
Informatica 19 (1995) 59-69 59

Supporting High Integrity and Behavioural Predictability of Hard
Real-Time Systems

M. Colnarič and D. Verber
University of Maribor, Faculty of Technical Sciences
Smetanova 17, Maribor, Slovenia
č o l n a r i c @ u n i - m b . s i
AND
W. A. Halang
FernUniversitat Hagen, Faculty of Electrical Engineering
D-58084 Hagen, Germany
wo l fgang .ha l angOfe rnun i -hagen .de

K e y w o r d s : hard real-time systems, high-integrity requirements (safety-related systems), exception
handling, real-time programming languages, process run-time estimation

Edited by: Marcin Paprzycki and Janusz Zalewski
Rece ived: February 19, 1994 Rev ised: October 30, 1994 A c c e p t e d : December 19, 1994

The main objective of this paper is to present a method for handling non-preventable
and non-avoidable catastrophic exceptions in embedded hard real-time environments in
a well-structured and predictable way, and as painlessly as possible.
First, apt hardware and software platforms which are pre-requisite for predictable sy-
stem behaviour are briefly presented. Then, some existing techniques are shown and
their suitability for implementation in embedded hard real-time environments is discus-
sed. Further, a classification of exceptions and our own approach for handling them is
presented and elaborated. Finally, a method for the estimation ofthe resulting temporal
behaviour is descrihed.

1 Introduction

In this paper, embedded hard real-time systems
are dealt with. In general, they are emploved to
control different processes; the integrity of these
applications relies on their temporally and functi-
onally correct operation. Depending on the appli-
cation, these systems can be extremely safety cri-
tical; their malfunction may cause major damage,
material loss, or even endangerment of human li-
ves. Thus, for such systems high integrity and
safety is required, and mechanisms must be devi-
sed to čope with partial or complete failures.

While in the systems, which are usually used in
process control, testing of conformance with func-
tional specifications is well established, temporal
circumstances are seldom consistently verified. It
is almost never proven at design tirne that such
a system will meet its temporal requirements in
every situation that it may encounter.

In his reference paper [20], Stankovic is unma-
sking several misconceptions in the domain of
hard real-time systems. Seemingly the most cha-
racteristic one is that real-time computing is often
considered fast computing. It is obvious tha t Com­
puter speed itself cannot guarantee that specified
timing requirements will be met.

Instead, a different ultimate objective was set:
predictability of temporal behaviour. Being able
to assure that a process will be serviced within
a predefined tirne frame is of utmost importance.
In multiprogramming environments this condition
can be expressed as schedulability: the ability to
find a schedule such that each task will meet its
deadline [22].

For schedulability analysis, execution times of
tasks must be known in advance. These, howe-
ver, can only be determined if a system func-
tions predictably. To assure overall predictabi-
lity, ali system layers must behave predictably

mailto:olnaric@uni-mb.si

60 Informatica 19 (1995) 59-69 M. Colnarič et al.

in the temporal sense, from the processor to the
system architecture, language, operating system,
and exception handling (layer-by-layer predicta-
bility, [21]).

In recent years, the domain of real-time sy-
stems substantially gained research interest. Cer-
tain sub-domains have been examined very thoro-
ughly, such as scheduling and analysis of program
execution times. It is typical that most of the re­
search done was dedicated to higher level topics
and presumes that the underlying features behave
fully predictablv.

Exception handling is one of the most severe
problems to be solved when a system is to be­
have predictably. By an exception any unexpec-
ted intrusion into the normal program flow which
cannot be considered during schedulability ana-
lysis phase is meant. It is usually related to resi-
dual specification and implementation errors and
to failures. Anticipated timing events and events
from the environment, which trigger associated
processes, do not belong to this category. They
should be implemented in a way, which does not
cause any non-deterministic delays in the execu-
tion of the running tasks. That can be achieved
by migrating event recognition and operating sy-
stem services out of main task processors [11], and
was also implemented in the Spring project [19].
Results of our previous studies were presented in
[4] and are used in the design of an experimental
platform as described in the next section.

When an exception occurs in a program, the
latter is inevitably delayed causing a serious pro­
blem with respect to the a priori determined exe-
cution tirne. Therefore, exceptions should be pre-
vented by ali means, whenever and wherever it is
possible [1]. If it is not possible to prevent them
to happen, thev should be handled in a consistent
and safe way in conformity with the hard real-
time systems design guidelines, i.e. timeliness, si-
multaneity, predictability, and dependability [13].
The need for consistent solutions to the exception
problem is exacerbated by the fact that excepti-
ons are often the results of some critical systems
states, which is when computer control is needed
most.

