
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 15 (2018) 267–295
https://doi.org/10.26493/1855-3974.939.77d

(Also available at http://amc-journal.eu)

Calculating genus polynomials via string
operations and matrices

Jonathan L. Gross ∗

Dept. of Computer Science, Columbia University, New York, NY 10027, USA

Imran F. Khan
PUCIT, University of the Punjab, Lahore 54000, Pakistan

Toufik Mansour
Department of Mathematics, University of Haifa, 3498838 Haifa, Israel

Thomas W. Tucker †

Dept. of Mathematics, Colgate University, Hamilton, NY 13346, USA

Received 21 September 2015, accepted 27 November 2017, published online 20 June 2018

Abstract

To calculate the genus polynomials for a recursively specifiable sequence of graphs,
the set of cellular imbeddings in oriented surfaces for each of the graphs is usually parti-
tioned into imbedding-types. The effects of a recursively applied graph operation τ on each
imbedding-type are represented by a production matrix. When the operation τ amounts to
constructing the next member of the sequence by attaching a copy of a fixed graph H to
the previous member, Stahl called the resulting sequence of graphs an H-linear family. We
demonstrate herein how representing the imbedding types by strings and the operation τ
by string operations enables us to automate the calculation of the production matrices, a
task requiring time proportional to the square of the number of imbedding-types.

Keywords: Graph imbedding, genus polynomial, production matrix, transfer matrix method.

Math. Subj. Class.: 05A15, 05A20, 05C10

∗J. L. Gross is supported by Simons Foundation Grant #315001.
†T. W. Tucker is supported by Simons Foundation Grant #317689.
E-mail addresses: gross@cs.columbia.edu (Jonathan L. Gross), imran.farid@pucit.edu.pk (Imran F. Khan),

tmansour@univ.haifa.ac.il (Toufik Mansour), ttucker@colgate.edu (Thomas W. Tucker)

cb This work is licensed under https://creativecommons.org/licenses/by/3.0/

268 Ars Math. Contemp. 15 (2018) 267–295

1 Introduction
The genus polynomial of a graph G is defined to be the generating function

ΓG(z) =
∑
i≥0

gi(G)zi,

where gi(G) counts the cellular imbeddings of G in the closed oriented surface Si of
genus i. Following their introduction by [12] in 1987, and starting with the work of [6], the
genus polynomials for a recursively constructed sequence of graphs have most frequently
been calculated, as in [8, 9, 13], by partitioning the imbeddings according to the cyclic
orderings of occurrences of root-vertices on the face-boundary walks (abbr. fb-walks) of
the imbeddings. In this paper, we describe how to expedite such calculations.

1.1 Rotation systems

All our graphs come with a labeling of the edges. All graph imbeddings in this paper are
assumed to be cellular, that is, each component of the complement of the imbedded graph
is homeomorphic to the interior of the unit disk. All surfaces are assumed to be closed and
oriented.

To describe the imbeddings of a graph G, we assign + and − orientations to the edges,
including self-loops. Then any imbedding defines, for each vertex, a cyclic order of the
signed edge-ends initiating at that vertex, which is called the rotation at that vertex. The
rotations collectively form a rotation system (e.g., see [19]), which acts as a permutation ρ
on the oriented edge set. If λ is the involution that reverses the orientation of each edge,
then the face boundary walks of the imbedding are the orbits of the permutation ρλ.

A rotation system for a graph has also been called a “ribbon graph” or a “fat graph”,
especially in the context of algebraic geometry, Riemann surfaces, and the theory of dessins
([3, 20, 24]). We use the Euler polyhedral formula

|V | − |E|+ |F | = 2− 2γ(S)

to compute the genus γ(S) of the imbedding surface S.
Two imbeddings ι1, ι2 : G → S determine the same rotation system if and only if

there is a homeomorphism of the surface S taking ι1(G) to ι2(G) that acts as the identity
isomorphism on the graph G (i.e., respects the labeling of edges). Accordingly, there is a
bijection from the set of imbeddings of G to the set of rotation systems.

A problem in calculating genus polynomials is that the number of possible cyclic or-
derings of the edge-ends incident at a d-valent vertex is (d − 1)!. Thus, the number of
imbeddings of a graph G is the product Π(dv − 1)!, taken over all vertices v of G, where
dv is the valence of v. It is well-known [30] that the problem of calculating the minimum
genus of a graph is NP-hard, even when the graph is 3-regular. It follows that calculating
the genus polynomial is at least that hard. For example, the number of rotation systems for
the complete graph K7 is

(5!)7 ≈ 3.6× 1014,

and the genus polynomial for K7 has only recently been computed [2]. Table 1 gives the
list of coefficients.

J. L. Gross et al.: Calculating genus polynomials via string operations and matrices 269

Table 1: Genus distribution of the complete graph K7.

i gi

0 0
1 240
2 3,396,960
3 3,746,107,320
4 594,836,922,960
5 20,761,712,301,960
6 158,500,382,165,280
7 178,457,399,105,280

1.2 Context

Genus polynomials for recursively specified families of graphs have been computed mostly
within a general paradigm in which the recursive operation occurs in the vicinity on a
small number of vertices or edges designated as roots. The set of all imbeddings of each
graph in the family is partitioned into what we now call imbedding-types, according to
incidence of the fb-walks on the roots, a technique for calculating genus polynomials that
was introduced by [6]. This basic paradigm is exemplified by [8, 13] for root-vertices, and
by [25, 26] for root-edges.

This paper integrates several embellishments of the basic paradigm:

• The genus polynomial for a graph is partitioned into a pgd-vector, with one coordi-
nate for each imbedding type, such that each coordinate is a polynomial that gives the
number of oriented imbeddings of that imbedding type in every orientable surface.

• The recursively applied topological operation is represented by a production system,
as developed by Gross, Khan, and Poshni, in a series of papers [8, 13, 25, 26], that
transforms the pgd-vector for a given graph into the pgd-vector for the graph result-
ing from an application of the recursive operation used to specify the graph family.
In those papers, the productions were calculated with the aid of a multiplicity of
drawings of rotation projections.

• The representation of production systems by matrices was introduced by Stahl [27],
for application to pgd-vectors of some graphs in what he called H-linear families.
Such matrices are now called production matrices, and the graph sequences are now
called H-linear sequences, or simply linear sequences. Stahl used what he called
permutation-partition pairs to derive production matrices.

• The representation of imbedding-types by strings of root-vertices, as developed by
Gross [11].

• Using string operations directly to calculate the production matrices, as suggested
subsequently by Mohar [23].

The general idea of a linear sequence is that a copy of a graph H is attached to each
graph in the sequence to form the next graph in the sequence. It is necessary to attach each
copy of H in the same way, as described precisely by [4].

270 Ars Math. Contemp. 15 (2018) 267–295

1.3 Outline of this paper

Our main focus in this paper is the calculation of production matrices. Since the size of the
matrix increases with the number of imbedding types, and since the number of imbedding-
types grows exponentially with the number of roots and with the valences of the roots, most
of the calculations of genus polynomials have been for sequences of graphs with at most
two roots and valences no larger than 4.

The string notation by which we concisely represent imbedding types allows us to au-
tomate the bookkeeping used in tracking the way imbedding types are changed by the
addition of paths between root vertices. The advantages of this system are many. It allows
us to derive in a few lines (see Subsection 4.3) the computation of production matrices
that formerly involved many figures [10] or detailed paper-and-pencil applications of what
Stahl [28] called the “Walkup reduction” for permutation-partition pairs. String notation
facilitates the computer calculation of production matrices whose derivation would be un-
feasibly tedious by hand (see the 12 × 12 matrix in Section 5). Finally, it reveals ways of
combining different imbedding types to get smaller matrices (see Subsection 5.1).

Following a review in Section 2 of the representation of imbedding-types by strings,
Section 3 introduces the representation of topological and vertex-labeling operations on
imbeddings by string operations. Section 3 also introduces the concept of grouping two
or more i-types into a “super-type”. As an illustration of how the string operations are
used in calculations of genus distributions, Section 4 applies these representations to two
previously published examples, one of which (the iterated claw) we have adapted here
to give a detailed example of grouping. Also, we explain in Section 4 how our use of
productions to calculate pgd-vectors is interpretable as an embellishment of the transfer
matrix method, along the lines described by [29].

Section 5 explores issues related to computation. It uses the theory developed in the
previous sections to calculate genus polynomials for a vertex-amalgamation path of copies
of K4 and for an edge-amalgamated path of copies of K4. Without string operations, both
derivations would be long and tedious. We used two computational aids while preparing
this paper.

• The computational system Maple R©.

