Lemma 8.10. Suppose that S ∼=
Cn2 ×Cp for some n ≤ 4. Then the statement of the lemma follows from [20, Remark 3.4]
whenever n ≤ 3 and from [20, Remark 3.4, Theorem 7.1] whenever n = 4.

A key step towards the proof of Theorem 9.1 is the following lemma.

Lemma 9.3. Let A be an S-ring over G and U an A-subgroup with U ≥ P . Suppose that
P is an A-subgroup, A is the nontrivial S-wreath product, where S = U/P , |S| = 16, and
AG/P is a 2-S-ring. Then A is a CI-S-ring.
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Proof. Firstly we prove two lemmas concerned with some special cases of Lemma 9.3.

Lemma 9.4. Suppose that S has a gwr-complement with respect to AG/P . Then A is a
CI-S-ring.

Proof. The condition of the lemma implies that there exists an AG/P -subgroup A such
that AG/P is the nontrivial S/A-wreath product. This means that A is the nontrivial
U/π−1(A)-wreath product, where π : G→ G/P is the canonical epimorphism. Note that
|G/π−1(A)| ≤ 16 and AG/π−1(A)

∼= A(G/P )/A is a 2-S-ring by Lemma 6.2. Therefore A

is a CI-S-ring by Lemma 9.2 and Lemma 8.9.

Lemma 9.5. Suppose that S does not have a gwr-complement with respect to AG/P . Then

|AutG/P (AG/P )S | = |AutG/P (AG/P )|.

Proof. To prove the lemma it is sufficient to prove that the group

(AutG/P (AG/P ))S = {ϕ ∈ AutG/P (AG/P ) : ϕS = idS}

is trivial. Let ϕ ∈ (AutG/P (AG/P ))S . Put C = Cyc(〈ϕ〉, G/P ). Clearly, 〈ϕ〉 ≤
Aut(AG/P ). So from Equations (3.1) and (3.2) it follows that C ≥ AG/P . Lemma 6.1
yields that C is a 2-S-ring. Since ϕS = idS , we conclude that Oθ(C) ≥ S.

If C 6= Z(G/P ) then Oθ(C) = S. Therefore C = ZS oS/A Z((G/P )/A) for some C-
subgroup A by Statement (i) of [19, Proposition 4.3]. This implies that AG/P = AS oS/A
A((G/P )/A) because C ≥ AG/P and S is both AG/P , C-subgroup. We obtain a contradic-
tion with the assumption of the lemma. Thus, C = Z(G/P ) and hence ϕ is trivial. So the
group (AutG/P (AG/P ))S is trivial.

If AG/P is indecomposable then AG/P is normal by Lemma 8.3. So A is a CI-S-ring
by Lemma 9.2 and Lemma 5.5. Further we assume that AG/P is decomposable. Due to
Lemma 9.4, we may assume also that

S does not have a gwr-complement with respect to AG/P . (9.1)

If there exists X ∈ S(AG/P ) outside S with |X| = 1 then A is a CI-S-ring by Lemma 9.2
and Lemma 5.8. So we may assume that

Oθ(AG/P ) ≤ S. (9.2)

Note that |Oθ(AG/P )| > 1 by Statement (1) of Lemma 6.3 and |Oθ(AG/P )| ≤ 16 by
Equation (9.2). So |Oθ(AG/P )| ∈ {2, 4, 8, 16}. We divide the rest of the proof into four
cases depending on |Oθ(AG/P )|.

Case 1: |Oθ(AG/P )| = 16.
Due to Equation (9.2), we conclude that AS = ZS. So A is a CI-S-ring by Lemma 9.2

and Lemma 5.2.

Case 2: |Oθ(AG/P )| = 8.
Since AG/P is decomposable, Lemma 8.6 implies that AG/P is cyclotomic. The S-ring

AS is a 2-S-ring by Lemma 6.2. In view of Equation (9.2), we obtain that |Oθ(AS)| = 8.
So Statement (ii) of [19, Proposition 4.3] yields that the S-ring AS is Cayley minimal.
Thus, A is a CI-S-ring by Lemma 9.2 and Lemma 5.3.
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Case 3: |Oθ(AG/P )| = 4.
In this case one of the statements of Lemma 8.7 holds for AG/P . If Statement (1) of

Lemma 8.7 holds for AG/P then we obtain a contradiction with Equation (9.1).
If Statement (2) of Lemma 8.7 holds for AG/P then |AutG/P (AG/P )| ≥ |AutS(AS)|.