In this paper we show constructively how be-
havioural predictability can be achieved by pre-
senting an experimental system and considering
different aspects of its design. Although the main

emphasis of the paper is on consistent exception
handling, it is necessary to present some princi-
ples used to provide the necessary pre-conditions
for deterministic system behaviour; only then it
is reasonable to consider the upper layers of a sy-
stem design. In Section 2 we start offwith descri-
bing the basic layers of an asymmetrical paraUel
hardware architecture and the operating system
concepts which prevent process control tasks to
be disturbed (and thus delayed) by events occur-
ring in the environment. Further, in Section 3,
a real-time programming tool supporting the ar­
chitecture is described by which process control
programs with deterministic temporal behaviour
can be designed and their run-times determined.

Exception handling was integrated into a high-
level programming language, \vhich is the subject
of Section 4. First, we classify exceptions and
show that a number of them can be either pre-
vented or avoided. Further, we summarise some
known solutions to handle the remaining excepti-
ons, which were ali combined in the implemented
approach. Finally, an analysis of the impact the
approach has on overall process timing predicta-
bility is given.

2 Concept of an Experimental
Hardware Platform

In multi-tasking systems, dynamic scheduling al-
gorithms to generate appropriate schedules must
be implemented. The ones which fulfUl the re-
quirement that ali tasks must meet their deadli-
nes are referred to as feasible. In the literature,
several such algorithms have been reported (an
overview is given in [13]). For our purpose, the
earliest-deadline-first scheduling algorithm is cho-
sen. It has been shown that it is feasible for sche­
duling tasks on single processor systems; with the
throw-forward extension it is also feasible on ho-
mogeneous multiprocessor systems. However, this
extension leads to more pre-emptions and is more
complex and, thus, less practical.

For process control applications, where pro­
cess interfaces are usually physically hard-wired
to sensors and actuators establishing the contact
to the environment, it is natural to implement ei­
ther single processor systems or dedicated multi-
processors acting and being programmed as sepa-
rate units. Thus, the earliest-deadline-first sche-

file:///vhich

SUPPORTING HIGH INTEGPJTY AND... Informatica 19 (1995) 59-69 61

External Process Environment

Figure 1: Scheme of an experimental hardware
platform

duling policy can be employed without causing
any restrictions, resulting in a number of advan-
tages discussed by Halang and Stoyenko [13].

In the classical computer architecture the ope­
rating system is running on the same processor(s)
as the application software. In response to any
occurring event, the context is switched, system
services are performed, and scheduling is done.
Although it is very likely that the same process
will be resumed, a lot of performance is wasted
by superfluous overhead. This suggests to em-
ploy a second, parallel processor, to carry out the
operating system services. Such an asymmetrical
architecture turns out to be advantageous, since,
by dedicating a special-purpose, multi-layer pro­
cessor to the real-time operating system kernel,
the user task processor(s) are relieved from any
administrative overhead.

This concept was in detail elaborated in [11]
and further refined in [3, 4]. Our experimental
hardware platform is to a high extent complying
with these principles, and is currently under con-
struction. In Figure 1 it is shown that it consists
of task processors (TPs) with intehgent process
interfaces (IPI) and a kernel processor (KP) with
an external event recognition interface (EERI),
which are fully separated from each other.

The external process is controlled by tasks run­
ning in task processors without being interrup-
ted by the operating system functions. Any event
from the environment is fed to the kernel pro­
cessor and scheduling is performed based on the

modified earliest-deadline-first policy: the inten-
tion is to find a schedule such that ali waiting
tasks including the newly arrived one meet their
deadline while the running task remains in exe-
cution. Thus, a running task is only pre-empted
if it is necessary to assign the highest priority to
an incoming task in order to allow that aH tasks
meet their deadlines.

The task processors are implemented with
INMOS T805 transputers. In the task processors'
external memory the code of each task assigned
to be run is loaded. Also, a part of the control
blocks of these tasks is residing there, holding the
context of eventually pre-empted tasks. The fast
on-chip RAM of the transputers is holding task
internal variables except for the large data struc-
tures which are held in the external memory.

The IPI process interface is based on a Moto­
rola MC68000 microprocessor which adds the ne-
cessary intelligence to peripheral devices. It is
accessible by a bi-directional link via an INMOS
converter and is acting as a slave to the task pro­
cessors) . Services of the intelligent process inter­
face are available by calling pre-defined peripheral
device drivers and providing parameters and data.

Synchronisation of tasks running in different
task processors is carried out with the help of
semaphores residing in the kernel processor and
being accessible through systems calls.

The kernel processor is responsible for ali ope­
rating system services. It consists of an INMOS
T425 transputer performing the operating system
kernel services, and a Motorola MC68000 based
external event recognition interface. The latter 's
task is administering the real-time clock in the
form of Julian time, receiving signals from the
process environment, providing them with time
stamps, and periodically triggering events by sen-
ding messages to the transputer containing Infor­
mation about ali events that happened recently,
and serving as a synchronisation means.

