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The main objective of this paper is to present a method for handling non-preventable 
and non-avoidable catastrophic exceptions in embedded hard real-time environments in 
a well-structured and predictable way, and as painlessly as possible. 
First, apt hardware and software platforms which are pre-requisite for predictable sy-
stem behaviour are briefly presented. Then, some existing techniques are shown and 
their suitability for implementation in embedded hard real-time environments is discus-
sed. Further, a classification of exceptions and our own approach for handling them is 
presented and elaborated. Finally, a method for the estimation ofthe resulting temporal 
behaviour is descrihed. 

1 Introduction 

In this paper, embedded hard real-time systems 
are dealt with. In general, they are emploved to 
control different processes; the integrity of these 
applications relies on their temporally and functi-
onally correct operation. Depending on the appli-
cation, these systems can be extremely safety cri-
tical; their malfunction may cause major damage, 
material loss, or even endangerment of human li-
ves. Thus, for such systems high integrity and 
safety is required, and mechanisms must be devi-
sed to čope with partial or complete failures. 

While in the systems, which are usually used in 
process control, testing of conformance with func-
tional specifications is well established, temporal 
circumstances are seldom consistently verified. It 
is almost never proven at design tirne that such 
a system will meet its temporal requirements in 
every situation that it may encounter. 

In his reference paper [20], Stankovic is unma-
sking several misconceptions in the domain of 
hard real-time systems. Seemingly the most cha-
racteristic one is that real-time computing is often 
considered fast computing. It is obvious tha t Com­
puter speed itself cannot guarantee that specified 
timing requirements will be met. 

Instead, a different ultimate objective was set: 
predictability of temporal behaviour. Being able 
to assure that a process will be serviced within 
a predefined tirne frame is of utmost importance. 
In multiprogramming environments this condition 
can be expressed as schedulability: the ability to 
find a schedule such that each task will meet its 
deadline [22]. 

For schedulability analysis, execution times of 
tasks must be known in advance. These, howe-
ver, can only be determined if a system func-
tions predictably. To assure overall predictabi-
lity, ali system layers must behave predictably 
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in the temporal sense, from the processor to the 
system architecture, language, operating system, 
and exception handling (layer-by-layer predicta-
bility, [21]). 

In recent years, the domain of real-time sy-
stems substantially gained research interest. Cer-
tain sub-domains have been examined very thoro-
ughly, such as scheduling and analysis of program 
execution times. It is typical that most of the re­
search done was dedicated to higher level topics 
and presumes that the underlying features behave 
fully predictablv. 

Exception handling is one of the most severe 
problems to be solved when a system is to be­
have predictably. By an exception any unexpec-
ted intrusion into the normal program flow which 
cannot be considered during schedulability ana-
lysis phase is meant. It is usually related to resi-
dual specification and implementation errors and 
to failures. Anticipated timing events and events 
from the environment, which trigger associated 
processes, do not belong to this category. They 
should be implemented in a way, which does not 
cause any non-deterministic delays in the execu-
tion of the running tasks. That can be achieved 
by migrating event recognition and operating sy-
stem services out of main task processors [11], and 
was also implemented in the Spring project [19]. 
Results of our previous studies were presented in 
[4] and are used in the design of an experimental 
platform as described in the next section. 

When an exception occurs in a program, the 
latter is inevitably delayed causing a serious pro­
blem with respect to the a priori determined exe-
cution tirne. Therefore, exceptions should be pre-
vented by ali means, whenever and wherever it is 
possible [1]. If it is not possible to prevent them 
to happen, thev should be handled in a consistent 
and safe way in conformity with the hard real-
time systems design guidelines, i.e. timeliness, si-
multaneity, predictability, and dependability [13]. 
The need for consistent solutions to the exception 
problem is exacerbated by the fact that excepti-
ons are often the results of some critical systems 
states, which is when computer control is needed 
most. 

