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Abstract

We describe a simple method for computing the maximum length of the game cop and
robber, assuming optimal play for both sides.
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1 Introduction
The perfect information pursuit game “Cop and Robber” was introduced independently by
Quilliot [13] in 1978, and Nowakowski and Winkler in 1983 [12]. It is played on a graph
by two sides called the cop and the robber. The cop begins the game by choosing a vertex
to occupy. The robber then chooses a vertex and the two sides move alternately, with the
cop moving first. A move for the cop consists of either traversing an edge to a neighbouring
vertex, or passing on his turn and remaining at the same vertex. A move for the robber is
defined analogously. The cop wins if he catches the robber by occupying the same vertex
as the robber after a finite number of moves. Otherwise the robber wins. The graphs on
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which the cop has a winning strategy are called cop-win, or dismantlable. The book by
Bonato and Nowakowski [3] is a wonderful introduction to this game and its variants.

LetG be a cop-win graph. We define the catch time ofG, first introduced in [2], denoted
catchtime(G), to be the minimum number of cop moves needed to be guaranteed to catch
the robber, where the minimum is taken over all possible strategies on the assumption of
optimal play by both sides. Passes count as moves. A variety of results imply ways to
compute catchtime(G), and discover the associated optimal strategies, in cubic time using
some auxiliary structure [1, 8, 11, 12]. In this paper we describe a method for determining
the catch time using only local information about neighbourhoods. It leads to a simple
algorithm which is easy to carry out with pencil and paper if a drawing of the graph is
available, and which can be implemented to run in cubic time.

2 Cop-win orderings and an associated strategy
There are at least three different characterizations of finite cop-win graphs [8, 12, 13] (also
see [7, 10, 11]). The one that is of primary interest here is due to Nowakowski and Winkler,
and Quilliot, independently.

Theorem 2.1. [12, 13] LetG be a finite graph. ThenG is cop-win if and only if there exists
an enumeration v1, v2, . . . , vn of the vertices of G such that for i = 1, 2, . . . , n − 1 there
exists ji > i such that (N [vi] ∩ {vi, vi+1, . . . , vn}) ⊆ N [vji ].

The notation N [x] that appears in the above theorem and elsewhere denotes the closed
neighbourhood of x, defined to be the set containing x and all vertices adjacent to x.

The enumeration of the vertices of G in Theorem 2.1 has come to be known as a cop-
win ordering or dismantling ordering of G. A vertex x ∈ V (G) is called a corner if there
exists y ∈ V (G) − {x} such that N [y] ⊇ N [x], or if V (G) = {x}. When such a vertex
y exists, we say that it covers x. Cop-win orderings are constructed by iteratively deleting
corners from the graph (also, see [5, 6]). We will make use of the following propositions
which are key to the proof of Theorem 2.1 and the associated strategy. In Section 4 we will
show how our results can be viewed as a generalization of this theorem. The methods of
proof we use are essentially those of Nowakowski and Winkler, and Clarke [7, 9, 10, 12].

Proposition 2.2. [12, 13] Let x be a corner of the graph G. Then G is cop-win if and only
if G− x is cop-win.

By optimal play we mean that the cop seeks to catch the robber as quickly as possible,
and the robber seeks to evade capture for as long as possible. Various aspects of optimal
play are considered by Boyer et al. [4]. They show that in some cases of optimal play it is
necessary for the cop to revisit a vertex, and in some cases it is necessary for the distance
between the cop and robber to increase at some time.

Proposition 2.3. [12, 13] If G is cop-win then, assuming optimal play, just before the
robber’s last move, the robber is on a corner of G and the cop is on a vertex that covers it.
The game ends on the cop’s next move.

We now give a description of the cop’s strategy that arises from the proof of Theorem
2.1. The following is applied recursively for i = 1, 2, . . . , n− 1. The vertex vi is a corner
of Gi, the subgraph of G induced by {vi, vi+1, . . . , vn}. (Note that G1 = G.) While the
robber plays the game on Gi, the cop plays as if it were on Gi+1 = Gi − vi, that is, if
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the robber moves to vi the cop plays his winning strategy for Gi+1 as if the robber were
on a particular vertex y that covers vi. By Proposition 2.2, the cop has a winning strategy
on Gi+1. Thus, at some point either the cop and robber occupy the same vertex, or the
cop is on y and the robber is on vi. In the former case the game on Gi is also over, and in
the latter case it is over after one more cop move. It can be proved by induction that this
strategy leads to the bound catchtime(G) ≤ |V | − 1. Essentially the same argument is
used to prove Theorem 3.3. The strategy can be formulated using retractions [7, 10]. We
do the same for our results in Section 4.

