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Abstract. The modelling of the electric double layer (EDL) in lattice statistics requires an understanding of
the orientational ordering of water molecules in an ion solution and their contribution to the total free energy.
Since water is a polar molecule with its own dipole moment, its total dipole moment arises from the internal
and external contributions, the latter modified by the cavity field of neighbouring molecules. In the present
paper, we first model a single water molecule as a rigid sphere with a point-like dipole at its center inserted
into a continuum with a different dielectric permittivity. The internal and external dipole moment are derived
in spherical coordinates. We also derive the energy of such a sphere in an electric field, bearing in mind
the modified Langevin-Poisson-Boltzmann’s (MLPB) equation used to predict the space-dependent relative
permittivity in EDL for the case of point-like molecules.
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Notranji in zunanji električni dipolni moment molekule
vode in orientacijsko urejanje vodnih molekul v

električni dvojni plasti

Proučevanje električnega dvojnega sloja v modelu mrežne
statistične mehanike zahteva razumevanje orientacij vodnih
molekul v ionski raztopini in njihov energijski prispevek k
prosti energiji. Voda sestoji iz polarnih molekul, celotni elek-
trični dipolni moment molekule pa je vsota notranjih in zunan-
jih prispevkov, kjer so zadnji posledica polarizacije okoliških
molekul. V pričujočem članku najprej obravnavamo molekulo
vode kot kroglo s točkastim električnim dipolom v njenem
središču, vstavljeno v kontinuum z različno dielektrično kon-
stanto. Notranji in zunanji električni dipolni moment izpeljemo
v sferičnih koordinatah. Prav tako izpeljemo energijo vodne
molekule v zunanjem električnem polju. Na koncu izpel-
jemo tudi modificirani Langevin-Poisson-Boltzmannov model
(MLPB) električne dvojne plasti za točkaste molekule.

1 INTRODUCTION

At the interface between a charged surface and neigh-
bouring electrolyte, the electric double layer (EDL)

Received 3 August 2017
Accepted 15 November 2017

plays a crucial role (1–11). The properties of EDL may
be strongly dependent on the spatial and orientational
ordering of water molecules in this region (12–14).
It has been shown that close to the charged surface,
orientational ordering and depletion of water molecules
may result in a strong decrease in the local permittivity
of the electrolyte solution (5; 7; 8; 13; 15; 16).

Considering the orientational ordering of water and
finite size of molecules, Outhwaite and collaborators de-
veloped a modified Poisson-Boltzmann’s (PB) theory of
EDL composed of a mixture of hard spheres with point-
like dipoles and finite-sized ions (15; 19). Later, Szalai et
al. (20) published a mean spherical approximation-based
theory (21) that can reproduce simulation results for the
electric field dependence of the dielectric permittivity
of a dipolar fluid in a saturation regime. In addition, the
problem was recently considered also within a lattice
statistics model (13; 14).

The dipole moment of an isolated water molecule is
around 1.85 D (Debye is 3.336·10−30 Cm). In a solution,
on the other hand, the dipole moment of a single water
molecule differs from that of an isolated one since each
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water molecule is also polarized by the electric field of
the neighbouring water molecules, creating an effective
value of the dipole moment around 2.4 D - 2.6 D
(23; 24). The effect of a polarising environment can be
reproduced in the most simple way by introduction of
the cavity field (25–27).

By considering the cavity field at the centre of the wa-
ter molecule (27; 28) and also the electronic polarizabil-
ity of a water molecule (16; 27; 28), taken into account
by portraying a single water molecule as a dielectric
sphere with a point-like rigid dipole at its center, the
magnitude of the external water dipole moment around
3 D was used within the mean-field lattice statistics
approach (14; 16; 27). Neglecting the cavity field and
electronic polarizability contribution within a similar
lattice statistics, the theoretical models lead to much
higher predicted values of the water external dipole
moments (around 5 D) (17; 18). In the present paper
we examine the derivation of the effective permittivity
of a sphere placed in a homogenous electric field and
inspect its spatial dependence in ionic solutions. The
latter is achieved by dual means: by examination of a
relative permittivity of water dipoles and by variational
minimization of the Helmholtz’s free energy of a point-
like ionic solution.

2 THE ENERGY OF AN INTERNAL
POINT-LIKE DIPOLE IN A LOCAL FIELD

Using the Laplace’s equation, we can find the electric
field configuration when a dielectric sphere is placed
in a homogenous electric field. Such a uniform field
can be attained by a parallel-plate capacitor if the linear
dimensions of the plates are large enough with respect
to the separation of the plates. Even for large separations
between the plates, the field in the inner parts and away
from the edges of the plates will be homogenous to
a high degree of accuracy. If the size of the plates is
increased to infinity and at the same time the distance
between them is also increased to infinity for a constant
surface charge density on the plates, a uniform electric
field is created in the entire space. In this space we
place a dielectric sphere. It is clear that as a result
of polarization, the field strength near the sphere will
change while it will remain unchanged at infinity. Let
us determine the electric field strength in the entire space
including the region inside the dielectric sphere.

We assume that a sphere of radius R consists of
dielectric with permittivity εw, while the surrounding
space is filled with a dielectric with permittivity εr (Fig.
1). In this part, we assume that εr is constant through the
space, since we are dealing with a single water molecule.
Later on, when we will be considering the EDL, we will
see that the permittivity has a spatial dependency. We
assume that homogenous field E is directed along the
x-axis.

p

¶w = n
2

¶r

Figure 1. Model of the water molecule consists of a sphere
with permittivity εw = n2 and permanent internal point-like
dipole p at the center.

