Acta agriculturae Slovenica, 119/1, 1–9, Ljubljana 2023 doi:10.14720/aas.2023.119.1.2679 Original research article / izvirni znanstveni članek Invertebrate’s diversity on persimmon crop (Diospyros kaki Thunb.) at low altitude in Mechtras region, North Algeria Dyhia GUERMAH 1, 2, Ferroudja MEDJDOUB-BENSAAD 1 Received May 08, 2022; accepted February 07, 2023. Delo je prispelo 8. maja 2022, sprejeto 7. februarja 2023 1 Laboratoire de PSEMRIVC, Département de biologie, Université Mouloud Mammeri de Tizi-Ouzou, Algérie 2 Corresponding author, e-mail: guermah.dyhia.d@gmail.com Invertebrate’s diversity on persimmon crop (Diospyros kaki Thunb.) at low altitude in Mechtras region, North Algeria Abstract: The inventory of invertebrates on persimmon cultivation using two methods of sampling, Barber traps and colored traps in Mechtras region (Tizi-Ouzou) Algeria, allowed us to collect 115 species divided into 58 families, belonging to 13 orders and 6 classes. The values of the centesimal frequen- cies applied to invertebrates orders identified in the studied plot vary from one type of trapping to another, each sampling method relates to a representative order group. The diets of in- sects are extremely diverse, due to the structures and function of the mouthparts, the structural and functional division of the digestive tract; we have established 8 trophic classes. Shannon- Weaver diversity index values are quite high in the study plot. The fairness obtained for each type tend towards 1, which re- flects a balance between the species. Key words: inventory; invertebrates; persimmon; Mech- tras; Algeria Raznolikost nevretenčarjev v nasadih kakija (Diospyros kaki Thunb.) v nižinskih predelih območja Mechtras, severna Al- žirija Izvleček: S popisom nevretenčarjev v nasadih kakija z uporabo dveh metod vzorčenja, Barberjevih talnih in barvnih zračnih pasti, na območju Mechtras (Tizi-Ouzou) v Alžiriji, je bilo ugotovljenih 115 vrst iz 58 družin, ki pripadajo 13 redom in 6 razredom. Vrednosti centezimalnih frekvenc, ki so se upo- rabljale za identifikacijo vrst nevretenčarjev na preučevanem območju, se razlikujejo od ene vrste pasti do druge, vsaka me- toda vzorčenja pa se nanaša na reprezentativno redovno skupi- no. Prehrana žuželk je izjemno raznolika, kot posledica zgradbe in delovanja ustnega aparata in prebavnega trakta. V tej zvezi smo vzpostavili 8 trofičnih razredov. Vrednosti Shannon-Wea- verjevega indeksa pestrosti na preučevani ploskvi so bile precej velike. Vrednost indeksa je za vsako ploskev blizu 1, kar odraža ravnotežje med vrstami. Ključne besede: popis; nevretenčarji; kaki; Mechtras; Al- žirija Acta agriculturae Slovenica, 119/1 – 20232 D. GUERMAH and F. MEDJDOUB-BENSAAD 1 INTRODUCTION Fruit arboriculture is an integral part of the eco- nomic and social life of Algeria. This large country, due to its geographical position and its various pedoclimatic conditions, indeed has the privilege of cultivating several fruit species and to produce fresh fruit all year round. The persimmon, like any fruit tree, is attacked by several insects which occupy a very special place in the ecosystem; in addition, they are good biological indica- tors, in addition, they are good biological indicators, be- cause they are the main food of many vertebrates and are essential pollinators for the farmer (Clere et Bretagnolle, 2001). According to Bouktir (2003), insects by their diver- sity abundance, but also their occupation