DOI: 10.17344/acsi.2015.2096 Acta Chim. Slov. 2016, 63, 263-270 263 Scientific paper 1,4-Diazaniumbicyclo[2.2.2]octane Diacetate: As an Effective, New and Reusable Media for the Synthesis of 14-Aryl-14#-dibenzo[aj]xanthenes Leila Zare Fekri* and Hajar Saeedi Fard Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran * Corresponding author: E-mail: chem_zare@yahoo.com Received: 02-11-2015 Abstract A general synthetic route to dibenzoxanthenes has been developed using 1,4-diazaniumbicyclo[2.2.2]octane diacetate as a new bis ionic liquid under thermal and solvent free condition. This method provides several advantages such as a simple work-up, environmental friendliness and shorter reaction time along with high yields. All of the synthesized compounds were characterized by infrared spectroscopy, 1H and 13C spectroscopy and elemental analyses. Keywords: Solvent free, xanthenes, 1,4-diazaniumbicyclo[2.2.2]octane diacetate, ß-naphthol 1. Introduction Research on xanthenes, especially benzoxanthenes, has emerged in organic synthesis due to their wide range of biological and therapeutic properties like antiviral,1 antiinflammatory,1 and antibacterial activities,1a,b as well as in photodynamic therapy2 and as antagonists of the paralyzing action of zoxazolamine.3 Xanthenes are also available from natural sources. Popularly known Santalin pigments have been isolated from a number of plant spe-cies.4 Furthermore, due to their useful spectroscopic properties they are used as dyes,5 in laser technologies,6 and in fluorescent materials for visualization of biomolecu-les.7 Many procedures have been disclosed on how to synthesize xanthenes and benzoxanthenes, such as cyclo-dehydrations,8 trapping of benzynes by phenols,9 alkyla-tions of hetero atoms,10 cyclocondensations between 2-hydroxyaromatic aldehydes and 2-tetralone.11 Benzal-dehydes and acetophenones bearing tethered carbonyl chains underwent the intramolecular phenyl-carbonyl coupling reactions in the presence of samarium diiodide and hexamethylphosphoramide to afford xanthenes.12 In addition, 14H-dibenzo[aj]xanthenes and related products are prepared by the reaction of P-naphthol with for-mamide,1 1-hydroxymethylnaphthalen-2-ol13 and carbon monoxide.14 Recently, xanthenes were also synthesized by the condensation of aldehydes, P-naphthol and dime- done.15 Due to the environmental concerns, the use of benign solvents as alternatives to the volatile organic solvents is of high interest to organic chemists. The use of ionic liquids as reaction media and catalyst can offer a solution to the solvent emission and catalyst recycle prob-lems.16,17 Ionic liquids possess the advantages, like negligible vapor pressure, reasonable thermal stability and recyclability. They dissolve many organic and inorganic substrates and are tunable to specific chemical tasks.18 