In this paper we show constructively how be-
havioural predictability can be achieved by pre-
senting an experimental system and considering 
different aspects of its design. Although the main 

emphasis of the paper is on consistent exception 
handling, it is necessary to present some princi-
ples used to provide the necessary pre-conditions 
for deterministic system behaviour; only then it 
is reasonable to consider the upper layers of a sy-
stem design. In Section 2 we start offwith descri-
bing the basic layers of an asymmetrical paraUel 
hardware architecture and the operating system 
concepts which prevent process control tasks to 
be disturbed (and thus delayed) by events occur-
ring in the environment. Further, in Section 3, 
a real-time programming tool supporting the ar­
chitecture is described by which process control 
programs with deterministic temporal behaviour 
can be designed and their run-times determined. 

Exception handling was integrated into a high-
level programming language, \vhich is the subject 
of Section 4. First, we classify exceptions and 
show that a number of them can be either pre-
vented or avoided. Further, we summarise some 
known solutions to handle the remaining excepti-
ons, which were ali combined in the implemented 
approach. Finally, an analysis of the impact the 
approach has on overall process timing predicta-
bility is given. 

2 Concept of an Experimental 
Hardware Platform 

In multi-tasking systems, dynamic scheduling al-
gorithms to generate appropriate schedules must 
be implemented. The ones which fulfUl the re-
quirement that ali tasks must meet their deadli-
nes are referred to as feasible. In the literature, 
several such algorithms have been reported (an 
overview is given in [13]). For our purpose, the 
earliest-deadline-first scheduling algorithm is cho-
sen. It has been shown that it is feasible for sche­
duling tasks on single processor systems; with the 
throw-forward extension it is also feasible on ho-
mogeneous multiprocessor systems. However, this 
extension leads to more pre-emptions and is more 
complex and, thus, less practical. 

For process control applications, where pro­
cess interfaces are usually physically hard-wired 
to sensors and actuators establishing the contact 
to the environment, it is natural to implement ei­
ther single processor systems or dedicated multi-
processors acting and being programmed as sepa-
rate units. Thus, the earliest-deadline-first sche-
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External Process Environment 

Figure 1: Scheme of an experimental hardware 
platform 

duling policy can be employed without causing 
any restrictions, resulting in a number of advan-
tages discussed by Halang and Stoyenko [13]. 

In the classical computer architecture the ope­
rating system is running on the same processor(s) 
as the application software. In response to any 
occurring event, the context is switched, system 
services are performed, and scheduling is done. 
Although it is very likely that the same process 
will be resumed, a lot of performance is wasted 
by superfluous overhead. This suggests to em-
ploy a second, parallel processor, to carry out the 
operating system services. Such an asymmetrical 
architecture turns out to be advantageous, since, 
by dedicating a special-purpose, multi-layer pro­
cessor to the real-time operating system kernel, 
the user task processor(s) are relieved from any 
administrative overhead. 

This concept was in detail elaborated in [11] 
and further refined in [3, 4]. Our experimental 
hardware platform is to a high extent complying 
with these principles, and is currently under con-
struction. In Figure 1 it is shown that it consists 
of task processors (TPs) with intehgent process 
interfaces (IPI) and a kernel processor (KP) with 
an external event recognition interface (EERI), 
which are fully separated from each other. 

The external process is controlled by tasks run­
ning in task processors without being interrup-
ted by the operating system functions. Any event 
from the environment is fed to the kernel pro­
cessor and scheduling is performed based on the 

modified earliest-deadline-first policy: the inten-
tion is to find a schedule such that ali waiting 
tasks including the newly arrived one meet their 
deadline while the running task remains in exe-
cution. Thus, a running task is only pre-empted 
if it is necessary to assign the highest priority to 
an incoming task in order to allow that aH tasks 
meet their deadlines. 

The task processors are implemented with 
INMOS T805 transputers. In the task processors' 
external memory the code of each task assigned 
to be run is loaded. Also, a part of the control 
blocks of these tasks is residing there, holding the 
context of eventually pre-empted tasks. The fast 
on-chip RAM of the transputers is holding task 
internal variables except for the large data struc-
tures which are held in the external memory. 

The IPI process interface is based on a Moto­
rola MC68000 microprocessor which adds the ne-
cessary intelligence to peripheral devices. It is 
accessible by a bi-directional link via an INMOS 
converter and is acting as a slave to the task pro­
cessors) . Services of the intelligent process inter­
face are available by calling pre-defined peripheral 
device drivers and providing parameters and data. 