3 Finding the catch time
Cop-win orderings are constructed by deleting corners from the graph one at a time. The
key to the method described below for finding the catch time is deleting many corners
simultaneously. Since it is possible for every vertex of a graph (cop-win or not) to be a
corner – informally, for any graph G replace each vertex by a copy of K2 and add all
possible edges between copies of K2 that replaced adjacent vertices of G – it is necessary
to have a means of selecting which subset of the corners to delete.

Let G be a graph. Define an equivalence relation ΘG on V by (u,w) ∈ ΘG if and
only if N [u] = N [w]. Note that the subgraph of G induced by each equivalence class is
complete, and either there are no edges joining vertices in different equivalence classes, or
all possible edges joining them are present. LetG /ΘG be the graph whose vertices are the
equivalence classes {[x] : x ∈ V } of ΘG, with [x] adjacent to [y], where y 6∈ [x], if and only
if xy ∈ E(G) (that is, every vertex in [x] is adjacent to every vertex in [y]). Equivalently,
G /ΘG is the subgraph ofG induced by selecting one vertex from each equivalence class of
ΘG. By construction, no two vertices ofG /ΘG have the same neighbourhood. Thus, if [y]
covers [x] inG /ΘG, the neighbourhood of [y] properly contains the neighbourhood of [x].
Hence, if G is not complete, every vertex x belonging to a corner of G / ΘG is covered in
G by a vertex y such thatNG[y] ⊃ NG[x]. In particular, for every such x there exists such a
y for which [y] is not a corner ofG /ΘG. The main purpose of introducing the equivalence
relation ΘG is to assure that “twins”, that is, vertices with identical neighbourhoods, are
treated in exactly the same way.

Proposition 3.1. Let G be a graph which is not complete and X ⊆ V be the set of vertices
belonging to corners of G / ΘG. Then G is cop-win if and only of G−X is cop-win.

Proof. Let X = {x1, x2, . . . , xk}. Since G is not complete, X is a proper subset of V .
Since each vertex in X is covered by a vertex in the non-empty set in V −X , we have, by
Proposition 2.2, thatG is cop-win if and only ifG−x1 is cop-win if and only ifG−{x1, x2}
is cop-win, and so on until, finally, if and only if G−X is cop-win.

Let G be a cop-win graph. By Proposition 3.1 we can define an ordered partition
X1, X2, . . . , Xk of V by setting Gi = G − ∪i−1t=1Xt (so that G1 = G), and Xi to be the
set of corners of Gi / ΘGi

. Note that the subgraph of G induced by the top layer Xk is
necessarily a complete graph. We call X1, X2, . . . , Xk the cop-win partition of G and, for
i = 1, 2, . . . , k call the set Xi the i-th layer. Note that Xi, Xi+1, . . . , Xk is the cop-win
partition of Gi.

Proposition 3.2. A graph is cop-win if and only if it has a cop-win partition.
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Proof. By the discussion above we need only show that a graph with a cop-win partition is
cop-win. Suppose that X1, X2, . . . , Xk of G is a cop-win partition of G. The enumeration
of V (G) constructed by first listing the vertices in X1 (in any order), then those in X2,
and so on until, finally, the vertices in Xk are listed is a cop-win ordering. The result now
follows from Theorem 2.1.

Suppose that G has a cop-win partition X1, X2, . . . , Xk, where k > 1. If some vertex
of Xk is adjacent to all vertices of Xk−1, then all vertices of Xk must be adjacent to all
vertices of Xk−1: since the subgraph induced by Xk is complete, any vertex of Xk with a
non-neighbour inXk−1 would belong to a corner inGk−1 /ΘGk−1

. Further, ifXk = {xk}
then xk is adjacent to every vertex of Xk−1 as, in Gk−1, any such vertex must be covered
by a vertex in Xk.

Theorem 3.3. Let G have a cop-win partition X1, X2, . . . , Xk. Then catchtime(G) =
k − 1 if every vertex of Xk is adjacent to every vertex of Xk−1, or G has only one vertex.
Otherwise, catchtime(G) = k.