For a homogenous dielectric with permittivity εr, the
Poisson equation states that

∇2φ = − ρ

ε0εr
, (1)

where φ is the electric potential and ρ the charge density.
Eq. (1) assumes a constant value of permimttivity εr.
In spherical coordinates, the Poisson equation can be
written as follows:
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where r is the radial distance, α is the azimuthal angle
and θ is the zenith angle. There are no free charges
considered in this chapter (ρ = 0), and ∂φ/∂α = 0 on
account of the axial symmetry. Hence the problem is
reduced to the solution of the Laplace’s equation
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The following conditions must be obeyed:
1) potential φ is continuous and finite everywhere;
2) the normal components of electric displacement

field vector D are continuous on the surface of
the sphere;

3) the tangential components of vector E = −∇φ are
continuous on the surface of the sphere.

The quantities corresponding to the inner region of the
sphere are denoted by subscript 1, while those corre-
sponding to the space outside the sphere are denoted by
subscript 2. The general solution of Eq. (3) is given by

φ1 = A1r cos (θ) +A2r
−2 cos (θ), (4)

φ2 = −Er cos (θ) +B2r
−2 cos (θ), (5)

where A1, A2 and B2 are constants, and E is the
absolute value of the strength of the uniform electric
field at infinity.

Since φ1 and φ2 satisfy Eq. (3), they represent the
correct electric potential if they satisfy all the conditions
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of the problem. Potential φ1 corresponds to the inner
region of the sphere, while φ2 corresponds to the space
outside it. It can be seen from Eq. (4) that φ1 →∞ as
r → 0. To avoid the singularity, we set A2 = 0. The
continuity equation for φ at the boundary has the form

A1R cos (θ) = −ER cos (θ) +B2R
−2 cos (θ), (6)

which simplifies to

A1 = B2R
−3 − E. (7)

The tangential component of electric field vector E on
the surface of the sphere is

Et = Eθ = −
[

1

r

∂φ

∂θ

]
r=R

. (8)

Condition E1θ = E2θ is satisfied if Eq. (6) is valid, i.e.
A1 and B2 are connected through the relation in Eq. (7).

The normal components of the electric field vector are
given by

E1n = −∂φ1
∂r
|r=R = −A1 cos (θ), (9)

E2n = −∂φ2
∂r
|r=R = E cos (θ) + 2B2R

−3 cos (θ). (10)

Here, the electric field components are equal to E1n =
E1r and E2n = E2r. We change the subscript from
n to r to denote the usage of spherical coordinates.
Furthermore, it follows from condition εwE1r = εrE2r

that
A1 = − εr

εw

(
E + 2B2R

−3) . (11)

The solutions of the system of Eqs. (7) and (11) are

A1 = − 3εr
εw + 2εr

E, (12)

B2 =
εw − εr
εw + 2εr

R3E. (13)

The potentials inside and outside the sphere are then

φ1 = − 3εr
εw + 2εr

Er cos (θ), (14)

φ2 = −
(

1− R3

r3
εw − εr
εw + 2εr

)
Er cos (θ). (15)

The field inside the sphere is constant and parallel to the
x-axis:

E1x = Ec = −∂φ1
∂x

= − ∂φ1
∂(r cos (θ))

=
3εr

εw + 2εr
E.

(16)
We call field Ec the local cavity field, while the outside
field is labeled by E. The local field is the sum of
the external field and the field created by the bound
charges appearing on the surface of the sphere. If the
dielectric constant of sphere εw is in the range of
optical frequencies, then it is equal to the square of the
refractive index of the cavity (n2). The permittivity of
the electronic induced moment of the water molecule at

optical frequencies of the external field can therefore be
written as:

εw = n2. (17)

Furthermore, when the medium surrounding the cavity
has a dielectric constant much larger than the square of
the refractive index, εr >> n2, an approximation may
be used (16):

Ec ≈
3

2
E → Ec ≈

3

2
E. (18)

It has to be noted that so far we have neglected the
reaction field, i.e. the field due to the point-like dipole
in the center of the cavity. This reaction field is directly
proportional to the strength of dipole Ereact ∝ p. Let us
calculate this external dipole moment of a single water
molecule. First, we must derive the electric potential of
a dipole centered inside a sphere with permitivitty εw =
n2.

The conditions of finite and continuous potential are
the same as in the previous derivation. At the surface
of the sphere, the potential inside (φ1) must be equal to
the potential outside of the sphere (φ2):

φ1|R = φ2|R. (19)

If the sphere is surrounded by a medium with permittiv-
ity εr, the normal derivatives of the electric field must
also be continuous at the surface, therefore

εw
∂φ1
∂r
|r=R = εr

∂φ2
∂r
|r=R. (20)

The absence of an external field imposes φ → 0 as
r → ∞. Similarly, the potential must behave like that
of an ideal dipole in the limit r → 0. These conditions
must be obeyed solving the Laplace equation Eq. (3).
The general form of the solution is

φ(r, θ) =

∞∑
l=0

(
Alr

l +
Bl
rl+1

)
Pl(cos (θ)). (21)

Here, Pl are the Legandre’s polynomials of order l.
Inside the sphere, we have

φ1(r, θ) =
p cos (θ)

4πεwr2
+

∞∑
l=0

Alr
lPl(cos (θ)), (22)

and outside, it follows

φ2(r, θ) =

∞∑
l=0

(
Bl
rl+1

)
Pl(cos (θ)). (23)

Applying continuity condition Eq. (19) and equating
coefficients of Pl, we get

p

4πεwR2
+A1R =

B1

R2
, (l = 1) (24)

AlR
l =

Bl
Rl+1

, (l 6= 1). (25)
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We can therefore express Bl in terms of Al:

B1 =
p

4πεw
+A1R

3, (l = 1) (26)

Bl = R2l+1Al, (l 6= 1). (27)

Using the condition defined by Eq. (20) and equating
the coefficients as before, we get