Recently, ionic liquids have been successfully employed as solvents with concomitant catalytic activity for a variety of reactions.19 2. Results and Discussion As a part of our going interest for the development of efficient and environmentally friendly procedures for the synthesis of heterocyclic and pharmaceutical com-pounds,20-23 an efficient, facile and solvent free procedure was introduced for the synthesis of 14-aryl-14H-diben-zo[aj]xanthenes (Scheme 1). For this purpose, the reaction of aromatic aldehydes and P-naphthols using a bis ionic liquid (1,4-diazaniumbicyclo[2.2.2]octane diacetate, DABCO-diacetate), was investigated for the first time. The procedure presented here not only gives the desired products in good yields, but also avoids the problems associated with the conventional solvents such as cost, Fekri and Fard: 1,4-Diazaniumbicyclo[2.2.2]octane Diacetate: 270 Acta Chim. Slov. 2016, 63, 263-270 handling, safety and pollution, and moreover the reaction times are reduced to a few minutes. To emphasize the effect of the ionic liquid, the model reaction between 4-chlorobenzaldehyde and P-napht-hol was described and different acid catalysts were tested for this reaction. All the reactions were run with catalytic amounts of the catalysts. As can be seen in Table 1 satisfactory results were obtained only with DABCO-diacetate (entry 9). To investigate the efficiency and generality of the reaction, various benzaldehyes were treated with P-napht-hol under the above-described reaction conditions in the presence of DABCO-diacetate. The results are summarized in Table 2. Accordingly, we can see that all the reactions afforded the corresponding xanthenes 3a-p in high yields. On the other hand, the synthesis of xanthenes from hydrazones required shorter reaction times and provided the products in higher yields than was the case when starting from aldehydes. It seems that the conversion of aldehydes to the corresponding hydrazone derivatives helps to facilitate the nucleophilic addition of P-naphthol in comparison with the starting aldehydes. Because the hydrazones are unstable under acidic ionic liquid media, it helps to treat them better with P-naphthol. After reaction, the ionic liquid was easily separated from the reaction medium by washing with distilled water (IL is soluble in water). The washed ionic liquid was distilled under vacuum to recover it and reuse it as a solvent in the subsequent reactions. After three successive runs, recycled ionic liquid showed no loss of efficiency with regard to the reaction time and yield (Table 3). Table 1. Effect of catalyst or media on the reaction of 4-chlorobenzaldehyde and P-naphthol Entry Catalyst Catalyst amount/ 1mmol of substrate Reaction conditions Time (min) Yield (%) 1 H2SO4 5 drops Reflux 7200 34 2 ^-TsOH 0.5 mmol Reflux 3600 45 3 