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Abstract

Some graph invariants can be computed by summing certain values, called edge-contri-
butions over all edges of graphs. In this note we use edge-contributions to study relation-
ships among three graph invariants, also known as topological indices in mathematical
chemistry: Wiener index, Szeged index and recently introduced revised Szeged index. We
also use the quotient between the Wiener index and the revised Szeged index to study ar-
boreality (tree-likeness) of graphs.
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1 Introduction and Motivation
In mathematical chemistry some graph invariants are being studied intensively since they
correlate well, when applied to molecular graphs, with certain properties of the correspond-
ing molecules [16]. In this note we explore three such invariants, all based on the Wiener
index [17], that was initially defined for trees and admits several non-equivalent general-
izations to general graphs.
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Traditionally, the Wiener index for general graphs is defined as the sum of all distances
in a graph. Ivan Gutman [6] introduced another generalization that is known under the
name of Szeged index. Recently Milan Randić modified the definition of the Szeged index.
The new index was named revised Szeged index by Pisanski and Randić [12].

Let G be any connected graph. Then one can define the usual distance function on
its vertex set V (G). Namely, d(u, v) is the number of edges on any of the shortest paths
joining vertex u to vertex v. The Wiener index is defined as:

W (G) = (1/2)
∑

(u,v)∈V (G)×V (G)

d(u, v)

where the sum runs over all ordered pairs of vertices. The factor (1/2) is needed in order
to count each pair exactly once. If we want to avoid extra work, it is more convenient to
consider unordered pairs. For example, if the vertex set is linearly ordered, we can write

W (G) =
∑

u<v,u,v∈V (G)

d(u, v).

Define
W (u, v) = {x ∈ V (G)|d(u, x) < d(v, x)}.

Let w(u, v) denote the number of vertices that are closer to u than to v, i.e. w(u, v) :=
|W (u, v)|. Therefore, w(v, u) is the number of vertices that are closer to v than to u:
w(v, u) := |W (v, u)|.

Proposition 1.1. For any connected graph G and any pair of distinct vertices u and v the
sets W (u, v) and W (v, u) are non-empty and disjoint.

We may define: O(u, v) := V (G)−W (u, v)−W (v, u). Clearly, O(u, v) = O(v, u)
and the sets O(u, v),W (u, v),W (v, u) form the so-called fundamental partition of the
vertex set V (G). Note that sometimes these three sets are denoted by uWv,Wuv,Wvu,
respectively; see, for instance [8].

Let T be a tree. Let e = u ∼ v be any of its edges joining adjacent vertices u and v.
The Wiener index W (T ) of T can be computed as

W (T ) =
∑

u∼v∈E(G)

w(u, v)w(v, u)

based on the following theorem (that was known already to Wiener [17]).

Theorem 1.2. For any tree T

W (T ) =
∑

u∼v∈E(G)

w(u, v)w(v, u) =
∑

u<v,u,v∈V (T )

d(u, v).

For instance, this theorem was the basis for efficient computation of the Wiener index
for trees [10]. Wiener never applied his index to connected graphs that are not trees. So one
can extend his definition to graphs arbitrarily, the only restriction is that it should behave
as the Wiener index on trees.
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The invariant:
Sz(G) =

∑
u∼v∈E(G)

w(u, v)w(v, u)

is called the Szeged index of a graph [6]. In [15] M. Randić proposed a modification of the
Szeged index and called the resulting index the revised Wiener index. However, we feel
the newly described index arises from the Szeged index and therefore should be called the
revised Szeged index Sz∗(G). Let o(u, v) = o(v, u) denote the number of vertices of the
same distance from u and from v:

o(u, v) = |{x ∈ V (G)|d(u, x) = d(v, x)}| = |O(u, v)|

The revised Szeged index is defined as follows:

Sz∗(G) =
∑

u∼v∈E(G)

(w(u, v) + (1/2)o(u, v))(w(v, u) + (1/2)o(u, v)).

In this note we study relationships among the Wiener index, the Szeged index and the
revised Szeged index. Independent proofs of some of the results that were obtained by
Dobrynin and Gutman [4] are presented.