Proof. We first show by induction on k that the robber can be caught in at most the given
number of cop moves. If k = 1, then G is complete and catchtime(G) = 0 when G
has one vertex and catchtime(G) = 1 otherwise. Suppose k = 2. If every vertex in X2

is adjacent to every vertex of X1, then an optimal play game will end in one cop move.
Otherwise, every vertex in X2 has a non-neighbour in X1. The cop begins by choosing
a vertex x2 ∈ X2. No matter which vertex non-adjacent to x2 the robber chooses, by
definition of X1 and since the subgraph induced by X2 is complete, the cop can move to
a vertex of X2 that covers the robber position. The game ends in one more cop move, as
required.

Suppose that the statement holds for all cop-win graphs in which the cop-win partition
has k − 1 layers. Let G be a cop-win graph for which the cop-win partition has k layers.
By Proposition 3.1, the graph G2 = G −X1 is cop-win and has a cop-win partition with
k− 1 layers. As before, while the robber plays the game on G, the cop plays the game as if
it were on G2. If the robber is in X1 then by definition of X1 he has a shadow (a particular
vertex that covers his position) in G2. By the induction hypothesis and assuming optimal
play, after at most catchtime(G2) − 1 cop moves, the robber or his shadow is on a vertex
x2 ∈ X2 and the cop is on a vertex y of G2 that covers it (the robber could actually be
located in X1 which is covered by x2). The robber can evade capture for at most two more
cop moves. On the next cop move the cop catches the robber’s shadow (or possibly the
robber) on some vertex z of G2. Suppose he has only caught the shadow. Then the robber
is on a vertex x1 ∈ X1 which is covered by z. No matter to which vertex the robber moves,
the cop now has a move to the same vertex, so the game ends on the next cop move.

The proof that there is an optimal play game requiring the given number of moves is
also by induction on k. The statement is easy to see when k = 1. Suppose it holds for all
cop-win graphs in which the cop-win partition has k − 1 layers. Let G be a cop-win graph
for which the cop-win partition has k layers. By the induction hypothesis and assuming
optimal play, there is a game on G2 that requires catchtime(G2) moves. Since there is
never an advantage to the cop in using a vertex in X1 – a cover in G2 could be used instead
– in order to make the game on G last as long as possible, the robber first plays his optimal
game onG2. By Proposition 2.3, just before the robber’s last move in this game, the robber
is on a vertex x2 ∈ X2 and the cop is on a vertex y that covers it (in G2). By definition of
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X2, in the game on G, the robber has a move to a vertex in x1 ∈ X1 which is not adjacent
to y. Since x1 is a corner of G, the cop has a move to a vertex that covers x1. (A cover
of x1 is adjacent to all neighbours of x1, hence is adjacent to x2. Since y covers x2, it is
adjacent to all neighbours of x2, including the vertex that covers x1.) The game therefore
lasts one move longer than before. This completes the proof.

Theorem 3.3 implies a straightforward algorithm for computing the catch time. Given
a graph G with n vertices, the first step is to find the quotient graph, G / ΘG. If G is rep-
resented by an adjacency matrix, A, then viewing each row as characteristic vector of the
corresponding vertex, two vertices belong to the same equivalence class if the correspond-
ing rows are identical. The equivalence classes, and consequently G / ΘG (choose one
vertex from each equivalence class) can be found in O(n2) time. The corners of G / ΘG

are also easy to find from the rows ofA in timeO(n2). Hence the first set,X1, in a cop-win
partition can be determined in quadratic time. After marking the vertices in X1 as deleted,
the process is repeated with G−X1 and so on, until the cop-win partition X1, X2, . . . , Xk

is determined. Since k ≤ n, this process takes time O(n3). The last step is to test whether
every vertex of Xk is adjacent in G to every vertex in Xk−1, which takes time O(n2), and
then apply the theorem. Hence the catch time can be determined in cubic time.

We conclude this section by noting that, by definition of the catch time of the cop-win
graph G, for any initial position chosen by the cop there is an initial position available
to the robber such that optimal play by both sides results in a game of length at least
catchtime(G). Further, there exists at least one initial position available to the cop (for
example, any one in the “top” layer of the cop-win partition, plus possibly some others)
such that optimal play by both sides results in a game of length exactly catchtime(G).