Montmorillonite K10 0.5 g Reflux 120 81 4 HY-Zeolite 0.5 g Reflux 120 68 5 I2 0.5 mmol Reflux 7200 15 6 L-proline 0.5 mmol Reflux 3600 45 7 Nanoparticle Fe3O4 0.5 g Reflux 60 83 8 Nanoparticle Fe3O4 @SiO2 0.5 mmol Reflux 60 85 9 DBU-Ac 0.5 mmol Heat, 80 °C 10 82 10 DABCO-diacetate 0.5 mmol Heat, 80 °C 6 91 11 DABCO-diacetate 0.3 mmol Heat, 80 °C 8 85 12 DABCO-diacetate 0.5 mmol Heat, 60 °C 8 74 Fekri and Fard: 1,4-Diazaniumbicyclo[2.2.2]octane Diacetate: Acta Chim. Slov. 2016, 63, 263-270 269 Table 2. Synthesis of 14-aryl-14ff-dibenzo[aj]xanthenes and comparison of efficiency of [DABCO]diacetate Entry Product" Procedure a Procedure b Time (min) Yield (%)b Time (min) Yield (%)b 1 5 94 3 98 310-311 1, 24, 25 6 91 3.5 97 287-288 1, 24, 25 6 89 4 95 294-295 1, 24,25 5.5 87 4 94 239-240 1, 24, 25 8 83 5 91 293-294 1, 24, 25 5 94 97 210-211 1 8 87 5.5 94 215-216 1, 24, 25 6 92 4 93 192-193 1, 24,25 2 3 4 5 6 3 7 8 Fekri and Fard: 1,4-Diazaniumbicyclo[2.2.2]octane Diacetate: ... 270 Acta Chim. Slov. 2016, 63, 263-270 Entry Product" Procedure a Time (min) Yield (%)b Procedure b Time (min) Yield (%)b mp ( C) Ref. 6.5 94 5 98 262-263 1, 24, 25 10 10 87 6 93 145-146 1, 24, 25 11 9 89 5.5 95 227-228 1, 24, 25 12 10 86 6 92 205-206 1, 24, 25 13 12 82 8 90 260-261 1, 24, 25 14 8 80 6 85 181-182 1, 24, 25 15 12 89 7 96 194-196 25 16 13 85 7 95 189-190 9 a All products were characterized by the comparison of their physical constants with those of authentic samples and by the help of IR and NMR spectroscopy. b Yields based upon the starting aldehyde. Fekri and Fard: 1,4-Diazaniumbicyclo[2.2.2]octane Diacetate: Acta Chim. Slov. 2016, 63, 263-270 269 Table 3. Evaluation of reusability of the ionic liquid for the synthesis of 3b Run 1 2 3 4 5 Time (min) 6 6 6 7 7 Yield (%) 91 90 88 90 88 m.p. (°C) 287-288 287-289 288-290 287-288 287-289 In the proposed mechanistic pathway, initially the aldehyde and P-naphthol are activated via dipolarization by DABCO-diacetate, followed by the nuclophilic attack of 2 equivalents of the P-naphthol to activate the aldehyde and finally via dehydration, the product 3 is produced. To investigate the efficiency of this method, the comparison between this method and some of those previous reported for the synthesis of 3b was carried out (Table 4). 12H), 14.11 (s, 2H) ppm. 13C NMR (100 MHz, CDCl3): 5 21.9, 44.5, 175.8 ppm. 3. 2. General Procedure for the Preparation of 3a-n A mixture of the aldehyde (1 mmol), P-naphthol (2 mmol) and [DABCO]diacetate (0.5 mmol) was heated at 80 °C for the required reaction time according to the Table 1. After completion of the reaction, as indicated by TLC, the reaction product was extracted by CHCl3/H2O. After evaporation of the organic solvent, the crude product was obtained and recrystallized from EtOH and dried to afford the compounds 3a-p as powders. The