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Abstract

In this paper, we consider the finite groups which act on the 2-sphere S2 and the pro-
jective plane P2, and show how to visualize these actions which are explicitly defined. We
obtain their quotient types by distinguishing a fundamental domain for each action and
identifying its boundary. If G is an action on P2, then G is isomorphic to one of the fol-
lowing groups: S4, A5, A4, Zm or Dih(Zm). For each group, there is only one equivalence
class (conjugation), and G leaves an orientation reversing loop invariant if and only if G
is isomorphic to either Zm or Dih(Zm). Using these preliminary results, we classify and
enumerate the finite groups, up to equivalence, which act on P2×I and the twisted I-bundle
over P2. As an example, if m > 2 is an even integer and m/2 is odd, there are three equiv-
alence classes of orientation reversing Dih(Zm)-actions on the twisted I-bundle over P2.
However if m/2 is even, then there are two equivalence classes.

Keywords: Achiral symmetry, chiral symmetry, equivalence of actions, finite group action, isometry,
orbifold, symmetry.
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1 Introduction
The finite orientation preserving groups which act effectively on S2 are known. (See for
example Gross and Tucker [5] and Zimmermann [9].) They are the octahedral symmetric
group S4, the dodecahedral/icosahedral alternating group A5, the tetrahedral alternating
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group A4, the cyclic group Zm or the dihedral group Dih(Zm). Using this classification,
the actions on the projective plane P2 are also known as folklore, and one can easily com-
pute them by this theorem of Singerman [7] and Tucker [8].

Theorem. Let F be a closed non-orientable surface and let p : F̃ → F be the orientable
double cover with covering translation t : F̃ → F̃ . Then any finite group G acting on F ,
lifts to an orientation preserving action of G on F̃ that commutes with t. Moreover, the
action of G on F is determined by the action of G× 〈t〉 on F̃ .

If t : S2 → S2 is the covering translation such that S2/〈t〉 = P2, one checks that
any rotation of S2 commutes with t. Therefore since these groups consists of rotations,
it follows that the orientation preserving actions on S2 project to P2, giving the following
corollary.

Corollary. Any finite group acting on P2 is isomorphic to one of the following groups: S4,
A5, A4, Zm or Dih(Zm).

A finite G-action on a manifold M is a monomorphism ϕ : G → Homeo(M), where
G is a finite group, and Homeo(M) is the group of homeomorphisms of M . Two actions
ϕ1 and ϕ2 are equivalent if there exists a homeomorphism h ofM such that hϕ1(G)h−1 =
ϕ2(G). For an action ϕ, the quotient space M/ϕ is an orbifold which is referred to as the
quotient type of the action.

In this paper, we describe how to visualize the finite groups which act on the 2-sphere
S2 and the projective plane P2, and show how to obtain their quotient types. Our approach,
for the groups which are not cyclic or dihedral, is to view these groups as subgroups of the
symmetric group Sn for an appropriate n, tiling the 2-sphere with appropriate polygons
with n vertices for each group, and explicitly defining each action. As for the cyclic and
dihedral groups, we use spherical coordinates to precisely describe their actions on S2. For
all these groups, we can easily identify an explicit fundamental region for each action and
see its quotient type, which is obtained by identifying the boundary of the fundamental
region. In this way, it is easy to see the actions on S2, P2 and their quotient types. This part
of the paper may be considered expository, and we obtain the following theorem where the
description of these quotient types may be found in Figure 1.

Theorem 7.1. Let ϕ : G→ Homeo(P2) be a finite group action on P2. Then G is isomor-
phic to one of the following groups: S4, A5, A4, Zm or Dih(Zm). The orbifold quotient
P2/ϕ is an orbifold homeomorphic to one of the following orbifolds: Oh, Ih, T v , Zhm,
S2m, Dv

m or Dh
m. There is only one equivalence class for each group.

(1) G ' S4 if and only if P2/ϕ = Oh.

(2) G ' A5 if and only if P2/ϕ = Ih.

(3) G ' A4 if and only if P2/ϕ = T v .

(4) G ' Zm and m is even if and only if P2/ϕ = Zhm.

(5) G ' Zm and m is odd if and only if P2/ϕ = S2m.

(6) G ' Dih(Zm) and m odd if and only if P2/ϕ = Dv
m.

(7) G ' Dih(Zm) and m even if and only if P2/ϕ = Dh
m.
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This approach relates to topics in topological graph theory found in Gross and
Tucker [5]. There, graphs are embedded on surfaces and finite groups act on these spaces
with quotient spaces, branch covering maps and branch points, relating to orbifold covering
maps and cone points.

Using the above result, we classify in Theorem 7.4 the finite group actions, up to equiv-
alence, on P2 × I for I = [0, 1]. If G is an action on P2 × I , then G is isomorphic to
one of the following groups: S4, S4 × Z2, A5, A5 × Z2, A4, A4 × Z2, Zm, Zm × Z2,
Dih(Zm) or Dih(Zm)×Z2. We indicate the number of equivalence classes for each group
in Theorem 7.4. If W is the twisted I-bundle over the projective plane P2, then we obtain
the following results:

Corollary 8.12. Let ϕ : G → Homeo(W ) be a finite orientation preserving G-action on
W . Then G is isomorphic to one of the following groups: S4, A5, A4, Zm or Dih(Zm).
The orbifold quotient for each action is a twisted I-bundle orbifold over the following
2-orbifolds: Oh (for S4), Ih (for A5), T v (for A4), Zhm (for Zm and m even), S2m (for
Zm and m odd), Dv

m (for Dih(Zm) and m odd) and Dh
m (for Dih(Zm) and m even).

There is one equivalence class for each quotient type.

Theorem 9.4. Let ϕ : G → Homeo(W ) be an orientation reversing G-action. Then G
is isomorphic to one of the following groups: S4, Zm with m even, Dih(Zm), S4 × Z2,
A5 × Z2, A4 × Z2, Zm × Z2 or Dih(Zm)× Z2.

(1) If G is either S4, S4 × Z2, A5 × Z2, A4 × Z2, Zm × Z2 with m even or Dih(Zm)
with m odd, there is only one equivalence class.

(2) If G is Zm with m > 2 even and m/2 odd, then there are two equivalence classes of
Zm = Zm/2 × Z2-actions on W .

(3) If G is Zm with either m/2 even or m = 2, then there is only one equivalence class.

(4) If G is Dih(Zm) with m > 2 and m/2 even, there are two equivalence classes of
Dih(Zm)-actions on W .

(5) If G is Dih(Zm) with m > 2 and m/2 odd, there are three equivalence classes of
Dih(Zm)-actions on W .

(6) If G is Dih(Zm)× Z2 with m even, there is only one equivalence class.

(7) If G is Dih(Zm)× Z2 with m odd, then Dih(Zm)× Z2 ' Dih(Z2m) and there are
three equivalence classes of Dih(Z2m)-actions on W .

We list all the closed 2-orbifolds with positive Euler number, of which there are 14.
(See Figure 1.) In referring to these orbifolds, we use Schönflies notation found in Coxeter
and Moser [1], and Dunbar [3].

There are five orientable 2-orbifolds with positive Euler number which have as their
underlying space a 2-sphere with the cone points indicated in the notation. They are
Σ(2, 2, n) = Dn, Σ(2, 3, 3) = T , Σ(2, 3, 4) = O, Σ(2, 3, 5) = I , and Σ(n, l) = Cn,l.
These double cover the following nine non-orientable 2-orbifolds where the double lines
are reflector lines. The superscripts h and v stand for horizontal and vertical reflections in
their orientable double covers. Except for Σ(n, l) = Cn,l where the cone points are at the
north and south poles, all the cone points are located on the equator.

In this article, where appropriate and depending on the context, we use the same symbol
to denote the quotient space and the group acting on S2. For example, O = Σ(2, 3, 4) and
O also denote the octahedral group.
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Figure 1: The nine non-orientable 2-orbifolds of positive Euler number.

Here is a brief outline of the paper. We consider each of these orbifolds in Sections 2
through 6, and give model maps which we consider as standard actions, to obtain each
quotient type. Summarizing we give the main results for finite actions on P2 and P2 × I
in Section 7. Sections 8 and 9 are devoted to classifying the finite actions on the twisted
I-bundle W over P2.

The authors wish to thank the referees for many helpful comments and suggestions.

2 Chiral octahedral symmetry O and achiral octahedral symmetry Oh

We describe the groupsO = S4 andOh = S4×Z2 acting on the 2-sphere S2, and show how
O acts on the projective plane P2. We view S2 as an octahedron which has eight triangles
(faces): 4125,4145,4126,4146,4235,4236,4345 and4346. (See Figure 2.)

Consider elements of S6 where a = (1, 2)(3, 4)(5, 6) and b = (1, 2, 5)(3, 4, 6). The
two elements act on the octahedron. We can see that a is a 180◦ rotation about the axis
passing through the midpoint of edges 1, 2 and 3, 4. On the other hand, b is a 120◦ rotation
about the axis passing through the barycenter of 4125 and 4346 respectively. Further,
ab = (2, 6, 4, 5) where ab is a 90◦ rotation about the axis passing through vertices 1 and
3. As a result, the two elements a and b generate a group isomorphic to S4, and we denote
this group by O = 〈a, b | a2 = b3 = (ab)4 = 1〉, the octahedral group.

Next, we use Σ to denote the quotient space of S2 byO, and we will find a fundamental
region for Σ on S2. We first claim that4125 will tile the whole octahedron S2 by the action
of O. Observe that the action by a sends4125 to4216. Further, b2(ab)b−2 = (1, 4, 3, 2)
is a 90◦ rotation about the axis passing through vertices 5 and 6, which shows our claim.

Note that the number of fundamental regions for Σ on S2 must be 24 as the number is
the order of the octahedral group O = S4. Since the S2 currently has eight faces, we will
have to triangulate them further. Our approach is that we will add one more vertex on the
barycenter on each triangle. For instance, one of the triangulations on 4125 is shown in
the Figure 2.

We now show that 412y becomes a fundamental region for Σ. Since a rotational axis
of b passes the vertex y, the barycenter of 4125, one can see that b permutes those three
triangles 412y, 451y and 425y. In the meantime, edges 1, x1 and 2, x1 are identified
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Figure 2: S2 as an octahedron.

by a. Likewise, edges 1, y and 2, y are identified by b. Points 1, x1 and y will be cone
points under the action. Each has an order 4, 2 and 3 respectively. Consequently, we obtain
Σ = S2/O = Σ(2, 3, 4).

In order to obtainOh, we consider an action i = (1, 3)(2, 4)(5, 6) which is the antipodal
map on S2. Notice that the antipodal map commutes with the elements in O, hence it
induces the reflection map on S2/O = Σ(2, 3, 4). Now, we choose a triangle whose vertices
are 1, x1 and y. Apply (ab)2b(ab)i on the triangle gives us the triangle with vertices 2, x1
and y. Notice that segments 1x1 and 2x1; 1y and 2y have been identified under O-action
and the segment x1y has been fixed under the map (ab)2b(ab)i. This argument shows that
41x1y is a fundamental region for O × 〈i〉-action on S2. The vertices of 41x1y become
corner reflectors, and the edges minus the vertices become the reflector lines. As a result,
S2/[O × 〈i〉] = Oh, where O × 〈i〉 = S4 × Z2 = π1(Oh).