of very diverse ecological niches, they can be useful such as parasitoids and predators. However, insects can be harmful and play various epidemiological roles, which make them a major public health problem (Jolivet, 1980). The preservation of biodiversity represents an indis- putable ecological stake in the functioning of agroeco- systems, but also economical for society (Tscharntke and al., 2015). In this context, we carried out an inventory of the invertebrates fauna associated with persimmon tree cultivation in Tizi-Ouzou area (Kabylie), with the aim of improving our knowledge of biodiversity invertebrates and their classification according to the different trophic regimes. 2 MATERIALS AND METHODS The study was realized in a Diospyros kaki ‘Tipo’ ochard which is located in Mechtras area (36° 32′ 41″ Nord, 4° 0′ 18″ East) situated at an altitude of 389 meters, with sub-humid climate and temperate winter (Fig. 1). The orchard represents an appropriate environment and an extraordinary ecosystem whose biological func- tions bring together ecological conditions conducive to installation and the multiplication of various inver- tebrates. So, various sampling methods have been ad- dressed in Mechtras region from December 2019 until November 2020. 2.1 IN THE FIELD We used two trapping methods (Fig. 2), namely Barber pots or terrestrial traps as well as colored aerial traps, at the rate of one outing per month, from Decem- ber 2019 until November 2020. We installed Barber pots with 9 traps 7 cm deep and 15 cm in diameter, filled to 2/3 of their content with soapy water; which are visited once per week. The content was collected and put in jars with labels on which were indi- cated the date of collection and the trap concerned. We installed colored pots with 9 traps, placed on tree branches at a height of one meter exceeds the natural vegetation. The pots are filled to 2/3 of their volume with water added with a few drops of detergent. This reduces the surface tension of water and promotes the drowning of species that come into contact with the liquid. 2.2 LABORATORY WORKING METHODS After each trip, after a week, and according to the different capture methods used, the samples obtained are placed in Petri dishes with indicating the date and the trap. 2.2.1 Identification  The identification of individuals of listed inverte- brates is carried out using the different determination keys treating on morphology and chetotaxis (Perrier, 1961; Piham, 1986; Delvare and Aberlenic, 1989; Chin- ery, 1988 and Seguy, 1651). 2.2.2 Trophic diet After identification of the invertebrate species cap- tured by the different sampling methods, their trophic regimes are determined after bibliographic research. 2.3 RESULTS TREATMENT The results obtained are evaluated by several eco- logical indices. The total wealth represents the total number of spe- cies that includes the population considered in an ecosys- tem (Ramade, 2003). The Relative abundance (centesimal frequency) Fc (%) was also evaluated; it gives the percentage of indi- viduals of a species Ni relative to the total number of in- dividuals N (Dajoz, 1971). Fc = Ni x 100/ N We have also used Shannon-Weaver index which is calculated by the following formula: H’ = - qi log2 qi H’: diversity index expressed in bits units qi: the probability of encountering the species i Acta agriculturae Slovenica, 119/1 – 2023 3 Invertebrate’s diversity on persimmon crop ... at low altitude in Mechtras region, North Algeria The evenness index is the ratio of observed diversity H’ to the maximum diversity’ max: E = H’/H’ max (Blon- del, 1979). Knowing that H’ max is calculated using the following formula: H’ max = Log 2 S S: total wealth H’max: is expressed in bits 3 RESULTS In our study about invertebrates fauna associated to persimmon trees, we have caught 115 species, distributed in 57 families belonging to 13 orders and 6 classes. 