filtrate was concentrated under reduced pressure and washed with diethyl ether. Then, it was dried in a Table 4. Comparison of synthesis of compound 3b in this method with some of the previously reported methods Entry Catalyst Condition Time (min) Yield (%) Ref. 1 Selectfluor™ stir at 125 °C 420 95 1 2 Polytungstozincate acid 80 °C/Solvent-free 90 88 24 3 CoPy2Cl2 85 °C, neat conditions 120 95 25 4 Alum Water, 100 ° C 240 90 26 5 SiO2-ZnCl2 Stir, 100°C 40 83 27 6 [Et3N-SO3H ]Cl Sonication, 80 °C 40 93 28 7 Mg(BF4)2 doped in [BMim][BF4] Neat, 80 °C 15 94 29 8 DABCO-dihydroAc procedure a 6 91 This work 9 DABCO-dihydroAc Procedure b 3.5 97 This work 3. Experimental Chemicals were purchased from Merck and Fluka. All solvents used were dried and distilled according to the standard procedures. Melting points were measured on an Electrothermal 9100 apparatus. IR spectra were determined on a Shimadzu FT-IR 8600 spectrophotometer. 1H and 13C NMR spectra were determined on a Bruker 400 DRX Avance instrument at 400 and 100 MHz, respectively. Elemental analyses were recorded on a Carlo-Erba EA1110CNNO-S analyzer. 3. 1. Preparation of 1,4-Diazaniumbicyclo [2.2.2]octane diacetate, [DABCO] diacetate, as a Novel Bis Ionic Liquid A mixture of 1,4-diazabicyclo[2.2.2]octane (10 mmol) and acetic acid (20 mmol) was irradiated with microwaves (180 W) for 2 min at 100 °C three times. After completion of the reaction, the mixture was washed with diethyl ether (3 x 10 mL). The organic product was extracted from the liquid phase and evaporated under vacuum to produce the desired ionic liquid. Analytical data for DABCO-diacetate: yellow oil. 1H NMR (400 MHz, CDCl3): 5 2.16 (s, 2H), 3.01 (s, vacuum evaporator to recover the ionic liquid for the subsequent use. 3. 3. Analytical Data for the Synthesized Compounds 14-(4-Nitrophenyl)-14_ff-dibenzo[a.j]xanthene (3a): yellow solid; m.p. 310-311 °C; IR (KBr) v 3065, 1623, 1554, 1352, 1221 cm-1; 1H NMR (400 MHz, CDCl3) 5 6.7 (s, 1H), 7.69-8.05 (m, 12H), 8.34 (d, J = 8.7 Hz, 2H), 8.58 (d, J = 8.2 Hz, 2H) ppm; 13C NMR (100 MHz, CDCl3) 5 38.9, 121.8, 122.5, 125.2, 126.5, 127.1,131.8, 132.4, 132.9, 135.2, 136.5, 136.6, 136.9, 147.3, 151.9 ppm; Anal Calc. for C27H17NO3: C, 80.38; H, 4.25; N, 3.47. Found: C, 80.43; H, 4.21, N, 3.52. 14-(4-Chlorophenyl)-14_ff-dibenzo[a.j ]xanthene (3b): Brown solid; m.p. 287-288 °C; IR (KBr) v 3068, 1646, 1556, 1487, 1233, 1121 cm-1. 1H NMR (400 MHz, CDCl3) 5 6.49 (s, 1H), 7.12 (dd, J = 2.0 Hz, J = 6.4 Hz, 2H), 73.42-7.45 (m, 2H), 7.46-7.49 (m, 2H), 7.51 (s, 2H), 7.58-7.62 (m, 2H), 7.82 (d, J = 9.2 Hz, 2H), 7.86 (d, J = 8.0 Hz, 2H), 8.34 (d, J = 8.4 Hz, 2H) ppm; 13C NMR (100 MHz, CDCl3) 5 36.7, 115.9, 119.0, 124.9, 126.3, 126.9, 130.2, 130.3, 133.0, 134.5, 135.7, 139.2, 139.8, 146.1, Fekri and Fard: 1,4-Diazaniumbicyclo[2.2.2]octane Diacetate: ... 