Synchronisation of tasks running in different 
task processors is carried out with the help of 
semaphores residing in the kernel processor and 
being accessible through systems calls. 

The kernel processor is responsible for ali ope­
rating system services. It consists of an INMOS 
T425 transputer performing the operating system 
kernel services, and a Motorola MC68000 based 
external event recognition interface. The latter 's 
task is administering the real-time clock in the 
form of Julian time, receiving signals from the 
process environment, providing them with time 
stamps, and periodically triggering events by sen-
ding messages to the transputer containing Infor­
mation about ali events that happened recently, 
and serving as a synchronisation means. 

The time between two synchronisation messa­
ges from the EERI is further sub-divided in slots 
in the kernel processor. In these slots the informa-
tion from the external event recognition module 
is processed, time events are administered, and 
OS service calls from the task processors are ser-
viced, each triggering scheduling of an associated 
application task. 

It is to be mentioned that our nomenclature 
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is not strictb/ conforming with [11], although the 
functions implemented in our architecture com-
ply with the layers proposed there. The exter-
nal event administration part of the hardware la-
yer functions is implemented in the EERI, the 
others — primary and secondary reaction level 
— in the kernel processor. The hierarchy is re-
tained by executiong these functions in strictly 
defined slots. We are considering migrating the 
scheduling-related secondary reaction level servi-
ces into a separate transputer to enhance perfor-
mance. 

Through this concept, preventing non-
deterministic interruptions from the environment, 
careful avoidance of the sources of unpredictable 
processor and system behaviour, loose coupling of 
task processors, and svnchronous operation of the 
kernel processor, the predictability of the tempo-
ral system behaviour will provide the necessary 
basis for the higher system design levels. 

3 Concept of a Real-Time 
Programming Tool 

To program applications on the above hardware 
platform a tool is being constructed, in which the 
proposed exception handling mechanism is built 
in. Its ultimate objective is to produce temporally 
predictable and optimal program code for embed-
ded hard real-time applications, and estimations 
of their execution times. 

In the tool two parts are closely integrated: a 
compiler for an adapted standard real-time pro­
gramming language, and a program execution 
tirne analyser. The latter is providing the ne-
cessary information for a schedulability analyser 
which is currently beyond the scope of our rese-
arch. 

In the design of the tool, the following guideli-
nes were followed: 

1. Target system independence. The compiler 
should produce executable application code for a 
variety of target systems. This is achievable by 
implementing target system specinc macros which 
transpose each element of intermediate code into 
a corresponding piece of executable code. In the 
specification file for each target system its own set 
of macros is defined. 

2. Generation of efficient code. Although being 
system independent, the compiler is expected to 

generate fast and compact code. This can be achi-
eved by the simplicity of the programming langu­
age, and the possibility of global syntax tree opti-
misation (register scheme, local and global varia-
bles' locations and other implementation specific 
information are given in the system specification 
file). Also, in translation macros full information 
about the operands (constant, register, local or 
global variables) is contained. 

3. Realistic estimation of task ezecution times. 
A drawback of many methods for task execution 
tirne estimation is that they yield such pessimistic 
results that their relevance is seriously diminished 
[18]. To čope with that , the tool supports two di-
fferent methods to determine the execution time 
of a task: compile-time program analysis and di-
rect measurement of worst-case (partial) task exe-
cution time. 

3.1 M i n i P E A R L 

To program an application, the programming lan­
guage miniPEARL is introduced. It is a simpli-
fied version of PEARL [9], a standard language 
for programming real-time applications, which, 
however, may produce temporally unpredictable 
code for several reasons. To eliminate these pro-
blems, PEARL's syntax is modified. Further, to 
support efficient mapping onto typical target ar-
chitectures certain features are reduced. Finally, 
it is enhanced by some constructs specific to real-
time systems, proposed by Halang and Stoyenko 
[13, 12]. MiniPEARL is described in more detail 
in [23]. 