3.1 TOTAL WEALTH AND CENTESIMAL FRE- QUENCY We were able to identify 115 species of captured in- vertebrates on persimmon plot using colored traps and Barber pots. Table 1 represents total wealth of inverte- brate, which were 63 species for colored traps and 66 spe- cies for Barber pots. Invertebrates orders collected on persimmon plot according to their centesimal frequency are shown in Figure 3 for colored traps and Figure 4 for Barber pots. Table 2 represent relative abundance of species identified according to the order, and family. We have noticed that Hymenoptera is the most dominant order recorded for colored traps is with cen- tesimal frequency equal to 29.8 %, and Coleoptera is the most dominant order recorded for Barber pots with cen- tesimal frequency equal to 30.98 %. Figure 1: Situation of the study region in Algeria (Google maps, 2021) Figure 2: Different sampling methods used: a: Yellow plastic bins serving as an aerial trap, b: Barber pots buried in the ground (Original, 2020) Colored traps Barber Pots Total wealth  63 66 Table 1: Total wealth of species caught Acta agriculturae Slovenica, 119/1 – 20234 D. GUERMAH and F. MEDJDOUB-BENSAAD Figure 3: Relative abundance of invertebrate species caught using colored traps Figure 4: Relative abundance of invertebrate species caught using Barber pots Table 2: Relative abundance of invertebrates’ species caught on persimmon crop Classes Orders Famillies Species Colored Trap Barber Trap –Insecta Hymenoptera Apidae Apis m–ellifera (Linnée, 1758) 13,7 0,93 Formicidae Messor barbarus (Linnée, 1767) - 5,88 Messor structor (Latreille, 1798) - 1,24 Pheidol pallidula (Nylander, 1849) 1,71 0,31 Cataglyphis cursor (Fonscolombe, 1846) - 0,93 Cataglyphis bicolor (Fabricius, 1793) - 0,62 Cataglyphis viatica (Fabricius, 1787) 0,68 4,33 Braconidae Aphidius colemani (Viereck, 1912) 0,68 - Ichneumonidae Netelia testacea (Gravenhorst, 1829) 1,13 - Ichneumonidae (Latreille, 1802) 1,71 - Halictidae Halictus quadricinctus (Fabricius, 1776) 3,08 - Lasioglossum calceatum (Scopoli, 1763) 1,71 - Vespidae Polistes nimpha (Christ, 1791) 1,03 - Vespula germanica (Fabricius, 1793) 1,37 0,62 Pompilidae Priocnemis confusor (Wahis, 2006) - 0,93 Pteromalidae Systasis angustula (Graham, 1969) 0,68 - Coruna clavata (Walker, 1833) 1,37 - Megachilidae Megachile centuncularis (Linnée, 1758) - 0,93 Megachile fertoni (Pérez, 1895) 1,03 - Diptera Tephritidae Xyphosia miliaria (Schrank, 1781) - 2,17 Tephritidae (Schrank, 1781) 1,03 - Ceratitis capitata (Wiedemann, 1826) 7,53 - Muscidae Graphomya maculata (Scopoli, 1763) - 0,62 Musca sp. (Linnée, 1758) - 0,31 Musca domestica (Linnée, 1758) - 1,55 Sepsidae Sepsis fulgens (Linnée, 1758) - 0,62 Syrphidae Episyrphus balteatus (De Geer, 1776) 1,71 - Stratiomyidae Chorisops tibialis (Meigen, 1820) 1,71 - Continued on next page Acta agriculturae Slovenica, 119/1 – 2023 5 Invertebrate’s diversity on persimmon crop ... at low altitude in Mechtras region, North Algeria Lauxaniidae