− p

2πR3
+ εwA1 = −εr

2B1

R3
, (l = 1) (28)

εwAllR
l−1 = −εr

(l + 1)Bl
Rl+2

, (l 6= 1).(29)

Substituting for Bl (Eq. (27)) into the right-hand side of
Eq. (29) gives

εwAllR
2l+1 = −εr(l + 1)AlR

2l+1. (30)

The only way this can be satisfied is if Al = 0 for l 6= 1,
so we get Al = Bl = 0 for l 6= 1. For the l = 1 case,
Eq. (26) and Eq. (28) yield

A1 =
p

2πR3εw

(
εf − 1

εf + 2

)
, (31)

B1 =
1

4πεr

(
3p
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)
. (32)

Here, εf = εw/εr marks the ratio between the permit-
tivities. The potentials are

φ1(r, θ) =
p cos (θ)

4πεwr2

[
1 + 2

r3

R3

(
εf − 1
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)]
,(33)

φ2(r, θ) =
cos (θ)

4πεrr2

(
3p

εf + 2

)
. (34)

The denominator of Eq. (34) includes product εrεf =
εw = n2, so based on Eq. (34), we can define external
dipole moment pe in the vector form as (16)

pe =
3

n2 + 2
p. (35)

The energy of an internal point-like dipole in a local
field is

We = −p · Ec. (36)

Substituting from Eq. (18), we can express the dipole
energy as (16)

We = −3

2

(
2 + n2

3

)
p0E cos (θ), (37)

We = γp0E cos (ω), (38)

where p0 is the magnitude of vector pe and angle ω
is supplementary to θ, as shown in Fig. 2. Constant γ
equals (16)

γ =
3

2

(
2 + n2

3

)
. (39)

Ec

p

ÑΦcΩΘ

Figure 2. Relation between angles θ and ω. The water internal
dipole moment is marked by p, the local cavity field is given
by Ec and points in the opposite direction of the potential
gradient by ∇φc.

3 SPACE-DEPENDENT DIELECTRIC
PERMITTIVITY IN THE ELECTRIC DOUBLE

LAYER

In general, the relative permittivity is given as

εr = 1 +
P

ε0Ec
, (40)

where P is the polarization of water dipoles. The total
polarization is given by:

P = Pelect + |Porient|, (41)

where Pelect is the electronic polarization and Porient
is the orientational polarization. Considering equations
Eq. (40) and Eq. (41), the permittivity can be written as

εr = 1 +
Pelect
ε0Ec

+
|Porient|
ε0Ec

. (42)

Electronic polarization is connected to the refractive
index as n2 = 1 + Pelect/ε0Ec, which yields

εr = n2 +
|Porient|
ε0Ec

. (43)

In this formulation, the electronic polarization contri-
bution is described by refractive index n. In our case
of a negatively charged planar surface (σ < 0), the
projection of polarization vector Porient points in the
direction opposite to the direction of the x-axis, so the
Porient is considered to have magnitude which points
in a negative direction. So far we have assumed that
εr is a constant quantity, but this is not the case with
the electric double layer, where the ordering of water
molecules directly affects the spatial dependence of the
dielectric permittivity. Orientational polarization Porient
is now (29; 31):

Porient(x) = nw(x)p0

(
2 + n2

3

)
〈cos (ω)〉ω, (44)

where in this paper we assume nw(x) = nw is the
constant (bulk) number density of water in the solution
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and p0 is the magnitude of the vector defined in Eq.
(35):

p0 = |pe|. (45)

Factor 〈cosω〉ω is the ensemble average of the orien-
tation of water molecules over the solid angle, defined
as

〈cos (ω)〉ω =

∫
cos (ω) exp (−βγp0E cos (ω)) dΩ∫

exp (−βγp0E cos (ω)) dΩ
,

(46)
where ω is the angle between the dipoles and potential
gradient, as shown in Figure 2. Boltzmann’s factor β
equals β = 1/kT , where kT is the thermal energy. The
element of solid angle dΩ is

dΩ = 2π sin (ω)dω. (47)

Eq. (47) assumes rotational symmetry with respect to
the azimuthal axis of rotation. After integrating, Eq. (46)
simplifies to (16):

〈cos (ω)〉ω = −L(βγp0E), (48)

where L is the Langevin’s function defined as

L(u) = coth(u)− 1

u
. (49)

The orientational polarization thus becomes (16):

Porient(x) = −nwp0
(

2 + n2

3

)
L(βγp0E). (50)

Considering Eq. (43), the dielectric permittivity is now
in general spatially dependent (16):

εr(x) = n2 +
nwp0
ε0

(
2 + n2

3

)
L(βγp0E(x))

Ec(x)
. (51)

In the approximation of a small electrostatic energy
and small energy of dipoles compared to the thermal
energy, the relative permittivity may be expanded using
the Taylor’s series. For small x, the Langevin’s function
is well approximated by

L(u) ≈ u

3
− u3

45
. (52)

In the limit of vanishing the electric field strength (E →
0) and zero potential (φ→ 0), the above equation gives
the Onsager’s expression for the bulk permittivity (16;
25; 29; 31):

εr ≈ n2 +

(
2 + n2

3

)2
nwp

2
0β

2ε0
. (53)

Using Eq. (51) for space-dependent relative permittiv-
ity εr(x), the Modified Langevin-Poisson-Boltzmann’s
(MLPB) equation (29; 31) used in calculating the ion
concentrations in the EDL becomes

d

dx

[
ε0εr(x)

dφc
dx

]
= 2e0n0 sinh (e0φcβ), (54)

where e0 is the elementary charge. The macroscopic
(net) volume charge density of coions and counterions
is written in the form:

ρfree(x) = e0n+(x)−e0n−(x) = −2e0n0 sinh (e0φcβ).
(55)

Here, n+(x) and n−(x) are the number densities of
counterions and coions and n0 is the bulk number den-
sity of counterions and coions in the electrolyte solution.
The boundary conditions for the MLPB equation are:

dφc
dx

(x = 0) =
σ

ε0εr(x = 0)
, (56)

and
dφc
dx

(x =∞) = 0. (57)

The spatial dependence of permittivity εr(x) is plotted
in Fig. 3 for T = 298 K, nw = 55 mol/l and p0 =
3.1 Debye (29).