The main differences between PEARL and mi­
niPEARL are: 

l.There are no GOTOs. The use of GOTO 
statements can result in unstructured and hardly 
manageable code. Instead of these, EXIT and 
LOOP statements are introduced for preliminary 
exit from an innermost structure, and for imme-
diate initiation of the next iteration of a loop, 
respectivelv. 

2.Each loop block is stricthj bounded. In the 
REPEAT statement, lower and upper counts of 
a loop are obligatory and defined with compile-
time constant expressions to limit the number of 
iterations. 

3.Pointers and recursion are not allouied. 
Dvnamic data structures and recursion can result 
in severe memory management problems. They 
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may cause temporally non-deterministic actions 
tha t cannot be considered in timing analysis. 

A.Signals are not directly supported. In our ar-
chitecture model interrupts and signals are mana-
ged by the kernel processor. Events can be indu-
ced by the synchronisation mechanism. 

5. Each statement ezecution is temporally boun-
ded. Commands whose execution tirne is non-
deterministic must be either forbidden, or ta-
ken special čare of in a real-time systems. Each 
of such commands which are unavoidable must 
be temporally guarded, and time-out alternatives 
must be defined explicitly. Commands that must 
be guarded are the ones that are dealing with pro-
cess inputs and outputs (if handshaking is imple-
mented), and synchronisation mechanisms. 

6.Explicitly asserted execution time. Frequen-
tly, because of the nature of a program, estimation 
may yield very pessimistic execution times. To re-
solve this problem, additional information about 
program execution must be given by the program-
mer. This can be done by adding new constructs 
(pragmas) into program code as proposed in [18]. 
But such constructs require complex analysis and 
are not feasible for ali situations. To overcome 
this problem, the execution tirne of code segments 
known through competent measurement, detailed 
analysis of the program behaviour, experience, re-
use, etc. may be exphcitly asserted by the system 
developer who also takes the responsibility. In 
such čase, execution time analysis is overriden. 
However, to guarantee that the actual execution 
time will not be longer than declared, blocks must 
be guarded by time-out controls, and time-out ac-
tion must be present. 

8.DATIONs are not used. Mass storage and 
asynchronous input /output devices as used in PE-
ARL are not suitable for hard real-time systems. 
For this reason and because of the relative comple-
xity of these structures, DATIONs are excluded 
from the structure of the language. Input /output 
devices (registers) are accessed at the lower pro-
gramming level. 

9.Improved task activation scheme. In miniPE-
ARL task activation, deactivation, etc. can be 
done through signals from the environment, time-
related conditions, or specific states of synchroni-
sers, as proposed in [13]. A time-related and one 
non-time-related condition may be combined. 

10. Scheduler support. The scheduling algori-

thm performed in the kernel processor relies on 
the residual execution time of a task. This time 
is computed as maximum execution time of the 
task minus cumulative running time. However, 
the actual execution time is expected to be shor-
ter than the estimated one. To achieve better 
performance, the actual residual task execution 
time can be explicitly asserted at ceratin points 
to update the estimated one. 

3.2 Est imat ion of Task Execut ion 
Times 

To allow for schedulability analysis, precise exe-
cution times of application tasks must be known 
in advance. In our tool, two methods for the esti­
mation of program run-times are supported: 

1. Analysis of executable code. In this method, 
an automatic analyser is used to estimate execu-
tion times (compare also [18, 17]). Source code is 
transformed into an intermediate form (modified 
syntax tree) prior to executable code generation. 
Each element of this form is associated with a ma-
cro block that is used for two purposes. The first 
is to generate the code and the second is to obtain 
its execution time. Because the execution time of 
the same block can be data-dependent, as much 
information as possible about operands should be 
passed to it. The operand can be a register, a con-
stant, a local variable or a global variable. When 
the macro is expanded, the sum of times needed 
for accessing these operands is added to the basic 
execution time of the macro. 

2. Direct measurement of ezecutable code. This 
method can be used when more precise execution 
time than estimated is desired. To achieve tha t , 
object code is executed on the target system and 
the execution time is recorded. Direct implemen-
tation of this method has some disadvantages: 

- The complete target system must be imple-
mented. That is inappropriate in earlv phases of 
development when the target-system is not com-
pletely implemented, yet. 