Lauxaniidae (Meigen, 1820) 0,68 - Sciaridae Zygoneura sp. (Billberg, 1820) 0,34 - Psychodidae Phlebotomus sp. (Loew, 1845) - 0,62 Agromyzidae Agromyzidae (Fallen, 1823) 0,34 - Tipulidae Tipula oleracea (Linnée, 1758) - 1,24 Mydidae Mydas clavatus (Drury, 1773) - 1,86 Calliphoridae Calliphora vomitoria (Linnée, 1758) - 2,79 Calliphora vicina (Robineau-Desvoidy, 1830) 1,03 2,48 Calliphoridae (Hough, 1899) - 0,62 Lucilia caesar (Linnée, 1758) - 1,55 Culicidae Culiseta annulata (Schrank, 1776) 1,03 - Aedes albopictus (Skuse, 1894) 0,34 - Culex pipiens (Linnée, 1758) 1,71 - Coleoptera Staphylinidae Staphylinus caesareus (Cederhjelm, 1798) - 0,31 Creophilus maxillosus (Linnée, 1758) 0,68 0,93 Philonthus marginatus (O.F. Muller, 1764) 0,68 - Ocypus olens (O.F. Muller, 1764) - 10,84 Scarabaeidae Rhizotrogus aestivus (Olivier, 1789) - 0,62 Rhizotrogus maculicollis (Villa et Villa, 1833) - 1,55 Anisoplia floricola (Fabricius, 1787) 1,71 - Oxythyrea funesta (Poda, 1761) 3,42 - Apioidae Apion pomonae (Fabricius, 1798) 1,37 - Coccinellidae Oenopia conglobata (Linnée, 1758) - 0,93 Dermestidae Attagenus fasciatus (Thunberg, 1795) 1,03 - Dermestes sp. (Linnée, 1758) 0,68 - Curculionidae Liparus glabrirostris (Kuster, 1849) 1,03 - Liparus coronatus (Goeze, 1777) 0,34 - Phyllobius oblongus (Linnée, 1758) - 0,62 Lixus penctiventris (Boheman, 1835) 2,05 - Phyllobius pomaceus (Gyllenhal, 1834) 0,34 - Polydrusus sp. (Germar, 1822) - 1,24 Polydrusus marginatus (Stephens, 1831) 1,71 - Polydrusus impersifron (Gyllenhal, 1834) 0,68 - Otiorhynchus sp. (Germar, 1822) 0,68 - Elateridae Elateridae (Leach, 1815) - 0,31 Chrysomelidae Bruchus rufimanus (Boheman, 1833) 7,88 - Buprestidae Anthaxia cadens (Panzer, 1792) 0,68 - Cleridae Trichodes alvearius (Fabricius, 1792) 1,37 - Carabidae Macrothorax morbillosus (Fabricius, 1792) - 0,93 Brachinus crepitans (Linnée, 1758) 0,68 - Bembidion atripes (Latreilles, 1802) - 0,93 Clivina collaris (Herbst, 1784) - 0,62 Continued on next page Acta agriculturae Slovenica, 119/1 – 20236 D. GUERMAH and F. MEDJDOUB-BENSAAD Carabus auratus (Linnée, 1758) - 0,62 Carabus violaceus (O.F. Muller, 1764) - 0,93 Harpalus paratus (Casey, 1924) - 9,6 Homoptera Aphididae Dysaphis plantaginea (Passerini, 1860) 1,03 - Aphis nerii (Fonscolombe, 1841) 1,03 - Aphis fabae (Scopoli, 1763) 3,08 0,31 Cicadellidae Amblysellus curtisii (Fitch, 1851) 5,48 - Helochara communis (Fitch, 1851) 1,03 0,62 Cicadella viridis (Linnée, 1758) 1,03 0,62 Graphocephala fennahi (Young, 1977) 0,68 - Amblysellus sp. (Glover, 1877) 1,71 - Heteroptera Lygaeidae Lygaeus saxatilis (Scopoli, 1763) 1,37 - Nysius helveticus (Herrich-Schaffer, 1850) 1,03 - Nysius senecionis (Schilling, 1829) 0,68 - Triozidae Trioza urticae (Linnée, 1758) 0,68 - Miridae Deraeocoris ruber (Linnée, 1758) 0,34 - Blattodea Blattidae Blatta orientalis (Linnée, 1758) - 0,62 Dermapteta Forficulidae Forficula auricularia (Linnée, 1758) - 0,62 Neuroptera Myrmeleontidae Myrmeleontidae (Latreille, 1802) - 0,93 Chrysopidae Chrysoperla carnea (Stephens, 1836) 0,68 - Orthoptera Gryllidae Gryllus campestris (Linnée, 1758) - 0,93 Acheta domestica (Linnée, 1758) - 0,93 Tetrigidae Tetrix undulata (Sowerby, 1806) - 1,24 Tetrix subulata (Linnée, 1758) - 0,62 Gasteropoda Stylommtophora Subulinidae Rumina decollata (Linnée, 1758) - 1,86 Hygromiidae Ganula flava (Tryon, 1866) - 1,86 Cernuella virgata (Da Costa, 1778) 0,68 3,41 Helicidae Theba pisana (O.F. Muller, 1774) 0,68 - Helix