The time between two synchronisation messa­
ges from the EERI is further sub-divided in slots
in the kernel processor. In these slots the informa-
tion from the external event recognition module
is processed, time events are administered, and
OS service calls from the task processors are ser-
viced, each triggering scheduling of an associated
application task.

It is to be mentioned that our nomenclature

62 Informatica 19 (1995) 59-69 M. Colnarič et al.

is not strictb/ conforming with [11], although the
functions implemented in our architecture com-
ply with the layers proposed there. The exter-
nal event administration part of the hardware la-
yer functions is implemented in the EERI, the
others — primary and secondary reaction level
— in the kernel processor. The hierarchy is re-
tained by executiong these functions in strictly
defined slots. We are considering migrating the
scheduling-related secondary reaction level servi-
ces into a separate transputer to enhance perfor-
mance.

Through this concept, preventing non-
deterministic interruptions from the environment,
careful avoidance of the sources of unpredictable
processor and system behaviour, loose coupling of
task processors, and svnchronous operation of the
kernel processor, the predictability of the tempo-
ral system behaviour will provide the necessary
basis for the higher system design levels.

3 Concept of a Real-Time
Programming Tool

To program applications on the above hardware
platform a tool is being constructed, in which the
proposed exception handling mechanism is built
in. Its ultimate objective is to produce temporally
predictable and optimal program code for embed-
ded hard real-time applications, and estimations
of their execution times.

In the tool two parts are closely integrated: a
compiler for an adapted standard real-time pro­
gramming language, and a program execution
tirne analyser. The latter is providing the ne-
cessary information for a schedulability analyser
which is currently beyond the scope of our rese-
arch.

In the design of the tool, the following guideli-
nes were followed:

1. Target system independence. The compiler
should produce executable application code for a
variety of target systems. This is achievable by
implementing target system specinc macros which
transpose each element of intermediate code into
a corresponding piece of executable code. In the
specification file for each target system its own set
of macros is defined.

2. Generation of efficient code. Although being
system independent, the compiler is expected to

generate fast and compact code. This can be achi-
eved by the simplicity of the programming langu­
age, and the possibility of global syntax tree opti-
misation (register scheme, local and global varia-
bles' locations and other implementation specific
information are given in the system specification
file). Also, in translation macros full information
about the operands (constant, register, local or
global variables) is contained.

3. Realistic estimation of task ezecution times.
A drawback of many methods for task execution
tirne estimation is that they yield such pessimistic
results that their relevance is seriously diminished
[18]. To čope with that , the tool supports two di-
fferent methods to determine the execution time
of a task: compile-time program analysis and di-
rect measurement of worst-case (partial) task exe-
cution time.

3.1 M i n i P E A R L

To program an application, the programming lan­
guage miniPEARL is introduced. It is a simpli-
fied version of PEARL [9], a standard language
for programming real-time applications, which,
however, may produce temporally unpredictable
code for several reasons. To eliminate these pro-
blems, PEARL's syntax is modified. Further, to
support efficient mapping onto typical target ar-
chitectures certain features are reduced. Finally,
it is enhanced by some constructs specific to real-
time systems, proposed by Halang and Stoyenko
[13, 12]. MiniPEARL is described in more detail
in [23].

The main differences between PEARL and mi­
niPEARL are:

l.There are no GOTOs. The use of GOTO
statements can result in unstructured and hardly
manageable code. Instead of these, EXIT and
LOOP statements are introduced for preliminary
exit from an innermost structure, and for imme-
diate initiation of the next iteration of a loop,
respectivelv.

2.Each loop block is stricthj bounded. In the
REPEAT statement, lower and upper counts of
a loop are obligatory and defined with compile-
time constant expressions to limit the number of
iterations.

3.Pointers and recursion are not allouied.
Dvnamic data structures and recursion can result
in severe memory management problems. They

SUPPORTING HIGH INTEGRITY AND... Informatica 19 (1995) 59-69 63

may cause temporally non-deterministic actions
tha t cannot be considered in timing analysis.

A.Signals are not directly supported. In our ar-
chitecture model interrupts and signals are mana-
ged by the kernel processor. Events can be indu-
ced by the synchronisation mechanism.

5. Each statement ezecution is temporally boun-
ded. Commands whose execution tirne is non-
deterministic must be either forbidden, or ta-
ken special čare of in a real-time systems. Each
of such commands which are unavoidable must
be temporally guarded, and time-out alternatives
must be defined explicitly. Commands that must
be guarded are the ones that are dealing with pro-
cess inputs and outputs (if handshaking is imple-
mented), and synchronisation mechanisms.