We remark that S2/〈i〉 = P2 is the projective plane. Since the antipodal map i com-
mutes with O, the octahedral action on S2 induces the action generated by ā and b̄ on P2,
which is isomorphic to the octahedral groupO. As a result, we also obtain P2/〈ā, b̄〉 = Oh.
We will now describe the octahedral action O on P2.

The left diagram in Figure 3 illustrates a fundamental region on S2 used to obtain P2

under the antipodal map i = (1, 3)(2, 4)(5, 6). For any arc x, y, z, we let [x, y, z] be its
projection in P2. The arc 1, 2, 3 (or 3, 4, 1 etc) on S2 projects to an orientation reversing
loop [1, 2, 3] on P2. The generator a maps the loop [1, 2, 3] onto [2, 1, 4] = [2, 1][1, 4] =
[2, 1][3, 2], which traces the same loop as [1, 2, 3] starting at a different point. Thus a leaves
the loop [1, 2, 3] invariant and restricted to this loop is a rotation. On the other hand, the
map bmaps the loop [1, 2, 3] onto [2, 5, 4] whose image is shown as a bold line in the middle
diagram in Figure 3 above. Moreover, b

2
maps the loop [1, 2, 3] onto the loop [1, 3, 5]. Thus

the Z3-action generated by b does not leave the orientation reversing loop [1, 2, 3] on P2

invariant.
However, it is important to emphasize that this does not imply the Z3-action leaves no

orientation reversing loops invariant. In fact, we can find another orientation reversing loop
on P2 which is left invariant under the map b. It can be found by looking at the octahedron
S2 which double covers P2. Consider the circle on S2 which contains the vertices consisting
of the midpoints of 4, 5, 5, 3, 3, 2, 2, 6, 6, 1 and 1, 4. One can check that this circle is left
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invariant under b and the covering translation i, hence it projects to an orientation reversing
loop on P2 left invariant under b. It follows that the entire S4-action on P2 does not leave
any orientation reversing loop invariant.
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Figure 3: Fundamental region on octahedron.

Lemma 2.1. Let Z2 be a subgroup of π1(Oh) such that P2 → Oh is the covering corre-
sponding to Z2. Then Z2 = 〈i〉.

Proof. We will show that there is only one element of order two in Oh = S4 × Z2 acting
on S2 which is fixed point free and orientation reversing, and that element is i. Since the
elements in S4 and Z2 commute, we will first look at all elements of order two in S4.
In this group, there are nine such elements. Six of them are a rotation of 180◦ where
their rotational axes are on midpoints of edges. For example, one rotational axis passes
the midpoint of 1, 4 and 2, 3. Another one passes the midpoint of 2, 5 and 4, 6. Notice
that all six types of these rotations are conjugate in S4. Moreover, there are three types
of 90◦ rotations, call them r1, r2 and r3, where r1 = (1, 2, 3, 4), r2 = (1, 6, 3, 5) and
r3 = (2, 5, 4, 6) respectively. Clearly, they generate three kinds of 180◦ rotations which
are conjugate in S4. As a result, S4 has two conjugacy classes of order two elements, and
we will choose a and (ab)2 from the group to represent each class. There is an easy way to
verify if two elements in Sn are conjugate for n ∈ N by checking their cycle types. (See [2,
Chapter 4].) Now, we compose them with the antipodal map i to obtain ai = (1, 4)(2, 3)
and (ab)2i = (1, 3). Since both maps have a fixed point, if P2 → Oh is the covering
corresponding to any Z2, then Z2 = 〈i〉.

Proposition 2.2. Let ϕ : G→ Homeo(P2) be a finite action such that P2/ϕ is homeomor-
phic to Oh. Then G ' S4 and ϕ is conjugate to the standard action S4 = 〈ā, b̄〉. Moreover,
no orientation reversing loop is left invariant by the G-action.

Proof. Let ν : P2 → P2/〈ā, b̄〉 and νϕ : P2 → P2/ϕ be the orbifold covering maps. By
assumption there exists a homeomorphism h : P2/〈ā, b̄〉 → P2/ϕ. By Lemma 2.1, the Z2

subgroup of π1(P2/ϕ) giving rise to a covering P2 → P2/ϕ is unique. Hence h lifts to a
homeomorphism h̃ : P2 → P2 and we obtain the following commutative diagram:

P2 h̃−→ P2

↓ν ↓νϕ
P2/〈ā, b̄〉 h−→ P2/ϕ

This implies that G ' S4 and h̃ conjugates ϕ to the standard action 〈ā, b̄〉.
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3 Chiral dodecahedral/icosahedral symmetry I and achiral dodeca-
hedral/icosahedral symmetry Ih

We describe the groups I = A5 and Ih = I × Z2 = A5 × Z2 acting on the 2-sphere S2,
and show how A5 acts on P2.

We view S2 as a dodecahedron consisting of 12 pentagons as shown in the first two
figures from the left in Figure 4. We also consider two elements a and b in S20 where
a = (1, 2)(3, 7)(4, 13)(5, 8)(6, 14)(9, 12)(10, 19)(11, 20)(15, 18)(16, 17) and the element
b = (2, 5, 7)(3, 6, 13)(4, 12, 8)(9, 11, 19)(10, 18, 14)(15, 17, 20). The two elements act
on the dodecahedron S2, and we can see that a is a 180◦ rotation about the axis passing
through the midpoint of edges 1, 2 and 16, 17. On the other hand, b is a 120◦ rotation about
the axis passing through the vertices 1 and 16. Moreover, ab−1 is a 72◦ rotation about the
axis passing through the barycenter of the pentagon whose vertices are 1, 2, 3, 4, 5 and
16, 17, 18, 19, 20 respectively since ab−1 = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)(11, 12, 13, 14, 15)
(16, 17, 18, 19, 20). Consequently, a and b generate a group isomorphic to I = A5 written
by I = 〈a, b | a2 = b3 = (ab−1)5 = 1〉.

We use Σ to denote the quotient space of S2 by I , and we will look for a fundamental
region for Σ on S2. We will first observe that one of the pentagons consists of vertices 1, 2,
3, 4 and 5 tiles the remaining pentagons on S2. This pentagon is sent to the pentagon with
the vertices 1, 5, 6, 12, 7 by b. Then, ab−1 permutes the remaining pentagons in the front
of S2. On the other hand, (ab−1)2 sends the vertices 1, 5, 6, 12, 7 to the vertices 4, 3, 9, 15,
10. Then, the map a sends them to the vertices 13, 7, 12, 18, 19 on the back of S2. At this
stage, one can see that ab−1 permutes all pentagons on the back of S2 except the one on
the center whose vertices are 16, 17, 18, 19, 20. However, it can be obtained by applying
the map b−1(ab−1)2 on the vertices 4, 3, 9, 15, 10.
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Figure 4: S2 as a dodecahedron.

Next, we will add a vertex on the barycenter of the pentagon 1, 2, 3, 4, 5 (see Figure 4),
which we denote by y. We also add vertices xi (1 ≤ i ≤ 5) on this pentagon. We can
see that 412y tiles the remaining triangles on the pentagon 1, 2, 3, 4 and 5 (see Figure 4)
by the map ab−1. By the argument above, this proves that 412y is a fundamental region
for Σ. Now the edges 1, x1 and 2, x1 are identified by a ∈ I . Likewise, ab−1 ∈ I
identifies edges 1, y and 2, y. The vertices 1, x1 and y are fixed by the elements b, a and
ab−1 respectively. Thus, the vertices project to the cone points on Σ of orders 3, 2 and 5
respectively. Consequently, Σ = S2/I = Σ(2, 3, 5).
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In order to obtain Ih, we consider an antipodal map on S2 defined by i = (1, 16)(2, 17)
(3, 18)(4, 19)(5, 20)(6, 14)(7, 15)(8, 11)(9, 12)(10, 13). It is easy to check that the antipo-
dal map commutes with the elements of I , hence I × Z2 = 〈a, b, i | a2 = b3 = (ab−1)5 =
i2 = 1, [a, i] = [b, i] = 1〉. As a result, i induces the reflection map on S2/I = Σ(2, 3, 5).

We choose a triangle whose vertices are 1, x1 and y on the fundamental region 412y.
When the map a(ab−1)3b−1(ab)i is applied on41x1y, its image is44x3y. Since44x3y
is identified to42x1y by (ab−1)−2 ∈ I , this shows the antipodal map i on S2 induces the
reflection map on Σ(2, 3, 5) at its equator line. Consequently, S2/[I × 〈i〉] = Ih, where
I × 〈i〉 = A5 × Z2. The quotient space S2/[I × 〈i〉] is a mirrored disk where cone points
of order 2, 3 and 5 are on the mirror.

Note that S2/〈i〉 = P2 is the projective plane and the map i commutes with I . Thus, the
icosahedral action on S2 induces the action generated by ā and b̄ on P2, which is isomorphic
to the icosahedral group I . Hence, we obtain P2/〈ā, b̄〉 = Ih.

We will now describe the I = A5-action on P2, and show that it is unique up to conju-
gation. The front and back of S2 in Figure 4 describe a fundamental region used to obtain
P2 = S2/〈i〉 where i is the antipodal map on S2. Note that the boundary of each region
in the diagram is left invariant and the interior of each region is exchanged under i. The
arc 7, 13, 8, 14, 9, 15 (or 15, 10, 11, 6, 12, 7 etc) projects to an orientation reversing loop
[7, 13, 8, 14, 9, 15] on P2. The map ab−1 leaves the outer most loop containing the arc in-
variant up to the covering translation i. Thus, the induced map ab−1 in P2 leaves this orien-
tation reversing loop invariant. On one hand, a leaves the circle containing vertices 1, 2, 3,
9, 15, 16, 17, 18, 12, 7, 1 in S2 invariant which double covers an orientation reversing loop
on P2. Note that a leaves this orientation reversing loop invariant. However, the orientation
reversing loops [7, 13, 8, 14, 9, 15] and [3, 4, 5, 6, 12, 18] = [3, 4, 5, 6, 9, 3] in P2 are ex-
changed by a. Finally, b will induce a map b on P2. One can see this since three orientation
reversing loops in P2, namely [7, 13, 8, 14, 9, 15], [2, 3, 4, 10, 11, 17] = [2, 3, 4, 10, 8, 2]
and [5, 6, 12, 18, 4, 5] = [5, 6, 9, 3, 4, 5], are permuted under b.

Note that although we can find an orientation reversing loop left invariant under b, no
common orientation reversing loop exists which is left invariant by both a and b since the
two maps generate an A5-action on P2.

Lemma 3.1. Let Z2 be a subgroup of π1(Ih) such that P2 → Ih is the covering corre-
sponding to Z2. Then Z2 = 〈i〉.