• A computer program, based on string operations, that calculates production matrices.

Such kinds of aids are what we have in mind in various comments here, rather than a state-
of-the-art computer. Section 5 includes an additional example of the grouping of i-types
into a super-type.

In Section 6, we use Burnside’s Lemma to derive a formula for the maximum number
of imbedding types for a graph with two roots of any possible combination of valences. We
generalize the formula to more that two roots. From the rapid growth rate of the number
of imbedding-types, as valences and the number of roots of the graphs at issue increases, it
becomes clear that programmable computation tools are a virtual necessity when seeking
to calculate genus polynomials.

2 Representing imbedding-types by strings
In this section, we develop a system of notation that uses strings of root-labels, so that
representing the addition of an edge to a graph becomes a simple matter of applying a few
string-processing rules.

J. L. Gross et al.: Calculating genus polynomials via string operations and matrices 271

2.1 Face-boundary-walks

We assign labels 0, 1, 2, . . . to the roots of a graph G. Given an imbedding of G, we
represent a face as a string of roots, in the order they are encountered in a traversal of its
fb-walk following the orientation of the surface. If an fb-walk does not contain any roots,
we call its string empty. Two strings are equivalent representations of an fb-walk if one
is a cyclic shift of the other. We denote an entire equivalence class of strings by putting
a representative string of labels inside parentheses. The canonical representative for the
equivalence class of fb-walks is the one with minimum lexicographic order with respect to
the labels 0, 1,

Remark 2.1. Vertices that are not roots do not appear in the string representing a face.
Accordingly, the appearance of consecutive labels . . . 12 . . .within a string would not imply
that there is an edge between vertices 1 and 2. Also, since any labeled vertex may appear
more than once around an fb-walk, the corresponding cyclic list of root-labels is not a
permutation.

2.2 Imbedding types

The collection of non-empty strings for all the fb-walks of an oriented imbedding of a
rooted graphG is called an imbedding-type of G (abbr. i-type). The collection of all imbed-
ding types over all imbeddings of G is called the full collection of imbedding types for G.

In order to compare imbedding types for the same rooted graph, we usually use the
shortlex order [31] on canonical representatives to make a list of fb-walks (rather than a
set): shorter faces are listed before longer ones, and if two faces have the same length, the
one with shortlexically least canonical representative is listed first. We call such a list the
canonical form for the i-type.

Example 2.1. Figure 1 shows an imbedding ofK4 in the sphere with roots 0, 1, 2, and 3. If
the “interior” fb-walks are oriented counterclockwise (which forces the “exterior” fb-walk
to appear as clockwise, from the perspective of vertex 0), then the i-type (in canonical form)
is

(012)(023)(031)(132).

0

1

2 3

Figure 1: An imbedding of K4 in S0.

Notice that each face is represented by its canonical form (cyclic shift with least lexi-
cographic order) and that the faces are listed in shortlex order. Since for this example every
vertex is a root, it follows that two consecutive vertices (with respect to cyclic order) in the

272 Ars Math. Contemp. 15 (2018) 267–295

representation of a face actually does represent a directed edge. For any two roots i and j,
the directed edge ij appears exactly once. If i = 0 and j = 1, we could suppress the labels
2, 3 to obtain the i-type

(01)(0)(01)(1) = (0)(1)(01)(01)

for the imbedding of Figure 1. If the only root is 0, then the imbedding type would be
(0)(0)(0). Notice in the last imbedding type, the number of strings is less than the number
of faces, because the fb-walk (132) contains no instances of vertex 0, and we do not list
empty faces. If we reverse the orientation of the sphere and have all four vertices 0, 1, 2, 3
as roots, then the i-type in canonical form would be

(021)(032)(013)(123) = (013)(021)(032)(123).

Observe that the shortlex order for the faces differs from the previous orientation. However,
the i-type for roots 0, 1 is the same as before, as is the i-type for root 0, when labels 1, 2,
and 3 are suppressed.

Example 2.2. Considering all 24 rotation systems for K4, we get the following census of
i-types for roots 0, 1, given in shortlex order:

• 2 of i-type (0)(1)(01)(01)

• 2 of i-type (0)(01011)

• 2 of i-type (1)(00101)

• 2 of i-type (01)(0011)

• 8 of i-type (01)(0101)

Notice that since there is only one edge 01, only one of the substrings 01 in an i-type, for
example (01)(0101), comes from an edge. The other juxtapositions of 0 and 1 come from
suppressing incidences of the roots 2 and 3. We conclude that

{(0)(1)(01)(01), (0)(01011), (1)(00101), (01)(0011), (01)(0101)}

is a full set of i-types for K4 with roots 0 and 1. In Section 6 of this paper, we shall see that
the maximum number of i-types for a pair of 3-valent roots is 38.

Remark 2.2. We observe that within the string representation of any i-type, each root-
vertex appears as many times as its valence. If there is an edge between roots i and j, then
both ij and ji must appear at least once in every i-type. On the other hand, as we have
noted, the appearance of ij in a string does not imply that there is an edge between i and j.

Remark 2.3. Suppose that G has no multi-edges or self-loops, and suppose that every
vertex is a root. Then each rotation system for the graph G determines a unique i-type,
since each i-type determines a rotation system for the dual graph. In this circumstance, the
number of i-types would be the same as the number of rotation systems. At the opposite
extreme, the set of imbeddings for a tree with one root-vertex has only one i-type.

Remark 2.4. When there are multi-edges or loops and every vertex is a root, it happens
that different rotation systems can determine the same i-type. For example, the bouquetBn
has only one vertex 0 and has n loops at that vertex. Then an i-type is simply a partition of
2n into k parts, where k is the opposite parity of n (k is the number of faces, so the Euler
characteristic 1− n+ k must be even). Thus, the number of i-types for imbeddings of Bn
with k faces is at most the Stirling subset number

{
2n
k

}
(i.e., the Stirling number of the

second kind), where k and n have opposite parities.

J. L. Gross et al.: Calculating genus polynomials via string operations and matrices 273

2.3 String notational conventions

We adopt two notational conventions for strings:

• The concatenation of a string S with a string T is denoted by ST .

• The reverse string for a string S is denoted by S−1.

We emphasize that SS−1 is not the empty string, but rather the concatenation of S with
its reverse (which forms a palindrome). This notation does satisfy the relations

(ST)−1 = T−1S−1 and
(S−1)−1 = S

as if in a group, even though our strings are not permutations (since roots can repeat), and
even though they do not form a group.

2.4 Pgd-vectors

Given an i-type t, we write its partial genus polynomial in the form∑
aiz

i

where ai is the number of type-t imbeddings of G of genus i.
If the i-types are listed in shortlex order, then we can associate the set of partitioned

genus polynomials for G with a column vector whose rth coordinate is the partial genus
polynomial for the rth i-type. This is called a pgd-vector for the graph G. For instance, the
partitioned genus distribution for the complete graphK4 given by Example 2.2 corresponds
to the vector [

2 2z 2z 2z 8z
]T

where the superscript T denotes the transpose.

3 Operations on imbedding-types
In this section, we describe how a path-adding operation affects the i-types. We also de-
scribe the relabeling of root-vertices, and the suppression of some root-labels, which are
used, for instance, when there are no more paths to be added at a root-vertex.

3.1 Adding a path within a face and between faces

Let G be a rooted graph and let iUj be a path whose endpoints i, j are roots of G but all
other vertices of U are not in G. If U is empty, we have simply the edge ij. The effect of
adding iUj into a face with fb-walk (iSjT) is given by the following operation:

(iSjT) + iUj → (iSjU−1)(iUjT). (3.1)

In calculations, we may denote the right-hand side by AddiUj [iSjT]. If the i-type in which
the fb-walk (iSjT) occurs is of the form

(iSjT)W1W2 . . .Wk,

274 Ars Math. Contemp. 15 (2018) 267–295

which includes other fb-walks, then applying Operation (3.1) to that i-type yields the i-type

(iSjU−1)(iUjT)W1W2 . . .Wk.

That is, the other fb-walks of the i-type are simply recopied.
The effect of adding the path iUj between two faces (iS) and (jT) is given by this

operation:
[(iS), (jT)] + iUj → z(iSiUjTjU−1). (3.2)

The right-hand side may be expressed as AddiUj [(iS), (jT)]. When applying Opera-
tion (3.2) to an i-type with fb-walks (iS) and (jT), any other fb-walks of the i-type are
simply recopied, the same as for Operation (3.1). The multiplier z indicates that the genus
of the imbedding rises by 1 when a handle is added to the surface.