aperta (Born, 1778) 0,68 - Helix aspersa (O.F. Muller, 1774) 1,37 0,62 Massylaea vermiculata (OF Muller, 1774) - 0,62 Geomitridae Xerotricha conspurcata (Draparnaud, 1801) - 0,62 Cochlicella acuta (O.F. Muller, 1774) - 0,62 Cochlicella barbara (Linnée, 1758) - 1,24 Arachnida Araneae Phalangiidae Phalangium opilio (Linnée, 1758) - 0,62 Dysderidae Dysdera erythrina (Walcknaer, 1802) - 1,24 Thomisidae Thomisus sp. (Walcknaer, 1802) 0,34 2,17 Synema globosum (Fabricius, 1775) 1,03 0,93 Salticidae Heliophans sp. (C.L. Koch, 1833) 1,03 0,31 Lycosidae Lycosa narbonensis (Latreille, 1806) - 5,8 Lycosidae (Sundevall, 1833) - 2,79 Continued on next page Acta agriculturae Slovenica, 119/1 – 2023 7 Invertebrate’s diversity on persimmon crop ... at low altitude in Mechtras region, North Algeria Malacostraca Isopoda Armadillidiidae Armadillidium vulgare (Latreille, 1804) - 0,62 Oniscidae Oniscus sp. (Linnée, 1758) - 0,62 Clitellata Haplotaxida Lumbricidae Eisenia fetida (Savigny, 1826) - 1,55 Diplopoda Julida Julidae Tachypodoiulus albipes (C.L. Koch, 1838) - 0,93 6 14 57 115 100 100 Using colored traps we have collected 63 species, represented mainly by Apis mellifera with 13.70 %, fol- lowed by Bruchus rufimanus with centesimal frequency of 7.8 %. The species Aedes albopictus, Zygoneura sp., Li- parus coronatus, Phyllobius pomaceux, Thomisus sp. and Deraeocoris ruber presented a low relative abundance equal to 0.34 %. Using Barber traps, we have caught 66 species, rep- resented mainly by Ocypus olens and Harpalus paratus with centesimal frequency of 10.84 % and 9.60 % respec- tively, which are natural predators of various pests. The lowest relative abundance was recorded for the species Aphis fabae, Pheidol pallidula, Musca sp., Elateridae, Staphilinus caesareus, and Salticidae with 0.31 %. 3.2 RELATIVE ABUNDANCE OF SPECIES DE- PENDING ON THEIR TROPHIC RELATION- SHIPS The centesimal frequency get for species depending on their trophic relationships is shown for colored traps (Fig. 5) and for barber pots (Fig. 6). Pests represent a large part in invertebrate caught using colored traps and Barber traps with respectively 55.88 % and 37.88 %, whereas the least abundant group for colored traps is necrophagous with only 1.47 % and for Barber traps is omnivorous with only 1.52 %. Reported pest species attack persimmon, mostly fruit; others attack the trunk by being xylophageous, or to foliage by being phyllophagous. We still find those who suck the sap can seriously affect the proper functioning tree photosynthesis. 3.3 SHANNON DIVERSITY INDEX AND EVEN- NESS INDEX (E) Shannon diversity index (H ‘), maximum diversity (H’max.) and equitability (E) applied to species trapped by the different sampling techniques are presented in Figure 7. We have registered high value for Shannon diversity index, it is equal to H’ = 5.39 bits; with H max = 6.07 bits for colored traps and H’ = 5.32 bits; with H max = 6 bits for Barber pots. The evenness values are E = 0.88 for colored traps and Barber pots, this value approaches of 1 which reflects a balance between the middle of species. 