4 Retractions and a description of the strategy
The purpose of this section is to illustrate how our results can be seen as a generalization
of Theorem 2.1, and to present the cop’s strategy implied by Theorem 3.3 in the language
of retractions (see [7, 10]), thus perhaps making the implied recursion more transparent.

We first describe an alternate approach that could have been used instead of proceeding
directly to the cop-win partition as in Section 3. An advantage of using this point of view
is that the connection with Theorem 2.1 is immediate.

By a cop-win layering of a graph G we mean an ordered partition X1, X2, . . . , X` of
V (G) such that for i = 1, 2, . . . , `− 1 the set Xi is a set of corners of Gi = G− ∪i−1t=1Xt

each of which has a cover in Gi+1. Each set Xi is called a layer.
A cop-win ordering v1, v2, . . . , vn gives a cop-win layering by setting Xi = {vi},

1 ≤ i ≤ n. Conversely, a cop-win layering X1, X2, . . . , Xk of G gives a cop-win ordering
in the same way as described before. The following statements hold using essentially the
same proofs as before.

Theorem 4.1. A graph G is cop-win if and only if it admits a cop-win layering.

Theorem 4.2. IfG has a cop-win layeringX1, X2, . . . , Xk, then catchtime(G) ≤ k−1 if
every vertex ofXk is adjacent to every vertex ofXk−1, orG has only one vertex. Otherwise,
catchtime(G) ≤ k.

Let L = X1, X2, . . . , Xk be a cop-win layering of G. Define µG(L) = k − 1 if
every vertex of Xk is adjacent to every vertex of Xk−1 or if G has only one vertex, and
µG(L) = k otherwise.
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Theorem 4.3. The maximum length of the cop and robber game on the cop-win graph G
equals minL µG(L), where the minimum is over all cop-win layerings of G.

Given a cop-win ordering v1, v2, . . . , vn of G, Theorem 4.2 can be used to improve the
upper bound of n − 1 cop moves in the associated strategy. Define a cop-win layering by
letting X1 be a maximum size set of consecutive vertices X1 = {v1, v2, . . . , vi1} such that
each vertex in X1 has a cover in V (G) − X1. Now delete the vertices in X1 and define
X2 in the same way using the graph G2 = G −X1. Continue in this way until, finally, a
cop-win layering L = X1, X2, . . . , X` is defined. Then catchtime(G) ≤ µG(L).

For the purposes of what follows, it is convenient to regard the graphs under considera-
tion as being reflexive, that is, having a loop at each vertex. A pass corresponds to moving
along the loop from a vertex to itself.

Let G be a graph and H be a fixed subgraph of G. A retraction of G to H is a
homomorphism of G to H that maps H identically to itself. Formally, it is a function
f : V (G) → V (H) such that f(h) = h for all vertices h of H , and if xy ∈ E(G) then
f(x)f(y) ∈ E(H). If there exists a retraction of G to H , then H is called a retract of G.

Theorem 4.4. [12, 14] Any retract of a cop-win graph is cop-win.

Retractions provide a convenient way of describing the cop’s strategy arising from The-
orem 2.1 [7, 10] (also see [9]). The same method can be used to describe the strategy arising
from Theorem 4.2. Suppose that G has at least two vertices and let L = X1, X2, . . . , X`

be a cop-win layering of the vertices of G. For i = 1, 2, . . . , ` − 1 there is a retraction fi
of the graph Gi = G − ∪i−1t=1Xt to Gi+1 that maps each vertex in Xi to a vertex in Gi+1

that covers it. (If there is more than one candidate for this vertex, it does not matter which
one is chosen.) When G is a complete graph with at least two vertices, or every vertex in
X` is non-adjacent to some vertex in X`−1 there is also a retraction f` of the (complete)
subgraph induced by X` to any one of its vertices. On his j-th move, the cop plays on
G`−j+1 = f`−j ◦ · · · ◦ f2 ◦ f1(G) = G − ∪`−jt=1Xt. We allow j = 0 when |X`| > 1 and
every vertex in X` has a non-neighbour in X`−1. No matter where the robber is located
in G, his shadow (i.e. image under the mapping f`−j ◦ · · · ◦ f2 ◦ f1) is located on one of
the vertices of this graph. Since the cop is “on” the robber’s shadow after making his move
when j = 1, and the retractions allow him to stay on it in each subsequent move, the cop is
guaranteed to catch the robber after at most µG(L) moves.
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