Proof. We claim that there is only one element of order two in Ih = A5 × Z2 acting
on S2 which is fixed point free and orientation reversing up to a conjugacy. Notice that
all elements in Ih have the form of albmin for some l,m, n ∈ Z where a, b ∈ A5 and
i ∈ Z2. Since a corresponding covering space must be regular, the group generated by
albmin must be a normal subgroup in Ih. In particular, albm generates a normal subgroup
of A5 which is impossible unless l = m = 0. Therefore, a covering space of the orbifold
Ih corresponding to a Z2 subgroup in π1(Ih) = A5 × Z2 is S2/〈i〉 = P2. Therefore, an
A5-action on P2 with quotient type Ih is unique up to conjugacy.

Proposition 3.2. Let ϕ : G→ Homeo(P2) be a finite action such that P2/ϕ is homeomor-
phic to Ih. Then G ' A5 and ϕ is conjugate to the standard action I = 〈ā, b̄〉. Moreover,
no orientation reversing loop is left invariant by the G-action.

Proof. The proof is similar to that of Proposition 2.2 and uses the above Lemma 3.1.
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4 Chiral tetrahedral symmetry T and pyritohedral symmetry T v

We consider the groups T = A4 and T v = T × Z2 = A4 × Z2 acting on the 2-sphere S2
and describe how T acts on the projective plane.
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Figure 5: S2 as a tetrahedron.

We view S2 as a tetrahedron which has four faces: 4124,4134,4234 and4123 (see
Figure 5). We add a total of 14 vertices on the faces to triangulate the tetrahedron, and
4123 in the Figure 5 illustrates a “bottom” of the tetrahedron.

Consider elements of S14 where a = (1, 2, 3)(5, 6, 7)(9, 14, 13)(10, 12, 11) and b =
(1, 2)(3, 4)(5, 8)(6, 7)(10, 13)(11, 14). These two generators act on the tetrahedron S2.
For instance, a is a 120◦ rotation about the axis passing throught the vertices 4 and 8; and
b is a 180◦ rotation about the axis passing throught the vertices 9 and 12. It is easy to see
that ab = (1, 3, 4)(5, 8, 6)(9, 14, 10)(11, 13, 12) is a 120◦ rotation about the axis passing
through the vertices 2 and 7. Hence, the two elements a and b generate a group isomorphic
to A4, and we call this group by T = 〈a, b | a3 = b2 = (ab)3 = 1〉, which is the tetrahedral
group.

Let Σ be the quotient space of S2 by the group T . We will observe that the face4123
on the “bottom” of this tetrahedron tiles the rest of its faces. To understand this, we look
at the map b which sends from 4123 to 4124. Then, the map a permutes 4124 by 120◦

each time to tile the whole tetrahedron. However, this argument shows that we may choose
4128 for a fundamental region for Σ since the map a permutes within the three triangles
4128,4238 and4318 on the “bottom” face4123 of S2.

Notice that b, which has the order two, fixes the vertex 9. Hence, it becomes an excep-
tional point of order two. Further, b identifies edges 1, 9 and 2, 9. On the other hand, a fixes
the vertex 8, hence this vertex becomes a cone point of order three. Also, a identifies edges
1, 8 and 2, 8. Moreover, the map ab, which has an order three, fixes the vertex 2 to obtain
an additional cone point of order three. Consequently, Σ = S2/T = Σ(2, 3, 3).

Next, we will discuss how to obtain T v . An antipodal map defined by i = (1, 6)(2, 7)
(3, 5)(4, 8)(9, 12)(10, 13)(11, 14) on S2 commutes with the elements in T , hence we have
T × Z2 = 〈a, b, i | a3 = b2 = (ab)3 = i2 = 1, [a, i] = [b, i] = 1〉 and i induces a map on
S2/T = Σ(2, 3, 3). However, it requires some work to analyze what map i induces on the
orbifold Σ(2, 3, 3).

First, let x and y be the mid-point of the edge 1, 8 and 2, 8 respectively. Since the points
x and y are identified in Σ(2, 3, 3) by a ∈ T , we may view the union of x, 9 and 9, y as
the vertical equator line on Σ(2, 3, 3). Notice that the induced map i on Σ(2, 3, 3) fixes all
points on the vertical equator line. It can be checked by observing that a−1(ab)−1(a2b)i
fixes the points on the line x, 9; and (ab)(a2b)i fixes the points on the line 9, y.

Secondly, we will show that the induced map i on Σ(2, 3, 3) is a reflection on the
vertical equator line x, 9 ∪ 9, y. To see this, consider 4189 lying on our fundamental
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region 4128. Apply the map a(ab)2i on 4189 gives us 4819 which is a reflection on
x, 9. Likewise,4289 is reflected on 9, y by the map a(ab)2bi to get4829. As a result, the
induced map i on Σ(2, 3, 3) is a reflection at the vertical equator line on the orbifold.

By the argument above, S2/[T × 〈i〉] = T v , where T × 〈i〉 = A4 × Z2 and the
quotient space S2/[T × 〈i〉] is a mirrored disk containing a corner reflector containing one
exceptional points of order 2 and 3 on it and one exceptional point of order 3 in its interior.

Recall that the antipodal map i commutes with T on S2, hence a, b ∈ T induce maps
ā and b̄ on S2/〈i〉 = P2. Moreover, P2/〈ā, b̄〉 = S2/[T × 〈i〉] = T v , where 〈ā, b̄〉 is
isomorphic to T .

We will now describe the T = A4-action on P2 and show that it is unique up to conju-
gacy.
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Figure 6: Fundamental region on tetrahedron.

The left diagram in Figure 6 above illustrates a fundamental region on S2 used to obtain
P2 under the antipodal map i, where S2 is viewed as in Figure 5 and S2/〈i〉 = P2. This
can be seen by observing the circle containing vertices, 5, 2, 14, 3, 7, 11 is left invariant by
i, and the vertices 4, 10, 6, 12 are sent to 8, 13, 1, 9 respectively. The projective plane is
obtained by identifying the opposite side in this polygon.

Recall a and b are generators of the tetrahedral group T = A4 operating on S2. Further-
more i /∈ T = A4. Thus T induces an action on P2 and the elements a, b ∈ T induce maps
a, b on P2. Notice that the generator a maps the loop [5, 2, 14, 3] = [5, 2][2, 14][14, 3] in P2

onto [6, 3][3, 13][13, 1] = [6, 3][5, 10][10, 6] = [6, 3, 5, 10, 6] = [5, 10, 6, 3], and a2 maps
this loop onto [2, 6, 12, 7]. Each image is expressed as a bold line in the Figure 6 above.
Thus, the map a does not leave this orientation reversing loop invariant in P2. Likewise, ab
and (ab)

2
map the loop [5, 2, 14, 3] = [2, 14, 3, 7] onto [2, 10, 4, 7] and [2, 6, 12, 7] respec-

tively. Furthermore, b maps the loop [5, 2, 14, 3] onto [11, 4, 6, 14]. The loop consists of
vertices 2, 6, 12, 7, 1 and 9 on the tetrahedron S2 is left invariant by the map b ∈ T and the
covering translation i, hence the arc having vertices 2, 6, 12 and 7 projects to an orientation
reversing loop on P2. There is no orientation reversing loop in P2 which is left invariant by
both a and b.

Lemma 4.1. Let Z2 be a subgroup of π1(T v) such that P2 → T v is the covering corre-
sponding to Z2. Then Z2 = 〈i〉.

Proof. We will show that the orbifold T v has only one P2 covering space up to a conjugacy.
Notice that A4 has three elements of order two. These elements are b, aba−1 and a2ba−2,
which are all equivalent. Thus, A4 × Z2 has two conjugacy classes of order two elements
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which reverse orientation, namely bi and i. Since bi = (1, 7)(2, 6)(3, 8)(4, 5)(9, 12) fixing
vertices 10, 11, 13 and 14, we have a desired conclusion.

Proposition 4.2. Let ϕ : G → Homeo(P2) be a finite action such that P2/ϕ = T v . Then
G ' A4 and ϕ is conjugate to the standard action generated by 〈ā, b̄〉. Moreover, no
orientation reversing loop is left invariant by the G-action.

Proof. The proof follows as in Proposition 2.2 and uses Lemma 4.1.

We remark that [4] contains excellent figures to show us how each element in A4 acts
on a tetrahedron.

5 Achiral tetrahedral symmetry T h

In Section 1, we have seen the O = S4-action on S2 where S2/O is Σ(2, 3, 4), which is
an orientable orbifold. In this section, we will investigate another O = S4-action on S2.
However, the resulting quotient space S2/O = Th will be non-orientable this time. More
specifically, it will be a mirrored disk which contains two cone points of order three and
one cone point of order two on the mirror. Note that we will triangulate S2 as shown in
Section 4 which is a tetrahedron.

First, we will begin by providing generators to define a group isomorphic to S4. Con-
sider two elements a = (1, 2)(6, 7)(10, 11)(13, 14) and b = (2, 4, 3)(5, 7, 8)(9, 11, 13)
(10, 12, 14) in S14. We can see that a is a reflection on the circle containing vertices 4, 5,
9, 8, 3 and 12 in S2. On the other hand, b is a 120◦ rotation about the axis passing through
vertices 1 and 6. It is easy to check ab = (1, 2, 4, 3)(5, 6, 7, 8)(9, 10, 12, 13)(11, 14). Al-
though ab reverses an orientation, it is called improper rotation. As a result, S4 = 〈a, b |
a2 = b3 = (ab)4 = 1〉.

Secondly, A4 is an index two subgroup of S4 and the subgroup can be expressed by
using the two generators for S4. In order to get a presentation for A4, consider (ab)2 =
(1, 4)(2, 3)(5, 7)(6, 8)(9, 12)(10, 13) which is a 180◦ rotation about the axis passing
through vertices 11 and 14. Then, b(ab)2 = (1, 3, 4)(5, 8, 6)(9, 14, 10)(11, 13, 12) is a
120◦ rotation about the axis passing through vertices 2 and 7. Consequently, we obtain a
desired subgroup A4 = 〈b, (ab)2 | [(ab)2]2 = b3 = [b(ab)2]3 = 1〉.

Thirdly, we will look for a fundamental region for S2/A4. It is easy to compute that the
map b permutes4134,4123 and4142. Further, b(ab)2 maps from4123 to4432. Thus,
we will look at4134. However,4137 tiles4134 using the element b(ab)2. Then, the ver-
tices 1 and 7 become order 3 cone points since they are fixed by b and b(ab)2 respectively.
Thus, we may choose4137 for our fundamental region. Notice that the vertex 11 is fixed
under (ab)2, which becomes the order 2 cone point, and it is identified to the vertex 13 by
b(ab)2 ∈ A4. Now, b(ab)2 identifies 1, 7 and 3, 7; b(ab)2b−1 identifies 1, 13 and 3, 13. As
a result, the quotient space S2/A4 is indeed Σ(2, 3, 3).