For the circumstance in which the faces (iS) and (jT) lie within (disjoint) imbeddings
ι and ι′ of separate graphs G and G′, the effect of joining the imbeddings by adding the
path iUj between the two faces (iS) and (jT) is given by this operation:

[(iS), (jT)] + iUj → (iSiUjTjU−1). (3.3)

The non-presence of the multiplier z signifies the fact that the genus of the surface in which
the resulting graph is imbedded is simply the sum of the genera of the imbeddings ι and ι′.

Example 3.1. Consider an imbedding of the 4-cycle 0213 in the sphere. There are two
faces, one with fb-walk (0213) and the other with fb-walk (0312). Thus, the initial i-type
is (0213)(0312). There are four ways to add a path 0451 to such an imbedding, one within
the face (0213), one within the face (0312) and two between the faces (0213) and (0312).
Figure 2 shows the four possible ways to add the path 0U1 and the resulting i-type for each.

0

3 3

3 3
3

1

2
(0213)(0312)

z(02130451203154) z(03120451302154)

(02154)(04513)(0312)

(0213)(03154)(04512)

(i)

(iv)(iii)(ii)

0

1

20

1

20

1

2

0

1

2
4

4
44

5

55
5

Figure 2: Adding the path 0451 to an imbedding of a 4-cycle in the sphere.

J. L. Gross et al.: Calculating genus polynomials via string operations and matrices 275

(i) Inserting path 0451 into the face (0213) yields the imbedding type

(02154)(04513)(0312),

as per Operation (3.1). We now have three faces. Root-vertices 0 and 1 now have
valence 3, so they now appear three times in this representation of the i-type.

(ii) Inserting the path 0451 instead into the face (0312) yields i-type

(0213)(03154)(04512).

(iii) If we join the two faces, from endpoint 0 inside the face (0213), to endpoint 2 inside
the face (0312), then the resulting string expression is

z(02130451203154).

(iv) If we add the path 0451 with edge-end 0 now inside the face (0312) and edge-end 1
inside the face (0213), we get the string expression

z(02154031204513).

It follows that the net result of adding the path 0451 to the i-type (0213)(0312) is the
following linear combination of i-types taken over the ring Z[z] of polynomials with integer
coefficients:

(02154)(04513)(0312) + (0213)(03154)(04512)

+ z(0213045120354) + z(03120451302154).

Remark 3.1. The path ii for adding a self-loop is simply a special case. As a variation on
Operation (3.1), we have

(iS) + ii → (i)(iSi)

As a variation on Operation (3.2), we have

[(iS), (iT)] → z(iSiiT i)

Remark 3.2. If a graph already has an edge ij, then adding the path P = ij creates a
multiple adjacency.

3.2 Suppressing roots and relabeling roots

Given a subset of roots {i, j, . . . }, the root-suppression operator Supi,j,... acts to suppress
every occurrence of the root-labels i, j, . . . within an i-type t. For example,

Sup1,2[(1)(12)(0212)(0231303)] = (0)(03303).

Observe that we delete empty pairs of parentheses as a final step in suppressing roots.

276 Ars Math. Contemp. 15 (2018) 267–295

Example 3.1, continued. Suppressing roots 2 and 3 as well as any roots along U trans-
forms the i-type (021U−1)(0U13)(0312) into the i-type (01)(01)(01). Similarly,

Sup1,2,U [z(021U−1)(0U13)(0312)] = z(010101).

Moreover, when root-suppression is applied to a linear combination of i-types, it can reduce
the number of terms. For instance,

Sup2,3,U [(021U−1)(0U13)(0312) + (0213)(031U−1)(0U12)

+ z(02130U1203U−1) + z(03120U13021U−1)]

= 2(01)(01)(01) + 2z(010101).

We can also relabel roots, by using the root-relabeling operator. Suppose that the label
i appears in i-type t and label j does not. Then Labij [t] is the i-type obtained by replacing
in t all occurrences of i by j. Thus,

Lab24[(1)(2)(22)(1323)] = (1)(4)(44)(1343).

We denote by Labii′,jj′,...[t] the result of relabeling i by i′, j by j′ etc.

3.3 Reversing orientation

If the orientation of a graph imbedding is reversed, the effect on i-types is as follows:

• the cyclic order of each fb-walk is reversed;

• the genus of the imbedding stays the same.

We call this the i-type reversal operator. Given an i-type t, we denote by t−1 the i-type in
which each fb-walk string is reversed. Note that if (ST) is an fb-walk within i-type t, then
the corresponding fb-walk in t−1 is (T−1S−1), for which a cyclic shift gives (S−1T−1).
On the other hand, the i-type (R−1S−1T−1) is not a cyclic shift of the i-type (RST)−1 =
(T−1S−1R−1).

Proposition 3.3. The i-type reversal operator commutes with the operators Add, Sup,
and Lab.

Proof. Clearly, we can reverse lists either before of after suppressing or relabeling vertices,
and the result is the same. Using Rule (3.1) for adding a path within a face, we have

AddP [(iSjT)]−1 = [(SP−1)(PT)] = (T−1P−1)(S−1P) and (3.4)

AddP [(iSjT)−1] = AddP [iT−1jS−1] = (T−1P−1)(S−1P) (3.5)

Using Rule (3.2) for adding an edge between two faces, we have

AddP [(iS), (jT)]−1 = z(PTP−1S)−1 = z(S−1PT−1P−1) and (3.6)

AddP [(iS)−1, (jT)−1] = AddP [(iS−1), (jT−1)] = z(PT−1P−1S−1) (3.7)

J. L. Gross et al.: Calculating genus polynomials via string operations and matrices 277

3.4 Combining i-types into super-types

As we have observed, the number of i-types grows exponentially with the valence and the
number of roots, so any way of reducing the number of i-types is welcome. For example,
in building a graph by path-addition, we can always group an i-type with its reverse, since
i-type reversal commutes with edge path-adding. Indeed, root-suppression is also a way of
grouping many i-types together.

Suppose that the rooted graph H is obtained from the rooted graph G by a sequence
Op of the following kinds of operations:

path-additions, root-suppression, and root-relabeling.

Let T be the full collection of i-types for G, and let S be the full collection of i-types for
H , both in shortlex order. Then for any i-type t ∈ T , we see that

The expression Op(t) is a linear combination of elements of S, with coeffi-
cients taken from the ring Z[z] of polynomials in z.

We represent Op, therefore, as a matrix M whose columns are labeled by i-types in S, and
whose rows are labeled by i-types in T , where Ms,t is the coefficient of i-type s in the
expression Op(t).

Let P and Q be partitions of S and T , respectively. Suppose that we order the i-types
within S and the i-types within T so that the i-types within each cell of P and within
each cell of Q are contiguous in the respective orderings, inducing a partitioning of the
production matrix M into blocks that satisfy this criterion:

Within each block, the column sums are the same. (This requirement applies
also to the blocks that span only a single row of the matrix M , which implies
that the entries in such a row are identical.)

Then we call the partitions P andQ compatible with M . Moreover, we call each part of P
andQ a super-type for the operation Op. We can then condense the matrix M to a smaller
one whose columns are indexed by P and rows by Q, and whose entries are the constant
column sum of the block of M determined by the respective parts.

We have already encountered super-types in two contexts: type-reversal and root-
suppression. For type-reversal, we partition a full collection of i-types into parts by group-
ing together an i-type and its reverse. Since type-reversal commutes with path-adding,
root-suppression, and root-relabeling, it is compatible with any sequence of those opera-
tions. We can also view root-suppression Supi,j,... itself as creating super-types. In this
case, we have S = T . The parts of P are just singletons; i-types s, t are in the same part
ofQ if and only if Supi,j,...(s) = Supi,j,...(t). Notice in this case, the matrix M is just the
identity matrix and each block is a part of a single column of M . The condensed matrix
has a single 1 in each column.

Another way to create super-types is to exploit any symmetry between roots. With
H,G,S, T as before, suppose there is a graph automorphism f of H that permutes the
roots of H and G. Then f also induces a permutation of the S and T . We can then use
orbits of that permutation as super-types.

Grouping types into super-types by graph automorphisms and reversal is illustrated par-
ticularly well in the family of iterated claws in Subsection 4.3, where 12 i-types are reduced
to three super-types. For now we consider an example that provides a clear illustration of
the theory underlying the reduction.

278 Ars Math. Contemp. 15 (2018) 267–295

Example 3.2. Suppose that G = K4, as in Example 2.2, with roots 0 and 1, and that the
graph H is obtained from G by the operation of adding a second edge between 0 and 1.
Since there is an automorphism of the graphG interchanging 0 and 1, we have the partition
given in Table 2 for the full set T of i-types of the graph G, under the partition Q (induced
by this automorphism), with the parts of Q indicated by square brackets.