- Through recording, only average execution ti­
mes can be obtained. For usable analysis, howe-
ver, worst-case execution times are needed. A test 
scenario to obtain that situation is usually diffi-
cult to determine. 

- The input /output devices must be active and 
interact with the environment. Thus, the embed-
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ding environment or a simulation of it is needed. 

By our approach, these disadvantages are eli-
minated. Only a task processor or its equivalent 
must be implemented. The longest path through 
a task is determined by the compiler and a pi­
lot code is generated running only through that 
path. From a set of alternative constructs (IF and 
ČASE statements, for example), the longest one 
is statically routed. Ali time-guarded commands 
and input /output variable accesses are replaced 
by appropriate delays. This pilot code is then 
executed on the hardware platform or, because of 
the substitution of every system-specific function, 
a delay is inserted. 

4 Handling of Exceptions in 
Hard Real-Time Systems 

Our previous work in the domain of dealing with 
exceptions was published in [5]. With the goal to 
avoid non-deterministic delays in the execution of 
application tasks it was shown that a great num-
ber of exceptions can be either prevented from 
happening, or they can be handled within the con-
text of task requirements: 

- Preventable ezceptions: Some exceptions can 
be prevented by restricting the use of potentially 
dangerous features. Compliance with these re-
strictions must be checked by the compiler. For 
example, no dynamic features like recursion, refe-
rences, virtual addressing, or dynamic file names 
and other parameters etc. are allowed. 

Other features are, e.g., strong type checking 
(see [8]), or extensions of the input and output 
data types by two "irregular" values representing 
"signed infinity" to accommodate overflows and 
underflows and "undefined", as proposed in the 
IEEE 32-bit floating point standard [2] implemen­
ted also in the INMOS transputers ' Floating Po­
int Unit (FPU) (compare also [16]). Thus, com-
puted irregular values do not raise exceptions, but 
are propagated to the subsequent or higher-level 
blocks, which must be able to handle them. 

- Non-preventable, anticipated ezceptions: If 
the potential danger of irregularity can be reco-
gnised during design time, it has to be taken čare 
of in the specifications. For example, periphe-
ral devices shall be intelligent, fault-tolerant and 
self-checking in order to be able to recognise their 

own malfunctions, and to react in a predefmed 
way if a value which is sent to them is irregu­
lar. Further, a number of exceptions resulting 
from irregular data can be avoided by prophylac-
tic run-time checks before entering critical opera-
tions. Many tasking errors are also avoidable by 
previously using monadic operations to check the 
system state. 

Falling into this category, an obvious and fre-
quently used way of avoiding critical failures in 
hard real-time systems design is redundancy (an 
example for consistent implementation of redun-
dancy is the MARS system [15]). Redundant sy-
stem components must be implemented according 
to thorough analysis of fa,ult hvpotheses. 

If there is no way to predict an error, an excep-
tional situation caused must be handled in order 
to survive it. These are situations when "the im-
possible happens" [1], in which programs do not 
follow their specifications due to hardware fai­
lures, residual software errors, or wrong specifi­
cations. For example, failure of a part of me-
mory can result in the change of constant values; 
an error in file management or on a disk is usu-
ally unexpected. In safety-critical control systems 
non-anticipated exceptions may have catastrophic 
consequences. There it is especially important to 
implement a mechanism for their safe and consi­
stent handling. 

In his early paper, Goodenough [10] presen-
ted the idea of assigning default or programmed 
exception handlers to every potentially dangerous 
operation. According to the severity of an excep-
tion raised the running process was either termi-
nated, or suspended and resumed later. A similar 
mechanism although considerabb/ more elaborate 
and adapted for use in hard real-time systems was 
implemented in Real-Time Euclid [14]. There, 
exception handlers were (optionally) located wi-
thin block constructs and were executed in the 
čase of an exception. If there were no exceptions 
the handlers had no effect except for their impact 
on a block's execution time estimated by a sche-
dulability analyser, thus making it more difficult 
to be scheduled. Exceptions may be raised by 
kili, terminate or except statements, to terminate 
a process entirely or only its frame, or to execute 
the handler without termination of the process, 
respectivelv. 