2 Edge Contributions
If we compare the three indices: W (G), Sz(G) and Sz∗(G) we see that the Szeged and
the revised Szeged index can be naturally described as a sum over the corresponding edge
contributions. For an edge e = u ∼ v define:

s(e) = w(u, v)w(v, u)

and
s∗(e) = (w(u, v) + (1/2)o(u, v))(w(v, u) + (1/2)o(u, v)).

Then
Sz(G) =

∑
e∈E(G)

s(e)

and
Sz∗(G) =

∑
e∈E(G)

s∗(e).

In what follows here we try to mimic the edge-contribution for the Wiener index. Let a
and b be two vertices of graph G and let p(a, b) denote the number of shortest paths in G
between a and b and let k(a, b, e) be the number of shortest paths between a and b passing
through the edge e. Define the edge contribution w(e) as

w(e) :=
∑

a<b,a,b∈V (G)

k(a, b, e)/p(a, b)

Lemma 2.1.
d(a, b) =

∑
e∈E(G)

k(a, b, e)/p(a, b)
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Theorem 2.2. ∑
e∈E(G)

w(e) = W (G)

Proof. ∑
e∈E(G)

w(e) =
∑

e∈E(G)

∑
a<b,a,b∈V (G)

k(a, b, e)/p(a, b) =

=
∑

a<b,a,b∈V (G)

∑
e∈E(G)

k(a, b, e)/p(a, b) =

=
∑

a<b,a,b∈V (G)

d(a, b) = W (G).

3 Results
Let us present the results from [12].

Theorem 3.1. For a connected graph G we have

Sz(G) ≤ Sz∗(G)

The equality holds if and only if G is bipartite.

The proof obviously follows from the fact the s(e) ≤ s∗(e) for each edge e.

Theorem 3.2. For a tree T the three indices are the same:

W (T ) = Sz(T ) = Sz∗(T )

For general graphs the difference between the revised Szeged index and the original Szeged
index may be quite large. Take for instance the complete graph Kn. The revised Szeged
index is in this case equal to Sz∗(Kn) = n3(n−1)/8 whileW (G) = Sz(G) = n(n−1)/2.
The quotient between the revised Szeged index and the original index is hence n2.

This example shows that the leftmost equality may hold even for graphs that are not
trees. However, it would be interesting to investigate the graphs, for which W (G) =
Sz∗(G). This equality clearly holds for trees. It would be interesting to know if such an
equality may hold for any other graphs.

In a similar way one can compute the Szeged and the revised Szeged index for a cycle
graph Cn: Sz(Cn) = n(b(n/2)c)2 and Sz∗(Cn) = n3/4. The Wiener index for cycles is
W (Cn) = n3/8 for even n and W (Cn) = (n2 − 1)n/8 for odd values of n; see [19].

In [5] the authors have used symmetry of graphs in order to simplify the calculation of
the Wiener index of a graph. In [19], the process has been repeated for the Szeged index,
see also [12] for corrections of some errors.

Now we explore the relationship between w(e) and s(e).
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Lemma 3.3. For every connected graph G and for every edge e = u ∼ v it follows that

w(e) ≤ s(e).

The equality holds if and only if e is the only edge between W (u, v) and W (v, u) and each
vertex w ∈ O(u, v) adjacent to some vertex from W (u, v)∪W (v, u) determines a triangle
K3 on {u, v, w}.

Proof.

w(e) :=
∑

a∈V (G),b∈V (G)

k(a, b, e)/p(a, b)

≤
∑

a∈W (u,v),b∈W (v,u)

k(a, b, e)/p(a, b)

≤
∑

a∈W (u,v),b∈W (v,u)

1 = w(u, v)w(v, u) = s(e).

The tricky part is to determine when

w(e) = s(e).

The leftmost inequality becomes equality if and only if the existence of a shortest path
between a and b passing through e implies that all shortest paths from a to b pass through
e. The second inequality turning into equality implies that for each vertex a from W (u, v)
and for each vertex b from W (v, u) at least one shortest path between them passes through
e. This implies that e is the only edge joining W (u, v) with W (v, u). If O(u, v) is non-
empty, it must have a vertex w that is connected both to W (u, v) and W (v, u) and forms
an odd cycle including the edge e. Let u′ ∈W (u, v) be adjacent to w and let v′ ∈W (v, u)
be adjacent to w. The distance between u′ and v′ is 2 and the shortest path does not involve
e. This means the equality cannot hold if O(u, v) is nonempty.

Using the above Lemma one can prove the following inequality that was proven already in
[9], see also [4].

Theorem 3.4. For any connected graph G we have

W (G) ≤ Sz(G)

The equality holds for graphs with the following property. G is obtained from complete
graphs by vertex identifications. Two maximal complete graphs have at most one vertex in
common. Each cycle lies in a complete graph.

Corollary 3.5. For any connected graph G we have

W (G) = Sz∗(G)

if and only if G is a tree.
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4 Arboreality of a graph
In [12] the quotient β(G) = Sz(G)/Sz∗(G) is considered as a measure of bipartivity of a
graph. Since 0 ≤ Sz(G)/Sz∗(G) ≤ 1 and Sz(G)/Sz∗(G) = 1 only for bipartite graphs,
it measures how close to a bipartite graph a given graph is. The question can be asked what
is the minimum value of β(G) for some classes of graphs.

There are two quotients that we may consider in a similar way:

α(G) = W (G)/Sz(G)

and
τ(G) = W (G)/Sz∗(G)

While α(G) measures how far from a tree composed of complete graphs is G, τ(G)
measures the departure of G from a tree. Let us call it arboreality of G. We may say
that low α(G) means that G is hollow, while large values mean it is dense. Obviously,
α(G)β(G) = τ(G) for any graphG; see [14] for an alternative attempt to address the issue
of “tree-likeness”.

The following tables list some values of these parameters for certain graphs. Numeric
values were obtained by using VEGA system [11]. First we look at the complete graphs
Kn.

G W (G) Sz(G) Sz∗(G) α(G) β(G) τ(G)
Kn n(n− 1)/2 n(n− 1)/2 n3(n− 1)/8 1 4/n2 4/n2

K2 1 1 1.00 1 1.0 1.0
K3 3 3 6.75 1 0.444444 0.444444
K4 6 6 24.00 1 0.25 0.25
K5 10 10 62.50 1 0.16 0.16
K6 15 15 135.00 1 0.111111 0.111111
K7 21 21 257.25 1 0.0816327 0.0816327
K8 28 28 448.00 1 0.0625 0.0625
K9 36 36 729.00 1 0.0493827 0.0493827

Next we consider complete bipartite graphs Kn,n

G W (G) Sz(G) Sz∗(G) α(G) β(G) τ(G)
Kn,n n(3n− 2) n4 n4 (3n− 2)/n3 1 (3n− 2)/n3

K1,1 1 1 1 1.0 1 1.0
K2,2 8 16 16 0.5 1 0.5
K3,3 21 81 81 0.259259 1 0.259259
K4,4 40 256 256 0.15625 1 0.15625
K5,5 65 625 625 0.104 1 0.104
K6,6 96 1296 1296 0.0740741 1 0.0740741
K7,7 133 2401 2401 0.0553936 1 0.0553936
K8,8 176 4096 4096 0.0429688 1 0.0429688
K9,9 225 6561 6561 0.0342936 1 0.0342936
K10,10 280 10000 10000 0.028 1 0.028
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In the next table are the hypercube graphs.

G W (G) Sz(G) Sz∗(G) α(G) β(G) τ(G)
Qn n22(n−1) n23(n−1) n23(n−1) 2−(n−1) 1 2−(n−1)

Q1 1 1 1 1.0 1 1.0
Q2 8 16 16 0.5 1 0.5
Q3 48 192 192 0.25 1 0.25
Q4 256 2048 2048 0.125 1 0.125
Q5 1280 20480 20480 0.0625 1 0.0625
Q6 6144 196608 196608 0.03125 1 0.03125

In the next table with paths, only 1’s appear in the columns α(G), β(G), and τ(G) because
all paths are trees.

G W (G) Sz(G) Sz∗(G) α(G) β(G) τ(G)
Pn (n3 − n)/6 (n3 − n)/6 (n3 − n)/6 1 1 1
P2 1 1 1 1 1 1
P3 4 4 4 1 1 1
P4 10 10 10 1 1 1
P5 20 20 20 1 1 1
P6 35 35 35 1 1 1
P7 56 56 56 1 1 1
P8 84 84 84 1 1 1
P9 120 120 120 1 1 1
P10 165 165 165 1 1 1

Cycles.