4 DISCUSSIONS AND CONCLUSION In our study about invertebrates fauna associated to persimmon trees, we have caught 115 species, distributed in 57 families belonging to 13 orders and 6 classes. Chafaa et al. (2019) confirmed in their study on apri- cot orchards, 125 species belonging to 54 families and 9 orders, in Batna region of North-East Algeria. Vasquez Figure 5: Centesimal frequency of species captured using colored traps according their diet Figure 6: Centesimal frequency of species captured using barber traps according their diet Acta agriculturae Slovenica, 119/1 – 20238 D. GUERMAH and F. MEDJDOUB-BENSAAD et al. (2002) in the Peruvian Amazon have counted 36 insect species associated with guava cultivation. Guermah et al. (2019) reported similar results about 113 species distributed in 64 families belonging to 10 or- ders in their evaluation of arthropods diversity on apple crop in Tizi-Ouzou. Guermah et al. (2019) collected 42 species divided into 29 families, belonging to 7 orders in their inventory of entomofauna in Tadmait on apple crop. The total wealth of invertebrate reported were 63 species for colored traps and 66 species for Barber pots. Chouiet et al. (2012) during a study on the biodi- versity of the arthropod fauna of the cultivated areas of the Ghardaia region noted a total richness of 188 species, which is 133 species captured using Barber pots and 124 species using yellow traps. Fritas (2012) estimated total wealth at S = 64 on cereal crops in the Batna region, while Merabet (2014) estimated total wealth at S = 74 by using Barber pots at Agni N Smen. We have noticed that Hymenoptera is the most dominant order recorded for colored traps is with cen- tesimal frequency equal to 29.8 %, and Coleoptera is the most dominant order recorded for Barber pots with cen- tesimal frequency equal to 30.98 %. Guermah et al. (2019) registered the most dominant order recorded for sweep net and colored traps which is Hymenoptera with relative abundance of 36.38 % and 37.13 % respectively; for Barber pots, the most dominant order is Coleoptera with relative abundance equal to 50.35 %. Gull et al. (2019) noted that the order of beetles largely dominates with a percentage equal to 89%, fol- lowed by Hemiptera with 7% and Lepidoptera with only 3%. Mezani et al. (2016) found dominance about Coleop- tera and Hymenoptera with a percentage equal to 23.80% and 23.38%, respectively, by applying the Barber pots. Djetti et al. (2015) in a study on the arthropod fauna of corn cultivation noted that Hymenoptera dominate in the region with a subhumid bioclimatic tier (El Harrach) with a relative abundance equal to 55  %. On the other hand in the region with semi-arid bioclimatic tier, the Coleoptera are best represented with a centesimal fre- quency equal to 50 %. Pests represent a large part in invertebrate caught using colored traps and Barber traps with respectively 55.88 % and 37.88 %, whereas the least abundant group for colored traps is necrophagous with only 1.47 % and for Barber traps is omnivorous with only 1.52 %. Diab and Deghiche (2014) indicated a dominance of phytophages with 53 %, followed by predators with 35 %, then polyphages with 12 % in an olive crop in the Sahara region. According to Beamont and Cassier (1983), in a given area, 40 to 50 % of insect species are phytophagous. We have registered high value for Shannon diversity index, it is equal to H’ = 5.39 bits; with H max = 6.07 bits for colored traps and H’ = 5.32 bits; with H max = 6 bits for Barber pots. The evenness values are E = 0.88 for colored traps and Barber pots, this value approaches of 1 which reflects a balance between the middle of species. Guermah et al. (2019) reported a diversity of Shan- non-Weaver values for the various species caught by trapping methods. They are