A reference study in the domain of non-
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preventable exceptions was done by Cristian [6. 
7]. Certain principles from this work were further 
detailed in [1] and were also adopted in our excep-
tion handling mechanism. 

According to Cristian, exceptional situations 
can be handled (a) by programmed exception 
handling and (b) by default exception handling 
based on automatic backward recovery using re-
covery blocks. Since in embedded hard real-time 
systems programmed exception handling should 
be included in the system requirements and can, 
thus, be treated as normal actions, in the follo-
wing the alternative technique will be dealt with 
briefly. 

The principle of backivard recoverij is to return 
to the previous consistent system state after an 
inconsistency is detected by consistency tests cal-
led post-conditions. It can be done in two ways, 
(a) by the operating system recording the current 
context before the program is "run" and restoring 
it after its unsuccessful termination, or (b) by re-
covery blocks inside the context of a task whose 
syntax is as follows: 

RB = ensure post b y Po e lse b y P i else b y . . . 
else failure 

where Po, P i , etc. are alternatives which are 
tried consecutively until either consistency is en-
sured by meeting the pos£-condition, or the failure 
is executed. Each alternative should be indepen-
dently capable to ensure consistent results. 

In the forward error recovery technique it is 
tried to obtain a consistent state from partly in-
consistent data. Which data are usable can be 
determined by consistency tests, error presump-
tions, or with the help of independent external 
sources. 

To handle catastrophes we propose a combina-
tion of pre-conditions, post-conditions and modi-
fied recovery blocks implementing both backward 
and forward recovery. Its syntax is shown in Fi­
gure 2. 

A block (plain block structure, task, procedure, 
loop, or other block structure) consists of alter­
native sequences of statements. Each alterna­
tive can have its own pre- and/or post-conditions, 
represented by Boolean expressions. When the 
program flow enters a surrounding block, the 
state" variables, tha t are modifiable by alterna­
tives which might fail, are stacked (see below). 

block : := block_begin block_ta i l 

block-begin : := BEGIN 
| PROCEDURE parameters & a t t r i b u t e s ; 
| TASK parameters & a t t r i b u t e s ; 
| parameters REPEAT 

block_ta i l : : = [declarationj3equence] 
[al ternat ive_sequence] END; 

declaration-sequence : := block-specific declarations 
[PRESERVE global .varJLis t ] 

a l ternat ive .sequence : : = 
{[ALTERNATIVE [PRE bool—exp;] [POST 

bool—exp;]] 
[statement.sequence] } 

Figure 2: Syntax of an exception handhng mecha­
nism 

Then, the first alternative statement sequence, 
whose pre-condition (if it exists) is fulfilled, is exe-
cuted. At the end, its post-condition is checked, 
and if this is also Mfilled, execution of the block 
is successfully terminated. If the post-condition 
is not fulfilled, the next alternative is checked for 
its pre-condition and eventually executed. If ne-
cessary, values of the state variables recorded at 
the beginning of the block are first restored. 

If an alternative fails, any effect on the system 
state should be discarded; thus, it is necessary 
that the original value of any variable is restored, 
which was modified and lies outside of the scope 
of the failed alternative. For tha t purpose, the 
state of any such variable must be stacked at the 
tirne of entering the block. Whether and which 
variables must be stacked can be determined by 
the compiler. It is only necessary to restore non-
local variables that appear on the left hand side 
of an assignment in alternatives which have post-
conditions, since only they may fail after modi-
fying the s ta te . . It is a task of the compiler to 
scan the block for such variables and take čare 
of their stacking. Further, after a non-successful 
evaluation of a post-condition, only the variables 
that were modified in this alternative are automa-
tically restored. 

Stacking ali global variables tha t can be modi­
fied within a block may require a relatively large 
amount of tirne. There are situations where the 
value of a global variable is not needed any more 
after an unsuccessful termination of an alterna-
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tive. In such situations the application program-
mer may wish to declare which modifiable global 
variables should be restored after the unsuccess-
ful alternative. This can be requested by the 
optional PRESERVE declaration in the declara-
tion_sequence. If this declaration is present, the 
automatic search for modifiable global variables 
is prevented; hence, the explicitly given list must 
contain the complete set. The compiler then scans 
for global variables that are both in the list and 
appear on a left hand side in the alternative pro­
gram, and restores their original values after an 
unsuccessful try. 