6.Explicitly asserted execution time. Frequen-
tly, because of the nature of a program, estimation
may yield very pessimistic execution times. To re-
solve this problem, additional information about
program execution must be given by the program-
mer. This can be done by adding new constructs
(pragmas) into program code as proposed in [18].
But such constructs require complex analysis and
are not feasible for ali situations. To overcome
this problem, the execution tirne of code segments
known through competent measurement, detailed
analysis of the program behaviour, experience, re-
use, etc. may be exphcitly asserted by the system
developer who also takes the responsibility. In
such čase, execution time analysis is overriden.
However, to guarantee that the actual execution
time will not be longer than declared, blocks must
be guarded by time-out controls, and time-out ac-
tion must be present.

8.DATIONs are not used. Mass storage and
asynchronous input /output devices as used in PE-
ARL are not suitable for hard real-time systems.
For this reason and because of the relative comple-
xity of these structures, DATIONs are excluded
from the structure of the language. Input /output
devices (registers) are accessed at the lower pro-
gramming level.

9.Improved task activation scheme. In miniPE-
ARL task activation, deactivation, etc. can be
done through signals from the environment, time-
related conditions, or specific states of synchroni-
sers, as proposed in [13]. A time-related and one
non-time-related condition may be combined.

10. Scheduler support. The scheduling algori-

thm performed in the kernel processor relies on
the residual execution time of a task. This time
is computed as maximum execution time of the
task minus cumulative running time. However,
the actual execution time is expected to be shor-
ter than the estimated one. To achieve better
performance, the actual residual task execution
time can be explicitly asserted at ceratin points
to update the estimated one.

3.2 Est imat ion of Task Execut ion
Times

To allow for schedulability analysis, precise exe-
cution times of application tasks must be known
in advance. In our tool, two methods for the esti­
mation of program run-times are supported:

1. Analysis of executable code. In this method,
an automatic analyser is used to estimate execu-
tion times (compare also [18, 17]). Source code is
transformed into an intermediate form (modified
syntax tree) prior to executable code generation.
Each element of this form is associated with a ma-
cro block that is used for two purposes. The first
is to generate the code and the second is to obtain
its execution time. Because the execution time of
the same block can be data-dependent, as much
information as possible about operands should be
passed to it. The operand can be a register, a con-
stant, a local variable or a global variable. When
the macro is expanded, the sum of times needed
for accessing these operands is added to the basic
execution time of the macro.

2. Direct measurement of ezecutable code. This
method can be used when more precise execution
time than estimated is desired. To achieve tha t ,
object code is executed on the target system and
the execution time is recorded. Direct implemen-
tation of this method has some disadvantages:

- The complete target system must be imple-
mented. That is inappropriate in earlv phases of
development when the target-system is not com-
pletely implemented, yet.

- Through recording, only average execution ti­
mes can be obtained. For usable analysis, howe-
ver, worst-case execution times are needed. A test
scenario to obtain that situation is usually diffi-
cult to determine.

- The input /output devices must be active and
interact with the environment. Thus, the embed-

64 Informatica 19 (1995) 59-69 M. Colnarič et al.

ding environment or a simulation of it is needed.

By our approach, these disadvantages are eli-
minated. Only a task processor or its equivalent
must be implemented. The longest path through
a task is determined by the compiler and a pi­
lot code is generated running only through that
path. From a set of alternative constructs (IF and
ČASE statements, for example), the longest one
is statically routed. Ali time-guarded commands
and input /output variable accesses are replaced
by appropriate delays. This pilot code is then
executed on the hardware platform or, because of
the substitution of every system-specific function,
a delay is inserted.

4 Handling of Exceptions in
Hard Real-Time Systems

Our previous work in the domain of dealing with
exceptions was published in [5]. With the goal to
avoid non-deterministic delays in the execution of
application tasks it was shown that a great num-
ber of exceptions can be either prevented from
happening, or they can be handled within the con-
text of task requirements:

- Preventable ezceptions: Some exceptions can
be prevented by restricting the use of potentially
dangerous features. Compliance with these re-
strictions must be checked by the compiler. For
example, no dynamic features like recursion, refe-
rences, virtual addressing, or dynamic file names
and other parameters etc. are allowed.

Other features are, e.g., strong type checking
(see [8]), or extensions of the input and output
data types by two "irregular" values representing
"signed infinity" to accommodate overflows and
underflows and "undefined", as proposed in the
IEEE 32-bit floating point standard [2] implemen­
ted also in the INMOS transputers ' Floating Po­
int Unit (FPU) (compare also [16]). Thus, com-
puted irregular values do not raise exceptions, but
are propagated to the subsequent or higher-level
blocks, which must be able to handle them.