Table 2: Partitioning the i-types for (K4, {0, 1}).

T
(0)(1)(01)(01)

(0)(01011)
(1)(00101)
(01)(0011)
(01)(0101)

−→

T /Q
(0)(1)(01)(01)

[(0)(01011), (1)(00101)]
(01)(0011)
(01)(0101)

We can construct the full set S of 13 i-types for the graph H , by adding the path 01 to
the i-types in T for the graph G. In Table 3, we again use square brackets to enclose the
parts of the partition P .

Table 3: Partitioning the i-types for (K4 + 01, {0, 1}).

S
(0)(1)(01)(01)(01)(0)(1)(010101)

(0)(01)(01011)
(1)(01)(00101)
(0)(011)(0101)
(1)(001)(0101)
(01)(01)(0011)
(01)(01)(0101)
(01)(001)(011)

(00101011)
(00110101)
(00101101)
(01010101)

−→

S/P
(0)(1)(01)(01)(01)

(0)(1)(010101)
[(0)(01)(01011), (1)(01)(00101)]
[(0)(011)(0101), (1)(001)(0101)]

(01)(01)(0011)
(01)(01)(0101)
(01)(001)(011)

[(00101011), (00110101)]
(00101101)
(01010101)

Applying the string operation for adding the edge 01 to K4, we obtain the matrix M ,

J. L. Gross et al.: Calculating genus polynomials via string operations and matrices 279

which maps the pgd-vector for K4 to the pgd-vector for the graph K4 + 01, as follows:

2 0 0 0 0
2z 0 0 0 0
2z 4 0 0 0
2z 0 4 0 0
0 2 0 0 0
0 0 2 0 0
z 0 0 3 0
0 0 0 0 5
0 0 0 2 0
0 z z 2z 0
0 z z 2z 0
0 z z 0 0
0 0 0 0 4z

2
2z
2z
2z
8z

 =

4
4z
12z
12z
4z
4z
8z
40z
4z
8z2

8z2

4z2

32z2

(3.8)

Our partition Q of T groups columns 2 and 3 and represents combining the i-types
(0)(01011) and (1)(00101), which corresponds to the automorphism on K4 that swaps
roots 0 and 1. Our partition P of S involves three pairings: rows 3 and 4, rows 5 and 6, and
rows 10 and 11, which correspond to the automorphism on K4 + 01 that swaps roots 0 and
1. This compresses the 13× 5 matrix of (3.8) down to the 10× 4 matrix on the left side of
Equation (3.9).

2 0 0 0
2z 0 0 0
4z 4 0 0
0 2 0 0
z 0 3 0
0 0 0 5
0 0 2 0
0 2z 4z 0
0 z 0 0
0 0 0 4z

2
4z
2z
8z

 =

4
4z
24z
8z
8z
40z
4z

16z2

4z2

32z2

(3.9)

4 Two examples of linear families
In this section, we examine the application of the string operations Sup, Add, and Lab to
two linear sequences previously studied elsewhere.

4.1 Production matrices

Given a linear family {Gn : n = 0, 1, . . .} of graphs, constructed by recursive application
of the topological operator τ : Gn → Gn+1, and with the pgd-vector Vn(z) for Gn, for
n = 0, 1, . . . , the associated production matrix Mτ (z) is a matrix such that we have the
recursion

Vn(z) = Mτ (z)Vn−1(z), for n = 1, 2, . . . (4.1)

and, consequently, the equation

Vn(z) = Mτ (z)nV0(z), for n = 1, 2, . . . (4.2)

280 Ars Math. Contemp. 15 (2018) 267–295

Here, as in some previous papers (e.g., [14, 17]), our production matrices record a system
of rules that computer scientists might call productions.

4.2 X-ladders

An X-ladder is envisioned as a ladder with evenly many rungs, such that the rungs are
paired, and such that within a pair, they cross each other in a planar drawing, as illustrated
in Figure 3. This example was first given by [28].

0

1

0

1
X1 X3

Figure 3: The X-ladders X1 and X3.

To represent the construction of Xn from Xn−1, we use the following procedure (a
sequence of i-type operations) to add the next X:

Procedure 4.1. Add the next X to an X-ladder.

Sup0,1 ◦Add02431 (4.3)
Sup2,3 ◦Add253 (4.4)

Lab40,51 (4.5)

We denote the composition of the steps of Procedure 4.1 by RecX .
Since the X-ladder X1 is simply a 4-cycle with labeled vertices 0 and 1, its one and

only i-type is (01)(01). To obtain the pgd-vector for X2 from the pgd-vector for X1, we
apply Procedure 4.1. In this non-machine calculation, we separate Step (4.4) into two parts.

Sup0,1[Add02431[(01)(01)]] = 2(234)(243) + 2z(224334)

Sup2,3[Add253[2(234)(243)]] = 4(4)(5)(45) + 4z(4545)

Sup2,3[Add253[2z(224334)]] = 8z(45)(45)

By then applying Lab40,51, we obtain the production

RecX [(01)(01)] = 4(0)(1)(01) + 8z(01)(01) + 4z(0101). (4.6)

In general, a production for an i-type associates to it a linear combination of all the
i-types, taken over the ring of polynomials in the indeterminate z.

Thus, there are three possible i-types for imbeddings of the X-ladder X2. Since two
of them are not i-types for X1, we need to continue with the i-types of X3, to see whether
there are any additional i-types, before we write the production matrix.

To compute the effect of RecX on X2, we need to compute its effect on the three
imbedding-types (0)(1)(01), (01)(01), and (0101). We already know the production (4.6)
for the imbedding-type (01)(10).

J. L. Gross et al.: Calculating genus polynomials via string operations and matrices 281

We begin with i-type (0)(1)(01).

Sup0,1[Add02431[(0)(1)(01)] = (234)(243) + 3z(224334)

Sup23[Add253[(234)(243)] = 2(4)(5)(45) + 2z(4545)

Sup2,3[Add253[3z(224334)]] = {12z(45)(45)}

By relabeling with Lab40,51, we obtain the production

RecX [(0)(1)(01)] = 2(0)(1)(01) + 12z(01)(01) + 2z(0101). (4.7)

We continue with the effect of RecX on i-type (0101).

Sup0,1[Add02431[(0101)]] = 4(243)(342)

Sup2,3[Add253[4(234)(243)] = 8(45)(4)(5) + 8z(4545)

Applying Lab40,51, we obtain the production

RecX [(0101)] = 8(0)(1)(01) + 8z(0101). (4.8)

We see that no new types arise when applying RecX to X2. Thus, the only possible
i-types for any X-ladder Xn arising from application of RecX are

(0)(1)(01), (01)(01), and (0101).

Accordingly, we may write the pgd-vectors of X1, X2, and X3 as

VX1 =

0
1
0

 VX2 =

 4
8z
4z

 VX3 =

 8 + 64z
48z + 64z2

8z + 64z2

By recording the coefficients of the i-types in productions (4.6), (4.7), and (4.8) as

columns of the production matrix MX(z) for RecX we have

MX(z) =

 2 4 8
12z 8z 0
2z 4z 8z

We see that MX(z)VX1(z) = VX2(z) and that MX(z)VX2(z) = VX3(z).

Proposition 4.1 enables us to check for possible errors.

Proposition 4.1. Suppose that {Gn : n = 0, 1, . . .} is a linear family with production
matrix M(z). Then substituting z = 1 gives a matrix whose column sums are the same
constant s, where the number of imbeddings of Gn+1 equals s times the number of imbed-
dings of Gn.

Proof. Substituting z = 1 in any column of M(z) counts the number s of ways that the
extra paths can be added between the roots of Gn and the roots of Gn+1. This number is
the same for each imbedding-type and hence for each column ofM(z). Clearly, s also tells
us the growth factor in the number of imbeddings from Gn to Gn+1.

As Proposition 4.1 indicates, the substitution z = 1 in MX(z) gives column sums of
s = 16, implying that any imbedding of Xn of a given type generates 16 imbeddings of
Xn+1. This makes sense since Xn+1 has four more 3-valent vertices than Ln, so it should
have (2!)4 = 16 times as many imbeddings.

282 Ars Math. Contemp. 15 (2018) 267–295

4.3 Iterated claws

This example is adapted from [14] and [17].
The iterated claw Y1 is obtained from the complete bipartite graph K3,3 as follows:

1. Choose one vertex of K3,3 to be the root-vertex 0.

2. Subdivide each of the edges incident with 0.

3. Assign labels 1, 2, and 3 to the resulting three 2-valent vertices.

To obtain the graph (Yn, 0) from the graph (Yn−1, 0), we join a new 3-valent vertex 7 to
the vertices 1, 2, and 3 by paths 741, 752 and 763. We then suppress labels 1, 2, 3, and 0
and relabel vertex 4 as 1, vertex 5 as 2, vertex 6 as 3, and vertex 7 as 0.