A good technique which prevents the above 
problem is to work with private copies of glo­
bal s tate variables inside the alternatives that 
may cause backward recoverv, and to export their 
values after a successful post-condition check. 
However, this is more time-consuming, especi-
ally when there are more such alternatives in a 
block, which require (counter-productive) trans-
fer of global into local variables and back. 

Since embedded hard real-time systems, which 
are the main subject of this paper, are, as a rule, 
used in process control a severe problem arises if 
there are any actions triggered like commencing 
a peripheral process which causes an irreversible 
change of initial state inside an alternative that 
failed. In this čase, backward recovery is gene-
rally not possible. As a consequence, it is our su-
ggestion tha t no physical control outputs should 
be generated inside the alternatives which may 
cause backward recovery in čase of failure, i.e., 
inside those which have post-conditions. In this 
čase only forward recovery is possible, bringing 
the system to a certain predefined, safe, and sta-
ble state. 

Both forward and backward recovery methods 
can be implemented using the proposed syntax. 
In the following these approaches will be shown: 

— Backward recoverv: bearing in mind the 
dangers of backward recovery in process con­
trol systems, it may be (carefully) implemen­
ted. Backward recovery can be recognised by 
the post-conditions an alternative must meet. 
Its functioning is obvious: if an alternative 
fails to meet its post-condition, the next al­
ternative fulfilling its pre-condition is used to 
do the task of the block. Thus, it is necessary 
to restore the system state variables possibly 

modified in previous unsuccessful alternati­
ves. 

— Forward recoverv: this technique may be 
somewhat less obvious. Consider the čase 
where an alternative is checking the success 
of its operation, according to its design spe-
cifications. According to the results of the 
check, different actions may be taken to re-
solve different situations. To control the pro­
gram flow, this alternative then, according 
to the outcome of these checks, sets some 
states with which the pre-conditions of al­
ternatives in the subsequent block are set. 
There may be an alternative with empty sta-
tement_sequence whose pre-condition is met 
if a previous alternative was successful; by 
this example, classical exception handling 
can be implemented. 

The alternatives should contain independently 
designed and coded programs to comply with spe-
cifications and to eliminate possible implementa-
tion problems or residual software errors. They 
can contain alternative design solutions or re-
dundant resources, when problems are expected. 
A further possibility is to assert less restrictive 
pre- and/or post-conditions and to degrade per-
formance gracefully. By the means presented in 
[23] it is also possible to bound the execution ti-
mes of alternatives. If one of them fails to com­
plete inside a predefined period, a less demanding 
alternative is taken. 

If there is no alternative, \vhose pre- and post-
conditions are fulfilled, the block execution was 
unsuccessful. If the block was nested inside an al­
ternative on the next higher level, this alternative 
fails as well and the control is given to the next 
one, thus providing a chance to resolve the pro­
blem in a different way. On the highest level, the 
last alternative must not have any pre- or post-
conditions. It must solve the problem by applving 
some conventional actions like employing fault-
tolerance measures or performing smooth power-
down. Since the system is then in an extreme 
and unrecoverable catastrophic condition, diffe­
rent control and timing policies are put in ac-
tion, requesting safe termination of the process 
and possibly post-mortem diagnostics. 

Using this exception handling mechanisrn the 
worst-case program execution times required for 

file:///vhose
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schedulabilitv analvsis can be estimated at com-
pile time. In the following paragraphs three diffe-
rent cases will be considered. 

(a) Ezclusive backivard recovery (aH alternati­
ves have post-conditions): in the worst-case exe-
cution time estimation ali times must be conside­
red, i.e., time for stacking ali global variables' con-
tents, for evaluating ali pre- and post-conditions, 
alternative program execution times, and times to 
restore used variables. 

*"u>c = Ist T / j ''prej T l-bodyi T tposti T tresti 

where 

i 

tst 
tprei 
'•bodyi 
tposti 

number of alternatives in the block 
worst-case block execution time 
time to store global variables 

— afterwards, one proceeds as in čase (b). 