4 MINIMIZATION OF THE FREE ENERGY

The same result for the spatial dependence of solution
permittivity εr as described by Eq. (51) can be obtained
also by using the minimization of the Helmholtz’s free
energy. Our model considers the electrolyte solution as
consisting of a mixture of point-like ions in a water
solution, where the water molecules are considered as
the Langevin’s dipoles. It is assumed that the ions and
water molecules create an average electric field within
electrolyte Ec(x). We can write the Helmholtz’s free
energy of the system F as

F =
n2ε0

2

∫
E2
c (x) dV + kT

[ ∫ (
n+(x) ln

n+(x)

n0
−

− (n+ − n0)
)
dV +

∫ (
n−(x) ln

n−(x)

n0
−

− (n− − n0)
)
dV +

∫
(λ+n+ + λ−n−) dV+

+

∫
nw〈P(x, ω) lnP(x, ω)〉ω dV+

+

∫
nwη(x) (〈P(x, ω)〉ω − 1) dV

]
.

(58)
The thermal energy is given by kT . The first term
in the above equation is the energy from mean local
electric field Ec. The second and third term account for
the mixing entropy free energy contribution of point-
like counterions and coions. The fourth term gives the
constraint of a constant number of particles in the
system, where λ+ and λ− are the global Lagrange’s
multipliers for counterions and coions. The fifth term is
the free energy that corresponds to orientational entropy
of the Langevin’s dipoles, while the last term gives the
local constraint for orientation of dipoles. P(x, ω) is
the probability that the Langevin’s dipole located at x
is oriented at angle ω with respect to the normal to
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the charged surface (Fig. 2). The brackets denote the
average:

〈F(x, ω)〉ω =
1

4π

∫ π

0

F(x, ω) dΩ. (59)

Here, ω is the angle between internal dipole moment
vector p and nφ = ∇φ/|∇φ| (see Fig. 2), while dΩ
marks the element of the solid angle as defined in Eq.
(47). We perform a variation on Helmholtz free energy F
Eq. (58), so that δF = 0 (see Appendix A). If we express
the local field as local potential Ec(x) = −φ′c(x) and
perform a variation on the electrostatic term, we obtain

δ

(
ε0n

2

2

∫
φ′2c dV

)
=
ε0n

2

2

∫
2φ′cδ(φ

′
c) dV. (60)

We can rearrange this term if we consider the rules of
differenting a function product

(φcδφ
′
c)
′ = φ′cδφ

′
c + φcδφ

′′
c ,

φ′cδφ
′
c = (φcδφ

′
c)
′ − φcδφ′′c .

(61)

The integral in Eq. (60) thus yields∫
φ′cδ(φ

′
c) dV = φcδφ

′
c|∞0︸ ︷︷ ︸

=0

−
∫
φcδ(φ

′′
c ) dV, (62)

where the first term on the right-hand side equals 0 at
infinity, since we pose that the electric potential there
is constant and equal to 0. Taking into account the
Poisson’s law

φ′′c (x) = − ρ(x)

ε0n2
, (63)

we can transform the variation by φ′′c to the variation
by average microscopic volume charge density ρ(x),
which is the sum of the contributions of the local net
ion charges and the dipole moments, represented by
polarization Porient (16; 45).

ρ(x) = e0(n+ − n−)−∇ · Porient, (64)

Performing the variation on this charge distribution gives

δρ(x) = e0[δn+(x)− δn−(x)]− δ (∇ · Porient) , (65)

simplifying the electrostatic energy term to the integral∫
φcδρ dV =

∫
φc(e0[δn+−δn−]−δ (∇ · Porient)) dV.

(66)
The variation of the mixing entropy of ions and their
constraints of Eq. (58) gives

δF+,−
mix,c = kT

∫
dV
[
δn+

(
ln
n+
n0

+ λ+

)
+

+ δn−

(
ln
n−
n0

+ λ−

)]
.

(67)

For the subscript and superscript nomenclature, see
Appendix A. Combining positive ion differentials δn+

from the electrostatic terms, mixing terms and costraints,
we arrive at the variational integral

δF+
el,mix,c =

∫
dV δn+(x)

[
kT

(
ln
n+(x)

n0
+ λ+

)
+

+ φce0

]
= 0.

(68)
Since the integrand has to be zero (see Appendix A),
we arrive at the expression for the distribution of posi-
tively charged ions n+(x). The derivation for negatively
charged ions is practically identical. Both distributions
are

n+(x) = n0 exp
(
− βe0φc − λ+

)
, (69)

n−(x) = n0 exp
(
βe0φc − λ−

)
. (70)

Here, β = 1/kT . The boundary conditions state that
φc(x → ∞) = 0 and n+,−(x → ∞) = n0, which
renders λ+ = λ− = 0. We may now turn our attention to
the variation of the dipole orientation. Water molecules
polarization Porient is given by

Porient(x) = nw〈P(x, ω)〉ωpnφ, (71)

where p = |p| is the internal point-like dipole mag-
nitude, nw is the concentration of water molecules in
the bulk of the solution and 〈P(x, ω)〉ω is defined by
Eq. (59). As mentioned earlier (after Eq. (43)), Porient
points in the direction opposite to the direction of the x-
axis for σ < 0, hence Porient(x) is considered negative.
We may transform the polarization part of the integral
in Eq. (66) so that

−
∫
φcδ
(
∇ · Porient

)
dV =

∫
(∇φc) (δPorient) dV.