270 Acta Chim. Slov. 2016, 63, 263-270 151.4 ppm; Anal. Calcd for C27H17ClO: C, 82.54; H, 4.36. Found: C, 82.58; H, 4.29. 14-(4-Bromophenyl)-14ff-dibenzo[a.j]xanthene (3c): Brown solid; m.p. 294-295 °C; IR (KBr) v 3123, 1654, 1537, 1481, 1223, 1126 cm-1. 1H NMR (400 MHz, CDCl3) 5 6.74 (s, 1H), 7.35 (d, J = 8.4 Hz, 2H), 7.48 (t, J = 7.2 Hz, 2H), 7.56-7.66 (m, 6H), 7.95 (d, J = 8.8 Hz, 4H), 8.66 (d, J = 8.4 Hz, 2H) ppm; 13C NMR (100 MHz, CDCl3) 5 35.8, 112.9, 118.3, 125.1, 126.7, 126.8, 131.9, 132.3, 133.6, 134.9, 135.0, 139.1, 140.8, 145.2, 153.5 ppm; Anal. Calcd for C27H17BrO: C, 74.15; H, 3.92. Found: C, 74.09; H, 3.99. 27 17 14-(2-Nitrophenyl)-14_ff-dibenzo[a./]xanthene (3e): Yellow solid; m.p. 293-294 °C; IR (KBr) v 3354, 3018, 1625, 1556, 1367, 1289, 1109 cm-1; 1H NMR (400 MHz, CDCl3) 5 6.57 (s, 1H), 7.23-8.76 (m, 16H); 13C NMR (100 1MHz, CDCl3) 5 34.7, 119.2, 121.4, 123.5, 124.9, 125.0, 126.4, 129.0, 130.4, 130.8, 131.9, 133.9, 136.6, 137.2, 143.3, 145.5, 150.2 ppm; Anal. Calcd for C27H17NO3: C, 80.38; H, 4.25; N, 3.47. Found: C, 80.42; H, 4.20, N, 3.51. 14-(3-Nitrophenyl)-14_ff-dibenzo[a,/]xanthene (3f): Yellow solid; m.p. 210-211 °C; IR (KBr) v 3054, 2936, 1556, 1489, 1343, 1223 cm-1; 1H NMR (400 MHz, CDCl3) 5 6.55 (s, 1H), 7.23-7.81 (m, 13H), 8.32 (d, J = 8.5 Hz, 2H), 8.56 (s, 1H) ppm; 13C NMR (100 MHz, CDCl3) 5 34.7, 119.2, 121.4, 123.5, 125.0, 126.4, 129.0, 130.43 130.8, 131.9, 133.7, 133.9, 136.6, 137.2, 143.3, 145.5, 150.2 ppm; Anal. Calcd for C27H17NO3: C, 80.38; H, 4.25; N, 3.47. Found: C, 80.34; H, 44.227, N, 3.54. 14-(3-Bromophenyl)-14_ff-dibenzo[a./]xanthenes (3h): Yellow solid; m.p. 192-193 °C; IR (KBr) v 3015, 2926, 1612, 1476, 1321, 1212 cm-1; 1H NMR (DMSO-d6, 400 MHz) 5 6.61 (s, 1H), 6.65-7.11 (m, 2H), 7.32 (d, J= 7.6 Hz, 2H), 7.51-7.53 (m, 5H), 7.65-7.81 (m, 2H), 7.85-7.89 (m, 4H), 8.14 (d, J = 7.8 Hz, 1H); 13CNMR (DMSO-d6, 100 MHz) 5 32.1, 114.3, 115.4, 123.3 (two carbons), 128.9, 129.1, 129.3, 129.7 (two carbons), 129.8, 130.5, 130.6, 130.9, 131.8, 132.2, 145.5, 149.6 ppm; Anal. Calcd for C27H17BrO: C, 74.15; H, 3.92. Found: C, 74.25; H, 3.94. 27 17 14-(3-Fluorophenyl)-14_ff-dibenzo[a./]xanthene (3i): Brown solid; m.p. 262-263 °C; IR (KBr) v 3143, 1568, 1412, 1254, 1117, 1078 cm-1; 1H NMR (400 MHz, CDCl3) 5 6.51 (s, 1H), 6.77-8.24 (m, 16H) ppm; 13C NMR 3(100 MHz, CDCl3) 5 37.3, 113.0, 113.5, 116.1 (d, 3JC F = 2.6 Hz), 117.1, 119.8, 120.1, 121.9, 124.3 (d, 3JC F = 2.8 Hz), 124.8, 128.0, 129.1, 129.7, 130.1 (d, 2JCF = 28.3 Hz), 134.5 (d, 2JC-F = 33.4 Hz), 147.8 (d, = 160.2 Hz), 151.2 ppm; Anal.Calcd for C27H17FO: C, 86.15; H, 4.55; F, 5.05. Found: C, 86.09; H, 4.54. 14-(4-Hydroxyphenyl)-14_ff-dibenzo[a.j]xanthene (3j): Pink solid; m.p. 145-146 °C; IR (KBr) v 3414, 1609, 1512, 1464, 1235, 1123 cm-1; 1H NMR (400 MHz, CDCl3) 5 4.76 (br, s, 1H), 6.37(s, 1H), 6.52-8.87 (m, 16H) ppm; 13C NMR (100 MHz, CDCl3) 5 34.3, 116.7, 118.0, 118.4, 123.2, 124.6, 126.1, 126.7, 128.4, 130.8, 132.4, 132.8, 139.9, 146.8, 157.1 ppm; Anal. Calcd for C27H18O2: C, 86.61; H, 4.85. Found: C, 86.63; H, 4.78. 