Figure 4 illustrates the graph Y3. We observe that the graph Y1 is homeomorphic
to K3,3.

3
0

1

2

Figure 4: The iterated claw Y3.

To obtain the pgd-vector of Yn from the pgd-vector of Yn−1, we now describe how to
construct Yn from Yn−1 with this procedure.

Procedure 4.2. Add the next claw to an iterated claw.

Sup0,1,2 ◦Add14752 (4.9)
Sup3 ◦Add367 (4.10)
Lab41,52,63,70 (4.11)

We denote the composition of the steps of Procedure 4.2 by RecY .
We note that at the root vertex 0, there must be face corners 102, 203, and 301. We

partition the set of i-types according to the number of faces incident with the root-vertex 0:

(a) three faces: the i-type must be (013)(021)(032) or its reverse;

(b) two faces: the imbedding must be of one of the types (013)(022031), (021)(012033),
(032)(011023), or of their reverses;

(c) one face: the imbedding must be of types (011022033), (012031023), or of their re-
verses.

Thus, we have 12 i-types in all.
Grouping each i-type with its inverse yields six “super-types”. To reduce from six to

three, we notice that the dihedral D3 symmetry of the claw is visible within the notation for

J. L. Gross et al.: Calculating genus polynomials via string operations and matrices 283

the types. For instance, from the one group (b) i-type (013)(022031), we could obtain any
of the other the other i-types by a permutation of 1, 2, 3 and a possible reversal. Thus, we
need to consider only how path-adding affects the i-type (013)(022031). On the other hand,
the two one-face i-types are not related by a permutation of 1, 2, 3. Nevertheless, we will
see that grouping the two together does provide a compatible partition for the production
matrix. We denote the three super-types simply by listing the face structure at 0:

(a) three faces: (0)(0)(0);

(b) two faces: (0)(00);

(c) one face: (000).

We now calculate RecY [t] for one representative t from each of the three super-types.
For i-type t = (013)(021)(032) from super-type (0)(0)(0), we obtain

Sup0,1,2[Add14752[t]] = (475)(574)(3)(3) + z(4753574)(3)

+ z(3475574)(3) + z(34753574)

By applying Sup3456 ◦Add367 to the right side, we obtain

4z(77)(7) + z[2(77)(7) + 2z(777)] + z[2(77)(7) + 2z(777)] + z[4(77)(7)].

Collecting terms, we obtain

12z(7)(77) + 4z2(777).

Relabeling 7 by 0 then yields the production

RecY [(102)(203)(301)] = 0(0)(0)(0) + 12z(0)(00) + 4z2(000) (4.12)

For i-type t = (013)(022031) from super-type (0)(00), we have:

Sup012[Add14752[t]] = 2(475)(3574)(3) + 2z(34753574).

Applying Sup3456 ◦Add367 to the right side, we obtain:

2[(7)(7)(7) + 2z(7)(77) + z(777)] + 2z[4(7)(77)].

Then relabeling 7 by 0 yields the production

RecY [(013)(022031)] = 2(0)(0)(0) + 12z(00)(0) + 2z(000) (4.13)

It is easily verified we would get the same result beginning instead with alternative repre-
sentatives t = (021)(012033) or t = (032)(011023).

For i-type t = (011022033) from super-type (000), we have

Sup012[Add14752[t]] = 4(475)(33547)

Applying Sup3456 ◦Add367 to the right side yields

4[2(7)(7)(7) + 2z(777)].

284 Ars Math. Contemp. 15 (2018) 267–295

Then relabeling 7 by 0, we obtain the production

RecY [(102203301] = 8(0)(0)(0) + 0(0)(00) + 8z(000) (4.14)

It is easily verified that we get the same result when we begin with type t = (012031023).
That is what enables us to group them together in a super-type, even though they are not
related by a permutation of 1, 2, 3 or by reversal.

We copy the coefficients from (4.12), (4.13), and (4.14) into the columns of the produc-
tion matrix MY (z) for RecY , with input and output basis {(0)(0)(0), (00)(0), (000)}.

MY (z) =

 0 2 8
12z 12z 0
4z2 2z 8z

We note that the column sums with z = 1 are 16 = 24 and that Yn+1 has four extra vertices
of valence 3. We observe that the power of string notation for i-types has allowed us to
compute the recursion matrix for this family in only a page, while the original calculation
[14] requires many pages and many figures. As in [14], we obtain the pgd-vectors

VY1
=

 16z
24z
24z2

 VY2
=

 48z + 192z2

480z2

48z2 + 256z3

 VY3
=

1344z2 + 2048z3

576z2 + 8064z3

1536z3 + 2816z4

Of course, since Z[z] is a ring, rather than a field, a “pgd-vector” is more accurately de-
scribed as an r-tuple than as a vector, where r is the number of i-types.

The functor relating a string operation τ : G → H to the corresponding production
matrix Mτ (z) : VG(z)→ VH(z), is represented by the commutative diagram in Figure 5.

G H

VG(z) VH(z)

τ

Mτ (z)

Figure 5: Functor from the category of graphs and string operations to the category of
ring modules and matrices with integer polynomial coefficients.

4.4 Polynomial matrix and transfer matrix methods

There are models in the physical sciences where the computational process uses polyno-
mial matrix entries, like our production matrices. Some such models in chemistry were
explored in [21, 22], which uses the terminology polynomial matrix method. This method
was adapted by [1] for application to matching polynomials of polygraphs.

As described by [7], the transfer matrix method for various mathematical contexts con-
cerns the transformation of a given problem into a matter of counting walks in a digraph.
We observe that if A is the adjacency matrix of a digraph, then the ij entry of the matrix
Ak counts the numbers of paths from vertex vi to vertex vj .

A generalization of this problem (see [29]) is concerned with a digraph in which the arc
from vertex i to vertex j, for all i and j, is labeled with the element mi,j of a commutative

J. L. Gross et al.: Calculating genus polynomials via string operations and matrices 285

ring, with M = (mi,j). Instead of counting the paths of length k, we are calculating the
sum of the products of all length-k paths from vi to vj . Of course, the ij entry of the matrix
Mk gives this sum for vi and vj . In [5] and [23], the matrixM is called a “transfer matrix”.

When calculating pgd-vectors for a graph sequence {Gn : n = 0, 1, . . .} that is speci-
fied by recursive application of a topological operation τ , we take the imbedding types as
vertices of the digraph. We label the arc from type-i to type-j by the coefficient of type-j
in the production for type-i.

5 Machine computation of production matrices
In this section, we give two examples of linear sequences whose production matrices have
been calculated with the aid of a computer program. It should be clear that calculating
these production matrices by hand would be daunting. Heretofore, such calculations have
been done mostly by hand, which has limited us to calculating the genus polynomials only
for relatively few graph families. As a consequence, we have very little data to study deep
issues, such as the log-concavity conjecture, that the genus distribution of every graph is a
log-concave polynomial (see [18, 16]).

5.1 Vertex-amalgamation path of copies of K4

We define the graph T1 to be the complete graph on four vertices, with a single root, la-
beled 0. The graph Tn is obtained from Tn−1 by vertex-amalgamating a new copy of K4

to Tn−1. The graphs T2 and T3 are illustrated in Figure 6.

0 0

Figure 6: The graphs T2 and T3.

Following the paradigm of [13], we could obtain Tn from Tn−1 by vertex-amalgamating
a doubly rooted copy of K4 to a singly rooted copy of Tn−1. However, whereas a pair of
2-valent root-vertices involves at most 10 i-types, it can be seen in Table 5 that for two
3-valent root-vertices, the number of i-types could be as large as 38. Moreover, the poten-
tial number of productions for amalgamating two graphs with 38 i-types could be as large
as 382 = 1444. In what follows, we see that using the string-operation paradigm enables
us to reduce the number of i-types from 38 to 3.

The topological operation of vertex-amalgamating an additional copy of K4 to the
rooted graph (Tn−1, 0) can be represented by the following sequence of string operations.

Procedure 5.1. Add the next copy of K4 by vertex-amalgamation.