(72)
Considering Eq. (71), we may write

δPorient = 〈nwp δP(x, ω)〉ω. (73)

The variation of the free energy of the Langevin’s
dipoles in Eq. (58) gives

δFPmix = kTnw

∫
dV
[
〈δP(x, ω) lnP(x, ω)+δP(x, ω)〉ω

]
,

(74)
while the variation of the local constraint for orientation
of the Langevin’s dipoles yields

δFP,ηc = kTnw

∫
dV
[
δη(x)〈P(x, ω)〉ω+

+ η(x)〈δP(x, ω)〉ω − δη(x)
]
.

(75)

Combining Eqs. (72-75) and varying by P(x, ω), we
arrive at the equation (see Appendix A):

δFPel,mix,c =

∫
dV
[
〈nwδP(x, ω)

(
∇φc · p+

+
lnP(x, ω) + η(x) + 1

β

)
〉ω
]

= 0.

(76)
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The variation requires the integrand to be zero, which
gives us the Lagrange’s equation for the dipole ori-
entation. After substituting the gradient of the local
potential field with the local electric field (considering
|Ec| = |∇φc|) and evaluating the dot product ∇φc ·p =
Ecp cos (ω) (see Fig. 2), the equation reads

Ecp cos (ω) + kT
(

lnP(x, ω) + η(x) + 1
)

= 0. (77)

Solving for P(x, ω) gives

P(x, ω) = Λ(x) exp
(
− βEcp cos (ω)

)
, (78)

where Λ(x) = exp(−η(x) − 1). Substituting local
electric field Ec by electric field E (Eq. (18)) and dipole
moment p by pe (Eq. (35)) gives

P(x, ω) = Λ(x) exp
(
− β 3E

2

(2 + n2

3

)
p0 cos (ω)

)
,

(79)
where p0 is the magnitude of pe. The final result is
expressed using constant γ defined in Eq. (39):

P(x, ω) = Λ(x) exp
(
− βγEp0 cos (ω)

)
. (80)

We can now evaluate the average internal dipole moment
by integrating by mean orientations,

p〈cos (ω)〉ω = p0

(2 + n2

3

)
〈cos (ω)〉ω

=

∫ π
0

(
2+n2

3

)
p0 cos (ω) exp (−βγEp0 cos (ω)) dΩ∫ π

0
exp (−βγEp0 cos (ω)) dΩ

= −p0
(

2 + n2

3

)
L (βγEp0) .

(81)
Here, L represents the Langevin’s function. In our
derivation we assume an azimuthal symmetry. Inserting
the Boltzmann’s distribution functions of ions (Eqs. (69),
(70)) and the expression for polarization (Eq. (81)),

Porient(x) = nwp〈cos (ω)〉ω

= −nwp0
(

2 + n2

3

)
L (βγEp0)

(82)

into Eq. (64), we get the expression for the average
microscopic volume charge density in an electrolyte
solution:

ρ(x) = −2e0n0 sinh (βe0φc(x))+

+ nwp0

(
2 + n2

3

)
d

dx
(L (βγEp0)) .

(83)

Inserting the above expression for average microscopic
volume charge density ρ(x) into the Poisson’s equation,

φ′′c (x) = − ρ(x)

n2ε0
, (84)

we get

φ′′c (x) =
1

n2ε0

[
2e0n0 sinh (βe0φc(x))−

− nwp0
(

2 + n2

3

)
d

dx
(L (βγEp0))

]
,

(85)

where φ′′c (x) is the second derivative of the electric
potential φc(x) with respect to x. As mentioned, this
Langevin’s PB differential equation is subject to two
boundary conditions. The first boundary condition arises
from the electro-neutrality of the system. If we integrate
Eq. (85) once over the whole system, we get (see
Appendix B),

φ′c(x = 0) = − 1

n2ε0

[
σ + nwp0

(
2 + n2

3

)
· (86)

·L(βγp0E|x=0)
]
.

Here we also consider the second boundary condition,
which states that the electric potential far away from
the charged surface is constant φ′c(x → ∞) = 0,
rendering L(βγp0E|x→∞) = 0. Based on Eq. (82) and
Eq. (43), we can express the effective permittivity of
the electrolyte solution (εr) in contact with the planar
charged membrane surface as

εr = n2 +
|Porient|
ε0Ec

= n2 + nw
p0
ε0

(
2 + n2

3

)
L(βγEp0)

Ec
.

(87)

Eq. (85) can be rewritten in a more general form as:

∇ ·
[
ε0n

2∇φc(r)
]

+ nwp0

(
2 + n2

3

)
∇ · (88)

·
(

nφ L (βγEp0)
)

= 2e0n0 sinh (βe0φc(r)),

where nφ = ∇φc/|∇φc| = ∇φc/Ec. It follows from
Eq. (88) that

∇ ·
[
ε0

(
n2 +

nwp0
ε0

(
2 + n2

3

)
L (βγEp0)

Ec

)
∇φc(r)

]
= 2e0n0 sinh (βe0φc(r)).

(89)
Eq. (89) can finally be rewritten in the form

∇ · [ε0εr(r)∇φc(r)] = −ρfree(r), (90)

where ρfree(r) is the macroscopic (net) volume charge
density of coions and counterions, while εr(r) is defined
by Eq. (87). A more general version of the boudary
condition (Eq. (86)) is

∇φc(r = rsurf ) = − 1

n2ε0

[
σnφ + nφnwp0

(
2 + n2

3

)
·

· L(βγp0E(r)|r=surf )
]
.