Finally, we will discuss how to obtain the orbifold Th. Recall the map a ∈ S4 re-
flects on the circle containing vertices 4, 5, 9, 8, 3 and 12 in S2. We compose this map
by a covering translation (ab)−1[(ab)2b]2(ab) = (1, 2, 3)(5, 6, 7)(9, 14, 13)(10, 12, 11) ∈
A4, which is a 120◦ rotation about the axis passing through vertices 4 and 8. Then,
(ab)−1[(ab)2b]2(ab)a sends the triangle containing vertices 1, 13 and 7 to the triangle
containing vertices 3, 7 and 13. Notice that 1, 7 and 3, 7 are identified in Σ(2, 3, 3). Like-
wise, 1, 13, and 3, 13 are identified. Thus, the circle containing vertices 1, 7, 13 becomes
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the line of reflection under the map induced by a on Σ(2, 3, 3). Consequently, we obtain
S2/S4 = Th.

Unlike the previous orbifolds, Th is not covered by a projective plane. Notice that
π1(Th) = S4 contains six elements of order two which are orientation reversing. All
of them are a reflection at a plane whose intersection with the tetrahedron is a triangle
containing either vertices 2, 11, 3; vertices 1, 12, 2; vertices 3, 10, 1; vertices 4, 9, 3;
vertices 4, 13, 2; or vertices 4, 14, 1. Clearly, none of them give a fixed point free action on
the tetrahedron S2, and hence this yields the following lemma.

Lemma 5.1. The orbifold Th is not covered by a projective plane.

6 Cyclic and dihedral actions
We describe the cyclic and dihedral actions on S2 and the projective plane P2. In describ-
ing these actions, it is convenient to use spherical coordinates. Therefore for any point
(x, y, z) ∈ S2, we let x = sinφ · cos θ, y = sinφ · sin θ and z = cosφ.

We begin by defining a rotation of order m on S2 as follows:

r(x, y, z) =
(

sinφ · cos(θ + 2π
m ), sinφ · sin(θ + 2π

m ), cosφ
)
.

Note that r fixes only the points (0, 0, 1) and (0, 0,−1).
A spinning map s which rotates through an angle of π about the y-axis is defined by

s(x, y, z) = (−x, y,−z). In terms of the spherical coordinate system, the map is defined
by

s(x, y, z) =
(

sin(φ+ π) · cos(−θ), sin(φ+ π) · sin(−θ), cos(φ+ π)
)
.

One can check that s ◦ r ◦ s−1 = r−1, and therefore 〈r, s〉 generates a dihedral group
Dih(Zm) acting on S2.

Finally we define the antipodal map i on S2 by i(x, y, z) = (−x,−y,−z). In terms of
the spherical coordinate system,

i(x, y, z) =
(

sin(φ+ π) · cos θ, sin(φ+ π) · sin θ, cos(φ+ π)
)
.

We have S2/〈i〉 = P2. Observe that i ◦ s ◦ i−1 = s and i ◦ r ◦ i−1 = r. Hence i commutes
with r and s which implies the following lemma:

Lemma 6.1. The maps r and s induce homeomorphisms r̄ and s̄ on P2 respectively.

Let k(x, y, z) =
(

sinφ · cos(θ+ π
m ), sinφ · sin(θ+ π

m ), cosφ
)
. A computation shows

that k ◦ s ◦ k−1 = r ◦ s, k ◦ r ◦ k−1 = r and k ◦ i = i ◦ k. This implies that the induced
map k̄ on P2 conjugates s̄ to r̄ ◦ s̄ and commutes with r̄.

Notice that we can express the three maps above in terms of a PL-category. Letm ∈ N.
We assume that vertices from 1 to 2m are located on the equator line of S2. The vertices
2m+1 and 2m+2 are on the poles. As a result, we obtain 4mmany faces (triangles) from
these vertices on S2.

Ifm > 1 is odd, then the rotation r is expressed by r = (1, 3, . . . , 2m−1)(2, 4, . . . , 2m)
whose order is m. On one hand, if m is even, then r = (1, 2, 3, . . . , 2m) whose or-
der is 2m. In each case, the vertices 2m + 1 and 2m + 2 are fixed under r since they
are the north and the south poles. The spinning map for m > 1 passing through the
y-axis is defined by s = (2, 2m)(3, 2m − 1) · · · (m,m + 2)(2m + 1, 2m + 2). The
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vertices 1 and m + 1 are fixed under s. The antipodal map for m > 1 is defined by
i = (1,m+ 1)(2,m+ 2) · · · (m, 2m)(2m+ 1, 2m+ 2).

For the case when r has order two, we place vertices 1 to 4 on the equator of S2 and
vertices 5 and 6 are on the poles (see the Figure 2 in Section 2). Then r = (1, 3)(2, 4),
s = (2, 4)(5, 6), and i = (1, 3)(2, 4)(5, 6). Define a map j = (1, 6, 3, 5). A computation
shows that j ◦ s ◦ j−1 = r, j ◦ r ◦ j−1 = s and j ◦ i ◦ j−1 = i. Therefore s̄ is conjugate to
r̄ on P2. Summarizing we have the following lemma:

Lemma 6.2. There exists a homeomorphism k̄ on P2 which conjugates s̄ to r̄ ◦ s̄ and
commutes with r̄. When r̄ has order two, there exists a homeomorphism j̄ on P2 which
conjugates r̄ to s̄ and s̄ to r̄.

6.1 Quotient types Σ(0,m,m), Σ(2, 2,m), Dν
m and Dh

m

The space Σ(0,m,m) is an orbifold whose underlying space is a 2-sphere with two cone
points each of order m. Similarly Σ(2, 2,m) is an orbifold whose underlying space is a
2-sphere with three cone points, two of order 2 and one of order m. The orbifold Dν

m is
a mirrored disk containing a cone point of order m and 2 on the mirror and its interior
respectively. The orbifold Dh

m is a mirrored disk with three cone points on the mirror, one
of order m and two of order 2.

Observe that we obtain S2/〈r〉 = Σ(0,m,m), which double covers S2/〈r, s〉 =
Σ(2, 2,m). Since i commutes with r and s, we have Dih(Zm)× Z2 = [〈r〉 ◦−1 〈s〉]× 〈i〉
acting on S2. Now r and s acting on S2 induce a Dih(Zm)-action on S2/〈i〉 = P2. Further-
more, i operating on S2 induces an orientation reversing involution i on Σ(2, 2,m), and we
have Σ(2, 2,m)/〈i〉 = P2/〈r, s〉 = S2/(Dih(Zm) × Z2). Thus the fundamental group of
the quotient space P2/〈r, s〉 is Dih(Zm)× Z2 = [〈r〉 ◦−1 〈s〉]× 〈i〉.

Let p : S2 → S2/〈r, s〉 = Σ(2, 2,m) be the orbifold covering map and note that
p(0, 0, 1) = p(0, 0,−1) is the cone point of order m. Since i(0, 0, 1) = (0, 0,−1) and
s(0, 0,−1) = (0, 0, 1), it follows that i(p(0, 0, 1)) = p(0, 0, 1), and thus i fixes the cone
point of order m in Σ(2, 2,m). Hence i is a reflection. If m is odd, rk(0, 1, 0) 6= (0,−1, 0)
for any k. Thus p(0, 1, 0) and p(0,−1, 0) are the two distinct cone points of order 2 in
Σ(2, 2,m). If m is even, then p(0, 1, 0) = p(0,−1, 0) is a cone point of order 2 since
r

m
2 (0, 1, 0) = (0,−1, 0). We will consider the cases m odd and m even separately.

Suppose m is odd. Then since i(0, 1, 0) = (0,−1, 0), it follows that i(p(0, 1, 0)) =
p(0,−1, 0) and thus i exchanges the two cone points of order 2. Since i fixes the cone point
of order m, it follows that P2/〈r, s〉 = Dν

m. The order two elements in Dih(Zm)×Z2 are:
i, s, rjsi. One can check that

rjsi(x, y, z) =
(

sinφ · cos(−θ + 2πj
m ), sinφ · sin(−θ + 2πj

m ), cosφ
)
.

By choosing φ = 0 or π, the map fixes the points (0, 0,±1) on S2. Note that Σ(0, 2, 2) =
S2/〈s〉 is not a regular covering space of Dν

m since 〈s〉 is not a normal subgroup of
π1(Dν

m) = Dih(Zm) × Z2. Thus i is the only orientation reversing element which is
fixed-point free. This implies that when m is odd, π1(Dν

m) has a unique normal Z2 sub-
group generated by a fixed-point free orientation reversing element, and the covering of
Dν
m corresponding to this subgroup is P2.

Next we suppose m is even and show how to obtain Dν
m. Write m = 2n and observe

that the rotation r of order 2n on S2 is defined as follows:

r(x, y, z) =
(

sinφ · cos(θ + π
n ), sinφ · sin(θ + π

n ), cosφ
)
.
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Note that r fixes only the points (0, 0,±1), and since rns(1, 0, 0) = (1, 0, 0) it follows that
p(1, 0, 0) is one of the cone points of order 2 in Σ(2, 2, 2n).

Consider the point
(

sin(π2 ) · cos( π2n ), sin(π2 ) · sin( π2n ), cos(π2 )
)
. We see that rn+1s

fixes
(

sin(π2 ) · cos( π2n ), sin(π2 ) · sin( π2n ), cos(π2 )
)
, and so it follows that the point

p
((

sin(π2 ) · cos( π2n ), sin(π2 ) · sin( π2n ), cos(π2 )
))

is the other cone point of order 2 in
Σ(2, 2,m).

Define a reflection l : S2 → S2 by

l(x, y, z) =
(

sin(−φ) · cos(−θ + π
2n ), sin(−φ) · sin(−θ + π

2n ), cos(−φ)
)
.

A calculation shows that lsl−1 = rs and lrl−1 = r−1. Thus we have Dih(Z2n)◦Z2 =
[〈r〉 ◦−1 〈s〉] ◦ 〈l〉 acting on S2 and an induced map l̄ acting on Σ(2, 2,m) = S2/〈r, s〉. A
further computation shows that l(1, 0, 0) = l(sin(π2 ) · cos(0), sin(π2 ) · sin(0), cos(π2 )) =
(sin(−π2 ) · cos( π2n ), sin(−π2 ) · sin( π2n ), cos(−π2 )). Applying rn to this element, we see that

rn
(

sin(−π2 ) · cos( π2n ), sin(−π2 ) · sin( π2n ), cos(−π2 )
)

=(
sin(π2 ) · cos( π2n ), sin(π2 ) · sin( π2n ), cos(π2 )

)
.

Hence the induced map l̄ exchanges the two cone points of order two. In addition, consider
a set F ⊆ S2 defined by

F =
{

(sinϕ · cos( π4n + π), sinϕ · sin( π4n + π), cosϕ) | ϕ ∈ R
}
.

Notice that

l
(

sinϕ · cos( π4n + π), sinϕ · sin( π4n + π), cosϕ
)

=
(

sin(−ϕ) · cos(− π
4n − π + π

2n ), sin(−ϕ) · sin(− π
4n − π + π

2n ), cos(−ϕ)
)

=
(
− sinϕ · cos( π4n + π),− sinϕ · sin( π4n + π), cos(ϕ)

)
= r

m
2

(
sinϕ · cos( π4n + π), sinϕ · sin( π4n + π), cosϕ

)
.