- Non-preventable, anticipated ezceptions: If
the potential danger of irregularity can be reco-
gnised during design time, it has to be taken čare
of in the specifications. For example, periphe-
ral devices shall be intelligent, fault-tolerant and
self-checking in order to be able to recognise their

own malfunctions, and to react in a predefmed
way if a value which is sent to them is irregu­
lar. Further, a number of exceptions resulting
from irregular data can be avoided by prophylac-
tic run-time checks before entering critical opera-
tions. Many tasking errors are also avoidable by
previously using monadic operations to check the
system state.

Falling into this category, an obvious and fre-
quently used way of avoiding critical failures in
hard real-time systems design is redundancy (an
example for consistent implementation of redun-
dancy is the MARS system [15]). Redundant sy-
stem components must be implemented according
to thorough analysis of fa,ult hvpotheses.

If there is no way to predict an error, an excep-
tional situation caused must be handled in order
to survive it. These are situations when "the im-
possible happens" [1], in which programs do not
follow their specifications due to hardware fai­
lures, residual software errors, or wrong specifi­
cations. For example, failure of a part of me-
mory can result in the change of constant values;
an error in file management or on a disk is usu-
ally unexpected. In safety-critical control systems
non-anticipated exceptions may have catastrophic
consequences. There it is especially important to
implement a mechanism for their safe and consi­
stent handling.

In his early paper, Goodenough [10] presen-
ted the idea of assigning default or programmed
exception handlers to every potentially dangerous
operation. According to the severity of an excep-
tion raised the running process was either termi-
nated, or suspended and resumed later. A similar
mechanism although considerabb/ more elaborate
and adapted for use in hard real-time systems was
implemented in Real-Time Euclid [14]. There,
exception handlers were (optionally) located wi-
thin block constructs and were executed in the
čase of an exception. If there were no exceptions
the handlers had no effect except for their impact
on a block's execution time estimated by a sche-
dulability analyser, thus making it more difficult
to be scheduled. Exceptions may be raised by
kili, terminate or except statements, to terminate
a process entirely or only its frame, or to execute
the handler without termination of the process,
respectivelv.

A reference study in the domain of non-

SUPPORTING HIGH INTEGRITY AND... Informatica 19 (1995) 59-69 65

preventable exceptions was done by Cristian [6.
7]. Certain principles from this work were further
detailed in [1] and were also adopted in our excep-
tion handling mechanism.

According to Cristian, exceptional situations
can be handled (a) by programmed exception
handling and (b) by default exception handling
based on automatic backward recovery using re-
covery blocks. Since in embedded hard real-time
systems programmed exception handling should
be included in the system requirements and can,
thus, be treated as normal actions, in the follo-
wing the alternative technique will be dealt with
briefly.

The principle of backivard recoverij is to return
to the previous consistent system state after an
inconsistency is detected by consistency tests cal-
led post-conditions. It can be done in two ways,
(a) by the operating system recording the current
context before the program is "run" and restoring
it after its unsuccessful termination, or (b) by re-
covery blocks inside the context of a task whose
syntax is as follows:

RB = ensure post b y Po e lse b y P i else b y . . .
else failure

where Po, P i , etc. are alternatives which are
tried consecutively until either consistency is en-
sured by meeting the pos£-condition, or the failure
is executed. Each alternative should be indepen-
dently capable to ensure consistent results.

In the forward error recovery technique it is
tried to obtain a consistent state from partly in-
consistent data. Which data are usable can be
determined by consistency tests, error presump-
tions, or with the help of independent external
sources.

To handle catastrophes we propose a combina-
tion of pre-conditions, post-conditions and modi-
fied recovery blocks implementing both backward
and forward recovery. Its syntax is shown in Fi­
gure 2.

A block (plain block structure, task, procedure,
loop, or other block structure) consists of alter­
native sequences of statements. Each alterna­
tive can have its own pre- and/or post-conditions,
represented by Boolean expressions. When the
program flow enters a surrounding block, the
state" variables, tha t are modifiable by alterna­
tives which might fail, are stacked (see below).

block : := block_begin block_ta i l

block-begin : := BEGIN
| PROCEDURE parameters & a t t r i b u t e s ;
| TASK parameters & a t t r i b u t e s ;
| parameters REPEAT

block_ta i l : : = [declarationj3equence]
[al ternat ive_sequence] END;

declaration-sequence : := block-specific declarations
[PRESERVE global .varJLis t]

a l ternat ive .sequence : : =
{[ALTERNATIVE [PRE bool—exp;] [POST

bool—exp;]]
[statement.sequence] }

Figure 2: Syntax of an exception handhng mecha­
nism

Then, the first alternative statement sequence,
whose pre-condition (if it exists) is fulfilled, is exe-
cuted. At the end, its post-condition is checked,
and if this is also Mfilled, execution of the block
is successfully terminated. If the post-condition
is not fulfilled, the next alternative is checked for
its pre-condition and eventually executed. If ne-
cessary, values of the state variables recorded at
the beginning of the block are first restored.