equal to H’ = 5.90 bits; H max = 6.40 bits for sweep net; H’ = 5.58 bits; H max = 6 bits for colored traps and H’ = 5.33 bits; H max = 5.95 bits for Barber pots. Using Barber pot technique for the study of arthropod biodiversity at 3 steppes in the region of Djelfa, Guerzou et al. (2014) reported variations in the diversity values of Shannon between 1.9 and 3.7 bits in Taicha, 3.02 and 3.5 bits in El Khayzar, 3.6 and 4.0 bits in Guayaza. The variations in the values of the Shannon index are explained by N’zala et al. (1997), who have pointed out that if the living conditions in a given environment are favorable, there are many species and each of them is represented by a small number of individuals. If the con- ditions are unfavorable, one finds only a small number of species each of them is represented by a large number of individuals. According to Blondel (1979), a community is even more diversified as the index of diversity is higher. Guermah and Medjdoub-Bensaad (2016) rated fair- ness at 0.65. In a study on the arthropod fauna of corn cultivation, Djetti et al. (2015) estimated the fairness at E = 0.77 in the region with a subhumid bioclimatic tier (El Harrach) and E = 0.88 in the region with a semi-arid bioclimatic tier. The Pielou’s evenness index showed by Gull et al. (2019) varies from 0.62 to 0.87. In order to consider protection of persimmon crop against possible pests attacks, it is essential to identify the invertebrates cloning this crop and to better understand the interspecific relationship that connects them in this agroecosystem. Figure 7: Shannon diversity values H’ and evenness of species caught Acta agriculturae Slovenica, 119/1 – 2023 9 Invertebrate’s diversity on persimmon crop ... at low altitude in Mechtras region, North Algeria 5 REFERENCES Beaumont, A. & Cassier, P. (1983). Biologie animale des pro- tozoaires aux Métazoaires épithélioneuriens. Tom II. Ed. Dumon, Paris, 954 p. Blondel J. (1979). Les ennemis animaux des plantes cultivées. Ed. SEP, Paris, 3 tomes.43 p. Bouktir O. (2003). Contribution à l’étude de l’entomofaune dans trois oliveraies à Tizi-Ouzou et étude de quelques aspects bio-écologique de la mouche de l’olive Bactrocera oleae Gme- lin et Rossi, 1788 (Diptera-Tephritidae). Thèse Magister, inst, nati. Agro., El Harrache, 191 p. Chafaa, S., Belkhedria, S. et Mimeche F. (2019). Entomology fauna investigation in the apricot orchard, Prunus arme- niaca L. (Rosales: Rosaceae) in Ouled Sidi Slimane, Bat- na, North Est Algeria. Biodiversity Journal, 10(2), 95-100. Chinery, M. (1988). Insectes d’Europe occidentale. Edition Arthraud. Paris, 307 p. https://doi.org/10.31396/Biodiv. Jour.2019.10.2.95.100 Chouiet, N. et Doumandji-Mitiche, B. (2012). Biodiversité de l’arthropodofaune des milieux cultivés de la région de Ghardaïa (sud Algérien). 3ème congrès de zoologie et d’Ichtyo- logie, Marrakech, 13p. Clere E. et Bretagnole V. (2001). Disponibilité alimentaire pour les oiseaux en milieu agricole : Biomasse et diversité des arthropodes capturés par la méthode des pots piègés. An- nual Review of Ecology and Systematics. (Terre et vie), 56(2), 375–297. https://doi.org/10.3406/revec.2001.2364 Dajoz, R., (1971). Précis d’écologie. Ed. Bordas, Paris, 434 p. Delvare, G. et Aberlenc, H.P. (1989). Les insectes d’Afrique et d’Amérique tropicale. Clé pour la reconnaissance des familles. Ed. Cirad, France, 298 p. Diab, N. et Deghiche, L. (2014). Arthropodes présents dans une