Therefore, p(F ) = fix{l} in Σ(2, 2,m) where p denotes the covering map. Consequently,
l is a reflection exchanging the cone points of order 2. Thus Σ(2, 2,m)/〈l̄〉 = Dv

2n, and
π1(Dv

2n) = Dih(Z2n) ◦ Z2 = [〈r〉 ◦−1 〈s〉] ◦ 〈l〉 where lsl−1 = rs and lrl−1 = r−1. The
elements of order two are: rn, rks, rkl (for any integer k = 0, 1, . . . , 2n − 1). The only
orientation reversing elements of order two are rkl, and they all fix the points (0, 0, 1) and
(0, 0,−1). Thus there is no orbifold covering P2 → Dv

2n. We summarize the above in the
following theorem.

Theorem 6.3. Let ϕ : G→ Homeo(P2) be a finite action such that P2/ϕ = Dν
m. Then m

is odd, G ' Dih(Zm) and ϕ is conjugate to the standard action generated by 〈r̄, s̄〉.

Proof. By the above m is odd. Let ν : P2 → Dν
m = P2/〈r̄, s̄〉 be the covering map corre-

sponding to the standard action. For the action ϕ : G→ Homeo(P2) with P2/ϕ = Dν
m, let

µ : P2 → P2/ϕ be the covering map and h : Dν
m → P2/ϕ be a homeomorphism. By the

above the subgroup µ∗(π1(P2)) in π1(P2/ϕ) is unique. Thus h lifts to a homeomorphism
h̃ of P2 such that hν = µh̃. This implies that the two actions are conjugate by h̃.
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Suppose m is even. Since r
m
2 (0, 1, 0) = (0,−1, 0) and i(0, 1, 0) = (0,−1, 0), it

follows that i fixes the cone point p(0, 1, 0). Since i also fixes the cone point of order m,
we have that i is a reflection leaving each cone point fixed and P2/〈r, s〉 = Dh

m. The order
two elements in Dih(Zm) × Z2 are: i, s, rjsi or r

m
2 i. Since rjsi(0, 0, 1) = (0, 0, 1), we

only need to consider

r
m
2 i(x, y, z) =

(
sin(φ+ π) · cos(θ + π), sin(φ+ π) · sin(θ + π), cos(φ+ π)

)
.

Letting φ = π
2 and θ = 0, we see that the point (1, 0, 0) is fixed by r

m
2 i. Thus Dh

m has
a unique P2 covering up to conjugation. This implies that when m is even, π1(Dh

m) has a
unique normal Z2 subgroup generated by a fixed-point free orientation reversing element,
and the covering of Dh

m corresponding to this subgroup is P2.
We now supposem is odd and show how to obtainDh

m. Define a reflection l0 : S2 → S2
by

l0(x, y, z) =
(

sin(−φ) · cos(−θ), sin(−φ) · sin(−θ), cos(−φ)
)

= (−x, y, z).

One can check that l0sl−10 = s and l0rl−10 = r−1. Hence Dih(Zm)◦Z2 = [〈r〉◦−1〈s〉]◦〈l0〉
acting on S2 and an induced map l̄0 acting on Σ(2, 2,m) = S2/〈r, s〉. Clearly l0 fixes the
points (0, 1, 0) and (0,−1, 0). Recall p(0, 1, 0) 6= (0,−1, 0). Hence the induced map l̄0
on Σ(2, 2,m) is a reflection which fixes each cone point. Thus Σ(2, 2,m)/〈l̄0〉 = Dh

m and
π1(Dh

m) = Dih(Zm) ◦ Z2 = [〈r〉 ◦−1 〈s〉] ◦ 〈l0〉.
The elements of order two are: s, rks, rkl0 (any integer k = 0, 1, . . . ,m− 1), and sl0.

The only orientation reversing elements of order two are rkl0 and sl0, but they all have
fix-points. Thus there is no orbifold covering P2 → Dh

m. We summarize the above in the
following theorem whose proof is similar to Theorem 6.3.

Theorem 6.4. Let ϕ : G→ Homeo(P2) be a finite action such that P2/ϕ = Dh
m. Then m

is even, G ' Dih(Zm) and ϕ is conjugate to the standard action generated by 〈r̄, s̄〉.

6.2 Quotient types S2m and Zhm

We use S2m and Zhm to denote a projective plane that has one cone point of order m and
a mirrored disk containing an order m cone point in its interior respectively. The orbifold
Zh0 denotes a mirrored disk without an exceptional point within its interior, and if m = 1,
then S2(1) = P2. Recall 〈r〉 × 〈i〉 = Zm × Z2 acts on S2. Hence, the involutions in this
group are either i, r

m
2 or ir

m
2 for an even number m.

If m is even, then ir
m
2 (x, y, z) =

(
sinφ · cos θ, sinφ · sin θ, − cosφ

)
. The fixed

point set of this map is the circle at the equator on S2 and occurs when φ = π
2 . Thus,

S2/〈irm
2 〉 = S2/Z2 = Zh0 . Furthermore, r on S2 induces a rotation r on Zh0 fixing a

point not on the mirror, and inducing an action r̂ acts on P2 = S2/〈i〉. In the meantime,
i on S2 induces a reflection i on Σ(0,m,m) = S2/〈r〉 since r

m
2 (−1, 0, 0) = (1, 0, 0) and

i(1, 0, 0) = (−1, 0, 0). As a result, we obtain Zhm = Zh0 /〈r〉 = P2/〈r̂〉 = Σ(0,m,m)/〈i〉
for m is even. Note that π1(Zhm) ' Zm × Z2 is generated by r and i, where i is the only
fixed-point free orientation reversing element. This implies that when m is even, π1(Zhm)
has a unique normal Z2 subgroup generated by a fixed-point free orientation reversing
element, and the covering of Zhm corresponding to this subgroup is P2.

We now show how to obtain Zhm when m is odd. Let ρ be a homeomorphism of S2
defined by ρ(x, y, z) =

(
sinφ · cos θ, sinφ · sin θ,− cosφ

)
. A computation shows that
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ρ and r commute. We obtain an orbifold covering map S2 → Σ(0,m,m) = S2/〈r〉 with
ρ inducing a reflection ρ on Σ(0,m,m). The quotient space Σ(0,m,m)/〈ρ〉 = Zhm and
π1(Zhm) ' Zm × Z2 is generated by r and ρ. Since m is odd, the only element of order 2
in π1(Zhm) is ρ which has fixed points. Thus there is no orbifold covering P2 → Zhm when
m is odd. Consequently, the following theorem is obtained:

Theorem 6.5. Let ϕ : G→ Homeo(P2) be a finite action. If P2/ϕ = Zhm, then m is even,
G ' Zm and ϕ is conjugate to the standard action generated by 〈r̂〉.

If m is odd, we again have r inducing a map r̂ on P2 = S2/〈i〉, and one can check that
the induced map i on Σ(0,m,m) = S2/〈r〉 is the antipodal map. Consequently, we obtain
S2m = P2/〈r̂〉 = Σ(0,m,m)/〈i〉. Furthermore π1(S2m) ' Zm × Z2 is generated by r
and i, where the only order two fixed-point free orientation reversing element is i. Hence
when m is odd, π1(S2m) has a unique normal Z2 subgroup generated by a fixed-point
free orientation reversing element, and the covering of S2m corresponding to this subgroup
is P2.

To obtain S2m when m is even, we write m = 2n and define a homeomorphism h of
S2 by h(x, y, z) =

(
sin(φ + π) · cos(θ + π

2n ), sin(φ + π) · sin(θ + π
2n ), cos(φ + π)

)
.

Observe that h is a composition of the antipodal map and a rotation through π/2n, and h
generates a Z2(2n)-action on S2 and S2/〈h2〉 = Σ(0, 2n, 2n). It follows that the induced
map h on Σ(0, 2n, 2n) is the antipodal map and Σ(0, 2n, 2n)/〈h〉 = S2(2n). Further-
more π1(S2(2n)) ' Z2(2n) is generated by h. The only element of order 2 is h2n, and
h2n(x, y, z) =

(
sinφ · cos(θ + π), sinφ · sin(θ + π), cosφ

)
has fixed-points. Thus there

is no orbifold covering P2 → S2m when m is even. Summarizing these results we obtain
the following theorem:

Theorem 6.6. Let ϕ : G→ Homeo(P2) be a finite action. If P2/ϕ = S2m, then m is odd,
G ' Zm and ϕ is conjugate to the standard action generated by 〈r̂〉.

6.3 Nonexistence of quotient type Cν
m,m

The orbifold Cνm,m is a mirrored disk with two cone points on the mirror of order m.
We will show that the orbifold Cνm,m is obtained by some covering translations on S2.
Recall the reflection map on the yz-plane defined on R3 by l0(x, y, z) = (−x, y, z) and the
rotation r(x, y, z) =

(
sinφ · cos(θ + 2π

m ), sinφ · sin(θ + 2π
m ), cosφ

)
. It is easy to check

that Dih(Zm) = 〈r〉 ◦−1 〈l0〉. Then, we obtain Σ(0,m,m) = S2/〈r〉 and the reflection
on S2 induces a reflection l0 on Σ(0,m,m). As a result, Cνm,m = Σ(0,m,m)/〈l0〉 where
π1(Cνm,m) = Dih(Zm). The order two elements in π1(Cνm,m) are rj l0 for 0 ≤ j ≤ m, or
r

m
2 for m even. A calculation shows that

rj l0(x, y, z) =
(

sin(−φ) · cos(−θ + 2π
m ), sin(−φ) · sin(−θ + 2π

m ), cos(−φ)
)
,

which has fixed points at (0, 0,±1) ∈ S2 when φ = 0 or π. Since l0 and r
m
2 when m is

even, have fixed points, Cνm,m is not covered by P2. We therefore have shown the following
proposition:

Proposition 6.7. The projective plane does not cover Cνm,m.
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7 Finite group actions on P2 and P2 × I

In this section, we summarize the above results and classify the finite group actions on P2

and P2 × I .

Theorem 7.1. Let ϕ : G→ Homeo(P2) be a finite group action on P2. Then G is isomor-
phic to one of the following groups: S4, A5, A4, Zm or Dih(Zm). The orbifold quotient
P2/ϕ is an orbifold homeomorphic to one of the following orbifolds: Oh, Ih, T v , Zhm,
S2m, Dv

m or Dh
m. There is only one equivalence class for each group.

(1) G ' S4 if and only if P2/ϕ = Oh.

(2) G ' A5 if and only if P2/ϕ = Ih.

(3) G ' A4 if and only if P2/ϕ = T v .

(4) G ' Zm and m is even if and only if P2/ϕ = Zhm.

(5) G ' Zm and m is odd if and only if P2/ϕ = S2m.

(6) G ' Dih(Zm) and m odd if and only if P2/ϕ = Dv
m.