From Lemma 9.5 it follows that |AutG/P (AG/P )S | = |AutG/P (AG/P )| and hence

|AutG/P (AG/P )S | ≥ |AutS(AS)|.

Since AutG/P (AG/P )S ≤ AutS(AS), we conclude that AutG/P (AG/P )S = AutS(AS).
Thus, A is a CI-S-ring by Lemma 9.2 and Lemma 5.1.

If Statement (3) of Lemma 8.7 holds for AG/P then AG/P is normal. In this case A is
a CI-S-ring by Lemma 9.2 and Lemma 5.5.

Suppose that Statement (4) of Lemma 8.7 holds for AG/P , i.e. there exists an AG/P -
subgroup A ≤ Oθ(AG/P ) of order 2 and X = {x1, x2} ∈ S(AG/P ) such that A(G/P )/A

is normal and A 6= rad(X). Let L = π−1(A), where π : G → G/P is the canonical
epimorphism, and B = V (N,G), where N = Aut(A)G/LGright.

Prove that B is a CI-S-ring. Lemma 5.4 implies that B is the S-wreath product. From
Equations (3.1) and (3.2) it follows that B ≥ A. So BG/P ≥ AG/P and hence BG/P is a
2-S-ring by Lemma 6.1. We obtain that B and U satisfy the conditions of Lemma 9.3.

One can see that X is a BG/P -set and

Oθ(BG/P ) ≥ Oθ(AG/P ) (9.3)

because BG/P ≥ AG/P . The definition of B yields that every basic set of B is contained
in an L-coset and hence every basic set of BG/P is contained in an A-coset. Therefore

{x1}, {x2} ∈ S(BG/P ) (9.4)

because X is a BG/P -set and A 6= rad(X). Now from Equations (9.3) and (9.4) it follows
that

|Oθ(BG/P )| ≥ 8. (9.5)

If BG/P is indecomposable then BG/P is normal by Lemma 8.3 and hence B is CI by
Lemma 9.2 and Lemma 5.5. If S has a gwr-complement with respect to BG/P then B is CI
by Lemma 9.4. If Oθ(BG/P ) � S then B is CI by Lemma 9.2 and Lemma 5.8. Suppose
that none of the above conditions does not hold for B. Then, in view of Equation (9.5), B
satisfies all conditions from one of the Cases 1 or 2. Therefore, B is CI.

Clearly, AG/L ∼= A(G/P )/A and hence AG/L is normal. Also AG/L is CI by Lem-
ma 9.2. The S-ring B is CI by the above paragraph. Thus, A is CI by Lemma 4.4.

Case 4: |Oθ(AG/P )| = 2.
Let A = Oθ(AG/P ). Clearly, A is the least AG/P -subgroup. If | rad(X)| > 1 for

every X ∈ S(AG/P ) outside S then A ≤ rad(X) for every X ∈ S(AG/P ) outside S and
we obtain a contradiction with Equation (9.1). So there exists X ∈ S(AG/P ) outside S
with | rad(X)| = 1. From Equation (9.2) it follows that |X| > 1. Lemma 8.8 implies that
|X| = 4. The number λ = |X ∩ Ax| does not depend on x ∈ X by Lemma 2.1. If λ = 2
then A ≤ rad(X), a contradiction. Therefore

λ = 1. (9.6)
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One of the statements of Lemma 8.8 holds for AG/P . If Statement (1) of Lemma 8.8
holds for AG/P then there exists Y ∈ S(AG/P ) with |Y | = 16 and | rad(Y )| = 16. Since
|S| = 16, we conclude that Y lies outside S and hence Y = (G/P ) \S. This means that S
is a gwr-complement to S with respect to AG/P . However, this contradicts Equation (9.1).

If Statement (2) of Lemma 8.8 holds for AG/P then |AutG/P (AG/P )| ≥ |AutS(AS)|.
So Lemma 9.5 implies that AutG/P (AG/P )S = AutS(AS). Therefore, A is CI by
Lemma 9.2 and Lemma 5.1

Suppose that Statement (3) of Lemma 8.8 holds for AG/P , i.e. there exists an
AG/P -subgroup B such that |B| ∈ {2, 4} and A(G/P )/B is normal. Let L = π−1(B),
where π : G → G/P is the canonical epimorphism, and B = V (N,G), where N =
Aut(A)G/LGright.