(91)
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Rearranging, it follows that

∇φc(r = rsurf )
[
1 +

nφ
∇φc(r = rsurf )

nwp0
n2ε0

(
2 + n2

3

)
·

· L(βγp0E(r)|r=surf )
]

= − σ

n2ε0
nφ.

(92)
Evaluating the second expression on the left-hand side
of Eq. (92) gives

nφ
∇φc(r = rsurf )

=
∇φc(r = rsurf )

|∇φc(r = rsurf )|
1

∇φc(r = rsurf )

=
1

Ec(r = rsurf )
.

(93)
Combining this simplification with Eq. (82), Eq. (92)
becomes

∇φc(r = rsurf )εr(r = rsurf ) = −σnφ
ε0

. (94)

Here we also take into account the expression for
εr (Eq. (87)). We see that the term inside the square
brackets on the left-hand side of Eq. (92) is precisely
the definition of the relative permittivity on the surface
of charged membrane εr(r = rsurf ) (Eq. (87)), yielding
the general result

∇φc(r = rsurf ) = − σnφ
ε0εr(r = rsurf )

. (95)

5 DISCUSSION

In the past, treatments of cavity and reaction fields
and the structural correlations between water dipoles
in the Onsager’s (25), Kirkwood’s (26) and Fröhlich’s
(27) models were limited to cases of relatively small
electric field strengths, far away from the saturation
limit of polarization and orientational ordering of water
molecules. High magnitudes of the electric field strength
in a saturation regime were later taken into account in
(16; 20; 28; 32) and other similar works. Besides the
saturation in polarization/water dipole orientation at high
magnitudes of the electric field strength (13; 16; 28; 32),
the important thing to consider in the EDL studies
is also the saturation in the counterion concentration
near the charged surface due to the finite size of
ions (steric interactions), first considered in the Wicke-
Eigen’s model (also called the Bikerman’s model) and
their modifications (3; 6; 33–38).

Generalization of the Kirkwood-Onsager-Fröhlich’s
theory with the intention of taking into account the
saturation of polarization at high magnitudes of the
electric field strength was first performed by Booth (28).
The generalization of the Kirkwood-Onsager-Fröhlich’s
theory in the saturation regime in the EDL theory
(16; 29; 32) was recently discussed in (40).
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Figure 3. Average orientation (〈cos (ω)〉ω), electric field mag-
nitude (E), potential magnitude (φ) and relative permittivity
(εr) in the electric double layer as a function of the distance
from a negatively charged surface x = 0 calculated within
the MLPB model. The bulk concentrtion of counterions and
coions n0 = 0.1mol/l and σ = −0.3As/m2.
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Recently Lopez-Garcia et al. (40) applied the 19th
century Maxwell’s mixture formula (39) describing
the ions as dielectric spheres within an oversimplified
macroscopic thermodynamic phenomenological model
with many free model parameters to fit the experi-
mentally estimated dependence of the differential ca-
pacitance on the electric potential drop. One among
many totally unjustified and oversimplified assumptions
in (40) is the assumption of a surface charge density-
independent relative permittivity in the inner (Stern)
layer which is clearly not the case. Due to orientational
ordering of water dipoles, the relative permittivity of
the Stern’s layer depends on the electric field strength,
i.e. on the surface charge density (σ) of the electrode
(41; 42). Fitting the model curves with many free model
parameters to the experimental points (40) cannot prove
that the inner (Stern) layer capacitance and permittivity
are σ-independent.

The decrease in the relative permittivity close to the
charged surface (electrode) is obviously partially the
consequence of orientational ordering of water dipoles
close to the saturation regime or in the saturation
regime as shown theoretically in (10; 13; 15–17; 19–
21; 32; 36; 41), a fact totally neglected in (40). Simula-
tions of EDL clearly showed that orientational ordering
of water molecules in an electrolyte solution is in-
creased in the direction towards the charged (electrode)
surface, including the Stern’s and diffuse layers (43),
amounting to a decrease in the relative permittivity in
this direction, which is in accordance with theoretical
predictions (see (29) and references therein). Therefore,
the phenomenological approach in (40), with the σ-
independent permittivity in the inner (Stern) layer and
assumed decrease in the electrolyte solution permittivity
in a diffuse layer due to the presence of the dielectric
spherical ions with the assumed lower relative permit-
tivity than that of the bulk water cannot contribute to a
better understanding of the physics of the electric double
layer, since the basic physical mechanism of the decrease
in the relative permittivity, i.e. the orientational ordering
of water molecules in Stern and diffuse layer, is totally
neglected.

Lopez-Garcia et al. (40) claimed that close to the
electrode, almost all water molecules belong to water
shells around the ions while the free water molecules are
excluded. This is certainly not true, namely the results
of simulations clearly predicted the increased water
ordering in the direction towards the charged surface
(including the region close to the charged surface) (43)
even for high salt concentrations, in agreement with our
theoretical predictions (compare Fig.6 in (43) and Fig.4
in (29)). For example, for the surface charge density
magnitude 0.16 As/m2 there is practically no difference
in orientational ordering and space distribution of water
dipoles close to the charged surface between water with

and without NaCl (of concentration 500 mmol/l) (43). In
general, for the magnitudes of the surface charge density
up to around 0.3 As/m2, where the mean-field approach
can still be justified, there is only a weak quantitative
influence of salt on the profile of orientational ordering
of water dipoles in Stern and diffuse layers, but no
qualitative influence (43). Note that the multi-layering of
water predicted in simulations (43) cannot be predicted
within our mean-field approach (16; 32) as well also
not in (40). In (40) it is also claimed that in model
(32), the space occupied by the ions behaves just as
a vacuum which is not true since the model assumes
that the permittivity of hydrated ions is equal to n2

(considered also in (16; 32) and other works), where n
is the refractive index of water (see also (27; 28)). This
means that it assumes that the electronic polarizability
of hydrated ions is equal to electronic polarizability
of water (16; 32). This is obviously a very rough
approximation, but certainly in (32), the space occupied
by ions is not considered a vacuum.