(7) G ' Dih(Zm) and m even if and only if P2/ϕ = Dh
m.

Proof. Let ϕ : G→ Homeo(P2) be a finite group action. Then P2/ϕ is a non-orientable 2-
orbifold with positive euler number χ(P2/ϕ). The non-orientable good orbifolds (orbifolds
which have manifolds for their universal covering spaces) with positive euler numbers are
the following: Cvm,m, S2m, Zhm, Dh

m, Dv
m, Th, Oh, Ih and T v . The result then follows by

the above.

Theorem 7.2. Let ϕ : G → Homeo(P2) be a finite group action. The action ϕ(G) does
not leave any orientation reversing loop in P2 invariant if and only if G is isomorphic to
S4, A5 or A4. Furthermore, ϕ is equivalent to one of these standard actions.

Proof. This follows from Sections 2 through 6.

Theorem 7.3. Let ϕ : G → Homeo(P2 × I) be a finite group action. If for every g ∈ G
ϕ(g)(P2 × {0}) = P2 × {0}, then G is isomorphic to one of the following groups: S4,
A5, A4, Zm or Dih(Zm). Furthermore, there is only one equivalence class for each group
which is represented by one of the standard actions.

Proof. By the comment following Theorem 8.1 in [6], we may conjugate ϕ(G) so that
it is a product action. This implies that there is a G-action ϕ1 : G → Homeo(P2) such
that for any g ∈ G, we have ϕ(g)(z, t) = (ϕ1(g)(z), t). By Theorem 7.1, there exists a
homeomorphism k of P2 such that kϕ1(G)k−1 is one of the standard actions (1) through
(7) listed there. Conjugating this action further by k × id proves the result.

Theorem 7.4. Let ϕ : G→ Homeo(P2×I) be a finite group action. ThenG is isomorphic
to one of the following groups: S4, S4 × Z2, A5, A5 × Z2, A4, A4 × Z2, Zm, Zm × Z2,
Dih(Zm) or Dih(Zm)× Z2.

(1) If G is isomorphic to S4, then there are two equivalence classes.

(2) If G is isomorphic to either S4 × Z2, A5, A5 × Z2, A4, A4 × Z2, Zm × Z2 or
Dih(Zm)× Z2, then there is one equivalence class.
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(3) Suppose G is isomorphic to Zm. If m is odd, then there is one equivalence class. If
m is even, then there are two equivalence classes.

(4) Suppose G ' Dih(Zm). If m = 2 or if m is odd, then there are two equivalence
classes. If m > 2 and m is even, there are 3 equivalence classes.

Proof. Again by [6], we may assume ϕ : G → Homeo(P2 × I) is a product action.
Thus there exists a homomorphism ϕ1 : G → Homeo(P2) such that for any g ∈ G,
ϕ(g)(z, t) = (ϕ1(g)(z), t) or ϕ(g)(z, t) = (ϕ1(g)(z), 1 − t). There exists a Z2-action
on P2 × I generated by a map R defined by R(z, t) = (z, 1− t).

Suppose first that ϕ1 : G→ Homeo(P2) is not one-to-one. This implies there exists an
element g0 6= 1 ∈ G such that ϕ1(g0)(z) = z for all z ∈ P2, and so ϕ(g0)(z, t) = (z, 1−t)
or ϕ(g0) = R. Since R commutes with (ϕ1(g)(z), t) and (ϕ1(g)(z), 1− t), it follows that
g0 commutes with every element of G. Let H = {g ∈ G | ϕ(g)(z, t) = (ϕ1(g)(z), t)}.
If ϕ(g)(z, t) = (ϕ1(g)(z), 1 − t), then ϕ(g2)(z, t) = (ϕ1(g2)(z), t) showing g2 ∈ H . It
follows that H is an index two normal subgroup of G, and G = H ×Z2 where Z2 = 〈g0〉.
Furthermore ϕ1|H : H → Homeo(P2) is one-to-one. By Theorem 7.1, H is isomorphic
to S4, A5, A4, Zm or Dih(Zm) and conjugate to one of the standard actions. As in Theo-
rem 7.3, we may conjugate ϕ|H : H → Homeo(P2 × I) by a homeomorphism k × id to a
standard action, proving the result in this case.

Suppose ϕ1 : G → Homeo(P2) is one-to-one, and hence is a G-action. Note that in
this case R /∈ ϕ(G). By Theorem 7.1, G is isomorphic to S4, A5, A4, Zm or Dih(Zm)
and conjugate to one of the standard actions. Thus as above by conjugating ϕ(G), we may
assume that ϕ1 is one of the standard actions. Suppose G = S4 and ϕ1(G) = 〈ā, b̄ |
ā2 = b̄3 = (āb̄)4 = 1〉. Let A and B be actions on P2 × I defined by A(z, t) = (ā(z), t)
and B(z, t) = (b̄(z), t). If B ◦ R ∈ ϕ(G), then (B ◦ R)3 = R ∈ ϕ(G), and this
would imply that ϕ1 : G → Homeo(P2) is not one-to-one. Thus B ∈ ϕ(G) and we either
have A ∈ ϕ(G) or A ◦ R ∈ ϕ(G). Consequently there are two possibilities ϕ(G) =
〈A,B〉 or ϕ(G) = 〈A ◦ R,B〉, both isomorphic to S4. They are not conjugate since the
quotient space (P2 × I)/〈A,B〉 has two boundary components while the quotient space
(P2×I)/〈A◦R,B〉 has only one boundary component. SupposeG = A5 and let ϕ1(G) =
〈ā, b̄ | ā2 = b̄3 = (āb̄−1)5 = 1〉. As above we obtain actions A and B on P2 × I
defined by A(z, t) = (ā(z), t) and B(z, t) = (b̄(z), t). We see as in the previous case that
B◦R /∈ ϕ(G). Furthermore since (A◦R◦B−1)5 = R, it follows thatA◦R /∈ ϕ(G). Thus
ϕ(G) = 〈A,B〉 with only one equivalence class. The proof is similar for A4. If G ' Zm,
then when m is odd the action is conjugate to (r × id); and when m is even the action is
conjugate to either (r× id) or (r× id) ◦R. We now suppose ϕ1(G) = Dih(Zm) = 〈r̄, s̄〉.
We first suppose m is even. The possible groups for ϕ(G) are: H1 = 〈(r̄ × id), (s̄× id)〉,
H2 = 〈(r̄×id)◦R, (s̄×id)〉,H3 = 〈(r̄×id), (s̄×id)◦R〉,H4 = 〈(r̄×id)◦R, (s̄×id)◦R〉.
Clearly, H1 is not conjugate to any of the other groups since no element of H1 exchanges
the boundary components of P2 × I . The element of order two (s̄ × id) in H2 does not
exchange boundary components, however every element of order two in H3 exchanges
boundary components showing H2 is not conjugate to H3. Similarly, the element (r̄ × id)
of order m in H3 cannot be conjugate to (r̄ × id) ◦ R in H4, showing H3 and H4 are not
conjugate. Notice H4 = 〈(r̄ × id) ◦ R, (s̄ × id) ◦ R〉 = 〈(r̄ × id) ◦ R, (r̄s̄ × id)〉. Using
Lemma 6.2, it follows that H2 is conjugate to H4, showing there are three equivalence
classes when m > 2. When m = 2, Lemma 6.2 also shows that H2 and H3 are conjugate,
and so we have only two equivalence classes in this case. When m is odd, the only two
possibilities are 〈(r̄ × id), (s̄× id)〉 and 〈(r̄ × id), (s̄× id) ◦R〉.
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8 Finite actions on twisted I-bundle over P2

For S2 × I , define a fixed-point free orientation preserving involution α : S2 × I → S2 × I
by α(z, t) = (i(z), 1 − t). The manifold S2 × I/〈α〉 = W is a twisted I-bundle over the
one-sided projective plane P2. Let ν : S2 × I → W be the covering map and note that
ν(S2×{1/2}) = P2 is a one-sided projective plane. The levels of W are ν(S2×{t}), and
a homeomorphism h of W is level preserving if h(ν(S2 × {t})) = ν(S2 × {t}). We may
view W as the set of equivalence classes {[z, t] | (z, t) is equivalent to (i(z), 1− t)}.

Let Homeo(W,P2) be the group of homeomorphisms which leave the projective plane
P2 invariant. Denote by Centp(α) the subgroup of the centralizer of α which leaves S2 ×
{1/2} invariant and preserves the sides of S2×{1/2}. Every homeomorphism which leaves
P2 invariant lifts to two homeomorphisms of S2 × I , one of which preserves the sides of
S2 × {1/2} while the other doesn’t. Thus for any homeomorphism f ∈ Homeo(W,P2)
there is a unique lift f̃ ∈ Centp(α), and we obtain an isomorphism L : Homeo(W,P2)→
Centp(α). Note that since ν|S2×{0} : S2 × {0} → ∂W is a homeomorphism, it follows
that f is orientation preserving if and only if f̃ is orientation preserving. We obtain the
following proposition.

Proposition 8.1. L : Homeo(W,P2)→ Centp(α) is an isomorphism.

There exists a map R : Homeo(W,P2) → Homeo(P2) defined by restricting any
homeomorphism to P2.

Proposition 8.2. Let ϕ : G → Homeo(W,P2) be an effective orientation preserving G-
action. Then the restriction Rϕ : G→ Homeo(P2) is an effective G-action.

Proof. Let ϕ̃ = L ◦ ϕ : G → Centp(α) be an orientation preserving G-action on S2 × I .
Suppose there exists an element g ∈ G such thatRϕ(g) = id, and thus ϕ̃(g)|S2×{1/2} = id
or i. Since ϕ̃(g) does not reverse the sides of S2×{1/2} and ϕ̃(g) is orientation preserving,
we have that ϕ̃(g)|S2×{1/2} = id implying ϕ̃(g) = id. This implies that ϕ(g) = id proving
the result.

Remark 8.3. The assumption that theG-action in Proposition 8.2 be orientation preserving
is necessary. For if we define an involution ρ of W by ρ[z, t] = [z, 1 − t] = [i(z), t], then
Rρ = id|P2 but ρ 6= id on W .

Proposition 8.4. Let ϕ1, ϕ2 : G → Homeo(W,P2) be two orientation preserving G-
actions such that Rϕ1 and Rϕ1 are effective G-actions on P2 with Rϕ1(G) = Rϕ2(G).
Then there exists a homeomorphism k ofW isotopic to the identity such that kϕ1(G)k−1 =
ϕ2(G).

Proof. Let Rϕ1 = ϕ̄1 and Rϕ2 = ϕ̄2 be the effective G-actions on P2. Replacing ϕ2 by
ϕ2ϕ̄

−1
2 ϕ̄1, we may assume ϕ̄1 = ϕ̄2. Let Lϕ1 = ϕ̃1 and Lϕ2 = ϕ̃2. Since ϕ1 and ϕ2

are both orientation preserving, it follows that ϕ̃1(g)|S2×{1/2} = ϕ̃2(g)|S2×{1/2} for any
g ∈ G.

Consider ϕ̃i(G)|S2×[0,1/2] : S2 × [0, 1/2] → S2 × [0, 1/2]. Again using [1], both
these actions are conjugate to product actions, and hence there exist homeomorphisms
ki such that kiϕ̃i(G)k−1i is a product action. The conjugating maps ki may be cho-
sen to be the identity on S2 × {1/2}. Since both actions agree on S2 × {1/2}, we
have k1ϕ̃1(G)k−11 = k2ϕ̃2(G)k−12 . Letting h = k−12 k1, we obtain a homeomorphism
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h : S2 × [0, 1/2] → S2 × [0, 1/2], isotopic to the identity relative to S2 × {1/2}, such
that h(ϕ̃1(G)|S2×[0,1/2])h−1 = ϕ̃1(G)|S2×[0,1/2]. Extend h to S2 × [1/2, 1] by letting
h|S2×[1/2,1] = (α|S2×[0,1/2]) ◦ (h|S2×[0,1/2]) ◦ (α|S2×[1/2,1]) and note that h and α com-
mute. Let g ∈ G and z ∈ S2 × [1/2, 1]. Now we have

hϕ̃1(g)h−1(z) = hϕ̃1(g)(α ◦ h−1|S2×[0,1/2] ◦ α)(z) =

α(hϕ̃1(g)h−1)(α(z)) = αϕ̃2(g′)α(z)

for some g′ ∈ G. Since αϕ̃2(g′)α(z) = ϕ̃2(g′)(z), we have shown hϕ̃1(G)h−1 = ϕ̃2(G).
Letting L−1(h) = k, we have hϕ1(G)h−1 = ϕ2(G) proving the result.

Remark 8.5. The assumption in Proposition 8.4 that the actions are both orientation pre-
serving is necessary. For example, let f : S2 → S2 be an orientation preserving home-
omorphism commuting with i such that f2n = id. Define two Z2n-actions on W by
F [z, t] = [f(z), t] and G[z, t] = [if(z), t]. Clearly G|P2 = F |P2 since i projects to the
identity on P2, however they are not conjugate as F is orientation preserving, and G is
orientation reversing.

Corollary 8.6. Let ϕ1, ϕ2 : G → Homeo(W,P2) be effective orientation preserving G-
actions such that Rϕ1(G) = Rϕ2(G). Then there exists a homeomorphism k of W iso-
topic to the identity such that kϕ1(G)k−1 = ϕ2(G).

Proof. By Proposition 8.2 Rϕ1 and Rϕ1 are effective G-actions on P2, and so the result
follows by Proposition 8.4.

Proposition 8.7. Let ϕ : G→ Homeo(P2) be an effective G-action. Then ϕ extends to an
effective level preserving orientation preserving G-action ϕ̂ on W .

Proof. By [7] and [8], there exists an action ϕ̃ : G → Cent+(i) where Cent+(i) consists
of orientation preserving elements in the centralizer Cent(i) of i in Homeo(S2). Define an
action θ : G→ Centp(α) by θ(g)(x, t) = (ϕ̃(g)(z), t). Then L−1θ : G→ Homeo(W,P2)
is the extension.

Let E(P2, G) be the set of equivalence classes of effective G-actions on P2, and let
E+(W,G) be the set of equivalence classes of effective orientation preserving G-actions
on W . Denote by E+((W,P2), G) the subset of E+(W,G) which have a representative that
leaves a one-sided projective plane invariant.

Proposition 8.8. Let ϕ : G → Homeo(W ) be a finite action on W . Then there exists a
one-sided projective plane P such that ϕ(g)(P ) = P for all g ∈ G.

Proof. Let Homeo(S2 × I, S2 × {0}) be the group of homeomorphisms which leave S2 ×
{0} invariant. There exists an injection L0 : Homeo(W ) → Homeo(S2 × I, S2 × {0}) ∩
Cent(α) defined by lifting any homeomorphism to a homeomorphism of S2 × I leaving
S2 × {0} invariant. Letting L0ϕ = ϕ̃ : G → Homeo(S2 × I, S2 × {0}) ∩ Cent(α), we
obtain a G × Z2 action on S2 × I where the Z2-action is generated by α, which projects
to the ϕ-action on W . This action is equivalent to a product action by [1], and thus there
is an G × Z2-invariant 2-sphere S in int(S2 × I). Furthermore, α(S) = S and ν(S) is a
ϕ(G)-invariant projective plane in W .

Corollary 8.9. E+((W,P2), G) = E+(W,G).
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Proposition 8.10. Let P be a one-sided projective plane in W . Then there exists a homeo-
morphism k of W , isotopic to the identity, such that k(P ) = P2.

Proof. Isotope P to intersect P2 in simple closed curves. We may assume the number of
curves in P ∩ P2 is minimal. We will show that the number of simple closed curves in
P ∩P2 is one. Note first that P ∩P2 6= ∅, for otherwise P ⊂W −P2 which is isomorphic
to S2 × [0, 1), and this is impossible. If the number of intersections of P ∩ P2 exceeds
one, and hence the number of simple closed curves in P exceeds one, then there is a simple
closed curve δ ∈ P ∩ P2 which bounds a disk ∆ in P . We may assume ∆ is innermost
in P , in the sense that int(∆) ∩ P2 = ∅. Since δ bounds a disk in W , it follows that δ is
an orientation preserving loop in P2, and thus bounds a disk D in P2. Now D ∪ ∆ is a
separating 2-sphere. If D ∪∆ bounds a ball, then we may isotope P to eliminate δ.

We therefore assumeD∪∆ does not bound a ball, and is therefore parallel to the sphere
boundary ∂W = ν(S2 × {0}). Lift P to an α-invariant 2-sphere S in S2 × I , let ∆1 and
∆2 be the two lifts of ∆ in S, and let D1 and D2 be the two lifts of D in S2 × {1/2}.
Denote ∂∆i by δi. We may assumeD1∪∆1 ⊂ S2× [0, 1/2] andD2∪∆2 ⊂ S2× [1/2, 1].
Furthermore, there is an α-invariant simple closed curve γ ∈ S ∩ S2 × {1/2}, separating
δ1 and δ2. Note that (S2 × {1/2} − int(D1)) is a disk in S2 × {1/2} whose boundary is
the boundary of the disk ∆1 in S. Now D1 ∪∆1 is parallel to S2×{0}, which implies that
∆1 ∪ (S2 × {1/2} − int(D1)) bounds a ball in S2 × [0, 1/2]. Thus we may construct an
α-equivariant isotopy, relative to γ, which eliminates the intersections δ1 and δ2. Projecting
this isotopy to W eliminates the δ-intersection of P ∩ P2.

Thus we have shown that S ∩ S2 × {1/2} is a single simple closed curve γ which
projects to a non-contractable simple closed curve γ in P ∩ P2. By an argument similar
to the one above, there is an α-equivariant isotopy, relative to γ, which isotopes S to S2 ×
{1/2}. Projecting this isotopy to W , we obtain an isotopy taking P to P2.

Theorem 8.11. The map Γ: E(P2, G)→ E+((W,P2), G) defined by extending G-actions
from P2 to W is a bijection.

Proof. Let [ϕ] ∈ E(P2, G). By Proposition 8.7, ϕ can be extended to a G-action ϕ̂ on W .
Define Γ([ϕ]) = [ϕ̂]. Suppose ψ is a G-action on P2 such that [ψ] = [ϕ] ∈ E(P2, G).
Then there exists a homeomorphism h of P2 such that hϕ(G)h−1 = ψ(G). Lift h to
an orientation preserving homeomorphism k of S2 and note that ik = ki. Extend k to
a homeomorphism k̂ by k̂(x, t) = (k(x), t). Letting ĥ = L−1k̂. we see that ĥ is an
extension of h. Since R(ĥϕ̂(G)ĥ−1) = hϕ(G)h−1 = ψ(G) = R(ψ̂(G)), it follows by
Proposition 8.4 that [ϕ̂] = [ψ̂], and thus Γ is well defined.

Let [δ] ∈ E((W,P2), G). Thus there is a one-sided projective plane P such that
δ(g)(P ) = P for all g ∈ G. By Proposition 8.10, there exists a homeomorphism of
W taking P to P2. This implies that we may choose a representative δ′ in [δ] such that
δ′(g)(P2) = P2 for all g ∈ G. By Proposition 8.2, the restriction Rδ′ is an effective G-
action on P2 and therefore represents an element in E(P2, G). Let Γ([Rδ′]) = [R̂δ′]. Since
R(R̂δ′) = Rδ′, it follows by Proposition 8.4 that [R̂δ′] = [δ′], and thus Γ([Rδ′]) = [δ′]
showing Γ is a surjection.

To show Γ is one-to-one, suppose that [ϕ], [θ] ∈ E(P2, G) are such that their level pre-
serving extensions [ϕ̂] = [θ̂] in E+((W,P2), G). Now W/ϕ and W/θ are homeomorphic
twisted I-bundle orbifolds over one of the following 2-orbifolds: Oh, Ih, T v , Zhm, S2m,
Dv
m or Dh

m. Since by Theorem 7.1, there is only one equivalence class for each action
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on P2 which determines a unique quotient type, it follows that [ϕ] = [θ] showing Γ is
one-to-one.

Corollary 8.12. Let ϕ : G → Homeo(W ) be a finite orientation preserving G-action on
W . Then G is isomorphic to one of the following groups: S4, A5, A4, Zm or Dih(Zm).
The orbifold quotient for each action is a twisted I-bundle orbifold over the following
2-orbifolds: Oh (for S4) , Ih (for A5), T v (for A4), Zhm (for Zm andm even), S2m (for Zm
and m odd), Dv

m (for Dih(Zm) and m odd) and Dh
m (for Dih(Zm) and m even). There is

one equivalence class for each quotient type.

9 Orientation reversing finite actions on twisted I-bundle over P2

Recall that W = {[z, t] | (z, t) is equivalent to (i(z), 1 − t)} with P2 = {[z, 1/2] ∈ W},
and L : Homeo(W,P2) → Centp(α) is an isomorphism. Let f1 be a homeomorphism of
P2, and let f̃1 be a lift of f1 to S2. We remark that f̃1 commutes with i. A homeomorphism
f : W → W is a product homeomorphism if f [z, t] = [f̃1(z), t]. Note that f |P2 = f1.
Let Homeo(S2 × I, S2 × {1/2}) be the group of homeomorphisms of S2 × I which leave
S2 ×{1/2} invariant. Define the map R̃ : Homeo(S2 × I, S2 ×{1/2})→ Homeo(S2) by
restricting any homeomorphism to S2 × {1/2}.

Lemma 9.1. Let ϕ : G→ Homeo(W,P2) be an effective G-action and let ϕ̃ = Lϕ : G→
Centp(α) ⊂ Homeo(S2 × I, S2 × {1/2}). Then R̃ϕ̃ : G → Homeo(S2) is an effective
G-action.