culture d’olivier dans les régions Sahariennes, cas de la plaine d’El Outaya. Dixième conférence international sur les ravageurs en Agriculture, Montpellier, 11 p. Djetti, T., Hammache, M., Boulaouad, B.A., et Doumandji, S. (2015). L’arthropodofaune de la culture du maïs dans deux étages bioclimatiques différents en Algérie. Association pour la conservation de la biodiversité dans le Golf Gabes, 1 p. Fritas, S. (2012). Etude bioécologique du complexe des insectes liés aux cultures céréalières dans la région de Batna, Algérie. Thèse de magister, université de Tlemcen, 115 p. Guermah, D. (2019). Bioécologie du carpocapse du pommier Cy- dia pomonella L. lepidoptera : tortricidae et inventaire de la faune arthropodologique dans des vergers de pommier trai- tés et écologique dans la région de tizi-ouzou (Sidi Nâamane et Draa Ben Khadda). Thèse de doctorat 3éme cycle LMD. UMMTO, 188 p. Guermah, D. et Medjdoub Bensaada, F. (2016). Inventaire de la faune arthropodologique sur pommier de variété Dorset golden dans la région de Tizi-Ouzou, Algérie. Best Journal of Medecine, Arts and Science, 6 p. Guermah, D., Medjdoub-Bensaad, F. et Aouer-Sadli, M. (2019). Evaluation of arthropods diversity on apple crop (‘Red Delicious’) in Sidi Naâmane area (Tizi-Ouzou), Al- geria. Acta Agriculturae Sclovenica, 113(1), 10. https://doi. org/10.14720/aas.2019.113.1.12 Guermah, D., Medjdoub-Bensaad, F. et Marniche, F. (2019). Bioecology of codling moth Cydia pomonella (Lepidoptera: Tortricidae) and study of the associated entomofauna on Anna variety in Tadmaitregion (Tizi-Ouzou, Algeria). Bul- letin of Pure and Applied Science: Zoology, 38(2), 150-160. https://doi.org/10.5958/2320-3188.2019.00018.4 Guerzou, A., Derdouk, W., Guerzou, M., et Doumandji, S. (2014). Arthropod diversity in 3 step region of Djelfa area (Algeria). International Journal of Zoology and Research, 4, 41-50. Gull S., Ahmad T., and Rasool A. (2019). Studies on diversity indices and insect pest damage of walnuts Kashmir, India. Acta Agricultutae Slovenica, 113(1), 121-135. https://doi. org/10.14720/aas.2019.113.1.11 Jolivet T. (1980). Les insects et l’homme. PUF, collect. Que-sais, 128 p. Merabet, S. (2014). Inventaire des arthropodes dans trois stations au niveau de la forêt de Darna (Djurdjura). Mémoire magis- ter. sciences biologiques Université Mouloud Mammeri de Tizi-Ouzou, 83 p. Mezani, S., Khelfane-Goucem, K. et Medjdoub-Bensaad, F. (2016). Evaluation de la diversité des invertébrés dans une parcelle de fève (Vicia faba major) dans la région de Ti- zi-Ouzou en Algérie. Zoology and Ecology, 10. Perrier, R. (1961). La faune de la France. Tome V : Coléoptères, partie 2. Edition Librairie Delagrave. Paris, 230 p. Piham, J C. (1986). Les Insectes. Paris, 160 p. Ramade, F. (2003). Eléments d’écologie fondamentale. 3ème édi- tion Dunod. France. 690 p. Seguy, E. (1951). Les diptères de France, Belgique et Suisse. Nou- vel Atlas d’Entomologie, n 8, 244 p. Tscharntke, T., Milder, J.C., Schroth, G., Clough, Y., DeClerck, F., Waldron, A., Rice, R., Ghazoul J. (2015). Landscape per- spectives on agricultural intensification and biodiversity – ecosystem service management. Ecology Letters, 8(8), 857- 874. https://doi.org/10.1111/j.1461-0248.2005.00782.x Vasquez, J., Belmont, AS., and Sedat, JW. (2002). The dynamics of homologous chromosomus pairing during male Dros- ophila meiosis. Current Biology, 12(17), 1473-1483. https:// doi.org/10.1016/S0960-9822(02)01090-4