In (40), it is further argued that in (32) the magnitude
of the external dipole moment is 3.1 D rather than
′generally accepted′ 1.85 D (similarly as in Fig. 3) and
that this is done in order to recover the water permittivity
when the ionic concentrations vanish. Value 3.1 D is
certainly not selected in order to recover the water
permittivity when the ionic concentrations vanish, but
rather in order to get the bulk permittivity around 78.5
for the vanishing electric field in the bulk solution which
can be clearly understood from the expansion of the
permittivity as a function of the magnitude of the electric
field strength and electric potential (see for example the
similar expansion of the permittivity given in (16)). The
authors of (40) also overlook that in (32) and other
similar works there is no referencing to the Onsager’s
model, using instead the generalized Kirkwood-Onsager-
Fröhlich’s theory which can also be used in the satura-
tion regime of the water dipole orientational ordering
and polarization.

The dipole moment of a water molecule in liquid
water differs from that of an isolated water molecule
because each molecule is further polarized by the elec-
tric field of its neighbours which can be taken into
account by means of the cavity and reaction fields
(13; 16; 27; 28) and correlations between water dipoles
(27; 28; 44). The magnitude of the external dipole
moment of an isolated water molecule is indeed around
1.85 D which is a smaller value than the dipole moment
of a water molecule in clusters (p0 = 2.7D), and the
average dipole moment of a water molecule in the bulk
solution (p0 = 2.4−2.6D) (24). The value 3.1 D in (32)
is considerably smaller than the corresponding value
4.79 D used in models (17) and (18), which both did
not take into account the cavity field and the electronic
polarizability of water molecules (27) as it was later
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Figure 4. Schematic figure of the electric double layer showing
cations, anions and water molecules in contact with a nega-
tively charged planar surface. Distance b denotes the distance
of the closest approach (also called the outer Helmholtz’s
plane), approximately equal to the hydration radius of the
counterions (cations in our case) (41).

considered in (16; 29; 32). Including the structural
correlations between water dipoles (direct interactions
term) (28) would further decrease the magnitude of the
external dipole moment to the value around 2.0 D as
shown in Fig.8 in (14). However, the Booth’s model
does not consider the excluded volume effect and non-
homogeneous distribution of water molecules as it is
the case in the electric double layer close to the charged
surface (16; 32). Therefore Booth’s model, which con-
siders the direct interactions and structural correlations
between water molecules (28), can be applied in a simple
way only in the Langevin Poisson-Boltzmann’s model
for the point-like molecules (13; 14; 29), but not also
in (16; 32), where the finite size of molecules in an
electrolyte solution is taken into account.

In (40), the authors also argued that in (32) the same
value of the magnitude of the external dipole moment of
water molecules (i.e. 3.1 D) was used for all values of
the electric field, including the strong electric field in the
saturation regime. As it is explained above, a somewhat
larger value of p0 determined experimentally in water
clusters is mainly the consequence of neglection of the
direct interactions between water dipoles (28) which are
however not crucially dependent on the electric field.
The polarization in (32) depends on the electric field
strength due to the electronic polarizability term (see the
first term in the expression for the relative permittivity
(Eq. 41) and due to the orientational ordering term (see
the second term in Eq. 41).

Note that in the case of considering the space-
dependent number density of water molecules nw(x)
in Eq. (44), the Eq. (53) for bulk permitivitty would
tranform into (32)

εr = n2 +

(
2 + n2

3

)2
[ns − (α+ + α−)n0]p20β

2ε0
, (96)

where we took into account that in the bulk of the
solution (32):

nw(x→∞) = ns − α+n0 − α−n0. (97)

Here, ns is the number density of lattice sites in the
EDL model which takes into account the finite size of
molecules and α+ and α− are the numbers of lattice
sites occupied by a single positive and a single negative
hydrated ion, respectively (32). We assume that a single
water molecule occupies just one lattice site, therefore
ns/NA = 55 mol/l. Eq. (96) predicts the linear decre-
ment of the relative permitivitty in bulk solution with
salt concentration. Experiments show linear decrement
from εr ≈ 78.5 at zero NaCl concentration to εr ≈ 58
at 2 mol/l NaCl concentration (46), corresponding to
(α+ + α−) ≈ 7.5 in Eq. (96).

6 CONCLUSION

In the present paper we present a thorough derivation
of the relation between the external and internal dipole
moment of a water molecule. In the model, the water
molecule is considered as a rigid sphere with internal
point-like dipole p inserted into a homogenous electric
field. We see that the external dipole moment depends
on the local field arising from the contribution of the
point-like dipole at the center of the sphere, since the net
charge is accumulated at the interface of two dielectrics
with differing permittivities, and the outside cavity field
arising from the contributions of other water molecules
surrounding the sphere. We calculate the energy of
such a dielectric sphere (with a point-like dipole in
the centre) in an electric field. Furthermore, considering
orientational ordering of water molecules in the electric
double layer, we derive the spatial dependency of the
relative permittivity within the MLPB model. At small
values of the electrostatic field, we see that such an
approximation limits to the Onsager’s expression for
the bulk permittivity. As shown in (43), an addition
of NaCl even at high concentrations (0.5 M) affects
the spatial and orientational arrangement adopted by
the water molecules only for very high magnitudes
of surface charge density σ. Lower magnitudes of the
surface charge densities, which still allow for the mean-
field approach, barely affect the ordering of the water
layers, as already mentioned above. A stronger salt
effect on the orientation angle of the water molecules
is predicted for higher magnitudes of the surface charge
density (43), however, the average orientation angle of
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the water dipoles profile is not qualitatively changed
after the addition of NaCl even at a concentration of
0.5 M for low enough surface charge densities (43).
For example, for the surface charge density 0.16 As/m2,
there is only a very small quantitative difference in
the water average orientation profile between the two
cases with and without NaCl (43). Even at the mag-
nitude of the surface charge density 0.48 As/m2, the
shape of the average orientation angle profile is not
changed substantially after the addition of NaCl, but
only decreased in values (43). Based on these results,
we conclude that considering the orientational ordering
of water dipoles in Stern and diffuse layers (10; 13; 15–
17; 19–21; 29; 32; 36; 41) is essential to realistically
capture the basic physical properties of EDL and cannot
be neglected as it is done in some oversimplified 19th
century based macroscopic phenomenological models
of EDL (40), where the statistical physics orientational
ordering of water dipoles in EDL is not taken into
account.