If an alternative fails, any effect on the system
state should be discarded; thus, it is necessary
that the original value of any variable is restored,
which was modified and lies outside of the scope
of the failed alternative. For tha t purpose, the
state of any such variable must be stacked at the
tirne of entering the block. Whether and which
variables must be stacked can be determined by
the compiler. It is only necessary to restore non-
local variables that appear on the left hand side
of an assignment in alternatives which have post-
conditions, since only they may fail after modi-
fying the s ta te . . It is a task of the compiler to
scan the block for such variables and take čare
of their stacking. Further, after a non-successful
evaluation of a post-condition, only the variables
that were modified in this alternative are automa-
tically restored.

Stacking ali global variables tha t can be modi­
fied within a block may require a relatively large
amount of tirne. There are situations where the
value of a global variable is not needed any more
after an unsuccessful termination of an alterna-

66 Informatica 19 (1995) 59-69 M. Colnarič et al.

tive. In such situations the application program-
mer may wish to declare which modifiable global
variables should be restored after the unsuccess-
ful alternative. This can be requested by the
optional PRESERVE declaration in the declara-
tion_sequence. If this declaration is present, the
automatic search for modifiable global variables
is prevented; hence, the explicitly given list must
contain the complete set. The compiler then scans
for global variables that are both in the list and
appear on a left hand side in the alternative pro­
gram, and restores their original values after an
unsuccessful try.

A good technique which prevents the above
problem is to work with private copies of glo­
bal s tate variables inside the alternatives that
may cause backward recoverv, and to export their
values after a successful post-condition check.
However, this is more time-consuming, especi-
ally when there are more such alternatives in a
block, which require (counter-productive) trans-
fer of global into local variables and back.

Since embedded hard real-time systems, which
are the main subject of this paper, are, as a rule,
used in process control a severe problem arises if
there are any actions triggered like commencing
a peripheral process which causes an irreversible
change of initial state inside an alternative that
failed. In this čase, backward recovery is gene-
rally not possible. As a consequence, it is our su-
ggestion tha t no physical control outputs should
be generated inside the alternatives which may
cause backward recovery in čase of failure, i.e.,
inside those which have post-conditions. In this
čase only forward recovery is possible, bringing
the system to a certain predefined, safe, and sta-
ble state.

Both forward and backward recovery methods
can be implemented using the proposed syntax.
In the following these approaches will be shown:

— Backward recoverv: bearing in mind the
dangers of backward recovery in process con­
trol systems, it may be (carefully) implemen­
ted. Backward recovery can be recognised by
the post-conditions an alternative must meet.
Its functioning is obvious: if an alternative
fails to meet its post-condition, the next al­
ternative fulfilling its pre-condition is used to
do the task of the block. Thus, it is necessary
to restore the system state variables possibly

modified in previous unsuccessful alternati­
ves.

— Forward recoverv: this technique may be
somewhat less obvious. Consider the čase
where an alternative is checking the success
of its operation, according to its design spe-
cifications. According to the results of the
check, different actions may be taken to re-
solve different situations. To control the pro­
gram flow, this alternative then, according
to the outcome of these checks, sets some
states with which the pre-conditions of al­
ternatives in the subsequent block are set.
There may be an alternative with empty sta-
tement_sequence whose pre-condition is met
if a previous alternative was successful; by
this example, classical exception handling
can be implemented.

The alternatives should contain independently
designed and coded programs to comply with spe-
cifications and to eliminate possible implementa-
tion problems or residual software errors. They
can contain alternative design solutions or re-
dundant resources, when problems are expected.
A further possibility is to assert less restrictive
pre- and/or post-conditions and to degrade per-
formance gracefully. By the means presented in
[23] it is also possible to bound the execution ti-
mes of alternatives. If one of them fails to com­
plete inside a predefined period, a less demanding
alternative is taken.

If there is no alternative, \vhose pre- and post-
conditions are fulfilled, the block execution was
unsuccessful. If the block was nested inside an al­
ternative on the next higher level, this alternative
fails as well and the control is given to the next
one, thus providing a chance to resolve the pro­
blem in a different way. On the highest level, the
last alternative must not have any pre- or post-
conditions. It must solve the problem by applving
some conventional actions like employing fault-
tolerance measures or performing smooth power-
down. Since the system is then in an extreme
and unrecoverable catastrophic condition, diffe­
rent control and timing policies are put in ac-
tion, requesting safe termination of the process
and possibly post-mortem diagnostics.