14-(4-Methylphenyl)-14_ff-dibenzo[a.j]xanthene (3k): White solid; m.p. 227-228 °C; IR (KBr) v 3013, 2923,1634, 1589, 1487, 1492, 1233 cm-1; 1H NMR (400 MHz, CDCl3) 5 2.32 (s, 3H), 6.42 (s, 1H), 6.78 (d, J = 9.6 Hz, 2H), 7.54-8.09 (m,12H), 8.43 (d, J = 8.9 Hz, 2H) ppm; 13C NMR (100 MHz,CDCl3) 5 23.1, 36.2, 113.6, 117.1, 126.2, 126.7, 128.2, 129.5, 131.4, 132.2, 133.2, 134.1, 144.8, 148.6, 149.8, 151.5 ppm; Anal. Calcd for C28H20O: C, 90.29; H; 5.41. Found: C, 90.34; H; 5.42. 14-(4-Methoxyphenyl)-14_ff-dibenzo[a.l/]xanthene (3l): yellow solid; m.p. 205-206 °C; IR (KBr) v 3123, 2876, 1675, 1609, 1588, 1437, 1387, 1276 cm-1; 1H NMR (400 MHz, CDCl3) 5 3.53 (s, 3H), 6.54 (s, 1H), 6.73 (d, J = 8.7 Hz, 2H),7.56-7.76 (m, 12H), 8.67 (d, J = 8.7 Hz, 2H) ppm; 13C NMR (100 MHz, CDCl3) 5 36.9, 53.2, 112.6, 117.8, 118.9, 124.0, 124.1, 126.8, 129.1, 127.8, 130.9, 137.0, 137.8, 151.3, 152.5, 153.2 ppm; Anal. Calcd for C28H20O2: C, 86.57; H; 5.19. Found: C, 86.41; H; 5.20. 14-Phenyl-14ff-dibenzo[a,/']xanthene (3n): White solid; m.p. 181-183 °C; IR (KBr) v 3089, 2911, 1623, 1580, 1542, 1437, 1256, 1177cm-1; 1H NMR (400 MHz, CDCl3) 5 6.51 (s, 1H), 6.98-7.02 (m, 1H), 7.14-7.18 (m, 2H), 7.40-7.44 (m, 2H), 7.50 (d, J = 8.8 Hz, 2H), 7.53-7.55 (m, 2H), 7.59-7.61 (m, 2H), 7.81 (d, J = 8.8 Hz, 2H), 7.84 (d, J = 8.0 Hz, 2H), 8.40 (d, J = 8.4 Hz, 2H) ppm; 13C NMR (100 MHz, CDCl3) 5 31.3, 114.2 (two carbons), 121.2,123.5, 125.6, 127.8 (two carbons), 129.1 (two carbons), 133.4, 135.6, 145.2, 149.3, 159.1 ppm; Anal. Calcd for C27H18O: C, 90.47; H, 5.06. Found: C, 90.41; H, 5.13. 3-(14_ff-Dibenzo[a,j]xanthen-14-yl)chromen-4-one (3o): Light yellow solid; m.p. 194-196 °C; IR (KBr) v 3143, 1623, 1576, 1423, 1278, 1208, 1181 cm-1; 1H NMR (400 MHz, CDCl3) 5 6.10 (s, 1H), 6.52 (s, 1H), 7.56-8.05 (m, 16 H) ppm; 13C NMR (100 MHz, CDCl3) 5 36.7, 55.4, 112.2, 114.3, 117.6, 118.1, 118.5, 118.9, 123.6, 125.2, 129.8, 131.2, 133.7, 136.1, 139.6, 143.1, 147.4, 151.3, 161.1 ppm; Anal. Calcd for C30H18O3: C, 84.49; H, 4.25. Found: C, 84.37; H, 4.21. 30 14-(4-N,N-Dimethylphenyl)-14fl-dibenzo[a,/]xanthene (3p): yellow solid; m.p. 189-190 °C; IR (KBr) v 3112, 1632, 1514, 1445, 1232, 1212, 1209, 1123 cm-1. 1H NMR (400 MHz, CDCl3) 5 3.01 (s, 6H), 6.83 (s, 1H), 7.39-7.49 Fekri and Fard: 1,4-Diazaniumbicyclo[2.2.2]octane Diacetate: Acta Chim. Slov. 2016, 63, 263-270 269 (m, 3H), 7.54-7.67 (m, 4H), 7.78-7.85 (m, 3H), 7.91-7.99 (m, 2H), 8.03 (d, J = 9.2 Hz, 1H), 8.20 (s, 1H), 8.69 (d, J = 8.4 Hz, 2H) ppm; 13C NMR (100 MHz, CDCl3) 5 34.2, 75.2, 113.2, 115.1, 117.6, 118.1, 119.1, 122.7, 125.3, 129.8, 130.9, 134.8, 143.1, 144.6, 149.1, 163.2 ppm; Anal. Calcd for C29H23NO: C, 86.75; H, 5.77; N, 3.49. Found: C, 86.77; H, 5.56; N, 3.65. 