APPENDIX

APPENDIX A
Helmholtz’s free energy F , defined in Eq. (58), is
defined as a sum of independent contributions, labelled
as

F = F+,−,P
el + F+,−

mix + FPmix + F+,−
c + FP,ηc . (98)

First term F+,−,P
el accounts for the electrostatic contri-

butions of coions and counterions and the Langevin’s
dipoles polarization contribution, the second term F+,−

mix

for the mixing entropy free energy contributions of
coions and counterions, the third term FPmix for the ori-
entational entropy of the Langevin’s dipoles, while the
fourth and fifth terms F+,−

c and FPc contain constraints
of the system, the former ensuring a constant number of
ions and the latter the local constraint for the orientation
of the Langevin’s dipoles. For the sake of a compact
nomenclature, we write multiple superscripts to indicate
independent sums of specific contributions, so that, for
example, the electrostatic contribution expands into three
independent integrals

F+,−,P
el = F+

el + F−el + FPel . (99)

Likewise holds for multiple subscripts. A compact ex-
pression including all three integrals for counterions
would read

F+
el,mix,c = F+

el + F+
mix + F+

c . (100)

Since the variation of the total Helmholtz’s free energy
must be zero, it follows that the sum of the variations
must be equal to zero. Using the new compact nomen-
clature for factoring out common terms, the variation of

Eq. (98) can be rewritten

δF = δF+
el,mix,c + δF−el,mix,c + δFPel,mix,c + δF ηc = 0.

(101)
We see that the total variation becomes the sum of varia-
tions of four independent functions: the number density
of counterions (δn+(x), corresponding to δF+

el,mix,c),
the number density of coions (δn−(x), corresponding
to δF−el,mix,c), the probability of the Langevin’s dipoles
orientation (δP(x, ω), corresponding to δFPel,mix,c) and
the local constraint of the Langevin’s dipoles orientation
function (δη(x), corresponding to δF ηc ). Bearing in mind
the derivations from the body of the text (Eqs. (60-75)),
Eq. (101) expands into

δF =

∫
dV δn+(x)

[
kT
(

ln
n+(x)

n0
+ λ+

)
+ φce0

]
︸ ︷︷ ︸

δF+
el,mix,c

+

+

∫
dV δn−(x)

[
kT
(

ln
n−(x)

n0
+ λ−

)
− φce0

]
︸ ︷︷ ︸

δF−el,mix,c

+

+

∫
dV nw〈δP(x, ω)

(
∇φc · p +

lnP(x, ω) + η(x) + 1

β

)
〉ω︸ ︷︷ ︸

δFPel,mix,c

+

+ kT

∫
dV nwδη(x)

(
〈P(x, ω)〉ω − 1

)
︸ ︷︷ ︸

δFηc

= 0.

(102)
The expressions multiplied by δn+(x), δn−(x),
δP(x, ω) and δη(x) must therefore equal zero, resulting
in a system of equations

kT
(

ln
n+(x)

n0
+ λ+

)
+ φce0 = 0, (103)

kT
(

ln
n−(x)

n0
+ λ−

)
− φce0 = 0, (104)

Ecp cosω +
lnP(x, ω) + η(x) + 1

β
= 0, (105)

〈P(x, ω)〉ω − 1 = 0. (106)

Here, we take into account the Boltzmann’s factor β =
1/kT and the dot product ∇φc · p = Ecp cos (ω).

APPENDIX B

The electroneutrality of the system supposes that the
total net charge of the system is zero, hence∫

ρfree(r) dV − σS = 0, (107)

where σ is the negative membrane surface charge den-
sity, S is the total membrane surface area and ρfree(r) is
the macroscopic (net) volume charge density of coions
and counterions. Since the macroscopic volume charge
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density is only dependent on x (Eq. (83)) and the
differential dV = S dx, Eq. (107) may be rewritten∫ ∞

0

2e0n0 sinh (βe0φc(x)) dx = −σ. (108)
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Iglič, C. Matschegewski, U. Beck, U. van Rienen,
A. Iglic, Mechanics and electrostatics of the inter-
actions between osteoblasts and titanium surface,
Computer Methods in Biomechanics and Biomed-
ical Engineering 14 (5) 469-482, 2011.

[10] R. Misra, S. Das, S. Mitra, Electric double layer
force between charged surfaces: effect of solvent
polarization, Journal of Chemical Physics 138
114703, 2013.

[11] Z. A. H. Goodwin, G. Feng, A. A. Kornyshev,
Mean-Field Theory of Electrical Double Layer In
Ionic Liquids with Account of Short-Range Corre-
lations, Electrochimica Acta 225 190-197, 2017.

[12] D. W. R. Gruen, S. Marčelja, Spatially varying
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Raumbedarfs von Ionen wässriger Lösung auf
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