Using this exception handling mechanisrn the
worst-case program execution times required for

file:///vhose

SUPPORTING HIGH INTEGRITY AND... Informatica 19 (1995) 59-69 67

schedulabilitv analvsis can be estimated at com-
pile time. In the following paragraphs three diffe-
rent cases will be considered.

(a) Ezclusive backivard recovery (aH alternati­
ves have post-conditions): in the worst-case exe-
cution time estimation ali times must be conside­
red, i.e., time for stacking ali global variables' con-
tents, for evaluating ali pre- and post-conditions,
alternative program execution times, and times to
restore used variables.

*"u>c = Ist T / j ''prej T l-bodyi T tposti T tresti

where

i

tst
tprei
'•bodyi
tposti

number of alternatives in the block
worst-case block execution time
time to store global variables

— afterwards, one proceeds as in čase (b).

Actuallv, the last method (c) is generallv valid
and also applicable in both previous cases.

Especially the backward recovery method ine-
vitably yields pessimistic execution time estima-
tions. However, this is not due to this specific
solution. In safety-critical hard real-time systems
it is necessary to consider worst-case execution
times, which must also include exceptional condi­
tions. Depending on the performance reserve of
a system, more or less alternatives may be pro-
vided, performing more or less degraded functi-
ons. In extremely time-critical systems just a sin-
gle alternative in the highest level block may be
implemented only performing a safe and smooth
power-down.

To čope with the problem of the pessimism of
run-time estimation of execution of alternatives

i-th alternative pre-condition evaluation time some further solutions are possible. Each sub-
i-th alternative program execution time sequent alternative of a set of backward recovery
i-th alternative post-condition evaluation timealternatives may be bounded to h alf of the exe-

t resti t ime to restore global variables in i-th
alternative

(b) No backivard recovery (no alternatives have
post- conditions): in this čase it must be scan-
ned for the maximum time composed of an al­
ternative body execution time plus the sum of
non-successful pre-condition evaluation times of
ali preceeding alternatives; there is no stacking or
restoring of variables.

k

'"wc == 'mQ'%k=l,n\J'body)s T / y ^prej j
i=l

(c) Mixed alternatives with and voithout post-
conditions: in this čase, estimation of the worst-
case execution time is slightly more complicated.
During operation, alternatives are tried one after
another according to their sequence in the block.
Thus, execution times are evaluated as follows:

— the execution time of the sequence of alter­
natives with post-conditions is calculated as
in čase (a) and is added to the execution
time of the body of the subsequent alter­
native v/ithout post-condition if it exists, or
forms a virtual alternative without pre- or
post-condition if it is at the end of the block.

cution time of the previous one; thus, the block
will terminate in at most twice the execution time
of the primary alternative. Also, from a failure
of an alternative it is possible to deduce which
subsequent alternatives in subsequent blocks are
reasonable and which are not, and to set their pre-
conditions accordingly. However, this requires a
sophisticated run-time analyser.

5 Conclusion

In order to assure a predictable behaviour of real-
time systems, it is necessary to determine a pri-
ori bounds for the task execution times. In this
paper a consistent design of a computing system
for embedded applications operating in the do-
main of hard real-time is described. While the
experimental hardware platform and program de-
velopment tool are only outlined, the exception
handling mechanism, which represents the most
severe obstacle to overall predictability, is dealt
with in more detail. Catastrophic exceptions are
coped with in a well-structured environment by
providing sequences of gradually more and more
evasive software reactions.

Embedded hard real-time systems for process
control often operate in safety critical enviro-

68 Informatica 19 (1995) 59-69 M. Colnarič et al.

nments. Uncontrolled malfunctions can have dra-
stic consequences with regard to repair costs, pro-
duction loss, or even endangerment of human he-
alth or lives. By our approach, overall system
safety is greatly enhanced. Possible system failu-
res are already being considered during the design
phase, and alternative solutions are devised and
prepared. Having to use them, performance may
be reduced, but safety is retained, since they will
either solve the problem, or bring the system into
some controlled and safe state. These alterna­
tive measures either employ software approaches
or redundant hardware means, or are gradually
less complex and, thus, less sensitive to distur-
bances and failures. Therefore, they rely on very
simple fault-tolerance measures, employing mini­
mum resources. They may even employ electrical
or mechanical means, such as safe passive state of
inactive relays or automatic activation of mecha­
nical brakes when the system loses control, etc.

Applications designed this way fulflll the requi-
rements of hard real-time systems, viz., timeli-
ness, simultaneity, predictability, and dependabi-
lity. Although the worst-case analysis necessa-
rily introduces pessimism in run-time estimation,
the proposed methodology is practically usable
for the development of safety critical embedded
hard real-time applications if the alternative so­
lutions to the critical parts of control tasks are
designed reasonablv.