Add01230 (5.1)
Add02 (5.2)
Add13 (5.3)

Sup0,1,3 (5.4)
Lab20 (5.5)

286 Ars Math. Contemp. 15 (2018) 267–295

We see that the i-types for a graph with a single 3-valent root-vertex named 0 are

(0)(0)(0) (0)(00) (000)

More generally, the number of i-types for a graph with a single k-valent root-vertex equals
at most the number of partitions of the integer k. Nonetheless, even though only three
productions would be needed, deriving them with pencil-and-paper calculations would be
tedious work. Just for a start, there are 12 ways to insert the path 01230 into an imbedding
of Tn−1, two ways between each of the three pairs of distinct corners at root-vertex 0 and
two ways at each corner. The total number of imbeddings of Tn that are consistent with
each imbedding of Tn−1 is 480.

Theorem 5.1. The pdg-vector of the graph Tn is Mn−1V1, where the initial pgd-vector
V1 is

[
2 12z 2z

]T
and the production matrix is

MT (z) =

 96z + 18 80z + 30 60
48z2 + 156z 220z 360z
144z2 + 18z 120z2 + 30z 60z

 (5.6)

Proof. The initial pgd-vector V1 for (K4, 0) and the production matrix are best calculated
by a computer program.

5.2 Edge-amalgamation path of copies of K4

Here we define T 1 to be the complete graph K4 with a single root-edge 01. The graph Tn
is obtained from Tn by edge-amalgamating a copy ofK4. The new root-edge is the edge in
the new copy that is independent of the edge amalgamated to the previous root-edge. The
graphs T 2 and T 3 are illustrated in Figure 7.

0

1

0

1

Figure 7: The graphs T 2 and T 3.

The topological operation of extending the graph Tn−1 by edge-amalgamating an addi-
tional copy of K4 can be represented by the following sequence of string operations.

Procedure 5.2. Add the next copy of K4 by edge-amalgamation.

Add0231 (5.7)
Add03 (5.8)
Add12 (5.9)
Sup0,1 (5.10)

Lab20,31 (5.11)

J. L. Gross et al.: Calculating genus polynomials via string operations and matrices 287

We determine that the i-types for the graphs Tn are as follows, grouped by classes
under the automorphism interchanging 0 and 1 and listed in shortlex order:

1. (0)(1)(01)(01) 7. (01)(0011)
2. (0)(1)(0011) 8. (01)(0101)
3. (0)(01)(011), (1)(01)(001) 9. (001)(011)
4. (0)(00111), (1)(00011) 10. (000111)
5. (0)(01011), (1)(00101) 11. (001011), (001101)
6. (01)(01)(01) 12. (010101)

Each imbedding of Tn−1 in each of these 12 super-types has 576 possible extensions to an
imbedding of Tn.

Theorem 5.2. The pdg-vector of the graph Tn is M
n−1

(z)V(z), where the production
matrix is

4 18 8 36 40 6 20 22 12 72 80 84
8z 0 16z 0 0 24z 32z 32z 32z 0 0 0
64z 96z 96z 96z 96z 96z 128z 128z 128z 0 0 0
48z2 32z2 32z2 0 0 48z2 0 0 0 0 0 0
8z 36z 16z 72z 80z 12z 40z 44z 24z 144z 160z 168z
60z 56z 72z 48z 48z 60z 64z 64z 96z 0 0 0

104z2 + 4z 48z2 + 18z 64z2 + 8z 36z 40z 72z2 + 6z 20z 22z 12z 72z 80z 84z
16z 72z 32z 144z 128z 24z 80z 72z 48z 288z 256z 240z

104z2 48z2 64z2 0 0 72z2 0 0 0 0 0 0
32z3 0 0 0 0 0 0 0 0 0 0 0
64z2 96z2 96z2 96z2 96z2 96z2 128z2 128z2 128z2 0 0 0
60z2 56z2 72z2 48z2 48z2 60z2 64z2 64z2 96z2 0 0 0

The initial graph (T 1, 0) has the pgd-vector

V(z) =
[
2 0 0 0 4z 0 2z 8z 0 0 0 0

]T
.

Proof. The initial pgd-vector and the production matrix were calculated by our computer
program.

If follows that

T2 =

8 + 376z
16z + 320z2

128z + 1664z2

96z2

16z + 752z2

120z + 832z2

584z2 + 8z
32z + 1248z2

208z2

64z3

128z2 + 1664z3

120z2 + 832z3

and T3 =

32 + 5040z + 119552z2 + 207616z3

64z + 9216z2 + 111872z3

512z + 56064z2 + 612864z3

384z2 + 28416z3 + 103424z4

64z + 10080z2 + 239104z3 + 415232z4

480z + 43200z2 + 365568z3

5872z2 + 32z + 176256z3 + 389376z4

128z + 19136z2 + 414464z3 + 644096z4

832z2 + 56704z3 + 181760z4

256z3 + 12032z4

512z2 + 56064z3 + 612864z4

480z2 + 43200z3 + 365568z4

.

288 Ars Math. Contemp. 15 (2018) 267–295

6 Enumerating possible imbedding types
Various previously published genus polynomial calculations have involved recursive con-
structions of families of graphs with two 2-valent root-vertices, for which ten i-types are
sufficient. As we progress toward more general results, most especially in regard to the
LCGD conjecture, we are encountering recursive graph constructions for which we use
arbitrarily many vertex roots, of arbitrary degrees.

In this section, we first use Burnside’s Lemma to calculate the number of i-types that
can occur for two 2-valent roots. Then we generalize to obtain lower and upper bounds on
the number of i-types for arbitrarily many root-vertices or arbitrary valences. Interestingly,
our method provides a formula for calculating the number of possible cyclic partitions of a
multi-set. Thus, it is a generalization of Stirling numbers of the first kind.

6.1 Two 2-valent roots

Early papers on genus polynomial calculations via pgd-vectors used ten mnemonics for the
i-types for graphs with two 2-valent roots. The following table lists the ten mnemonics and
their corresponding type-names:

dd0 dd′ dd′′ ds0 ds′

(0)(0)(1)(1) (0)(01)(1) (01)(01) (0)(0)(11) (0)(011)

sd0 sd′ ss0 ss1 ss2

(00)(1)(1) (001)(1) (00)(11) (0101) (0011)

An ad hoc examination confirms that the ten type-names contain all the possible partitions
of the multi-set {0, 0, 1, 1} into cyclic cells. We now undertake a reconfirmation of this
calculation of ten possible i-types, using Burnside’s Lemma.

Our set of objects is the set of disjoint cycle decompositions of the 24 permutations in
the symmetric group Σ4, with domain {0, 1, 2, 3}. Our permutation group on them has the
permutations

ε (identity) (0 2) (1 3) (0 2)(1 3) (6.1)

where we regard the numbers 2 and 3 as second copies of the numbers 0 and 1, respectively.
Under the action of this permutation group, the orbit of the permutation (0 1)(2)(3) is

(0)(1)(2 3) (0)(3)(1 2) (1)(2)(0 3) (2)(3)(0 1)

This orbit corresponds to the imbedding-type (0)(1)(01).
The identity permutation ε fixes all 24 disjoint cycle representations of Σ4. The permu-

tation (0 2) fixes the subgroup of disjoint cycle representations in which both 0 and 2 are
fixed or transposed, whose cardinality is 4. The permutation (1 3) fixes the same subgroup
of cardinality 4. The permutation (0 2)(1 3) fixes that same subgroup, plus the set

(0 1)(2 3) (0 3)(1 2) (0 1 2 3) (0 3 2 1)

for a total of 8 fixed points. Applying Burnside’s Lemma, we divide the sum of the sizes
of the fixed-point sets by the cardinality of the permutation group (6.1) to obtain

24 + 4 + 4 + 8

4
=

40

4
= 10

as the maximum number of i-types for two 2-valent roots.

J. L. Gross et al.: Calculating genus polynomials via string operations and matrices 289

6.2 Two roots, 2-valent and 3-valent

Suppose that root 0 is 2-valent and root 1 is 3-valent. Then there are 18 imbedding-types,
as in Table 4.

Table 4: Table of the i-types for two roots, one 2-valent and one 3-valent.

structure imbedding types

15 (0)(0)(1)(1)(1)
13 2 (0)(0)(1)(11) (0)(1)(1)(01) (1)(1)(1)(00)
1 22 (0)(01)(11) (1)(00)(11) (1)(01)(01)
12 3 (0)(0)(111) (0)(1)(011) (1)(1)(001)
2 3 (00)(111) (01)(011) (11)(001)
1 4 (0)(0111) (1)(0011) (1)(0101)
5 (00111) (01011)

The action of the permutation group Σ{0,2} × Σ{1,3,4} on the elements of Σ{0,1,2,3,4}
has the cycle index

1

12

[
t51 + 4t31t2 + 3t1t

2
2 + 2t2t3

]
.

We now consider the number of fixed points for each of the four permutation types.

Type t51. The identity permutation fixes all 120 elements of Σ{0,1,2,3,4}.

Type t31t2. Each permutation of structure t31t2 fixes 12 elements of Σ{0,1,2,3,4}. For in-
stance, (0 2) fixes each of the six elements with the 1-cycles (0) and (2) and each of the
six with the 2-cycle (02), for a total of 12. The sum of the sized of the fixed-point sets of
the four permutations of structure t31t2 is 48.

Type t1t22. Each permutation of structure t1t22 fixes 8 elements of Σ{0,1,2,3,4}. For instance,
(0 2)(1 3) fixes both of the elements with the 1-cycles (0), (2), and (4), both with the 2-
cycle (02) and the 1-cycle (4), and also the four elements

(0 1)(2 3), (0 3)(1 2), (0 1 2 3), and (0 3 2 1)

for a total of 8. The sum of the sized of the fixed-point sets of the four permutations of
structure t1t22 is 24.

Type t21t3. Each permutation of structure t21t3 fixes 6 elements of Σ{0,1,2,3,4}. In partic-
ular, (0)(2)(134) fixes Z{0,2} × Z{1,3,4}, as does (0)(2)(1 4 3). Together, they make a
contribution of 12 to the sum of the sizes of the fixed point sets.

Type t2t3. These two permutations each fix the same 6 elements of Σ{0,1,2,3,4} as in the
preceding case, for a net contribution of 12.

Applying Burnside’s Lemma, we infer that the number of orbits is

120 + 48 + 24 + 12 + 12

12
=

216

12
= 18.

290 Ars Math. Contemp. 15 (2018) 267–295

6.3 Several roots of arbitrary degrees

We now calculate lower and upper bounds on the number of i-types.

Theorem 6.1. For a class of graphs with roots 0, 1, . . . , k − 1 of respective degrees
d0, d1, . . . , dk−1, the number of i-types is at least

(d0 + d1 + · · ·+ dk−1)!

d0!d1! · · · dk−1!
(6.2)

Proof. In addition to their respective primary names 0, 1, . . . , k− 1, each root j has dj − 1
aliases chosen from among the numbers

k, k + 1, . . . , d0+d1+ · · ·+dk−1

with no two different primary names having any aliases in common. Accordingly, our set
of objects is the set of disjoint cycle representations of the symmetric group ΣK , where
K = d0 + d1 + · · ·+ dk−1. The permutation group that acts on them is isomorphic to

Σd0 × Σd1 × · · · × Σdk−1

Since the identity permutation fixes all the cycle forms of ΣK , the sum of the sizes of the
sets of fixed points is at leastK!. The cardinality of the permutation group is d1!d2! · · · dk!.
Thus, by Burnside’s Lemma, a lower bound on the number of i-types is given by (6.2).

Theorem 6.2. For a class of graphs with roots 0 and 1, of respective degrees a and b, the
number of i-types is at most

∑
c

n∏
k=1

kckck!
∑

∀i,pi+qi=ci

∑
(1p12p2 ···apa)∈Pa

∑
(1q12q2 ···bqb)∈Pb

1∏a
i=1 i

pipi!
∏b
j=1 j

qjqj !
,

where the sum
∑
c is over all partitions 1c12c2 · · ·ncn ∈ Pn and Pn is the set of all

partitions of the number n.

Proof. The action of the permutation group

Σ{1,3,4,...,a+1} × Σ{2,a+2,a+3,...,a+b}

on the elements of Σ{1,2,...,n}, where n = a+ b, has the cycle index

Ca,b =
∑

(1p12p2 ···apa)∈Pa

∑
(1q12q2 ···bqb)∈Pb

∏a
i=1 t

pi
i

∏b
j=1 t

qj
j∏a

i=1 i
pipi!

∏b
j=1 j

qjqj !
,

where Pm is the set of all partitions of m. The number of fixed points for a permutation of
cycle type 1c12c2 · · ·ncn is given by

a!b!Ca,b(1
c12c2 · · ·ncn)

n∏
k=1

kckck!,

J. L. Gross et al.: Calculating genus polynomials via string operations and matrices 291

where Ca,b(1c12c2 · · ·ncn) is the coefficient of tc11 t
c2
2 · · · tcnn in the polynomial Ca,b. Thus,

each permutation of structure tc11 t
c2
2 · · · tcnn fixes

n∏
k=1

kckck!
∑

∀i,pi+qi=ci

∑
(1p12p2 ···apa)∈Pa

∑
(1q12q2 ···bqb)∈Pb

a!b!∏a
i=1 i

pipi!
∏b
j=1 j

qjqj !
.

elements of Σ{1,2,...,n}.
Applying Burnside’s Lemma, we conclude that the number of orbits is given by

∑
c

1

a!b!

n∏
k=1

kckck!
∑

∀i,pi+qi=ci

∑
(1p12p2 ···apa)∈Pa

∑
(1q12q2 ···bqb)∈Pb

a!b!∏a
i=1 i

pipi!
∏b
j=1 j

qjqj !

which equals

∑
c

n∏
k=1

kckck!
∑

∀i,pi+qi=ci

∑
(1p12p2 ···apa)∈Pa

∑
(1q12q2 ···bqb)∈Pb

1∏a
i=1 i

pipi!
∏b
j=1 j

qjqj !
,

where the sum
∑
c is over all partitions 1c12c2 · · ·ncn ∈ Pn.

Applying our formula for a, b ≤ 10, we obtain Table 5.

Table 5: The maximum number of i-types for two root-vertices, of valences a and b.

a\b 1 2 3 4 5 6 7 8 9 10
1 2 4 7 12 19 30 45 67 97 139
2 4 10 18 34 56 94 146 228 340 506
3 7 18 38 74 133 233 385 623 977 1501
4 12 34 74 158 297 550 951 1614 2627 4202
5 19 56 133 297 602 1166 2133 3775 6437 10692
6 30 94 233 550 1166 2382 4551 8424 14953 25835
7 45 146 385 951 2133 4551 9142 17639 32680 58659
8 67 228 623 1614 3775 8424 17639 35492 68356 127443
9 97 340 977 2627 6437 14953 32680 68356 136936 264747

10 139 506 1501 4202 10692 25835 58659 127443 264747 530404

Theorem 6.3. The formula corresponding to that of Theorem 6.2 for m roots of degrees
(a1, a2, . . . , am) is given by

∑
c

n∏
k=1

kckck!
∑

∀i,p1i+p2i+···+pdi=ci

∑
∀d=1,2,...,m,(

1pd12pd2 ···a
pdad
d

)
∈Pad

1∏m
d=1

∏ad
i=1 i

pdipdi!
,

where the sum
∑
c is over all partitions 1c12c2 · · ·ncn ∈ Pn.

Proof. This proof uses the same arguments as for Theorem 6.2.

Using the formula from Theorem 6.3 for the calculations, we present in Table 6 the
maximum number of imbedding-types for triply rooted graphs with root-vertices of va-
lences 1 ≤ i, j, k ≤ 5.

292 Ars Math. Contemp. 15 (2018) 267–295

Table 6: The maximum number of imbedding-types for three roots, of valences i, j, k
for i = 1, 2, 3, 4, 5.

i = 1

j\k 1 2 3 4 5
1 6 14 28 52 90
2 14 38 84 170 316
3 28 84 206 450 899
4 52 170 450 1058 2254
5 90 316 899 2254 5110

i = 2

j\k 1 2 3 4 5
1 14 38 84 170 316
2 38 120 290 644 1284
3 84 290 788 1886 4074
4 170 644 1886 4868 11214
5 316 1284 4074 11214 27556

i = 3

j\k 1 2 3 4 5
1 28 84 206 450 899
2 84 290 788 1886 4074
3 206 788 2370 6146 14302
4 450 1886 6146 17170 42696
5 899 4074 14302 42696 112966

i = 4

j\k 1 2 3 4 5
1 52 170 450 1058 2254
2 170 644 1886 4868 11214
3 450 1886 6146 17170 42696
4 1058 4868 17170 51630 137070
5 2254 11214 42696 137070 387146

i = 5

j\k 1 2 3 4 5
1 90 316 899 2254 5110
2 316 1284 4074 11214 27556
3 899 4074 14302 42696 112966
4 2254 11214 42696 137070 387146
5 5110 27556 112966 387146 1161498

J. L. Gross et al.: Calculating genus polynomials via string operations and matrices 293

7 Conclusions
We have focused here primarily on the computational aspects involved in applying string
operations toward the determination of genus polynomials of graphs. We recognize the
following two immediate benefits of the string-operations paradigm:

1. It enables us to reduce the number of partial genus polynomials (one for each imbed-
ding-type) into which a genus polynomial must be partitioned.