We prove that B is a CI-S-ring. As in Case 3, B is the S-wreath product by Lemma 5.4
and B ≥ A by Equations (3.1) and (3.2). So BG/P ≥ AG/P and hence BG/P is a 2-S-ring
by Lemma 6.1. Therefore B and U satisfy the conditions of Lemma 9.3.

Note that X is a BG/P -set and Equation (9.3) holds because BG/P ≥ AG/P . By the
definition of B, every basic set of B is contained in an L-coset and hence every basic set of
BG/P is contained in aB-coset. The setX is a BG/P -set with |X| = 4 and | rad(X)| = 1.
So there exists X1 ∈ S(BG/P ) such that

X1 ⊂ X and |X1| ∈ {1, 2}.

If |X1| = 1 thenX1 ⊆ Oθ(BG/P ). If |X1| = 2 thenX1 is a coset by a BG/P -subgroup
A1 of order 2. Clearly, A1 ⊆ Oθ(BG/P ). In view of Equation (9.6), we have A1 6= A.
Thus, in both cases Oθ(BG/P ) � A. Together with Equation (9.3) this implies that

|Oθ(BG/P )| ≥ 4. (9.7)

If BG/P is indecomposable then BG/P is normal by Lemma 8.3 and hence B is CI by
Lemma 9.2 and Lemma 5.5. If S has a gwr-complement with respect to BG/P then B is CI
by Lemma 9.4. If Oθ(BG/P ) � S then B is CI by Lemma 9.2 and Lemma 5.8. Suppose
that none of the above conditions does not hold for B. Then, in view of Equation (9.7), B
satisfies all conditions from one of the Cases 1, 2 or 3. Therefore, B is CI.

The S-ring AG/L is normal because it is isomorphic to A(G/P )/B . The S-rings AG/L
and B are CI by Lemma 9.2 and the above paragraph respectively. Thus, A is CI by
Lemma 4.4.

All cases were considered.

Proof of Theorem 9.1. Let H1 be a maximal A-subgroup contained in H and P1 the least
A-subgroup containing P .

Lemma 9.6. If H1 = H then A is a CI-S-ring.

Proof. The S-ring AG/H is a p-S-ring over G/H ∼= Cp by Lemma 6.4. So AG/H ∼= ZCp.
Clearly, G = HP1. Therefore A = AH ?AP1

by Lemma 7.2. Since H and P1/(H ∩ P1)
are proper sections of G, the S-rings AH and AP1/(H∩P1) are CI by Lemma 9.2. Thus, A
is CI by Lemma 5.6.

Lemma 9.7. If H1 < H and H1P1 = G then A is a CI-S-ring.
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Proof. Since H1 6= (H1P1)p′ = H , Lemma 7.1 implies that A = AH1
?AP1

. The S-rings
AH1

and AP1/(H∩P1) are CI by Lemma 9.2 because H1 and P1/(H1 ∩ P1) are proper
sections of G. Therefore A is CI by Lemma 5.6.

In view of Lemma 9.6, we may assume that H1 < H . Then one of the statements of
Lemma 7.3 holds for A. If Statement (1) of Lemma 7.3 holds for A then

A = AH1 oAG/H1
,

where rk(AG/H1
) = 2. If H1 is trivial then rk(A) = 2. Obviously, A is CI in this case. If

H1 is nontrivial then A is CI by Lemma 9.2 and Lemma 5.2.
Assume that Statement (2) of Lemma 7.3 holds for A, i.e.

A = AU oS AG/P1
,

where U = H1P1, S = U/P1, and P1 < G. In view of Lemma 9.7, we may assume that
H1P1 < G, i.e. A is the nontrivial S-wreath product. The groupG/P1 is a 2-group of order
at most 32 because P1 ≥ P . Lemma 6.4 implies that AG/P1

is a 2-S-ring. If |G/P1| ≤ 16
then A is CI by Lemma 9.2 and Lemma 8.9. So we may assume that |G/P1| = 32. Clearly,
in this case

P1 = P.

In view of Statement (2) of Lemma 6.3, we may assume that

|S| = 16.

Indeed, if |S| < 16 then S is contained in an AG/P -subgroup S′ of order 16 by State-
ment (2) of Lemma 6.3. Clearly, A = AU ′ oS′ AG/P , where U ′ = π−1(S′) and π : G →
G/P is the canonical epimorphism. Replacing S by S′, we obtain the required.

Now all conditions of Lemma 9.3 hold for A and U . Thus, A is CI by Lemma 9.3.
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