References

[1] Andrew P. Black. Exception handling: The
čase against. Technical Report TR 82-01-
02, Department Of Computer Science, Uni-
versity of Washington, May 1983. (originally
submitted as a PhD thesis, University of Ox-
ford, January 1982).

[2] W.J . Cody, J .T . Coonen, D.M. Gay, K. Han-
son, D. Hough, W. Kahan, R. Karpin-
ski, J. Palmer, F.N. Bis, and D. Steven-
son. A proposed radix- and word-length-
independent standard for floating-point ari-
thmetic. IEEE Micro, 4(4):86-100, August
1984.

[3] Matjaž Colnarič. Predictability of Temporal
Behaviour of Hard Real-Time Systems. PhD
thesis, University of Maribor, June 1992.

[4] Matjaž Colnarič and VVolfgang A. Halang.
Architectural support for predictability in
hard real-time systems. Control Engineering
Practice, l (l) :51-59 , February 1993. ISSN
0967-0661.

[5] Matjaž Colnarič and Wolfgang A. Halang.
Exception handling and predictability in
hard real-time svstems. In Proceedings of
the 12th International Conference on Com­
puter Safety, Reliability and Security SAFE-
COMP '93, pages 371-378, Poznan - Kiekrz,
Poland, October 1993. Springer-Verlag, Lon­
don, 1993.

[6] Flaviu Cristian. Exception handling and
software fault tolerance. IEEE Transactions
on Computers, 31(6):531-540, June 1982.

[7] Flaviu Cristian. Correct and robust pro-
grams. IEEE Transactions on Softuiare En­
gineering, 10(2): 163-174, March 1984.

[8] lan F. Currie. NewSpeak: a reliable pro-
gramming language. In High-integrity Soft-
ware, pages 122-158. Pi tman Publishing,
London,1988.

[9] DIN 66 253: Programmiersprache PEARL,
Teil 1 Basic PEARL. Berlin, 1981.

[10] John. B. Goodenough. Exception handling:
Issues and a proposed notation. Communi-
cation of the ACM, 18(12):683-696, 1975.

[11] Wolfgang A. Halang. Definition of an auxi-
liary processor dedicated to real-time opera-
ting system kernels. Technical Report UILU-
ENG-88-2228 CSG-87, University of Illinois
at Urbana Champaign, 1988.

[12] Wolfgang A. Halang and Alexander D. Sto-
yenko. Comparative evaluation of high-level
real-time programming languages. Real-
Time Systems, 2(4):365-382, 1990.

[13] Wolfgang. A. Halang and Alexander D.
Stoyenko. Constructing Predictable Real
Time Systems. Kluwer Academic Publishers,
Boston-Dordrecht-London, 1991.

[14] Eugene Kligerman and Alexander Stoyenko.
Real-time Euclid: A language for reliable
real-time systems. IEEE Transactions on

SUPPORTING HIGH INTEGRITY AND... Inforrnatica 19 (1995) 59-69 69

Softivare Engineering, 12(9):941-949, Sep­
tember 1986.

[15] Hermann Kopetz, A. Damm, Ch. Koza,
M. Mulazzani, W. Schwabl, Ch. Senft, and
R. Zainlinger. Distributed fault-tolerant real-
time systems: The MARS approach. IEEE
Micro, 9(l) :25-40, February 1989.

[16] Barbara H. Liskov and Alan Snyder. Excep-
tion handling in CLU. IEEE Transactions
on Softivare Engineering, 5(6):546-558, No­
vember 1979.

[17] Chang Yun Park. Predicting program execu-
tion times by analyzing static and dynamic
program paths. Real-Time Systems, 5(1):31—
62, March 1993.

[18] Peter Puschner and Christian Koza. Cal-
culating the maximum execution tirne of
real-time programs. Real-Time Systems,
1(2):159-176, 1989.

[19] Krithi Ramamritham and John A. Stanko­
vic. Overview of the SPRING project. Real-
Time Sgstems Nevosletter, 5(l) :79-87, Win-
ter 1989.

.[20] John A. Stankovic. Misconceptions about
real-time computing. IEEE Computer,
21(10):10-19, October 1988.

[21] John A. Stankovic and Krithi Ramamri­
tham. Editorial: What is predictability
for real-time systems. Real-Time Systems,
2(4):246-254, November 1990.

[22] Alexander Stoyenko. A Real-Time Language
With A Schedulability Analyzer. PhD thesis,
University of Toronto, December 1987.

[23] Domen Verber and Matjaž Colnarič. A tool
for estimation of real-time process execution
times. In Proceedings of Softivare Enginee­
ring for Real-Time Applications Workshop,
pages 166-171, Cirencester, September 1993.
IEE.