Actuallv, the last method (c) is generallv valid 
and also applicable in both previous cases. 

Especially the backward recovery method ine-
vitably yields pessimistic execution time estima-
tions. However, this is not due to this specific 
solution. In safety-critical hard real-time systems 
it is necessary to consider worst-case execution 
times, which must also include exceptional condi­
tions. Depending on the performance reserve of 
a system, more or less alternatives may be pro-
vided, performing more or less degraded functi-
ons. In extremely time-critical systems just a sin-
gle alternative in the highest level block may be 
implemented only performing a safe and smooth 
power-down. 

To čope with the problem of the pessimism of 
run-time estimation of execution of alternatives 

i-th alternative pre-condition evaluation time some further solutions are possible. Each sub-
i-th alternative program execution time sequent alternative of a set of backward recovery 
i-th alternative post-condition evaluation timealternatives may be bounded to h alf of the exe-

t resti t ime to restore global variables in i-th 
alternative 

(b) No backivard recovery (no alternatives have 
post- conditions): in this čase it must be scan-
ned for the maximum time composed of an al­
ternative body execution time plus the sum of 
non-successful pre-condition evaluation times of 
ali preceeding alternatives; there is no stacking or 
restoring of variables. 

k 

'"wc == 'mQ'%k=l,n\J'body)s T / y ^prej j 
i=l 

(c) Mixed alternatives with and voithout post-
conditions: in this čase, estimation of the worst-
case execution time is slightly more complicated. 
During operation, alternatives are tried one after 
another according to their sequence in the block. 
Thus, execution times are evaluated as follows: 

— the execution time of the sequence of alter­
natives with post-conditions is calculated as 
in čase (a) and is added to the execution 
time of the body of the subsequent alter­
native v/ithout post-condition if it exists, or 
forms a virtual alternative without pre- or 
post-condition if it is at the end of the block. 

cution time of the previous one; thus, the block 
will terminate in at most twice the execution time 
of the primary alternative. Also, from a failure 
of an alternative it is possible to deduce which 
subsequent alternatives in subsequent blocks are 
reasonable and which are not, and to set their pre-
conditions accordingly. However, this requires a 
sophisticated run-time analyser. 

5 Conclusion 

In order to assure a predictable behaviour of real-
time systems, it is necessary to determine a pri-
ori bounds for the task execution times. In this 
paper a consistent design of a computing system 
for embedded applications operating in the do-
main of hard real-time is described. While the 
experimental hardware platform and program de-
velopment tool are only outlined, the exception 
handling mechanism, which represents the most 
severe obstacle to overall predictability, is dealt 
with in more detail. Catastrophic exceptions are 
coped with in a well-structured environment by 
providing sequences of gradually more and more 
evasive software reactions. 

Embedded hard real-time systems for process 
control often operate in safety critical enviro-
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nments. Uncontrolled malfunctions can have dra-
stic consequences with regard to repair costs, pro-
duction loss, or even endangerment of human he-
alth or lives. By our approach, overall system 
safety is greatly enhanced. Possible system failu-
res are already being considered during the design 
phase, and alternative solutions are devised and 
prepared. Having to use them, performance may 
be reduced, but safety is retained, since they will 
either solve the problem, or bring the system into 
some controlled and safe state. These alterna­
tive measures either employ software approaches 
or redundant hardware means, or are gradually 
less complex and, thus, less sensitive to distur-
bances and failures. Therefore, they rely on very 
simple fault-tolerance measures, employing mini­
mum resources. They may even employ electrical 
or mechanical means, such as safe passive state of 
inactive relays or automatic activation of mecha­
nical brakes when the system loses control, etc. 

Applications designed this way fulflll the requi-
rements of hard real-time systems, viz., timeli-
ness, simultaneity, predictability, and dependabi-
lity. Although the worst-case analysis necessa-
rily introduces pessimism in run-time estimation, 
the proposed methodology is practically usable 
for the development of safety critical embedded 
hard real-time applications if the alternative so­
lutions to the critical parts of control tasks are 
designed reasonablv. 
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