G W (G) Sz(G) Sz∗(G) α(G) β(G) τ(G)
Cn, n even n3

8
n3

4
n3

4 0.5 1.0 0.5

Cn, n odd n3−n
8

n(n−1)2

4
n3

4
n+1
2n−2

(n−1)2

n2
n2−1
2n2

C3 3 3 6.75 1.0 0.444444 0.444444
C4 8 16 16.0 0.5 1.0 0.5
C5 15 20 31.25 0.75 0.64 0.48
C6 27 54 54.0 0.5 1.0 0.5
C7 42 63 85.75 0.666667 0.734694 0.489796
C8 64 128 128.0 0.5 1.0 0.5
C9 90 144 182.25 0.625 0.790123 0.493827
C10 125 250 250.0 0.5 1.0 0.5
C11 165 275 332.75 0.6 0.826446 0.495868
C12 216 432 432.0 0.5 1.0 0.5
C13 273 468 549.25 0.583333 0.852071 0.497041
C14 343 686 686.0 0.5 1.0 0.5
C15 420 735 843.75 0.571429 0.871111 0.497778
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Some generalized Petersen graphs.

graph W (G) Sz(G) Sz∗(G) α(G) β(G) τ(G)
P (3, 1) 21 51 81.0 0.411765 0.62963 0.259259
P (4, 1) 48 192 192.0 0.25 1.0 0.25
P (5, 1) 85 285 375.0 0.298246 0.76 0.226667
P (5, 2) 75 135 375.0 0.555556 0.36 0.2
P (6, 1) 144 648 648.0 0.222222 1.0 0.222222
P (6, 2) 135 354 634.5 0.381356 0.55792 0.212766
P (7, 1) 217 847 1029.0 0.256198 0.823129 0.210884
P (7, 2) 189 602 1029.0 0.313953 0.585034 0.183673
P (8, 1) 320 1536 1536.0 0.208333 1.0 0.208333
P (8, 2) 280 856 1528.0 0.327103 0.560209 0.183246
P (8, 3) 272 1536 1536.0 0.177083 1.0 0.177083

The following comparison of the three indices is taken from Pisanski and Randić [12].

Wiener index Szeged Index Revised Szeged index
source [17] [6] [15]

notation W (G) Sz(G) Sz∗(G)
G = Pn (n3 − n)/6 (n3 − n)/6 (n3 − n)/6

G = Cn, n even n3/8 n3/4 n3/4
G = Cn, n odd (n3 − n)/8 n(n− 1)2/4 n3/4

G = Kn n(n− 1)/2 n(n− 1)/2 n3(n− 1)/8
G = H�K W (K)|V (H)|2+ W (K)|V (H)|3+ W (K)|V (H)|3+

+W (H)|V (K)|2 +W (H)|V (K)|3 +W (H)|V (K)|3
Gk kW (G)|V (G)|2(k−1) kSz(G)|V (G)|3(k−1) kSz∗(G)|V (G)|3(k−1)

G = Qn n22(n−1) n23(n−1) n23(n−1)

G = Kn,n,...,n nr(nr + n− 2)/2 r(r − 1)n4/2 r3(r − 1)n4/8
G bipartite W (G) Sz(G) Sz(G)
T tree W (T ) W (T ) W (T )

5 Conclusion
There is a natural difference between the Wiener index and the other indices described
above. For the Wiener index one may usually compute the contribution of each vertex and
then sum the contributions. In the Szeged index one may compute an edge contribution and
then sum the obtained edge contributions. The same is true for the revised Szeged index.
However, this distinction is not absolute. The latter approach may be used for the Wiener
index as shown in [13] however, the computations are more involved. We hope we can use
this approach to study more closely the relationship between the indicesW (G), Sz(G) and
Sz∗(G).

In [2] the authors have computed the Wiener index and the Szeged index for benzenoid
graphs in linear time. It is clear that their methods give also the revised Szeged index
since all benzenoids are bipartite; see also [1, 3, 7]. It is well-known that on trees, the
Wiener index can be computed in linear time [10], and, consequently, the Szeged indices
on trees can be computed in linear time. In general, the Wiener and Szeged indices can
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be computed in time O(mn) [18]. The revised Szeged index can be computed within the
same time complexity by a straightforward method using the distance matrix. The question
is whether the computation of the revised Szeged index can be done faster for some classes
of graphs.
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