4. Conclusion In conclusion, we have investigated the ionic liquid 1,4-diazaniumbicyclo[2.2.2]octane diacetate as a mild and efficient media for the synthesis of substituted 14-aryl-14H-dibenzo[aj]xanthenes. The remarkable advantages offered by this method are: the catalyst is inexpensive, non-toxic, easy to handle and reusable, alowing simple work-up procedure, short reaction times, high yields of the products with better purity and offers green aspects by avoiding toxic catalysts and hazardous solvents. To the best of our knowledge this is the first report on synthesis of alkyl- or aryl-14H-dibenzo[aj]xanthene derivatives using ionic liquid 1,4-diazaniumbicyclo[2.2.2]octane diacetate. 5. Acknowledgement Financial support from the Research Council of Payame Noor University of Rudsar branch is sincerely acknowledged. 6. References 1. (a) P. S. Kumar, B. Sunil Kumar, B. Rajitha, P. Narsimha Reddy, N. Sreenivasulu, Y. Thirupathi Reddy, Arkivoc 2006, (xii), 46-50; (b) V. S. Patil, V. S. Padalkar, K. R. Phatangare, P. G. Umape, B. N. Borase, N. Sekar, J. Heterocycl. Chem. 2015, 52, 124-129. http://dx.doi.org/10.1002/jhet.1998 2. R. M. Ion, D. Frackowiak, A. Planner, K. Wiktorowicz, Acta Biochim. Pol. 1998, 45, 833-845. 3. G. Saint-Ruf, H. T. Hieu, J. P. Poupelin, Naturwissenschaften 1975, 62, 584-585. http://dx.doi.org/10.1007/BF01166986 4. (a) A. Arnone, L. Merlini, G. Nasini, Tetrahedron Lett. 1972, 13, 3503-3506; http://dx.doi.org/10.1016/S0040-4039(01)94083-3 (b) B. Ravindranath, T. R. Sheshadri, Phytochemistry 1973, 12, 2781-2790; http://dx.doi.org/10.1016/0031-9422(73)85099-X (c) J. Kinjo, H. Uemura, T. Nohara, M. Yamashita, N. Maru-bayashi, K. Yoshihira, Tetrahedron Lett. 1995, 36, 55995602. http://dx.doi.org/10.1016/00404-0399(50)10710- 5. A. Banerjee, A. K. Mukherjee, Stain Technol. 1981, 56, 83-85. http://dx.doi.org/10.3109/10520298109067286 6. M. Ahmad, T. A. King, K. Ko Do, B. H. Cha, J. J. Lee, Phys. D: Appl. Phys. 2002, 35, 1473-1476. http://dx.doi.org/10.1088/0022-3727/35/13/303 7. C. G. Knight, T. Stephens, Biochem. J. 1989, 258, 683-661. http://dx.doi.org/10.1042/bj2580683 8. (a) A. Bekaert, J. Andrieux, M. Plat, Tetrahedron Lett. 1992, 33, 2805-2806; http://dx.doi.org/10.1016/S0040-4039(00)78863-0 (b) J. Sarma, J. B. Baruah, Dyes Pigm. 2005, 64, 91-92. http://dx.doi.org/10.1016Zj.dyepig.2004.03.010 9. D. W. Knight, P. B. Little, Synlett 1998, 1141-1143. http://dx.doi.org/10.1055/s-1998-1878 10. (a) R. Vazquez, M. C. de la Fuente, L. Castedo, D. Domínguez, Synlett 1994, 433-434; http://dx.doi.org/10.1055/s-1994-22878 (b) H. Ishibashi, K.Takagaki, N. Imada, M. Ikeda, Synlett 1994, 49-50. http://dx.doi.org/10.1055/s-1994-22734 11. A. Jha, J. Beal, Tetrahedron Lett. 2004, 45, 8999-9001. http://dx.doi.org/10.1016/j.tetlet.2004.10.046 12. C.