2. The imbedding-types, the production matrix, and the partial genus polynomials
(which are the coordinates of a pgd-vector) can be calculated by a computer pro-
gram, which enables us to generate a much larger set of experimental data.

Beyond using string operations in new calculations of enumerative results on graph
imbeddings, some new theoretical insights may arise from them. One may reasonably
consider how the paradigm of string operations relates to the log-concavity conjecture, that
every genus polynomial is log-concave (see [16, 18]). We observe that using Theorem 4.7.2
of [29] could give generating functions for the individual entries of a power of a production
matrix.

In a sequel [15], we regard a linear family of graphs as a Markov process is which the
states are i-types and a slightly modified form of the production matrix is the transition
matrix. We explore the properties of such Markov processes.

The methods described here seem amenable to extension. Suppose that instead of a
fixed production matrix M(z) for a graph sequence {Gn : n = 0, 1, . . .}, with pgd-vectors
Vn(z) we had a sequence of production matrices Mn(z), such that Recursion (4.1) was
generalized to

Mn(z)vn(z) = Vn+1(z),

and Equation (4.2) to

Vn(z) = Mn−1(z)Mn−2(z) · · ·M0(z)V0(z).

A tractable recursion or a closed formula for Mn(z) would enable us to calculate the pgd-
vector Vn(z) reasonably rapidly. Of course, such a sequence of production matrices corre-
sponds to a non-stationary Markov process.

References
[1] D. Babić, A. Graovac, B. Mohar and T. Pisanski, The matching polynomial of a polygraph,

Discrete Appl. Math. 15 (1986), 11–24, doi:10.1016/0166-218x(86)90014-4.

[2] S. Beyer, M. Chimani, I. Hedtke and M. Kotrbčı́k, A practical method for the minimum genus
of a graph: models and experiments, in: A. V. Goldberg and A. S. Kulikov (eds.), Experimental
Algorithms, Springer, volume 9685 of Lecture Notes in Computer Science, pp. 75–88, 2016,
doi:10.1007/978-3-319-38851-9 6, proceedings of the 15th International Symposium (SEA
2016) held in St. Petersburg, June 5 – 8, 2016.

[3] B. Bollobás and O. M. Riordan, A polynomial invariant of graphs on orientable surfaces, Proc.
London Math. Soc. 83 (2001), 513–531, doi:10.1112/plms/83.3.513.

[4] Y. Chen, J. L. Gross, T. Mansour and T. W. Tucker, Recurrences for the genus polynomials of
linear sequences of graphs, 2016, manuscript, 26 pages.

[5] T. Y. Chow and J. West, Forbidden subsequences and Chebyshev polynomials, Discrete Math.
204 (1999), 119–128, doi:10.1016/s0012-365x(98)00384-7.

294 Ars Math. Contemp. 15 (2018) 267–295

[6] M. L. Furst, J. L. Gross and R. Statman, Genus distributions for two classes of graphs, J. Comb.
Theory Ser. B 46 (1989), 22–36, doi:10.1016/0095-8956(89)90004-x.

[7] I. M. Gessel and R. P. Stanley, Algebraic enumeration, in: R. L. Graham, M. Grötschel and
L. Lovász (eds.), Handbook of Combinatorics, Volume II, Elsevier, Amsterdam & MIT Press,
Cambridge, Massachusetts, pp. 1021–1061, 1995.

[8] J. L. Gross, Genus distribution of graph amalgamations: self-pasting at root-vertices, Australas.
J. Comb. 49 (2011), 19–38, https://ajc.maths.uq.edu.au/pdf/49/ajc_v49_
p019.pdf.

[9] J. L. Gross, Genus distributions of cubic outerplanar graphs, J. Graph Algorithms Appl. 15
(2011), 295–316, doi:10.7155/jgaa.00227.

[10] J. L. Gross, Embeddings of cubic Halin graphs: genus distributions, Ars Math. Contemp. 6
(2013), 37–56, doi:10.26493/1855-3974.217.440.

[11] J. L. Gross, Embeddings of graphs of fixed treewidth and bounded degree, Ars Math. Contemp.
7 (2014), 379–403, doi:10.26493/1855-3974.366.dd1.

[12] J. L. Gross and M. L. Furst, Hierarchy for imbedding-distribution invariants of a graph, J.
Graph Theory 11 (1987), 205–220, doi:10.1002/jgt.3190110211.

[13] J. L. Gross, I. F. Khan and M. I. Poshni, Genus distribution of graph amalgamations: pasting at
root-vertices, Ars Combin. 94 (2010), 33–53.

[14] J. L. Gross, I. F. Khan and M. I. Poshni, Genus distributions for iterated claws, Electron. J.
Combin. 21 (2014), #P1.12, http://www.combinatorics.org/ojs/index.php/
eljc/article/view/v21i1p12.

[15] J. L. Gross, T. Mansour and T. W. Tucker, Markovian analysis of production matrices for genus
polynomials, in preparation.

[16] J. L. Gross, T. Mansour, T. W. Tucker and D. G. L. Wang, Log-concavity of combinations of
sequences and applications to genus distributions, SIAM J. Discrete Math. 29 (2015), 1002–
1029, doi:10.1137/140978867.

[17] J. L. Gross, T. Mansour, T. W. Tucker and D. G. L. Wang, Iterated claws have real-rooted genus
polynomials, Ars Math. Contemp. 10 (2016), 255–268, doi:10.26493/1855-3974.538.86e.

[18] J. L. Gross, D. P. Robbins and T. W. Tucker, Genus distributions for bouquets of circles, J.
Comb. Theory Ser. B 47 (1989), 292–306, doi:10.1016/0095-8956(89)90030-0.

[19] J. L. Gross and T. W. Tucker, Topological Graph Theory, Dover Publications, Mineola, New
York, 2001, reprint of the 1987 original [Wiley, New York] with a new preface and supplemen-
tary bibliography.

[20] G. A. Jones and J. Wolfart, Dessins d’enfants on Riemann surfaces, Springer Monographs in
Mathematics, Springer, Cham, 2016, doi:10.1007/978-3-319-24711-3.

[21] M. V. Kaulgud and V. H. Chitgopkar, Polynomial matrix-method for calculation of π-electron
energies for linear conjugated polymers, J. Chem. Soc. Faraday Trans. II 73 (1977), 1385–
1395, doi:10.1039/f29777301385.

[22] M. V. Kaulgud and V. H. Chitgopkar, Polynomial matrix method for the calculation of charge
densities and bond orders in linear conjugated π-electron systems, J. Chem. Soc. Faraday
Trans. II 74 (1978), 951–957, doi:10.1039/f29787400951.

[23] B. Mohar, Genus distribution of path-like and ring-like graphs, oral presentation at SIAM
DM’12 at Halifax, Nova Scotia, June 2012.

[24] M. Mulase and M. Penkava, Ribbon graphs, quadratic differentials on Riemann surfaces, and
algebraic curves defined over Q∗, Asian J. Math. 2 (1998), 875–919, doi:10.4310/ajm.1998.v2.
n4.a11.

J. L. Gross et al.: Calculating genus polynomials via string operations and matrices 295

[25] M. I. Poshni, I. F. Khan and J. L. Gross, Genus distributions of graphs under edge-
amalgamations, Ars Math. Contemp. 3 (2010), 69–86, doi:10.26493/1855-3974.110.6b6.

[26] M. I. Poshni, I. F. Khan and J. L. Gross, Genus distributions of graphs under self-edge-
amalgamations, Ars Math. Contemp. 5 (2012), 127–148, doi:10.26493/1855-3974.166.63e.

[27] S. Stahl, Permutation-partition pairs III: Embedding distributions of linear families of graphs,
J. Comb. Theory Ser. B 52 (1991), 191–218, doi:10.1016/0095-8956(91)90062-O.

[28] S. Stahl, On the zeros of some genus polynomials, Canad. J. Math. 49 (1997), 617–640, doi:
10.4153/cjm-1997-029-5.

[29] R. P. Stanley, Enumerative combinatorics, Volume I, The Wadsworth & Brooks/Cole Mathe-
matics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, California,
1986, doi:10.1007/978-1-4615-9763-6.

[30] C. Thomassen, The genus problem for cubic graphs, J. Comb. Theory Ser. B 69 (1997), 52–58,
doi:10.1006/jctb.1996.1721.

[31] Wikipedia contributors, Shortlex order — Wikipedia, The Free Encyclopedia, 2015, https:
//en.wikipedia.org/wiki/Shortlex_order.