Proof. Suppose there exists an element g ∈ G such that R̃ϕ̃(g) = id|S2×{1/2}. Since
R̃ϕ̃(g) does not reverse the sides of S2 × {1/2}, it follows that ϕ̃(g) = id.

Remark 9.2. Note that the involution ρ of W defined by ρ[z, t] = [i(z), t] = [z, 1 − t],
has the property that Rρ = id|P2 , but R̃Lρ(z, t) = (i(z), t) and thus does not restrict to the
identity on S2 × {1/2}.

Theorem 9.3. Let ϕ : G → Homeo(W ) be an effective G-action. Then ϕ is conjugate to
a product action on W .

Proof. By Propositions 8.8 and 8.10, we may assume ϕ(g)(P2) = P2 for every g ∈ G. Let
ϕ̃ = Lϕ : G→ Centp(α). By Lemma 9.1, R̃ϕ̃ : G→ Homeo(S2) is an effective G-action
which commutes with i. Define an action θ̃ : G→ Centp(α) ⊂ Homeo(S2×I, S2×{1/2})
by θ̃(g) = R̃ϕ̃(g) × id. Thus θ̃(g)|S2×{1/2} = ϕ̃(g)|S2×{1/2} for any g ∈ G. Projecting
this action to W , we obtain an effective product action θ : G → Homeo(W,P2). We now
use the proof in Proposition 8.4 to construct a homeomorphism h which commutes with α
and conjugates θ̃(G) to ϕ̃(G). The homeomorphism h projects to a homeomorphism of W
which conjugates θ(G) to ϕ(G), thus completing the proof.

We will now define the standard actions S4 × Z2, A4 × Z2, A4 × Z2, Zm × Z2 or
Dih(Zm) × Z2 on W . Consider first the group S4 = 〈a, b | a2 = b3 = (ab)4 = 1〉 acting
on S2 commuting with i, and its projection S4 = 〈ā, b̄ | ā2 = b̄3 = (āb̄)4 = 1〉 to P2.
Define the product maps A,B : W → W by A[z, t] = [a(z), t] and B[z, t] = [b(z), t].
Note that 〈A,B, ρ〉 = S4 × Z2. The other standard group actions on W are defined in a
similar fashion.
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Theorem 9.4. Let ϕ : G → Homeo(W ) be an orientation reversing G-action. Then G
is isomorphic to one of the following groups: S4, Zm with m even, Dih(Zm), S4 × Z2,
A5 × Z2, A4 × Z2, Zm × Z2 or Dih(Zm)× Z2.

(1) If G is either S4, S4 × Z2, A5 × Z2, A4 × Z2, Zm × Z2 with m even or Dih(Zm)
with m odd, there is only one equivalence class.

(2) If G is Zm with m > 2 even and m/2 odd, then there are two equivalence classes of
Zm = Zm/2 × Z2-actions on W .

(3) If G is Zm with either m/2 even or m = 2, then there is only one equivalence class.

(4) If G is Dih(Zm) with m > 2 and m/2 even, there are two equivalence classes of
Dih(Zm)-actions on W .

(5) If G is Dih(Zm) with m > 2 and m/2 odd, there are three equivalence classes of
Dih(Zm)-actions on W .

(6) If G is Dih(Zm)× Z2 with m even, there is only one equivalence class.

(7) If G is Dih(Zm)× Z2 with m odd, then Dih(Zm)× Z2 ' Dih(Z2m) and there are
three equivalence classes of Dih(Z2m)-actions on W .

Proof. Let ϕ : G → Homeo(W ) be an effective orientation reversing G-action. We may
assume by Theorem 9.3, that there exists G-actions ϕ̃1 : G → Homeo(S2) and ϕ1 : G →
Homeo(P2), such that ϕ(g)[z, t] = [ϕ̃1(g)(z), t] and ϕ̃1(g) is a lift of ϕ1(g). Note that
ϕ̃1 : G→ Homeo(S2) is an effective orientation reversing G-action on S2 by Lemma 9.1.

Suppose that ϕ1 : G→ Homeo(P2) is not an effective G-action, and so there exists an
element g0 6= 1 ∈ G such that ϕ1(g0) = id: P2 → P2. Since ϕ̃1(g0) is a lift of ϕ1(g0) and
ϕ̃ is an effective action, we see that ϕ̃1(g0)(z) = i(z) andϕ(g0)[z, t] = [i(z), t] = [z, 1−t].
Thus ϕ(g0) = ρ ∈ ϕ(G), and note that ρ commutes with every element in ϕ(G). Let
H = {g ∈ G | ϕ(g) is orientation preserving}, and observe that G = H × 〈g0〉. Since
(ϕ|H) : H → Homeo(W,P2) is an effective orientation preserving action, it follows by
Proposition 8.2 that (ϕ1|H) : H → Homeo(P2) is an effective action. By Theorem 7.1,
there exists a homeomorphism k1 : P2 → P2 such that k1ϕ1(H)k−11 is one of the standard
actions S4, A5, A4, Zm or Dih(Zm) on P2. Lifting k1 to a homeomorphism k̃1 : S2 → S2,
we see that k̃1ϕ̃1(H)k̃1 is the same standard action S4, A5, A4, Zm or Dih(Zm) on S2.
Define a homeomorphism k : W → W by k[z, t] = [k̃1(z), t]. Since ρ[z, t] = [z, 1 − t],
it follows that kρk−1 = ρ. Therefore kϕ(G)k−1 is one of the standard actions: S4 × Z2,
A5 × Z2, A4 × Z2, Zm × Z2 or Dih(Zm)× Z2, where the Z2 group is generated by ρ.

Assume first that ϕ1 : G → Homeo(P2) is an effective G-action on P2. Hence by
Theorem 7.1, ϕ1(G) is conjugate to one of the following standard actions on P2: S4, A5,
A4, Zm or Dih(Zm).

Suppose there exists a homeomorphism k1 of P2 such that k1ϕ1(G)k−1 = 〈ā, b̄ | ā2 =
b̄3 = (āb̄)4 = 1〉 = S4. Let k̃1 be a lift of k1 to S2, and note that k̃1ϕ̃1(G)k̃−11 projects to
〈ā, b̄〉, and is therefore one of the following groups: 〈ai, b〉, 〈a, bi〉 or 〈ai, bi〉. The group
〈a, b〉 is not in the list, since it is orientation preserving on S2. Since (bi)3 = i, it follows
that 〈a, bi〉 = 〈ai, bi〉 = 〈a, b〉 × 〈i〉 = S4 × Z2, and hence must be excluded. Thus,
k̃1ϕ̃1(G)k̃−11 = 〈ai, b〉. Define a homeomorphism k of W by k[z, t] = [k̃1(z), t], and note
that kϕ(G)k−1 = 〈Aρ,B〉 ' S4.

We now suppose there exists a homeomorphism k1 of P2 such that k1ϕ1(G)k−1 =
〈ā, b̄ | ā2 = b̄3 = (āb̄)5 = 1〉 = A5. As in the previous paragraph, there exists a lift k̃1
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such that k̃1ϕ̃1(G)k̃−11 is one of the following groups: 〈ai, b〉, 〈a, bi〉 or 〈ai, bi〉. We see
that (bi)3 = i and (aib)5 = i. This implies 〈ai, b〉 = 〈a, bi〉 = 〈ai, bi〉 = A5 × Z2, and
therefore must be excluded. A similar argument shows that ϕ1(G) cannot be conjugate
to A4.

Next, assume that G is isomorphic to Zm, and so we have a homeomorphism k1 of
P2 such that k1ϕ1(G)k−11 = 〈r̄〉. For the lifted homeomorphism k̃1 on S2, we have
k̃1ϕ̃1(G)k̃1 = 〈ri〉. However if m is odd, then (ri)m = i, implying G isomorphic to
Zm × Z2, which is a contradiction. Thus m is even. Let k be a homeomorphism of W de-
fined by k[z, t] = [k̃1(z), t]. Observe that kϕ(G)k−1 = 〈Rρ〉 where R[z, t] = [r(z), t] and
Rm = id. If m/2 is odd and greater than one, then Zm = Zm/2 ×Z2 = 〈R2〉 × 〈Rm/2ρ〉,
and note that ρ is not an element of this group. Thus when m/2 is odd, there are two
non-equivalent Zm-actions on W . They are 〈R2〉 × 〈Rm/2ρ〉 and 〈R2〉 × 〈ρ〉, the first in
which no element restricts to the identity on P2, and the second that has an element which
restricts to the identity on P2. If eitherm = 2 orm/2 is even, there is only one equivalence
class.

Finally, we assume G is isomorphic to Dih(Zm). Again we have a homeomorphism k1
of P2 such that k1ϕ1(G)k−11 = 〈r̄〉 ◦−1 〈s̄〉, and its lift k̃1 such that k̃1ϕ̃1(G)k̃−11 is one of
the following groups: 〈ri〉◦−1 〈s〉 = H1, 〈r〉◦−1 〈si〉 = H2, 〈ri〉◦−1 〈si〉 = H3. Consider
first the case when m is odd. Since (ri)m = i, we obtain H1 = H3 = Dih(Zm)×Z2, and
so these cases are excluded. Therefore we only consider H2. Likewise ϕ(G) is conjugate
to the group 〈R,Sρ〉 where S[z, t] = [s(z), t], and there is one equivalence class. Suppose
that m is even. There exists a homeomorphism k of S2 commuting with r and i such that
ksk−1 = rs (see Section 6 after Lemma 6.1). Therefore for ri and si in H3, krik−1 =
ri ∈ H1 and ksik−1 = rsi ∈ H1, showing H3 is conjugate to H1. If m = 2, there exists
a homeomorphism j of S2 commuting with i such that jrj−1 = s and jsj−1 = r (see
Section 6 before Lemma 6.2). This implies that we may conjugate ϕ(G) to either 〈Rρ, S〉
or 〈R,Sρ〉 when m > 2, or to 〈Rρ, S〉 when m = 2. If m > 2, then any generator of
Zm in 〈Rρ, S〉 is an odd power of Rρ relatively prime to m, and thus orientation reversing.
On the other hand, any generator of Zm in 〈R,Sρ〉 is orientation preserving. Hence these
groups cannot be conjugate. This implies that if m/2 is even, there are two equivalence
classes of Dih(Zm)-actions.

We note that when m/2 is odd and not equal to one, there are three equivalence classes
of Dih(Zm)-actions. They are 〈Rρ〉 ◦−1 〈S〉, 〈R〉 ◦−1 〈Sρ〉 and 〈R2ρ〉 ◦−1 〈S〉. The
last group has an element (R2ρ)m/2 = ρ restricting to the identity on P2, and the group
may be viewed as (〈R2〉 ◦−1 〈S〉) × 〈ρ〉 = Dih(Zm/2) × Z2.This group was identified in
the second paragraph of this proof when we assumed ϕ1 : G → Homeo(P2) was not an
effective G-action.

The proof is completed by noting that if G is isomorphic to Dih(Zm) × Z2 and m is
odd, then Dih(Zm)× Z2 is isomorphic to Dih(Z2m), and this case has already been dealt
with.
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