-W. Kuo, J.-M. Fang, Synth. Commun. 2001, 31, 877-892. http://dx.doi.org/10.1081/SCC-100103323 13. R. N. Sen, N. N. Sarkar, J. Am. Chem. Soc. 1925, 47, 1079-1091. http://dx.doi.org/10.1021/ja01681a023 14. K. Ota, T. Kito, Bull. Chem. Soc. Jpn. 1976, 49, 1167-1168. http://dx.doi.org/10.1246/bcsj.49.1167 15. M. A. Ghasemzadeh, Acta. Chim. Slov. 2015, 62, 977-985. http://dx.doi.org/10.17344/acsi.2015.1501 16. T. Welton, Chem. Rev. 1999, 99, 2071-2084. http://dx.doi.org/10.1021/cr980032t 17. R. Sheldon, Chem.Commun. 2001, 2399-2407. http://dx.doi.org/10.1039/b107270f 18. J. K. Lee, M. J. Kim, J.Org.Chem. 2002, 67, 6845-6847. http://dx.doi.org/10.1021/jo026116q 19. T. S. Li, Z. H. Zhang, F. Yang, C. G. Fu, J. Chem. Res. 1998, 1, 38. http://dx.doi.org/10.1039/a703694i 20. L. Synth. Commun. 2011, 41, 2323-2330. http://dx.doi.org/10.1080/00397911.2010.502990 21. M. Nikpassand, L. Zare, M. Saberi, Monatsh. Chem. 2012, 143, 289-293. http://dx.doi.org/10.1007/s00706-011-0575-6 22. L. Zare, N.O. Mahmoodi, A.Yahyazadeh, M. Nikpassand, Ultrason. Sonochem. 2012, 19, 740-744. http://dx.doi.org/10.1016/j.ultsonch.2011.11.008 23. L. Zare Fekri, M. Nikpassand, K. Hassanpour, Curr. Org. Syn. 2015, 12, 76-79. http://dx.doi.org/10.2174/1570179411666140806005614 24. M. Mohammadpour Amini, Y. Fazeli, Z. Yassaee, S. Feizi, A. Bazgir, Open Catal .J. 2009, 2, 40-44. http://dx.doi.org/10.2174/1876214X00902010040 25. J. Venu Madhav, B. Suresh Kuarm, B. Rajitha, Arkivoc 2008, (ii), 204-209. 26. M. Baghbanzadeh, M. Shakouri Nikchen, E. Arzroomchilar, Bioorg. Med. Chem. Lett. 2008, 18, 436-438. http://dx.doi.org/10.1016/j.bmcl.2007.07.008 27. H. A. Soliman, A. Y. Mubarak, A. El-Mekabati, S. S. El-morsy, Chem. Sci. Trans. 2014, 3, 819-825. Fekri and Fard: 1,4-Diazaniumbicyclo[2.2.2]octane Diacetate: ... 270 Acta Chim. Slov. 2016, 63, 263-270 28. A. Zare, A. R. Moosavi-Zare, M. Merajoddin, M. A. Zolfi-gol, T. Hekmat-Zadeh, A. Hasaninejad, A. Khazaei, M. Mokhlesi, V. Khakyzadeh, F. Derakhshan-panah, M. H. Bey-zavi, E. Rostami, A. Arghoon, R. Roohandeh. J. Mol. Liq. 2012, 167, 69-77. http://dx.doi.org/10.10167j.molliq.2011.12.012 29. K. Rad-Moghadam, S. C. Azimi, J. Mol. Catal. 2012, 363, 465-469. http://dx.doi.org/10.10167j.molcata.2012.07.026 Povzetek Razvili smo splošno sintezno pot do dibenzoksantenov z uporabo 1,4-diazanijumbiciklo[2.2.2]oktan diacetata kot nove bis ionske tekočine pod termičnimi pogoji brez prisotnosti topil. Ta metoda predstavlja kar nekaj prednosti, kot so enostavnost izolacije, okoljska sprejemljivost in krajši reakcijski časi ob hkratnem doseganju višjih izkoristkov. Vse sinteti-zirane spojine smo karakterizirali s pomočjo infrardeče spektroskopije, 1H in 13C magnetne resonančne spektroskopije in elementnih analiz. Fekri and Fard: 1,4-Diazaniumbicyclo[2.2.2]octane Diacetate: