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PREDGOVOR MULTIKONFERENCI
INFORMACIJSKA DRUZBA 2016

Multikonferenca Informacijska druzba (http://is.ijs.si) je z devetnajsto zaporedno prireditvijo osrednji
srednjeevropski dogodek na podro¢ju informacijske druZzbe, racunalniStva in informatike. LetoSnja prireditev je
ponovno na ve¢ lokacijah, osrednji dogodki pa so na Institutu »JoZef Stefan«.

Informacijska druzba, znanje in umetna inteligenca so spet na razpotju tako same zase kot glede vpliva na ¢loveski
razvoj. Se bo eksponentna rast elektronike po Moorovem zakonu nadaljevala ali stagnirala? Bo umetna inteligenca
nadaljevala svoj neverjetni razvoj in premagovala ljudi na cedalje ve¢ podro¢jih in s tem omogocila razcvet
civilizacije, ali pa bo eksponentna rast prebivalstva zlasti v Afriki povzro¢ila zadusitev rasti? Cedalje ved
pokazateljev kaze v oba ekstrema — da prehajamo v naslednje civilizacijsko obdobje, hkrati pa so planetarni
konflikti sodobne druzbe ¢edalje teZje obvladljivi.

Letos smo v multikonferenco povezali dvanajst odlicnih neodvisnih konferenc. Predstavljenih bo okoli 200
predstavitev, povzetkov in referatov v okviru samostojnih konferenc in delavnic. Prireditev bodo spremljale
okrogle mize in razprave ter posebni dogodki, kot je sveana podelitev nagrad. Izbrani prispevki bodo izsli tudi v
posebni Stevilki revije Informatica, ki se ponasa z 39-letno tradicijo odli¢ne znanstvene revije. Naslednje leto bo
torej konferenca praznovala 20 let in revija 40 let, kar je za podro¢je informacijske druzbe Castitljiv doseZek.

Multikonferenco Informacijska druzba 2016 sestavljajo naslednje samostojne konference:

e 25-letnica prve internetne povezave v Sloveniji

¢ Slovenska konferenca o umetni inteligenci

¢ Kognitivna znanost

e Izkopavanje znanja in podatkovna skladi$¢a

¢ Sodelovanje, programska oprema in storitve v informacijski druzbi
* Vzgoja in izobraZevanje v informacijski druzbi

e Delavnica »EM-zdravje«

¢ Delavnica »E-heritage«

¢ Tretja Studentska racunalniska konferenca

¢ RacunalniStvo in informatika: v€eraj za jutri

¢ Interakcija ¢lovek-racunalnik v informacijski druzbi
¢ Uporabno teoreti¢no racunalnistvo (MATCOS 2016).

Soorganizatorji in podporniki konference so razli¢ne raziskovalne institucije in zdruZenja, med njimi tudi ACM
Slovenija, SLAIS, DKZ in druga slovenska nacionalna akademija, InZenirska akademija Slovenije (IAS). V imenu
organizatorjev konference se zahvaljujemo zdruZenjem in inStitucijam, Se posebej pa udeleZzencem za njihove
dragocene prispevke in priloZnost, da z nami delijo svoje izkus$nje o informacijski druzbi. Zahvaljujemo se tudi
recenzentom za njihovo pomo¢ pri recenziranju.

V 2016 bomo cetrti¢ podelili nagrado za Zivljenjske dosezke v Cast Donalda Michija in Alana Turinga. Nagrado
Michie-Turing za izjemen Zivljenjski prispevek k razvoju in promociji informacijske druzbe bo prejel prof. dr.
Toma? Pisanski. Priznanje za doseZek leta bo pripadlo prof. dr. Blazu Zupanu. Ze $esti¢ podeljujemo nagradi
»informacijska limona« in »informacijska jagoda« za najbolj (ne)uspesne poteze v zvezi z informacijsko druzbo.
Limono je dobilo ponovno padanje Slovenije na lestvicah informacijske druzbe, jagodo pa informacijska podpora
Pediatri¢ne klinike. Cestitke nagrajencem!

Bojan Orel, predsednik programskega odbora
Matjaz Gams, predsednik organizacijskega odbora



FOREWORD - INFORMATION SOCIETY 2016

In its 19" year, the Information Society Multiconference (http://is.ijs.si) remains one of the leading conferences in
Central Europe devoted to information society, computer science and informatics. In 2016 it is organized at
various locations, with the main events at the Jozef Stefan Institute.

The pace of progress of information society, knowledge and artificial intelligence is speeding up, but it seems we
are again at a turning point. Will the progress of electronics continue according to the Moore’s law or will it start
stagnating? Will Al continue to outperform humans at more and more activities and in this way enable the
predicted unseen human progress, or will the growth of human population in particular in Africa cause global
decline? Both extremes seem more and more likely — fantastic human progress and planetary decline caused by
humans destroying our environment and each other.

The Multiconference is running in parallel sessions with 200 presentations of scientific papers at twelve
conferences, round tables, workshops and award ceremonies. Selected papers will be published in the Informatica
journal, which has 39 years of tradition of excellent research publication. Next year, the conference will celebrate
20 years and the journal 40 years — a remarkable achievement.

The Information Society 2016 Multiconference consists of the following conferences:

e 25th Anniversary of First Internet Connection in Slovenia

¢ Slovenian Conference on Artificial Intelligence

e Cognitive Science

e Data Mining and Data Warehouses

¢ (Collaboration, Software and Services in Information Society
e Education in Information Society

e Workshop Electronic and Mobile Health

e Workshop »E-heritage«

e 3st Student Computer Science Research Conference

e Computer Science and Informatics: Yesterday for Tomorrow
¢ Human-Computer Interaction in Information Society

e Middle-European Conference on Applied Theoretical Computer Science (Matcos 2016)

The Multiconference is co-organized and supported by several major research institutions and societies, among
them ACM Slovenia, i.e. the Slovenian chapter of the ACM, SLAIS, DKZ and the second national engineering
academy, the Slovenian Engineering Academy. In the name of the conference organizers we thank all the societies
and institutions, and particularly all the participants for their valuable contribution and their interest in this event,
and the reviewers for their thorough reviews.

For the fourth year, the award for life-long outstanding contributions will be delivered in memory of Donald
Michie and Alan Turing. The Michie-Turing award will be given to Prof. TomaZ Pisanski for his life-long
outstanding contribution to the development and promotion of information society in our country. In addition, an
award for current achievements will be given to Prof. BlaZ Zupan. The information lemon goes to another fall in
the Slovenian international ratings on information society, while the information strawberry is awarded for the
information system at the Pediatric Clinic. Congratulations!

Bojan Orel, Programme Committee Chair
Matjaz Gams, Organizing Committee Chair
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FOREWORD

MATCOS, Middle European Conference on Applied Theoretical Computer Science, took place at the
University of Primorska on October 12th and 13th. This was its fifth overall edition and in these years got
wide acceptance as a forum where theory and practice meet in a fruitful dialogue. Moreover, the dialogue
does not spawn only between theory and practice, but also between senior and junior researchers. As it is
already custom, the first day was devoted student papers, invited talk and some of the regular papers.

Overall at the conference were presented four student papers and 26 regular papers. With MATCOS
was this year also collocated a conference StuCosRec (3rd Student Computer Science Research
Conference) where additional ten student papers were presented.

The invited talk at MATCOS was titled Algorithms for robot navigation: From optimizing individual
robots to particle swarms and given by Sdndor Fekete. The regular papers were grouped into six sessions
spanning from graph theory all the way to algorithm design and use of theoreical Computer Science
results in practice.

This is far the largest MATCOS conference, and we hope to make the next MATCOS even a bigger
event.

Koper, Ljubljana, Szeged, October 2016

Programme committee Chairs
Gabor Galambos and Andrej Brodnik
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Customizing Hybrid Optimization for Microwave
Tomography

*
Milos Subotic
RT-RK Institute for Computer
Based Systems
Narodnog fronta 23a, 21000
Novi Sad, Serbia
milos.subotic@rt-
rk.uns.ac.rs

ABSTRACT

Microwave tomography is an inverse scattering problem, typ-
ically solved through optimization methods. The underlying
objective function is ill-posed and expensive for evaluation,
making microwave tomography a hard optimization prob-
lem. This paper presents a novel optimization heuristic for
use in microwave tomography. Landscape analysis of ob-
jective function is made. Results from landscape analysis
helped creating novel optimization heuristic. Significant ac-
celeration is obtained.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—global opti-
mization, unconstrained optimization

General Terms
Algorithms

Keywords

Hybrid optimization, optimization heuristic, fitness land-
scape analysis, microwave tomography, inverse scattering
problem

1. INTRODUCTION

Microwave tomography (MWT) [13] is imaging modality
which obtains an image of dielectric properties of scanned
object from scattered microwaves. MW'T is an inverse prob-
lem - the input and output values, i.e. the input and output
wave, are known, and the function, i.e. the dielectric prop-
erties, have to be found.

MWT is an imaging method which does not produce ra-
diation like X-Ray CT and promise to be much cheaper
than MRI. It is multidisciplinary field involving electromag-
netism, antenna design, numeric simulation, optimization
methods, computing acceleration and parallelization.

According to the No Free Lunch theorem [20] it is impossi-
ble to make a universal meta-heuristic which would optimize
equally good on all problems. In other words, optimization
heuristic should be customized for every problem at hand.
This makes MWT optimization problem interesting for re-
search.

*Corresponding author.

Laszlo Palfi
Faculty of Technical Sciences
Trg Dositeja Obradovica 6,
21000 Novi Sad, Serbia
laslo.palfi@rt-rk.com

Nebojsa U. Pjevalica
Faculty of Technical Sciences
Computing and control
engineering dept. Trg Dositeja
Obradovica 6, 21000 Novi

. Sad, Serbia
pjeva@uns.ac.rs

The best images are obtained by means of quantitative MWT,
where connection between dielectric properties and waves

are described by non-linear scattering equations. As all in-

verse problems, this one is also ill-posed i.e. multimodal and

ill-conditioned. MWT is build on top of a forward solver,

a numeric algorithm for solving sets of scattering equations

or simulating propagation and scattering of electromagnetic

waves. One evaluation of the forward solver could last for

seconds [17] or even minutes [4]. This makes MWT a hard

optimization problem.

One solution is linearization of scattering equations using
Born or Rytov approximations [14]. Also, many regular-
ization methods are used for linearization of inverse prob-
lems [18].This makes the objective function convex i.e. uni-
modal, which then could be solved by some local optimiza-
tion method, usually Gauss-Newton [14] or similar method.
All these methods are criticized because they could stuck
in a local minimum, work only if the contrast is small, and
tend to over-smooth the resulting image [13].

Other methods use global optimization techniques. The di-
rect optimization approach tries to find the values of every
pixel (or voxel) of an image [17] [16]. The scanned object is
partitioned to a grid of pixels and every pixel is an optimiza-
tion variable. Since only a few degrees of freedom (pixels)
are possible to optimize, the resulting images are limited to
lower resolution. To downsize the search space, some con-
straints could be set on the image structure or pixel values
[2] [17] [5]. The indirect optimization approach optimizes
the shapes and dielectric properties of some objects [4]. This
technique needs a priori knowledge of objects being scanned.
The indirect optimization approach has a smaller amount of
optimization variables in comparison to direct optimization
approach.

This paper describes a novel hybrid optimization heuristic
for solving the inverse problem in quantitative MWT, with-
out any approximation, with quantized pixel values. First,
the landscape of the objective function is analyzed. The
landscape is described by measures used in literature [19]
such as: ruggedness, deceptiveness, neutrality, number of
local minima. Next, some proposed countermeasures [19]
are used to decrease the difficulty of the objective func-
tion, which results in hybridization of a global optimization
method known as Abstract Bee Colony (ABC) [10] with lo-



cal optimization methods Hooke-Jeeves (HJ) [7] [8] and cus-
tom hill-climbing (HC) with memory. Finally, parameters of
ABC method are tuned, after experimenting with the MWT
objective function. The method is even more interesting be-
cause it uses quantized (integer) values are used for search
space, instead of real values.

The limitations of the presented method are perfect condi-
tions for the objective function. Noise is not modeled and
inversion crime is made.

Chapter 2 describes the problem of optimization in MWT
in detail. Method for the landscape analysis and results of
analysis are presented in Chapter 3. Chapter 4 describes
proposed hybrid optimization algorithm. Performance anal-
ysis and comparison of the proposed hybrid algorithm and
its variants is given in Chapter 5. Chapter 6 includes final
conclusions and future work.

2. PROBLEM DESCRIPTION

This paper deals with the quantitative MWT problem, which
is inverse problem, as described in the introduction. The
inverse problem is ill-conditioned and multimodal. Global
optimization methods are needed to find a solution. Neither
approximation nor regularization methods are used. Direct
optimization approach is used, where every grid cell, i.e.
pixel, is a separate optimization variable.

The cost (objective, fitness) function consists of:

e A search space G to problem space X conversion func-
tion. A candidate solution needs to be converted from
search space variable vector to problem space grid of
dielectric permittivities.

e Measurement and simulation forward solvers. The for-
ward solver takes a grid of dielectric permittivities as
the input and calculates scattered waves.

e A cost calculation formula. Waves from the measure-
ment and simulation forward solver are compared and
the cost of the objective function is calculated.

FDTD [6], a numeric algorithm for simulating electromag-
netic wave propagation, is used as a forward solver. Two
separate grids for two forward solver are used: a fine and
a coarse grid. The fine grid is used by the measurement
forward solver for calculating measured waves, which in real
MWT would be obtained by measuring waves on antennas.
The fine grid measurement forward solver is evaluated only
once at the start of inversion. Its input is later used as a
target for optimization. The coarse grid simulation forward
solver is used by the optimization algorithm, for calculating
waves from the candidate solution. The waves are compared
in frequency domain with Mean Absolute Error (MAE), a
cost calculation formula.

The search space is quantized, i.e. optimization variables are
represented with fixed-point numbers. The implementation
presented in this paper uses integers to represent fixed-point
numbers. The cost function converts the candidate solution
from integer search space to floating-point problem space of

dielectric permeability values, which are later used as input
for the forward solver.

Because the lack of derivatives, only derivative-free opti-
mization methods are used. Also, cache for the cost function
is used, to avoid unnecessary repeated and costly evaluation
of the forward solver.

3. LANDSCAPE ANALYSIS

A list of landscape metrics and characteristics, issues in opti-
mization which rise with characteristics occurrence and some
solutions for these issues are given in literature [19]. Land-
scape analysis of objective function is performed in order to
obtain metrics such as: ruggedness (bumpiness), deceptive-
ness (useless gradient information), multimodality (number
of local minima), neutrality (slow convergence). The analy-
sis results are used for choosing the right strategy to improve
the optimization process.

The problem being solved in this paper has a large amount
of variables, so visualization is impossible. Smaller prob-
lems objective function could be completely sampled. Note
that the search space is quantized, so the sampling could
be complete. For larger problems complete sampling is too
expensive. Instead, analysis is done on statistic from local
minima searches. In this research, Hooke-Jeeves (HJ), a pat-
tern based local search method, is used. Quantum of search
space, 1, is set as minimum step for HJ.

As expected from an ill-possed problem, the analysis found
many local minima. Also, the landscape is very rigged,
which is typical for ill-conditioned problems with weak causal-
ity. The most interesting landscape features are valleys, such
as the one found in Rosenbrock function. Valleys which are
not oriented (stretched) along the coordinate axes are easily
found by HJ. HJ easily converge to the valley’s floor. Since
HJ searchs only along the coordinate axes it cannot move
towards the next point in the valley’s floor, so it halts there
notifying that a local minimum is found. Unlike the Rosen-
brock function, which have curved valley, valleys found here
are strait. This makes tracking valleys easier. Note that a
valley’s floor is very neutral i.e. it has much smaller gradient
in comparison to the valley’s walls.

The change of the quantization shows another interesting
behaviour. In order to obtain meaningful results, the quan-
tization of the coarse grid has to be finer than the quan-
tization of the the fine grid i.e. the coarse grid has to be
quantized in more quantization levels then the fine grid. If
the difference of the coarse grid’s and the fine grid’s number
of the quantization levels is below a certain lower threshold,
a true minimum cannot be found. This can be considered as
a needle-in-a-haystack problem. Beyond the aforementioned
lower threshold, a true minimum can be found. As the num-
ber of the coarse grid’s quantization levels becomes larger,
the number of local minima increases. New local minima
mostly appear along the valleys. At very fine quantization,
above a certain upper threshold, HJ could break through
some valleys. Similar behaviour occurs when the Rosenbrock
function is optimized by HJ. HJ needs to lower its step to
very small values, so it could pass Rosenbrock’s valleys, at
the cost of very large number of small steps. For example,
for one problem, the lower threshold is on 2° quantization



levels i.e. 6 quantization bits and the upper threshold is on
2 quantization levels, which is a very big difference.

4. HYBRID OPTIMIZATION

One solution for the ruggedness issue is hybridization [19].
HJ is chosen as a local search algorithm. HJ is a simple
algorithm and it is not hard to implement in a integer arith-
metic. Other possible candidates were Powell method and
Nelder-Mead method. Other methods are harder to imple-
ment in integer arithmetic. ABC [10], a novel popular meta-
heuristic, is used as a global search algorithm. GA is also
commonly used in literature [17] [16]. ABC is easier to un-
derstand than GA. PSO is harder to implement in integer
arithmetic. Also, for inverse scattering problems, ABC is
more effective than PSO [15].

Evaluation of the one ABC+HJ hybrid approach [9] shows
small acceleration on rugged functions like Ackley, Griewank,
Rastrigin. The reason for this is that the aforementioned hy-
brid approach most of the time explore the search space by
ABC and occasionally executes HJ only on the best solution.
Since ruggedness drags deceptiveness, ABC work most of the
time with false gradient information HJ converges to local
minima and convergence to the global minimum is slow. A
better approach would be to make the global search algo-
rithm use the results of the local search algorithm [19]. The
landscape of the local minima could look less rugged from
the global search algorithm’s point of view. This way, ABC
works only with local minima.

To overcome the issue of valleys not oriented along the axes,
mentioned in Chapter 3, a modified version of hill-climbing
(HC) algorithm is used. The purpose of HC is to squeeze
through the valley towards a better minimum, from a point
where HJ stopped. The main feature of modified HC is the
ability to check the neighbours in other directions besides
along the coordinate axes. Neighbours are in directions de-
fined as having the greatest common denominator equal 1
and first (Manhattan) norm equal 2. For example, neigh-
bour is in direction (1,1) but it is not in direction (2,0),
because (2,0) even having first norm equal 2, greatest com-
mon denominator is not 1 but 2. A simple version of HC is
used, where the algorithm moves from the current position
to the position of the first neighbour with a smaller cost.
Since HC tracks strait valley, it moves in only few direc-
tions. The algorithm memorizes the two most recently used
different directions. The algorithm tries to search in mem-
orized directions first, starting from the most recently used
direction, before searching in all directions. While tracking
through a valley, it is common that two directions occur al-
ternately. This indicates that the valley is oriented to the
vector sum of these two directions. The algorithm tries to
track the pattern from these two directions, before search-
ing in memorized directions. If a pattern movement is not
successful, the valley probably changed the orientation and
the two directions from the memory are probably stalled.

Additional landscape analysis shows that HC will merge
many local minima found by HJ. HC will lower number of
the HJ’s local minima by order of magnitude. Also, the
probability that the true minimum is hit from the first at-
tempt of local search is much larger when using HJ with HC
in comparison to HJ only. Modified HC is more expensive

than HJ when solving same problem. In the worst case HC
search 2N directions, while HJ just 2Ny, where Ny is num-
ber of optimization variables. On other side, HC is more
effective on lower quantization threshold than HJ on up-
per quantization threshold, because difference between lower
and upper quantization threshold is large, as mentioned in
Chapter 3, which amortizes the cost of HC probing in larger
number of directions.

The ABC algorithm used in this paper is slightly changed.
Instead of terminating the algorithm when a certain number
of iterations or function evaluation is reached [12], the algo-
rithm is terminated when the best solution is not changed
for certain number of iterations i.e. when the algorithm stag-
nates for a certain number of iterations. The ABC global
search algorithm is hybridized with HJ and HC on following
way: every ABC’s candidate solution that needs cost func-
tion evaluation is improved with HJ first, and then with HC
next. That way, the bees in ABC work with local minima
only. One feature of this hybrid is that almost all exploita-
tion is done by local optimizations, which causes that the
values of ABC parameters proposed in literature [1] [9] are
too large. A meta-optimization based method for parame-
ter tuning [1] demands trying multiple parameter candidates
and evaluating ABC on a same candidate over 30 or more
times to obtain a good mean of cost, which is unacceptably
slow. A different approach to parameter tuning is tried.
Maximum trial and stagnation thresholds are set to higher
values. Every time a better solution is found by an employee
or onlooker bee or whenever new scout is sent, the count of
trials is logged, before it is restarted. Similarly, when a new
best solution is found, the number of iterations under stag-
nation is saved before restarting. The histograms are made
from these logs. Histograms could help choosing lower pa-
rameter values than initial one. The number of bees is twice
as big as the number of optimization variables. A larger
number of bees will lead to more exploitation, which is al-
ready done by local search. Large number of bees also means
more expensive iterations. On other hand, literature [1] ne-
glects the impact of the bee number on the performance of
the optimization.

S. EXPERIMENTAL VALIDATION

Table 1 presents a comparison of optimization algorithms.
A 3-cell 1D problem is optimized over three case: 2°, 28
and 2 quantization levels. Every algorithm is tuned to a
100% success rate on the simplest problem with 2° quan-
tization levels, in order to have a fair comparison. The
first two rows show the maximum number of trial iterations
Nmaz_trials and the maximum number of stagnation itera-
tions Nmaa_stagn. Number of bees Npees is kept as double
the number of optimization variables. Every cell shows cost
in function evaluation and success rate, averaged over 50
algorithm runs.

As seen in Table 1, ABC method hybridized with HJ and
modified HC with memory, gives the best performance. It
it also seen that finer quantization demands more function
evaluations and degrades success rate. At upper threshold of
2 quantization levels success rates are better. The reason
for that is the ability of HJ to break through more valleys,
as described in Chapter 3.



Table 1: Comparison of optimization heuristics

Heuristics | ABC | ABC+HJ | ABC+HJ+HC
Nmaz,trials 150 30 12
Nmaz,stagn 2000 60 14
96 121 100 79
100% 100% 100%
o8 1890 1420 669
50% 80% 98%
ol4 10030 33141 2044
0% 94% 100%

6. CONCLUSIONS

This paper shows that landscape analysis could help in hy-
bridization, modification and tuning of optimization heuris-
tic. It is important to consider valley structures, when op-
timizing the MWT objective function landscape. Choosing
the right level of quantization is important to perform suc-
cessful search. If quantization is too coarse, then a true
global minimum will never be found. Finer quantization
will decrease performance.

One of the future tasks is examining objective function sep-
arability. If the objective function is separable, additional
acceleration could be obtained [3]. An additional future task
is implementing an adaptive local search method [11] which
promises faster convergence, especially in valleys. Also, the
proposed optimization heuristic should be tested on a more
realistic forward solver, using realistic phantoms with hu-
man tissues [18].
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ABSTRACT

In this paper, we examine the problem of assigning vehicles
to each day of a planning period based on existing theoreti-
cal schedules in public transportation. The assignment of a
vehicle to daily tasks has to satisfy certain requirements. If
the problem addresses long-distance bus transportation, ve-
hicles returning to their starting depots would usually result
in a high additional cost. Because of this, we also have to
assign a garage to each vehicle where they spend the night
and from where they start their next daily schedule. We
also want to minimize the arising traveling and operational
costs. We give a network-based mathematical model for the
problem. We examine solutions both of the model and of
heuristic methods, and present their results.

Categories and Subject Descriptors
J.m [Computer Applications|: Miscellaneous

General Terms
Vehicle scheduling, Application, Heuristic

1. INTRODUCTION

Public transportation companies usually create their sched-
ule in advance for a longer planning period. The days of
this period belong to different day-types (workdays, holi-
days, etc.). Days that share a day-type have the same un-
derlying theoretical schedule. Such a daily schedule divides
the set of trips into vehicle duties, which also give the exe-
cution order of tasks in that duty. These duties are carried
out by the vehicles of the company each day.

If several days share the same day-type, the same vehicle
duty will exist for all of them, and a duty will always be
executed by a single vehicle. However, it does not necessarily
have to be the same vehicle every day for the same duty.
The goal of this paper is to assign the above given duties to
vehicles, thus creating a unique roster for each vehicle over
the desired planning period.

The outline of this paper is the following: first, we present
the classic problem of vehicle scheduling, and demonstrate
the concept of vehicle duties through it. Using this, we define
the schedule assignment problem, where we aim to organize
the duties of vehicles over a longer planning period. For this
problem, we give a mathematical model, and also present a
matching based heuristic. The solution of both the model
and heuristic are tested on real-life instances.

2. VEHICLE SCHEDULING

For the introduction of the VSP, we refer to our formaliza-
tion in [5]. We are given a set V' of vehicles and T' of service
trips. Every trip has a departure and arrival time, a start-
ing and ending location, and a set of vehicles that are able
to serve the trip. A (¢,t') pair of trips are compatible, if a
vehicle can service both trips with respect to the running
time and distance between the arrival location of ¢ and the
departure location of ¢’ (such a journey is called a dead-
head trip). A set D of depots can also be introduced for the
problem. In this case, every v € V vehicle has a depot-type
d(v) € D. Vehicles that share the same depot-type share
the same characteristics, and also have the same costs. If
a vehicle v belonging to depot d is used in the solution, it
contributes a cost of de(d) + te(d) x dist(v), where de(d) is a
one-time daily cost, and tc(d) is the cost of traveling a unit
distance for a vehicle belonging to depot d, while dist(v)
is the distance covered by vehicle v in the solution. A bi-
nary depot-compatibility vector v* = (v1, ..,v|p|) can also
be introduced for every trip ¢t € T'. If such a vector exists, a
vehicle belonging to depot d can only service trip t, if v}, = 1.
The VSP assigns the trips of the given timetable to vehicles,
satisfying the following conditions: for every v € V, the trips
assigned to v must be compatible with each other, and every
trip t € T must be executed exactly once. The cost of this
assignment has to be minimal.

If the problem has only 1 depot, it is called a single depot
vehicle scheduling problem (SDVSP), and can be solved in
polynomial time. A formulation for the SDVSP can be seen
in [2]. If the number of depots is at least 2, we get a multiple
depot vehicle scheduling problem (MDVSP). The MDVSP
was introduced by Bodin et al. in [3], and proven to be NP-
hard by Bertossi et al. [1]. An overview of different VSP
models can be found in [4].

The result given by the above VSP corresponds to a set of
vehicle duties for one day. A vehicle duty gives a set of tasks
that have to be executed by the same vehicle on the given



day. However, the VSP does not assign a specific vehicle to
its duties, only gives the required vehicle type. Because of
this, we call the result a "theoretical” schedule, as further
steps have to be taken to determine the exact vehicles in
service on the current day.

3. SCHEDULE ASSIGNMENT PROBLEM

As seen in Section 2, the resulting schedules of the VSP only
give vehicle duties for a single day. However, transportation
companies create their schedules in advance for a planning
period (eg. several weeks or months). Their usual method
is to separate the days of the planning period into different
types (eg. workday, Saturday, holiday, etc.), and have a the-
oretical vehicle schedule for each of these day-types. This
means that days belonging to the same day-type will have
the exact same vehicle duties throughout the entire planning
period. Same duties will always have the same requirement
for vehicle types over the planning period. However, they
will not necessarily be executed by the same vehicle on dif-
ferent days.

The input for the schedule assignment problem is the n day
planning period of the company, with each day i having an
assigned day-type dt(i). We are also given the set V of ve-
hicles that are available over the planning period. Similarly
to the VSP, a set D of depots is also introduced, and every
v € V vehicle is given a depot-type d(v) € D. Similarly
to the VSP, vehicles belonging to the same depot share the
same costs and characteristics. Set G represents garages
where vehicles can stay for the night between two days of
the planning period. For each day-type dt we also have a
daily vehicle schedule, which is the set S(dt) of vehicle duties
that have to be executed. Similarly to the trips of the VSP, a
vehicle duty j € S(dt) also has a binary depot-compatibility
vector v} = (v1,...,v|p|). A vehicle from depot d can service
duty j if and only if vé = 1. Vehicles in inter-city trans-
portation do not necessarily return to their starting garages
after executing a duty, as that could pontentially mean high
extra costs depending on the distance they have to travel.
Because of this, a garage g € G also has to be assigned to
the vehicle at the end of each day, where they will spend the
night and begin the next day of the planning period. The
goal of our problem is to assign these duties to the vehicles of
the company such that each duty is executed exactly once,
and the arising costs are minimal. A vehicle v from depot
d contributes dc(d) x work; + te(d) x dist(v) to cost of the
problem, where ded and tc(d) are the one-time daily and
unit-distance costs of a vehicle from depot d respectively,
dist(v) is the distance travelled by vehicle v during the plan-
ning period (either by servicing duties or traveling to/from
garages). The binary vector workY = (worki,...,worky)
denotes whether vehicle v was working on day 7 of the plan-
ning period, or not.

3.1 Model

In this subsection we will introduce an integer programming
model for the schedule assignment problem over a planning
period where vehicles have to spend the night at one of the
pre-assigned garages. Some notations in this section will
be different from the problem introduction above. Let us
consider a planning period of n days. Let D be the set of
nodes for the vehicle schedules for the planning period. Let
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di,; € D be the vehicle duty j on day i, where 1 <7 < n
and 1 < j < k where k is the number or duties on day i.
Let G be the set of nodes for the | garages. A garage g
has to be considered as a potential night garage for vehicles
at the end of every day of the planning period. To denote
this, we introduce multiple nodes for each garage. Let g ;
represent a state of garage j on the end of day i, where
0 <i<mnand1l < j <[ This node will represent the
number of vehicles staying at garage j at the end of day 1.
The special node go,; denotes the state of garage j at the
beginning of the planning period. Let V be the set of nodes
for the m vehicles. We represent vehicle ¢ with two nodes:
v;.0 represents the vehicle at the beginning of the planning
period and v;,1 at the end of the planning period. The edges
of our network will represent the possible traveling activities
of vehicles throughout the planning period.Vehicles staying
in their starting garage at the beginning of the planning
period are given by edges

E"® = {(vi,0,90,;)|1 <i < m, vehicle i starts at garage j}.

Vehicles ending the planning period in one of the garages
are represented by

E*® = {(gn,i,v5,1)[1 <i <1, 1 <j<m}.

Vehicles leaving the garages to execute a duty at the begin-
ning of a day are represented by edges

E* ={(gi-1,5,di,n)]1 <i<n,1<j<Il,1<h<k}

Vehicles returning to a garage at the end of the day from a
duty are represented by edges

B = {(din,gi;)|1 <i<n,1<j<1,1<h<k}

Vehicles staying at a garage for a given day are represented
by edges

B ={(gi-14,9i5)|1 <i<n,1 <j <1}
Circulation edges should also be added for each vehicle:
Ef = {(vi,l,vi,o)|1 S 7 S m}

Using the node set N = {D UV UG} and edge set E =
{E**UE"UE®UE™UFEIUE’} we can define the multi-
commodity network (N, E). Our network will have m sep-
arate commodities, one for every vehicle. The commodities
of this network will be denoted by ¢ € C. For each edge e
of this network, we give an integer vector z.. This vector
will have one component for every commodity ¢, which we
will denote by x5. The value x¢ represents if a vehicle ¢ is



assigned the traveling activity connected to edge e. Based
on the above network, we can formalize the mathematical
model in the following way:

>

e:(gi—1,j,di,n)EE

>

e:(d; p,gi,5)EE%E

z¢ = 1,V(4, h) pair
z¢ = 1,V(4, h) pair

ze =1,Ye € E*®

e =1Veec C

e:(gn,i,vj,1)EEYE

ng— Z ze =0,Yee C,Yne N

eent een—

z¢ €{0,1},Ve e {E"* UE" UE® UE™ U E/}

z¢ > 0 integer, Ve € E*

Z Z trexe — min

ceC e€EE

Constraints (1) and (2) restrict that there should be exactly
one vehicle executing a duty, and returning from a duty to
a garage. Constraint (3) does the starting setup for each
vehicle, assigning them to a garage given by the network.
Constraint (4) ensures that every vehicle ends the planning
period in exactly one garage. Flow conservation for the ver-
tices of the network is guaranteed by (5), while constraints
(6) and (7) provide the binary and integrality constraints for
all the variables. The objective function of the model min-
imizes the arising costs of the executed traveling activities.
The value trg gives the cost of a vehicle from commodity ¢
to service the activity denoted by edge e.

3.2 Extensions of the model

Depending on the requirements and problem size, other con-
straints can also be added to the model. One of the easiest
ways to decrease the problem size is to modify constraint (3).
In its current form, there is a separate commodity for each
vehicle available for the planning period, which can result
in a large graph even for a small number of vehicles. How-
ever, vehicles that have the exact same requirements can be
classified into groups. If we let V' be the set of such vehicle
groups, and k; be the number of vehicles in group ¢ € V,
then the following constraint can replace (3):

> w<kiVieVv (8)

J14,0:90,5

If garages i € G have a limited capacity m;, then we have
to introduce the following capacity constraint on all of their
incoming edges:

>

exd; n.9i,;

re <m;,Vj €G
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If the vehicles also have to be refueled at the end of every
day, we have to modify the underlying graph, and introduce
the set T for refueling stations. To assign a refueling station
for every vehicle at the end of a day, we have to introduce
two new sets of edges to the model instead of E9. Vehicles
heading towards a refueling station at the end of a day from
a duty are represented by edges

E™ = {(din,tij)|1 <i<n,1<j<|T|,1<h<k},

and vehicles returning to a garage after refueling are repre-
sented by edges

E™ ={(tij,9i;)1 <i<n,1 <5< T},

where ¢; ; represents a state of refueling station j on the end
of day ¢. In this case, constraint (2) is replaced with the
following;:

>

e:(di’h,t,;ﬁj)EE’"b

zg = 1,V(i, h) pair

3.3 A matching heuristic

We also present a heuristic solution for the above problem.
Given a planning period of n days, this method will sequen-
tially examine all (dg,dr+1) day pairs (0 < k < n — 1) over
the planning period. For each such pair, a bipartite graph
Gr = (Vkx U Dy, Ey) is constructed. The graph Gy repre-
sents the state of the problem at the beginning of day k.
The special value k = 0 denotes the beginning of the plan-
ning period. Let G be the set of garages where vehicles can
stay for the night.

Nodes v € Vj represents the vehicles from the fleet of the
company with a status at the end of day k, while nodes
d € Dy represent the vehicle duties of day k + 1. An edge
(v,d) exists in F, if the vehicle v is able to execute duty
d. The cost of an edge is based on the minimum of the
following distances: s,,q = min{sy,g + Sg,a}, where s, 4 is
the distance between the location of vehicle v at the end
of day k and garage g, while sy 4 is the distance between
garage g and the starting location of duty d for all g € G (the
smaller the distance, the bigger this value will be). Based on
the above graph, we can give the following matching model
for our problem (for a big enough number N). The binary
variable z, 4 represents if duty d is executed by vehicle v in
the solution, or not.

Z Ty,d = 17V7’ (11)

(v,d)EE
> wpa=1Yj (12)

(v,d)EE
Cv,a = min{N — s,,4},¥(v,d) € E (13)
Zy,qa € {0,1},Vv,d (14)
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We sequentially solve n such matching models for all day
pairs (di,dr+1),(0 < k < n — 1), which will give us the
schedule assignment for all vehicles over the planning pe-
riod. After solving the last matching problem, the position
of the vehicles will be the ending location of their last duty.
Because of this, we need to solve a final matching problem,
which sends every vehicle to the closest garage.

4. TEST RESULTS

We tested the model and heuristic solution on real-life in-
stances. These instances were part of a "what-if” scenario,
trying to coordinate the transportation of three counties
in Hungary. These counties organized their transportation
semi-independently before. The transportation companies
provided the input for a 3-month long planning period. The
input consisted of vehicle duties belonging to 4 day-types. A
single day had 90-170 vehicle duties depending on its type,
and the combined fleet of the companies was separated into
3 vehicle types. One vehicle type was able to execute any of
the duties, while the other two vehicle types were restricted
to some of the duties (eg. depending on the length of the
duty). Using the input data above, we created two main
groups of test instances: one with all three vehicle types,
and another with the restricted vehicle types merged into
one. We ran tests for the entire planning period of 3 months
and smaller intervals of it also. The mathematical model was
solved using the COIN-OR Symphony MILP solver. The re-
sults can be seen in Table 1.

Table 1: Results of the mathematical model

Vehicle | Planning Opt. Opt.
types period cost(km) | time(s)
1 week 1665.10 14.06
9 1 month 12219.50 221.23
2 months | 31993.40 758.09
3 months | 48800.00 | 1813.57

1 week 2123.40 14.00
3 1 month | 21221.20 228.26
2 months | 56 597.40 847.86

3 months | 88933.30 | 2008.83

This table shows both the cost of the instances (measured in
the km that the vehicles ran during the planning period) and
the time in seconds required for the solution. The results of
the heuristic method can be seen in Table 2.

It can be seen from the tables, that the solution of the model
is possible even for larger instances. This means that it can
be applied for practical problems, especially because the con-
straints of the model can easily be modified depending on
the requirements of the given company. The heuristic per-
formed poorly on small instances due to the large number of
sequential matching problems it has to solve, but manages to
significantly decrease the running time of bigger instances.
The quality of its solutions is far from the optimal value, but
the gap gets smaller as the length of the planning period in-
creases. However, one of the main reasons behind developing
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Table 2: Results of the heruistic
Vehicle | Planning Heur. Heur. Heur.

types period cost(km) | time(s) | gap(%)
1 week 2824.30 26.53 69.62

9 1 month | 16061.400 86.06 31.44

2 months | 37266.90 | 168.02 16.48

3 months | 55717.10 | 232.90 14.17

1 week 5463.00 24.38 | 157.28

3 1 month 31768.00 86.64 49.69

2 months | 70661.90 | 154.78 24.85

3 months | 106551.10 | 227.98 19.81

the heuristic was the ability to generate an adequate solu-
tion for the problem in a short time, in case we want to use
an initial solution for larger instances with a mathematical
programming based solution process. The heuristic fits this
requirement well.

5. CONCLUSIONS

In this paper, we examined the application oriented prob-
lem of assigning schedules to vehicles over a planning period.
We wanted these assignments to take into consideration the
requirements of the vehicles themselves, and provide more
information than a “theoretical” solution this way. For this,
we introduced the schedule assignment problem, and pro-
vided a mathematical model for it. The basic model consid-
ers the parking requirements of vehicles at the end of each
day, but we also gave extensions for garage capacities and
refueling at the end of each day. We also devised a matching-
based sequential heuristic for the problem, which decreases
the running time significantly, but comes at the cost of being
far from the optimal solution in quality.

A future extension of the model will include the requirement
of regular mechanical inspection: vehicles have to be sent for
a daily inspection after executing duties for a given amount
of days. For this, we considered a state-expanded version of
the current model, but the size of its current version is still
too large to yield a solution yet. One natural way to handle
such a large problem is column generation, which needs an
initial solution with an acceptably quality. The matching
heuristic solves the problem quickly, and its results can be
applied effectively in such a solution process.
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A self-bounding Branch & Bound procedure for truck
routing and scheduling
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ABSTRACT

In this talk we will study a part of the core algorithm of a
complex software solution for truck itinerary construction
for one of the largest public road transportation compa-
nies in the EU. The problem is to construct a cost optimal
itinerary, given an initial location with an asset state, the
place and other properties of tasks to be performed. Such
an itinerary specifies the location and activity of the truck
and the driver until the finish of the last routing task. The
calculation of possible itineraries is a branch and bound algo-
rithm. The nodes of the search tree have the following argu-
ments: position, time, driver-state and truck-state. For each
node we calculate the cumulated cost for the road reaching
that state, and a heuristically lower bound for the cost of
the remaining road. In each step the procedure expands
the next unexpanded node with the best sum for cumulated
and heuristically cost. To make a sharp heuristic we run
the same branch and bound algorithm (from each node) but
with hypothetical positions (with coarser data and simplified
activities: no refuelling, no road costs, etc.). We anticipate
significant gains in performance and quality compared to the
previous approach.
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eComputer systems organization — Embedded sys-
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1. INTRODUCTION

We will study a part of the core algorithm of a complex
software solution for truck itinerary construction for one of
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the largest public road transportation companies in the EU.
A minor improvement on the operational cost of each tour
can result huge advantage for the freight services company.
The problem is to construct a cost optimal itinerary, given
an initial location with an asset state, the place and other
properties of tasks (we will call them routing tasks) to be
performed. Such an itinerary specifies the location and ac-
tivity of the truck and the driver until the finish of the last
routing task. This means that this itinerary gives every or-
der to the driver, including every turn in the road and every
stops with exact durations, etc. The working stops can be
done only in the places of the tasks, the refueling and resting
stops can be done only in previously fixed places (roughly
4000 fixed parking places and 100 fixed filling stations across
Europe). To achieve such an itinerary we use mapping soft-
ware to construct the routes and calculate the distance, du-
ration and cost between any two places. Clearly the problem
is much harder than a path finding in the graph, because we
can do many different actions in each place (different amount
of fueling liters, different duration of rest, etc).

The software (which also performs the vehicle assignment)
is already finished and applied with very good results (from
2015), large cost saving is reached by the company. For more
formal definitions of the problem, and more information of
the software one must read [2]. The ongoing researches aim
to extend the functionality of the software. One goal is to
improve optimality by plan the itinerary for longer times-
pan. That means more routing tasks in each round.

The calculation of possible itineraries is a branch and bound
algorithm. For detailed information on the widely used algo-
rithms of operations research the reader should see [1] The
nodes of the search tree have the following arguments: po-
sition, time, driver-state and truck-state (we will call these
data the state). For each node we calculate the cumulated
cost for the road reaching that state, and a heuristical lower
bound for the cost of the remaining road. Each node has a
pointer to its father (this will make it possible to calculate
the roue from a proper node). In each step the procedure
expands the next unexpanded node with the best sum for
cumulated and heuristical cost.

The following oversimplified example of [2] with Figure 1 il-
lustrates the tree of the algorithm. Suppose that we are in
position 'Start’ in the begining. From ’Start’ we can go to
different places for example two parking places 'P1’ and P2’
(the state will be different in the two locations if the dura-
tion and distance of the drivings are not equal). Supposing
that we can rest 9 or 11 hours we get two new nodes from
each parking place reaching node. If we can reach place 'P3’



from both 'P1’ and’P2’ then this way we get four different
nodes in the same place 'P3’. In general none of the four
nodes can be bounded in the algorithm, because the states
are different and hence we can not predict which will give
the best solution in the end.

Figure 1: An example subtree of the algorithm

The better the lower bounds are, the less nodes need to
be expanded. However, it is always more time-consuming to
make better estimations.

The difficulty with the heuristics is the relation of the state
of the driver and the opening times of the routing tasks.
Both would be easier to handle separately but together it
gives an NP-hard problem.

The main steps of the algorithm are the following:

1. Create the starting node of the tree from the initial
state and position of the driver. Put it in an empty
list L.

2. While L has any element:

(a) Pick X from L with the best TotalCost value.

(b) If the itinerary given by X is a complete tour
(finishing all the routing tasks), then RETURN
X.

(c) Select the best possible activities (set A) to do
from X.

BRANCHING: For each element of A create the
node (set V) which represents the state and po-
sition after that activity.

(d)

For each element of N calculate the cummulated
cost (we can get it by adding the cost of the ac-
tivity to the cummulated cost of X).

()

For each element of N calculate the heuristical
cost (this step will be examined in detail in the
next sections).

For each element of N compare the lower bound
for the reaching time with the limitations (we
get the lower bound during the calculation of the
heuristics). If the node can not reach the target
in time than delete it from N.
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(h) BOUNDING: For each element Y of N, where the
place of Y is P, get the list Lp of the previously
examined nodes in place P. Compare Y with ev-
ery element of Lp, and if there exists such Z that
every state related variable and the cost are not
worse in Z than in Y, then delete Y from N.

For each element of N put it into L and into
the proper Lp, list according to the place of the
nodes.

(i)

3. RETURN: Unreachable target. The target can not be
reached in the given time limit.

The algorithm has many additional logics, but here we focus
on the heuristics only. A more detailed description of the
algorithm can be found in [2].

2. THE CONCEPT OF THE MAIN BOUND-
ING METHOD

As we mentioned in the step 2/f of the algorithm we need
a good heuristic to bound the remaining cost from every
node. For this we need to calculate a minimal road and we
have to bound the needed duration.
First we estimate the remaining distance and driving dura-
tion. To optimize the running time we do not want to ask
the mapping software for all these estimations, but store
as much of the possibly needed information as we can. We
construct two graphs where the nodes are the possible places
of the tours (parking places, filling stations, etc.) and the
length of the edges are the minimal distances and driving
durations. From these graphs we generate the minimal dis-
tances and durations between each pair of nodes with the
Floyd-Warshall algorithm (this is a precalculation before
the itinerary generator algorithm mentioned before). It is
a whole separated topic how we handle the truck positions
and places of the routing tasks (since they are not perma-
nent, hence they are not contained in the graphs).
After we have a lower bound for the remaining driving time
we estimate the total time needed by constructing a hypo-
thetical itinerary. We suppose that the driver can drive the
maximal amount what he can, each time, and then reaches
a parking place. In each parking place he rests the min-
imal amount what is needed and then go further. When
he reaches a routing task sometimes he has to wait for the
time-window. However, supposing that there are no time-
windows the heuristics can be calculated in linear time (we
will call it linear heuristic).
On the other hand, if we think about how to include the

time-windows in the linear heuristic we face a problem. Namely,

sometimes it would be better to rest more, not just the min-
imal needed amount before making the task. The following
example highlights that behavior.

Suppose that the driver arrives at 6 a clock, after 9 hours of
driving, but the routing task opens at 10 a clock. To finish
the routing task, the driver has to work 1 hour there and we
have one more routing task which is 2 hours far from this.
When will we finish the last routing task?

1. If we wait for the first opening and work 1 hour, then we
cannot drive further because of the daily driving time limit
(9 hours). That way we have to rest at least 9 hours. After
the rest we can drive to the next routing task and finish it
until 23 a clock.

2. If we rest 9 hours instead of the 4 hours waiting then



we can start the work with a fresh state, drive to the next
routing task and finish it until 19 a clock.

The above example shows that we can not make good lower
bounds with such a concept (as in the linear heuristic) if we
try to optimize with the driver-state and the time-windows
at a time. However, to obtain better estimations for the
branch and bound procedure we must include the time-
windows in the heuristics. For the best fit (between the
heuristics and the algorithm) we apply almost the same log-
ics to calculate a lower bound for the duration as we use in
the branch and bound algorithm itself.

3. THE SELF-BOUNDING BRANCH AND
BOUND ALGORITHM

As we mentioned before the main branch and bound algo-
rithm works on nodes with position, time, driver-state and
truck-state. The positions are real places on the map. To
make a sharp heuristic in step 2/f of the algorithm (we will
call it B&B heuristic) we run the same branch and bound
algorithm (from each node) but with hypothetical positions
(with coarser data and simplified activities: no refuelling,
no road costs, etc.). This means that we generate those po-
sitions which was used by the linear heuristic and let the
different cases compete in total duration. The best solution
will give the B&B heuristic which will be the lower bound
for the remaining cost of the node in the main branch and
bound algorithm.

Observe that the B&B heuristic needs a heuristically lower
bound too. For this we can use the linear heuristic.

It is easy to see that this extended procedure can give much
better lower bounds for the main branch and bound algo-
rithm, but it is in question that if it is worth the extra time
consumed during the construction of the nodes (calculat-
ing their heuristic values). Observe that it is more likely to
get better heuristics this way if we have more routing tasks
(with time-windows).

4. RESULTS

We evaluated the differences using a sample pack of 4400
itineraries, containing 2 — 3 routing tasks in average. The
original branch and bound procedure (with the linear heuris-
tic) expands about 2.4 * 10* nodes during an itinerary con-
struction. The total time of the algorithm was about 3.2x10%
minutes, but we use about 100 parallel machines. Hence, it
runs in about 30 minutes to construct the 4400 itineraries.
The heuristics was calculated in about 2.7 % 10° ms in total.
There was 67 cases where the algorithm did not give a solu-
tion because of the running time limit.

The new branch and bound procedure (with the B&B heuris-
tic) expands about 2 10* nodes in the same sample pack
of itineraries, but each node creation needs more time. The
heuristics was calculated in about 1.4 * 10% ms in total (50
times more than the original). Fortunately the total time
of the algorithm was about 7.6 * 10*> minutes, which is just
twice the original. That way it is not yet better than the
original algorithm with this size. However, since the better
lower bound thin the searching tree, it is an exponential re-
duction in the number of routing tasks, which means that
this solution will be better for longer itineraries. We are not
capable to make statistics for more than 10 routing tasks in
one plan yet.

On the other hand the new algorithm failed to give a solu-
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tion only in 35 cases because of the running time limit. We
hope that with some modifications to make the heuristic
branch and bound faster, we can calculate longer itineraries
which can not be calculated with the original heuristics. If
we reach a proper running time with the new branch and
bound heuristics, we will try to give more tasks for the plan-
ning (now it is about 2 — 3 routing tasks in average). It is
anticipated that with this method we can plan two times
longer itineraries.
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ABSTRACT

The paper’s aim is to provide some insight regarding the per-
formance of balanced and unbalanced discrete manufactur-
ing flow lines. The investigation is based on phyisical simula-
tion systems. The performance characteristics are gathered
with a discrete time simulation program using next-event
time advance mechanism. The model has been implemented
in AIMMS modelling language.
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tic processes; J.6 [Computer-Aided Engineering]: Computer-

aided manufacturing
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Keywords
flow line, discrete time simulation, factory physics, through-
put, cycle time

1. INTRODUCTION

Discrete manufacturing systems can be classified by several
disciplines. Following Govil and Fu [4], the manufacturing
systems can be job shops, flow lines, flexible manufacturing
systems or assembly systems. The research of manufacturing
systems uses diverse modelling techniques, e.g., simulation
models [13], queueing theory and Petri nets [9].

Companies make great efforts to diminish their ecological
footprint, which is highly connected to supply chains. Inter-
est in researches on environmentally benign business prac-
tices has been continuously increasing. It is necessary to
adopt some of these techniques in order to sustain a green
supply chain [12]. The study of flow lines is important as
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they are frequently parts of complex supply chains. Manu-
facture of various products, such as cars, pharmaceutical in-
gredients and electrical goods are only a few instances where
flow lines can be used for modelling.

In this paper, flow lines are investigated using physical ex-
periments and discrete time simulation model. Some ex-
amples from the literature contain investigations into flow
line with common buffer [16], complex optimization prob-
lems where the flow line is only one element in the model
[8] or more complicated systems. Huang and Li examined
a two-stage hybrid flow shop with multiple product families
[7]. Simulation modelling has a wide range of applications
in engineering-aided manufacturing regarding system per-
formance. Modelling apparel assembly cells [1], a Mercedes-
Benz production facility [10], or analyzing the performance
of a Korean motor factory [2] are only some of the examples.

Hopp and Spearman [6] have introduced the concept of fac-
tory physics consisting of useful theories. The type of ma-
terial flows that they investigated is the flow line in which
there is only one machine per station, one job class, and no
capacity constraint.

Three main modelling measures are proposed by Hopp and
Spearman:

e Throughput (TH): the number of entities (cars, apples,
people, etc...) coming out from the system during a
given time

e Cycle time (CT): the time an entity spends in the sys-

tem

e Work-in-process (WIP): the number of entities residing
in the system at the same time

The higher TH and lower CT the system has, the better the
performance will be. These parameters are not independent
from each other. Little’s law makes connection among them:

WIP=TH x CT

The variability of procedures is measured by the coefficient
of variation (CV):

standard deviation

CV =

mean

Hopp and Spearman use two so called characteristic func-
tions to analyze the performance. The dependent variables
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Figure 1: The simplified flow chart of the simulation model

are the TH and the CT, while the independent variable is
the WIP level both times. The flow line is modelled as a
closed network. It means that the level of WIP is a model
parameter [14].

Regarding performance analysis, three important concepts
were introduced [6]:

e Best case performance: the best possible performance
for a line. It is balanced, and there is no batching.

e Worst case performance: the worst possible perfor-
mance for a line. All the entities move in one batch.

e Practical worst case (PWC): As the worst case perfor-
mance is so bad that it is far from practical instances,
PWC was introduced to define a realistic worst case.

The paper’s aim is to provide some insight regarding the
performance of balanced and unbalanced discrete manufac-
turing flow lines. The deteriorating effect of variability in
balanced and unbalanced systems is examined in a quanti-
tative manner.

2. METHOD OF EXAMINATION

In this research, the same characteristics are used to evalu-
ate the performance as in [5]. Both physical and simulation
model experiments are performed to gather data. The mod-
els were closed networks containing single machine stations
and using CONWIP control. In the physical model experi-
ment, a toy car factory has been realized with the assump-
tion of infinite raw material stock and stochastic demand.
The entire process to build a small car takes 4 minutes. In
an arbitrary way, the operations could be distributed among
the stations where one-one person worked with different abil-
ities.

The simulation model is a discrete time simulation program
with next-event time advance mechanism. Comparing with
fixed-increment time advance method, it is more compli-
cated, but more efficient regarding computational need [15].
Figure 1 shows the basic mechanics of the model. W notes
the WIP level of the model while the actual WIP reflects
the state of the simulation. In the model, the process times
are stochastic variables with normal distributions.
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2.1 Implementation of the model

The simulation program is implemented in AIMMS mod-
elling language [11]. It has already been used in other studies
with success. E.g., [3] used it on supply chain optimization
with homogenous product transport constraints. It is cho-
sen for a number of reasons. The simulation program can
be easily extended in this environment. AIMMS is linked
to the most modern solvers, which are easily integratable.
Furthermore, it has an advanced graphical user interface,
which can be used for creating simply usable and aesthetic
softwares.

3. COMPUTATIONAL RESULTS
3.1 The effect of variability

The results of the physical experiments showed performance
decrease because of the variability. This effect has already
been shown in [6]. Balanced flow lines with different CV’s
are compared with the deterministic case (see Figure 3).
As the CV grows, the TH decreases, and the CT increases.
Comparing the lines on the optimal WIP level of the deter-
ministic case, that is to say on WIP = 4, it can be stated
that TH gets lower by 13% at CV = 0.2, 23% at CV = 0.4,
31% at CV = 0.6, 37% at CV = 0.8 contrasted to the de-
terministic line. In the meantime, CT increases by 14% at
CV = 0.2, 30% at CV = 0.4, 44% at CV = 0.6, and 58% at
CV = 0.8 compared to the deterministic case.

Contrary, unbalanced systems are less sensitive to the influ-
ence of variability. A balanced and an unbalanced line are
set against each other on figure 2. Relative changes are dis-
played on the ordinate, which shows the deteriorating effect
of variability from a different aspect. It is easier to see the
difference in the drop of performance regarding WIP. These
characteristics are calculated in the following way:

CLbs(T‘I_Istoch - THdet)

THye =
: THoyer

Table 1: Comparison of the maximal deteriorations

Balanced | Unbalanced
TH 42% 23%
CT 174% 129%
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The extent of deterioration is bigger when the line is bal- = _
anced. In this case, the maximal TH decrease is 42% and 50,6 g
23% in the unbalanced one. The maximal CT increase is a
74% when the flow line is balanced; 29% when it is unbal- 04
anced. It means that the maximal deterioration of TH is
twice as high in balanced lines than in unbalanced lines, 02
and the CT maximum is 2.5 times as high. The loss of TH
and the growth of CT increase until the deterministically Y . s s s w12 1w 1w m amt
optimal WIP value is reached. The curves of both system WIP [
move together until the lower deterministically optimal WIP
value. After the peak, both functions begin to decrease. At () CV.=06
high WIP levels, they will converge into 1. Table 1 sums up 12 @
the results regarding the peaks. )
3.2 System unbalancing 0
In this research, a tradeoff is assumed between performance =
and stability. Balanced systems usually give better perfor- Sos
mance while unbalanced systems more stability. However, -
there are situations when unbalanced system is more effi- 04
cient.
02
It is illustrated by a case study here. Three systems are
0 0
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Figure 3: The impairing effect of variance
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Figure 4: Comparison of the performance of a balanced and
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The station with the process time of 0.55 hour has CV =
1. Two unbalanced cases are examined. They differ in the
position of the non-bottleneck process. A balanced and two
unbalanced flow lines are examinated in order to investigate
the tradeoff (see figure 4). While the balanced system has
a better performance regarding any WIP level in the deter-
ministic case, it is not true when stochastic processes are
investigated. Around the WIP optimum, the unbalanced
flow line has a better output. In practical cases, the optimal
level of WIP is about where the derivatives of the functions
change in the deterministic case. This is the region where
unbalanced systems work better (see Figure 4). According
to the experiments, the TH of the unbalanced system can
be 9-11% higher compared with the balanced line, the CT
is 8-9% lower in the earlier case. The positions of the bot-
tleneck procedures have no effect in the investigated cases.
The results confirm the assumption that there is a tradeoff
between performance and stability, and it can be handled as
an optimization problem.

4. CONCLUSIONS

Endeavours are generally made to balance flow lines. This
is an intuitive idea, and earlier researches showed examples
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where unbalanced systems had worse performance. In this
paper, it was showed that unbalancing the flow line in
a small extent achieves better performance on low
WIP levels, that is to say higher TH and lower CT. In the
examined case, the TH was 9-11% higher and the CT 8-9%
lower on the optimal WIP level of the deterministic case.
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ABSTRACT

In this paper a Hungarian soleplate
manufacturer's problem is described in details,
extended with alternatives and effectively solved.
First, after the presentation of the industrial
problem, the CPM graph of the problem is given
and then it is transformed into a process network.
Then the original problem is extended with
alternatives specified by various industrial needs,
for example an activity is performed in two
different ways and resources with different time
and costs. Then the corresponding mathematical
programming model is formulated: time optimal
and time optimal with additional cost constraints
mathematical programming models are given.
Please note that only the earlier corresponds to
the CPM problem and the latter is an extension.

The solution illustrates the efficacy of the method.

INTRODUCTION

The CPM (critical path method) is an algorithmic
approach of scheduling a set of activities, where
the duration times of the activities are known
together with their dependencies and the aim is to

calculate the longest path of the planned activities.

The method originates in the 1950s. For advances
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in CPM, please see Chanas and Zielinski, 2001,
Li et al. 2015, Madhuri et al. 2013. It is worth
mentioning that CPM orders the resources to the
activities without a representation in the CPM
graph. In case other type of resources are ordered
to the activities, the parameters of the problem
have to be reset and the problem has to be solved
again. This may result in a large number of
problems to be solved for a single case. Moreover,
it is also not handled by CPM where a given
subtask can be solved in different ways.

Process network synthesis is an optimization
methodology basically used in the chemical
industry. Based on a mathematical rigor, graph
theoretical approaches and  combinatorial
techniques are combined with the first focus on
the synthesis step, ie structure generation. This
method enables the consideration of alternatives
as well as generates all feasible solutions within
one model and one time solution process. For
details, see Friedler et al. 1992a, 1992b, Tick et al.
2013, Kovacs et al. 1999 and 2000, Garcia-Ojeda
et al. 2015, Losada et al. 2015.

Transforming CPM problems into process
networks is described by Vincze et al 2015. First
the two terminologies are mapped: an event
corresponds to a material, an activity corresponds
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to an operating unit, the dependencies between
the activities correspond to the material flows and
the CPM graph corresponds to the process
network. After the structural mapping and the
logical ~ connections  establishments, each
parameter of the original CPM is represented in
the resulting process network.

Industrial examples always raise the question of
alternatives, where a given subproblem can be
solved by performing more than one activity or
more than one series of activities, or various
resources can be ordered to the activities with
different durations, costs etc. These situations
cannot be represented within one CPM problem,
but after the transformation these can be handled
within the process network model.

SOLEPLATE
ING

MANUFACTUR-

A manufacturer in the southern region of Hungary
produces various types of soleplates for irons. For
this research paper the production of Gx3 and
EP5 types were investigated. These two soleplate
types are identical in terms of shape but they
differ in terms of assembling. Gx3 soleplates are
assembled by 4 operators in 8 hours shift when
the target is 1000 solaplates; and by 5 operators in
case of larger quantities. Other operators support
this production work with unpacking and material
handling; since these workers belong to other
work groups, their work tasks were considered to
be handled by one additional operator. The
production line is linear. One piece of Gx3
soleplate gets finished by 68 seconds.

Table 1. Production steps; with alternatives indicated in brackets

Gx3 soleplate production activities Time (sec)| Cost
Spider bending 7 5
Fuse welding 7 3
Cut 5 4
Thermostat welding (alternative thermostat welding) 10 (8) 5 (7)
Spider screwdriwing 14 4
Spider soleplate welding 13 5
Edging 3 4
Cut 2 5
Test (alternative test) 7 (9) 5 (4)
Unpacking 7 5
Put on the work table (alternative put on the work table) 5(3) 4 (6)

Gx3 and EP5 types are different. While Gx3
soleplate is fixed by 2 screws and the inserted
part has to be edged, EP5 has a different
formation and is fixed in two different phases
with 3 screws drived in. Another major difference
is that the soleplates arrive to the production line
wrapped and thus a separate unpacking activity
has to be performed, which requires extra time
from the operator. The previously mentioned
additional operator supporting this production
line performs the unpacking in a serious of steps:
soleplates arrive in carton boxes, the boxes are
first cut along a mark, then the foils are removed

21

from the cut boxes, then the soleplates are put on
the work table. EP5 soleplates are put on the
work table on a plastic tray and with a paper
separator; these have to be removed first and the
plastic plus the paper have to be separately put
away into their containers, then the soleplates
have to be put on the work table. These additional
packaging tasks result that a piece of EP5
solaplate gets finished by 71 seconds. It can be
seen that the two types of soleplates are very
similar, yet different in some ways. The
differences of the necessary operating times may
be indicated for example in Yamazumi tables.
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Figure 1. CPM graph of the soleplate manufacturing.

Figure 2. A. Process network of the soleplate
manufacturing.

Please note that Figure 2.A. illustrates the process
network model of the soleplate manufacturing
and Figure 2.b contains the extended model with
alternative activities. Three activities may be
performed in two ways, namely

. put on the work table activity may be
performed under 3 seconds or as an alternative
under 5 seconds when a student or an assistant
performs the activity; please note that obviously
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B. Process network of the manufacturing
with alternatives.

their costs also differ, namely the former has a
cost of 6 and the latter has a cost of 4;

. thermostat welding activity may be
performed under 10 seconds or as an alternative
under 8 seconds when a senior welder performs
the activity; please note that obviously their costs
also differ, namely the former has a cost of 5 and
the latter has a cost of 7;

. test activity may be performed under 7
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seconds or as an alternative under 9 seconds
when a junior worker performs the activity;
please note that obviously their costs also differ;
namely the former has a cost of 5 and the latter
has a cost of 4.

When only time is considered in the mathematical
programming model, it corresponds to the
original CPM problem extended with the above
mentioned alternatives. Since in this industrial
case study financial issues were also taken into
consideration, therefore the time optimal
mathematical programming model was also
extended with costs constraints. Please note that
these models are detailed in Vincze et al. 2016.

CONCLUDING REMARKS

The CPM gives the longest path of the planned
activities together with its overall duration,
nevertheless, for industrial real case problems
where financial issues also influence the
decisions of the production processes it is very
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ABSTRACT

In this paper we discuss on NIST test results of a previously
introduced cryptosystem based on automata compositions.
Our conclusions based on the statistics confirm that the re-
quirements of NIST test are fulfilled.
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1. INTRODUCTION

The history of cryptography is crowded by examples when
supposed to be very safe encryption systems were proved
breakable. Based on the simple probability theory and math-
ematical logic, the one-time pad system (OTP), — which is
commonly called Vernam cipher — the only known crypto-
graphic system that is completely unbreakable. Only this
system is known to have a mathematical proof on its perfect
secrecy [17]. Although the OTP is the most reliable form of
encryption, in practice its use is not efficient. Each user must
have a copy of the symmetric key and the key exchange can
only be accomplished through secure communication chan-
nels. The key can not be used more than once and the key
size must be at least the size of the encoded text. OTP is
a symmetric system, where the decryption and encryption
key coincide, or any of them can be easily derived from the
other. Therefore, both of the encryptrion and decryption
keys must be secret, and those secret keys should be known
only by the sender and the recipient of the message. An-
other main type of cryptosystems is the asymmetric one —
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also called public-key cryptosystem, — where the determina-
tion of decryption key is infeasible for anyone knowing only
the encryption key. (The principle of public-key cryptog-
raphy was invented by Diffie and Hellman in 1976.) The
discussed novel cipher is a symmetric system.

Several types of cryptosystems based on automata theory
have been designed so far. Some of them are based on Mealy
automata [11, 16, 19, 20] or their generalization [2], while
others are based on cellular automata [5, 10, 14, 13]. Almost
all of the best-known automaton based cryptosystems share
the common problem of serious realization difficulties: some
systems are easy to defeat [3, 4, 15], the technical realization
of others result in slow performance [10], still others exhibit
difficulties in the choice of the key-automaton [14, 13], some
of them has no known rigorous security analysis and the
security of some systems is largely unknown [5].

In [6, 7] we introduced new block ciphers based on Gluskov-
type product of automata. In this paper we investigate the
system [6]. Both systems use the following simple idea: Con-
sider a giant-size permutation automaton such that the set
of states and the set of inputs consist of all given length
of strings over a non-trivial alphabet as all possible plain-
text/ciphertext blocks. Moreover consider a cryptograph-
ically secure pseudo random number generator with large
periodicity having the property that, getting its really ran-
dom kernel, it serves a sequence of pseudo random strings
as inputs for the automaton. For each plaintext block the
system calculates the new state into which the actual pseu-
dorandom string takes the automaton from the state which
is identified as the actual plaintext block. The string, iden-
tified as the new state, will be the ciphertext block ordered
to the considered plaintext block. Of course, the ciphertext
will be the concatenation of the generated ciphertext block.
The giant size of the automaton makes it infeasible to break
the system by brute-force method.

The problem of this idea is that store of the transition ma-
trix of giant-size automata is impossible. Another idea is



that this problem can be overcomed considering automata
which consists of composition of automata. In this case, we
should store only the component-automata and the struc-
ture of the composition. Moreover, if the component au-
tomata are isomorphic to each others then it is enough to
store the transition matrix of one component automaton and
the structure of the isomorphisms. By this recognition, the
storage of automata having 2'%® states and 2'?® input signs
can be easily solved. The basic idea of this cipher is to oper-
ate on a giant secret square matrix which is compressed into
the memory using automata-theoretic methods. The matrix
has 2'%® rows and 2'?® columns such that each of its rows
is a permutation of all bitstrings of 128 bit length. Using
automata-theoretic methods, we can easily handle this giant
matrix. Because of the giant size of the matrix, there is no
hope to attack the system by brute-force method. On the
other hand, this giant matrix can be generated unambigu-
ously by a bitstring of 782 bytes length. Note that this less
than 1 kilobyte long string can be generated by an appro-
priate hash function using a secret password of any length.

For all notions and notation not defined here we refer to the
monographs [8, 9, 12, 1]. The discussed cryptosystem is a
block cipher. Since the key automaton is a permutation au-
tomaton, for every ciphertext there exists exactly one plain-
text making the encryption and decryption unambiguous.
Moreover, there is a huge number of corresponding encoded
messages to each plaintext so that several encryptions of the
same plaintext yield several distinct ciphertexts.

2. THEORETICAL BACKGROUND

By an automaton we mean a deterministic finite automaton
without outputs. If all the rows of the transition matrix are
permutations of the state set then we have a permutation
automaton.

Lemma 1. An automaton A = (A4,3,0) is a permutation
automaton if and only if for any a,b € A,z € X, §(a,z) =
0(b, z) implies a = b.

Let A; = (As, X5, 0;) be automata where i € {1,...,n}, n >
1. Take a finite nonvoid set ¥ and a feedback function p; :
A X - X Ay X X — X; for every i € {1,...,n}. The
Gluskov-type product of the automata A; with respect to
the feedback functions ¢; (i € {1,...,n}) is defined to be
the automaton A = Ay X -+ X A, (2, (¢1,.-.,%n)) with
state set A = A; X -+ X A, input set ¥, transition function
0 given by 6((a1,...,an),x) = (d1(a1, p1(at,...,an,x)),...,
On(an, pn(as,...,an,z))) for all (a1,...,an) € Aand z € X.
In particular, if A4 = ... = A, then we say that A is a
Gluskov-type power.

We shall use the feedback functions ¢;,7 = 1,...,n in an
extended sense as mappings ¢; : A1 X -+ X A, X X", where
pi(at,...yan,A) = X and ¢ (a1,...,an,px) =
wi(at,. .. an,p)pi(d1(at, (a1, .. an,D)), . -,

6"(0"@7%07*1(0’17 e 7an,p))7$)7 a; € A“Z = 17 <o TP € E*7$ S
3. In the sequel, ¢;,i € {1,...,n} will also be denoted by
.

Let Ay = (A, %4, 6:),t = 1,2 be automata having a common

state set A. Take a finite nonvoid set ¥ and a mapping ¢ of ¥
into Y3 X X5. Then the automaton A =

25

(A,%,9) is a temporal product (t-product) of A; by Az with
respect to 3 and ¢ if for any a € A and = € %, §(a,z) =
02(01(a, x1),x2), where (1, x2) = ¢(z). The concept of tem-
poral product is generalized in the natural way to an arbi-
trary finite family of n > 0 automata A; (¢ = 1,...,n),
all with the same state set A, for any mapping ¢ : ¥ —
[Ti, =¢, by defining §(a, z) = n(- - - 02(61(a, 21), x2), -+ , Tn)
when ¢(x) = (21,...,2»). In particular, a temporal prod-
uct of automata with a single factor is just a (one-to-many)
relabeling of the input letters of some input-subautomaton
of its factor.

Lemma 2. Every temporal product of permutation au-
tomata is a permutation automaton.

Given a function f : X1 x --- x X,, — Y, we say that f
is really independent of its i-th wvariable if for every pair
(1'1,. .. ,xn), (:L‘l, .. .,xifl,l’fb-,l’hq, .. .,Z'n) e XX+ x Xy,
flx, .., zn) = f(o1,...,mim1, 2}, Tit1, ..., Ty). Otherwise
we say that f really depends on its i-th variable.

A (finite) directed graph (or, in short, a digraph) D = (V, E)
(of order n > 0) is a pair consisting of sets of wertices
V ={v1,...,v,} and edges E C V x V. Elements of V are
sometimes called nodes. Moreover, if (v,v’) € E then it is
said that (v,v") is an outgoing edge of v, and simultaneously,
(v,v") is an incoming edge for v’. (In this way, a loop edge
(v, v) has both of these properties with respect to the vertex
v.) An edge (v,v’) € E is said to have source v and target v'.
If |V| = n then we also say that D is a digraph of order n. If
V can be decomposed into two disjoint (nonempty) subsets
Vi, Va such that Vi is the set of all incoming edges and V5 is
the set of all outgoing edges then we say that D is a bipartite
digraph.

Let ¥ be the set of all binary strings with a given length
¢ > 1 and let n be a positive integer, let A4; = (X,X X
3,8.4,) be a permutation automaton and let A; = (X, x
X,04;),% = 2,...,n be state-isomorphic copies of A; such
that A, ..., A, are pairwise distinct, and let n be a power
of 2. Consider the following bipartite digraphs:

D =({1,...,n}{(n/2+1,1),(n/2+2,2),...,(n,n/2)}),
Dy = ({17,?1},{(77,/4-1- 171)7(n/4+272)77(n/27n/4)a
(Bn/4+1,n/24+1),(3n/4+2,n/2+2),...,(n,3n/4)}),

.y

,Dl092”*1 = ({17"‘7n}7{(371)7(472)7(775)7(876)7"-7
(n—1,n—3),(n,n—2)}),

Diogon = ({1,...,n},{(2,1),(4,3),...,(n,n—1)}),
Dlog2n+1 - D17

DQloan = Dlog2n~

For every digraph D = (V, E) with D € {Dx,...,Daiogyn}»

let V1 be the set of all incoming edges and let V> be the set
of all outgoing edges, and define the Gluskov-type product,



called two-phase D-product,

Ap = A1 x - X Au(Z", (91, -,n)) of Aq,..., An so
that for every (a1,...,an), (x1,...,2n) € X", i € {1,...,n},
Spi(ah sy Any ('Tlv . .7.1‘”)) = (aj @ xj7xi)7 if (]77/) eWn
and a; @ x; is the bitwise addition modulo 2 of a; and zj,

i(at, ..., an, (@1,...,20)) = (a) ® xj,24), if (4,9) € Va, aj
denotes the state into which
pjlai,...,an,(z1,...,zn)) takes the automaton from its state

aj, and aj @ z; is the bitwise addition modulo 2 of a; and
Zj.

Let B = (X", (2")*°92" §5) be the temporal product of
Apy, ..., Apy,,,, With respect to (£7™)?1°92™ and the iden-
tity map ¢ : (X7)2e92n — (2m)2e92n We say that B is a
key-automaton with respect to Ai,..., An.! Obviously, B
is unambigously defined by the transition matrix of .4; and
the bijective mappings 7 : ¥ — X,..., 7, : ¥ — ¥ which
represent the state isomorphisms of As,..., A, to A.

An important property of key-automata is explained in the
following result.

Theorem 1. Every key-automaton is a permutation au-
tomaton.

Both of the encryption and decryption algorithms use a

pseudo random generator and the above defined key-automaton.

3. THE NIST TEST

The National Institute of Standards and Technology (NIST)
published a statistical package consisting of 15 statistical
tests that were developed to test the randomness of arbi-
trarily long binary sequences produced by either hardware
or software based cryptographic random or pseudorandom
number generators. In case of each statistical test a set of
P-values was produced. Given a significance level «, if the
P-value is less than or equal to a then test suggests that
the observed data is inconsistent with our null hypothesis,
i.e. the 'hypothesis of randomness’, so we reject it. We used
a = 0.01 as it is common in such problems in cryptography.
An «a of 0.01 indicates that one would expect 1 sequence
in 100 sequences to be rejected under the null hyphothe-
sis. Hence a P-value exceeding 0.01 would mean that the
sequence would be considered to be random, and P-value
< 0.01 would lead to the conclusion that the sequence is
non-random.

One of the criteria used to evaluate the AES candidate algo-
rithms was their demonstrated suitability as random number
generators. That is, the evaluation of their output utiliz-
ing statistical tests should not provide any means by which
to distinguish them computationally from a truly random
source. Randomness testing was performed using the same
parameteres as for the AES candidates in order to achieve
the most reliable and comparable results. First the input pa-
rameters —such as the sequence length, sample size, and sig-
nificance level- were fixed. Namely, these parameters were
set at 220 bits, 300 binary sequences, and a = 0.01, respec-
tively. Furthermore, Table 1 shows the length parameteres
we used.

1Recall that n should be a power of 2.
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Table 1: Parameters used for NIST Test Suite

Test Name Block length
Block Frequency 128
Non-overlapping Template 9
Overlapping Template 9
Approzimate Entropy 10
Serial 16
Linear Complexity 500

In order to analyze the output of the algorithm we encrypted
the Rockyou database, which contains more than 32 millions
of cleartext passwords. Applying the NIST test for the en-
crypted file it has turned out that the output of the algo-
rithm can not be distinguished in polynomial time from true
random sources by statistical tests. The exact p-values of
the evaluation of the ciphertext are shown in Table (2). We
also tested the uniformity of the distribution of the p-values
obtained by the statistical tests included in NIST, which is a
usual requirement in the literature (see e.g. [18]). The uni-
formity of p-values provide no additional information about
the type of the cryptosystem. We have also shown that the
proportions of binary sequences which passed the 0.01 level
lie in the required confidence interval (see e.g. [18]).

Table 2: Results for the uniformity of p-values and
the proportion of passing sequences

P-value | PROPORTION STATISTICAL TEST
0.162606 296/300 Frequency
0.407091 298/300 BlockFrequency
0.574903 297/300 CumulativeSums
0.840081 295/300 CumulativeSums
0.205897 297/300 Runs
0.284959 297/300 LongestRun
0.527442 297/300 Rank
0.623240 298/300 FFT
0.958773 295/300 NonQuerlappingTemplate
0.419021 299/300 OverlappingTemplate
0.220931 298/300 Universal
0.935716 299/300 Approximate Entropy
0.516465 171/177 RandomFExcursions
0.384836 172/177 RandomExcursionsV ariant
0.042808 298/300 Serial
0.253551 296/300 Serial
0.039244 295/300 LinearComplexity




3.1 Sarkozy and Mauduit randomness test

Different security audits and processes use different statis-
tical tests and methods. In order to fulfill further require-
ments we performed the Sarkézy and Mauduit methods in
order to study the behaviour of pseudorandom sequences
generated by our cryptosystem. Let Ex = {e1,e2,...,en} €
{—1,4+1}" represent a finite binary sequence. Let us define

t
U(En,t,a,b) = ea+js
j=0

The well-distribution measure of Ey is defined by

M-1
g €utjv
j=0

where the maximum is taken over all M, u,v with u+ (M —
1)v < N. Furthermore let us define

W(En) = max |[U(En, M,u,v)| = max

M,u,v M,u,v

M
V(EN, M, D) = E €n+d; Cntdg - - - e"erk
n=1

The correlation measure of order k of En is defined by

M

Ck(EN) = IJ\I/II?'I))( |V(EN, M, D)‘ = IJE,al))( Zlen+dl €n+tds - - - Entdy
n—

where the maximum is taken over all M and D = (d1,...,dx)
such that 0 < d; < --- < dp < N — M. The goodness of a
PRNG is determined by the order of W(Ey) and Ck(EN).
We were not able to distinguish the output of our cryptosys-
tem from true random sources by analyzing the deviation of

W(EN) and Ck(EN)

4. CONCLUSIONS

The output of our crypto algorithm has passed all statistical
tests we performed (NIST test, Sarkézy and Mauduit test)
and we were not able to distinguish it from true ran-
dom sources by statistical methods. Statistical analyses of
a cryptosystem is a must have requirement, and these tests
are good indicators that further analyses should be done.
Exact cryptoanalyses like chosen-plaintext, known-plaintext
and related-key attack will be investigated in order to prove
or disprove the strength of this cryptosystem. These prob-
lems are the subject of our future research.
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ABSTRACT

In this paper we present an automatic algorithm evaluation
system called ALGator, which was developed to facilitate
the algorithm design and evaluation process. The system
enables unbiased tests of the correctness and quality of im-
plemented algorithms for solving various kinds of problems
(e.g. sorting data, matrix multiplication, traveler salesman
problem, shortest path problem, and the like). Within the
ALGator one can define a problem by specifying the problem
descriptors, test sets with corresponding test cases, input
parameters and output indicators, algorithm specifications
and criteria for measuring the quality of algorithms. When a
user of the system submits an algorithm for solving the given
problem, ALGator automatically executes this algorithm on
predefined tests, measures the quality indicators and pre-
pares the results to be compared with the results of other
algorithms in the system. ALGator in meant to be used by
algorithm developers to perform independent quality tests
for their solutions.

Keywords
algorithm development, automatic execution and evaluation,
algorithm testing and analysis

1. INTRODUCTION

Algorithm evaluation is a very important part of an algo-
rithm design and implementation process. The ALGator
was designed to facilitate an automatic algorithm evaluation
process. It is used to execute an algorithm implementation
on the given predefined sets of test cases and to analyze var-
ious indicators of the execution. Within every project of the
system user can define the problem to be solved, sets of test
cases, parameters of the input and indicators of the output
data and the criteria for the algorithm quality evaluation.
When a project is defined, any number of algorithm im-
plementations (programs) can be added. When requested,
system executes all the implemented algorithms, checks the
correctness and compares the quality of their results. Using
the ALGator user can add additional quality criteria, draw
graphs and perform evaluations and comparisons of defined
algorithms.

1.1 User roles

The ALGator can be used by users with different roles. An
unauthenticated user (guest) can execute only those actions
that do not change the system, which basically means that
such user can only view the public data. For all the other
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activities user must be logged into a system and must have
one of the following roles.

System administrator.

The system administrator installs and manages the whole
system (the software and hardware part), and has the ac-
cess to all the resources of the system.

Project administrator.

The project administrator defines the project by a) imple-
menting the predefined java or C++ interfaces that describe
the problem and the structure of the algorithm; b) defining
sets of test cases on which algorithms will be executed, and
¢) characterizing the format of the input and the output of
algorithms (i.e. defining the parameters of the input and in-
dicators of the output). Project administrator has an access
to all the project resources. If the project is made public,
project data can be seen by all users, while private projects
can be seen only by project and system administrators.
Researcher.

The researcher defines an algorithm within the selected pro-
ject, runs predefined tests and compares the results with the
results of other algorithms. Public algorithms can be seen
by every user while the private algorithms can only be seen
the owner (i.e. researcher) and the project administrator.

1.2 A typical use case
A typical way of using the ALGator is as follows:

e The system administrator prepares the system by pro-
viding the hardware, installing the ALGator software
packages, and publishing the internet address of the
installed system.

e The project administrator adds a new project and de-
fines all the project’s properties. When the project is
completely defined and declared as public, the ALGa-
tor automatically generates an internet subpage with
the project presentation and usage guide sections.

e The project administrator adds some state of the art
algorithms for solving the problem of the project, which
will be used as a reference for the evaluation process
(i.e. the results of the algorithms added by researchers
will be compared with the results of these referential
algorithms).

e According to the rules, presented at the project’s web-
site, the researcher adds a new algorithm. The ALGa-
tor will automatically run the new algorithm on prede-



fined tests. The researcher then checks the correctness
and compares the results of his algorithm with the re-
sults of the other algorithms defined in the project.
The researcher can also decide to make the algorithm
public (by default, the algorithms are private).

e The guest of the system lists the results and prints
the graphs and other data produced by the ALGator.
Guest can also perform some actions (like customiza-
tion of the presentation) that do not alter the project
configuration.

2. PROJECT DEFINITION

The main task of the project administrator is to provide the
configuration files and to implement corresponding java or
C++ interfaces. Besides the definition of the output for-
mat (where the sequence of the parameters and indicators
in output file is described), the test cases, the test sets and
the algorithm structure has to be defined precisely.

The test cases and the test sets

A test case in the ALGator execution environment is de-
fined by a subclass of a TestCase class, which contains data
structures to hold the test case data. Since these data struc-
tures are project-specific (i.e. each problem needs data of its
own type) the project administrator has to implement the
[Project]TestCase class and prepare the data structures.
For example, in the data-sorting problem, the SortTestCase
class could be defined as follows.

public class SortTestCase extends TestCase{
// An array of data to be sorted
public int [] arrayToSort;

}

A test set contains one or more test cases and it is a mini-
mal execution unit. Test set is defined by a single text file in
which every line defines one test case. The format of these
lines is project-specific and it is defined by a project admin-
istrator. If required, additional files can be used to specify
the cases. Again, the syntax and the semantics of the con-
tent of these files is defined by a project administrator. The
following presents an example of the text file defining five
test cases for the data-sorting problem.

test1l:10000:RND
test2:20000:RND
test3:30000:RND
test4:40000: FILE: numbers. txt:12540
testb5:50000:FILE: numbers. txt:16534

To iterate the test set of a given project (i.e. to read the
lines of the text file, to parse and interpret their meaning and
to generate a test case for each line) the ALGator uses the
AbstractTestSetIterator class. The main task of this class
is to provide test cases (as [Project]TestCase classes) one
by one. The AbstractTestSetIterator class contains the
following methods: void hasNext() (returns true, if there
are some tests left in the test set), void readNext() (reads
the next test case and stores it in internal data structures)
and TestCase getCurrent() (returns the last test case read
by the readNext () method). Since the representation of test
cases is project-specific, project administrator has to provide
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the correct implementation of the getCurrent() method.
All the other methods are general and they can be used
without modification.

public class SortTestSetlterator
extends DefaultTestSetIterator{

public TestCase getCurrent () {
String [] fields = inputLine.split (”7:”);

probSize = Integer.parselnt(fields [1]);
String group = fields [2];

int [] array = new int[probSize];

switch (group) {

case "RND”:
Random rnd = new Random ();
for (i = 0; i < probSize; i++)
array [1] = rnd.nextInt (1000);
break;

/).
}

SortTestCase tCase = new SortTestCase ();
tCase.arrayToSort = array;
return tCase;

Algorithms

The “heart” of the each project are the implemented algo-
rithms. Each algorithm is represented by a subclass of the
AbsAlgorithm class with the following methods:

ErrorStatus init(TestCase test). This method takes care
for the input of the algorithm; it reads the test case
and prepares the data. To enable fast algorithm execu-
tion all expensive initial tasks have to be done in this
method. When this method is done all the required
algorithm’s input data has to be prepared in a proper
format.

void run(). In this method the execute(...) method is
called. The parameters of the execute() method are
project-specific and are provided by project adminis-
trator. The ALGator takes the time of the execution
of the run() method as an algorithm execution time
therefore nothing else as the execute() method call
should be placed in the run() method body.

public void run() {
execute (sortTestCase.arrayToSort );

}

ParameterSet done() . This method collects all the param-
sters and indicators of the execution and prepares them
in the form suitable to be written in to the output file.

The AbsAlgorithm class is abstract and the project adminis-
trator has to provide the [Project]AbsAlgorithm subclass
with the above mentioned methods implemented. Besides
he has to declare fields for input data (in these fields the
input data obtained from the test case will be stored dur-
ing the execution of the init() method) and the abstract



execute() method with appropriate number and type of
parameters. The task of the researcher is to implement a
subclass of [Project]AbsAlgorithm and implement the ex-
ecute(...) method. In other words, all the “dirty job”
of preparing data and collecting the results is done by the
project administrator. The researcher who wants to provide
an algorithm only has to implement one method which re-
turns a proper result. In the case of data-sorting problem,
an algorithm only needs to sort the array of data; a very sim-
ple (but technically correct) algorithm that can be executed
in the ALGator is as follows.

public class JavaSortAlgorithm
extends SortAbsAlgorithm {
public void execute(int[] data) {
Arrays.sort (data);
}

}

3. INDICATORS OF THE ALGORITHM

Since the ALGator was designed to be used for various kinds
of problems, the criteria for measuring the quality of algo-
rithms are not defined as a part of the system but they have
to be defined by the project administrator. The current
version of the system enables measurements of the three dif-
ferent kinds of indicators: a) the indicators to measure the
speed and the quality of the algorithm (the so called EM
indicators), b) the project-specific counters to count the us-
age of the parts of the algorithm’s program code (the so
called CNT indicators), and c) the counters of the java byte
code usage (the so called JVM indicators). These indicators
are calculated with independent measurements that are per-
formed as separated tasks so they do not interfere with one
another. For example: when the ALGator measures time,
the CNT and JVM indicators are disabled. To perform the
JVM measurements a dedicated java virtual machine is used.

The EM measurements.

These measurements are used to measure the time and other
project-specific metrics. All measurements of the time are
performed automatically. To provide as accurate time in-
dicators as possible the ALGator tries to reduce the influ-
ence of the uncontrolled computer activities (e.g. sudden
increase of a system resource usage) by running each al-
gorithm several times. The system measures the first, the
best, the worst and the average time of the execution. The
project administrator only needs to specify the phases of al-
gorithm execution (e.g. the pre-processing phase, the main
phase, the post-processing phase, ...) and to select which
of the time indicators are to be presented as the result of
execution. The project-specific indicators are defined by the
project administrator. They can be presented as a string or
as a number. For example, for exact algorithms, the value of
an indicator could be "OK” (is the algorithm produced the
correct result) or "NOK” (is the result of the algorithm is
not correct). For approximation algorithms the value of an
indicator could be the quality of the result (i.e. the quotient
of the correct result and the result of the algorithm).

The CNT measurements.

The CNT measurements are used to count the usage of the
parts of the program code. This option is used to analyze
the usage of a certain system resource or to count the usage
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of selected type of commands on the programming language
level. Using this one can, for example, measure how many
times the memory allocation functions were executed during
the algorithm execution and the amount of the memory allo-
cated by these calls. One can also use CN'T measurements to
detect which part of the algorithm is most frequently used.
For example, if the problem in concern would be the data-
sorting, using the CNT measurements one could count the
number of comparisons, the number of swaps of elements
and the number of recursive function calls (which are the
measures that can predict the algorithm execution behav-
ior [4]). To facilitate the CNT measurement in the project,
the project administrator has to define the names and the
meaning of the counters and the researchers have to tag the
appropriate places in their code. Everything else is done
automatically by the ALGator.

The JVM measurements.

The algorithm written in the java programming language
compiles into the java byte code. An interesting option of-
fered by the ALGator is the ability to count how many times
each byte code instruction was used while execution the al-
gorithm on a given test case. To facilitate this option the
ALGator uses a dedicated java virtual machine which was
developed as a part of the ALGator project [2, 3]. Besides
counting the usage of each byte code this virtual machine
also records the data about the memory usage. In [1] Lam-
bert and Power indicated that the frequency of the usage of
each byte code instruction can be used to predict the exe-
cution time. Even though the ALGator’s ability to count
the byte code instructions usage is quite young, we expect
that the data produced by the JMV measurements could be
useful not only for the quantitative but also the substantive
analysis of the algorithms.

4. ANALYZING THE RESULTS

As a result of the algorithm execution the ALGator pro-
duces the text output files. For each tuple (algorithm, test
set, measurement) one file is created; each line in this file
contains parameters and indicators of one test case.

FROM TestSet3

WHERE (algorithm=JHoare OR algorithm=JWirth)

SELECT N,Tmin

ORDERBY N
ID  Testset  TestlD Pass N JHoare.Tm...| Wirth . Tmin
1 TestSet3  Test-1 DOMNE 10000 740 i
2 TestSet3  Test-2 DOME 10000 768 788
3 TestSet3  Test-3 DOMNE 10000 753 768
4 TestSet3  Test-4 DOMNE 10000 760 77l
5 TestSet3  Test-5 DOMNE 10000 750 807
6 TestSet3  Test-6 DOMNE 15000 1160 1181
7 TestSet3  Test-7 DOMNE 15000 1152 1182
8 TestSet3 Test-8 DOMNE 15000 1150 1203
9 TestSet3 Test-9 DONE 15000 1144 1245
10 TestSet3 Test-10 DONE 15000 1166 1199
11  TestSet3 Test-11 DOMNE 20000 1594 1583
12 TestSet3 Test-12 DONE 20000 1598 1673

Figure 2: An example of data query with result.

The data in the output line is separated by semicolons (CSV
format). For efficient work with this data ALGator provides
the analyzer with its own query language and with the vi-
sualization module for presenting data as graphs. For ex-
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Figure 1: The visualization module of the ALGator.

ample, to get the minimal execution times for algorithms
named JHoare and JWirth on the test set called TestSet3,
user can run query as depicted in Figure 2.

The ALGator query language is a powerful tool that en-
ables all sorts of data manipulation. An example of a com-
plex query to calculate the quotient of minimal times for
the JHoare algorithm running on two different computers
(F1.C1 and F1.C2) is presented below.

queryF1C1 = FROM TestSetO
WHERE (algorithm=%) AND ComputerID=F1.C1
SELECT Tmin AS A1l;

queryF1C2 = FROM TestSetO
WHERE (algorithm=%) AND ComputerID=F1.C2
SELECT Tmin AS A2;

FROM queryF1C1, queryF1C2
WHERE (algorithm=JHoare)
SELECT N, A1/A2 AS Q

The visualization module the ALGator can be used to pro-
duce graphs as depicted in Figure 1.

5. CONCLUSION

The execution part of the ALGator was developed in both
java and C++ programming languages, therefore the algo-
rithms to be tested could be implemented in one of these two
languages. Measuring the exact execution time of the algo-
rithms written in java is a challenging task since the system
can only measure real time and because there is no way to
eliminate the side effects of the java virtual machine’s back-
ground tasks (e.g. garbage collection). To overcome this
problem, the ALGator executes each algorithm several times
and reports the first, the minimal, the maximal and the aver-
age time of execution. Comparing and analyzing these times
one can detect the influence of the execution environment to
the overall execution time. In many cases this influence is
negligible. Having the java implementation of the algorithm
also has some benefits. Namely, the ALGator counts and
generates the statistics of the usage of the java byte code
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instructions. As stated in [1] these statistics provide enough
information to be used for the platform independent timing
of the algorithms. Owur preliminary tests indicate a great
correlation between the number of used java byte code in-
structions (multiplied by the corresponding weight depend-
ing on the type of instruction) and the execution time.

The ALGator is a testing environment, which aims to make
the testing process as easy as possible for both, the project
administrators and for the researchers. We tired to mini-
mize the effort that has to be used to prepare the project
and to prepare the algorithm and we think that this goal
was achieved. The biggest challenge for the project admin-
istrator is to prepare adequate test cases and to write several
lines of java of C++ code (in an average case not more that
about 100 lines of code), while the researcher has to write
only a few lines of code to call the existing java or C++ im-
plementation of the algorithm. All the other tasks needed to
execute the algorithm and to produce the desired indicators
are performed automatically by the ALGator, therefore the
researchers can focus on the analyses of the results. Fur-
thermore, ALGator uses the same test cases for all the algo-
rithms of the project, therefore the researchers can not tai-
lor the tests to be optimal for their implementations, which
makes the results of the evaluation fair and reliable.
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ABSTRACT

In Maker-Breaker positional games two players, Maker and
Breaker, are playing on a finite or infinite board with the
goal of claiming or preventing to reach a finite winning set,
respectively. For different games there are several winning
strategies either for Maker or Breaker. One class of winning
strategies are the so-called pairing strategies. Generally, a
pairing strategy means that the possible moves of a game are
paired up; if one player plays one, the other player plays its
pair. In this study we describe all possible pairing strategies
for the 9-in-a-row game. Furthermore, as a concept, we
define a graph of these pairings in order to find a structure
for them. The characterization of that graph will be also
given.

Categories and Subject Descriptors

F.2 [Analysis of algorithms and problem complexity]:
Nonnumerical Algorithms and Problems; G.2 [Discrete
mathematics]: Graph Theory, Combinatorics

Keywords

Positional games, pairing strategies, Hales-Jewett pairing

1. INTRODUCTION

In this work, we study the pairing strategies of the 9-in-
a-row Maker-Breaker game. Hales and Jewett [7] gave the
first pairing strategy to this game showing Breaker’s win.
However, the uniqueness of the Hales-Jewett pairing or other
examples had not been provided since then, until Gyérify et
al. [6] showed the following. There exist only 8- and 16-toric
pairings (i.e. they are simply the repetitions of a pairing on
the 8 x 8 and 16 x 16 square grids, respectively) where all
16-toric ones can be derived from some 8-toric ones.

*This work was partially supported by the National Re-
search, Development and Innovation Office - NKFIH, SNN-
117879.
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Figure 1: Hales-Jewett pairing blocks the 9-in-a-row

After recalling positional games and pairing strategies in
general, we focus on the 9-in-a-row game and its pairings.
We provide a computer program which generates and dis-
tinguish all (194543) different 8-toric pairings. Finally, we
create and analyze a graph of these pairings to have a struc-
ture of them.

1.1 Positional games

A positional game can be defined as a game on a hypergraph
H = (V,E), where V = V(H) and £ = E(H) C P(H) =
{S : S C V} are the set of vertices and edges, respectively.
Usually, V' can be finite or infinite, but an A € E edge is
always finite. The first and second players take elements of V'
in turns. In the Maker-Maker (M-M) version of the game,
the player who first takes all elements of some edge A € E
wins the game. In contrary, in the Maker-Breaker (M-B)
version, Maker wins by taking every element of some A € E,
while the other (usually the second) player, Breaker, wins
by taking at least one vertex of every edge in E. Clearly,
there is no draw in this game. The M-M and M-B games
are closely related, since if Breaker wins as a second player,
then the M-M game is a draw. On the other hand, if the
first player has a winning strategy for the M-M game, then
Maker also wins the M-B version. For more on these, see
Berlekamp, Conway and Guy [3] or Beck [2].



In this work we deal with the hypergraph of the k-in-a-row
game, which is defined as follows.

Definiton 1. The vertices of the k-in-a-row hypergraph
Hy. are the squares of the infinite (chess)board, i.e. the in-
finite square grid. The edges of the hypergraph Hj are the
k-element sets of consecutive squares in a row horizontally,
vertically or diagonally. We refer to the whole infinite rows
as lines.

For k-in-a-row M-B games Maker wins if £ < 5, see Allis
et al. [1] and Breaker wins if k > 8, see Zetters [5]. There
is a Breaker winning pairing strategy only if k > 9, see
Csernenszky et al. [4]. For the case of k = 9 the first pairing
strategy found by Hales and Jewett can be seen on Fig. 1.
For k = 6,7 the problem is open.

1.2 Pairing strategies

Given a hypergraph H = (V, E) and a bijection p : X —
Y, where X,Y C V(H), XNY = 0, is a pairing on the
hypergraph H. An (z, p(z)) pair blocks an A € E(H) edge,
if A contains both elements of the pair. If the pairs of p
block all edges, we say that p is a good pairing of H.

Pairings are one way to show that Breaker has a winning
strategy in positional games. A good pairing p for a hyper-
graph H can be turned to a winning strategy for Breaker in
the M-B game on H. Following p on H in a M-B game, for
every z € X chosen by Maker, Breaker chooses p(x) or vice
versa in case of z € Y (if z ¢ X UY then Breaker can choose
an arbitrary vertex). Hence Breaker can block all edges and
wins the game. Hereafter we focus on the 9-in-a-row game
and its pairings.

2. PAIRINGS FOR 9-IN-A-ROW

Definiton 2. A pairing is a domino pairing on the grid,
if all pairs consist of only neighboring cells (horizontally,
vertically or diagonally).

Note that the pairing on Fig. 1 is a domino pairing. From
Gy6rfly et al. [6] it follows that if there is a good pairing
for Hg then this pairing is a domino pairing in which the
dominoes are following each other by 8-periodicity in each
line and all squares are covered by a pair. To handle the
periodicity we define the concept of k-toric pairings.

Definiton 3. A pairing of the infinite board is k-toric if
it is an extension of a k X k square, where k is the smallest
possible.

In [6] it was proved that a good pairing of Hy is either 8-toric
or 16-toric. Furthermore, all 16-toric pairings can derive
from two (or more) 8-toric pairings. Fig. 2 shows a 16-
toric (but not 8-toric) good pairing. The four 8 x 8 squares
differs from each other only in the colored squares, where
the bold pairs show the actual pairs and what the thin line
shows is the pairing of the other 8 x 8 square. From now
we only deal with the 8-toric pairings of Hg. A good 8-toric
pairing is uniquely determined by an 8 X 8 section of it, by
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Figure 3: Other 8-toric examples

definition. Furthermore, that 8 x 8 section contains exactly
one pair in each 32 (eight vertical, eight horizontal and 16
diagonal) torus lines. Three examples, other then the Hales-
Jewett pairing, can be seen on Fig. 3. A diagonal torus line
is colored on the middle one.

2.1 Generate pairings

To find all possible 8-toric pairing strategies of Hg on the
infinite board we wrote a computer program that will be
introduced in this section. The main challenge here is not
only finding all pairings, but deciding whether two pairings
are the same.

We store a pairing in the 8 x 8 table such that each cell rep-
resents the actual pair of the cell according to the 8 possible
pairs: 0 means East, 1 South-East, and so on, 7 North-East.
Naturally, if a cell’s pair is on the East, then its pair has
its own pair on the West, i.e. we fill the table two cells at
a time. The algorithm itself is the usual backtracking algo-
rithm: we find possible pairs for the next cell in the table
having no pair so far, try all those by recursively calling the
table filling function. While checking whether a pair is pos-
sible, we also make sure that there can be no overblocking,
so we keep track of the blocked edges. A detailed example
can be found in webpage [8].

From previous experiences we know, that the running time



is crucial, since there are too many such pairings. We try to
reduce the number of cases to be considered. We consider
two pairing strategies on the infinite board to be the same,
if they can be transformed into each other by translation,
mirroring and rotation. Thus, in order not to find the same
pairing several times, we apply all transformations for any
pairing found on the 8 x 8 table. From these transformed
pairings we select the smallest one with respect to the lexi-
cographical order. That also means that such a pairing must
start with 0 and 4 in the first row of the 8 x 8 table, so we can
also reduce the number of searched cases by starting fill the
table with these two numbers. Naturally, we keep in mind
that the 8 x 8 table is expanded in (say) an 8-toric way to the
whole infinite board while applying these transformations.
More precisely:

1. We either mirror or not (2 possible cases) the table to
the vertical line between columns 4 and 5.

2. We rotate the table by 0, 90, 180, and 270 degrees (4
possible cases).

3. We try all toric (that is, modulo 8) translation that
results in a table starting with 0 and 4.

We select the lexicographically smallest table as a repre-
sentative for the actual pairing. This method reduce the
number of all pairing checked to 6210560, and the program
found the 194543 different pairings in about 4 minutes on a
desktop computer with a 3.2 GHz Core i7 processor using 12
Mb of memory. The pairings themselves can be downloaded
at the page [8]. Interestingly, the number of the different
pairings turns out to be a prime number.

Since we have such many different pairings, an obvious way
to find a structure can be to store the pairings in a graph.
In the next section we will show a natural method to find
connections between pairings.

2.2 Graph of pairings

While trying to find pairings by hand one can observe, that
we can move a pair along the blocked edge by one step to
create a new pairing using the following method.

1. Move the first pair on the table. This move creates a
cell (say A) without a pair, and another cell (say B)
with two pairs.

2. Move the pair containing cell B which was not the just
moved pair so that cell B has one pair after the move.
But then another cell may have two pairs.

3. Repeat step 2 as long as it creates a cell with two pairs.

4. This method will end when the last move creates a new
pair for cell A, which had no pair before the move.

Naturally, we should keep in mind that we are on an 8-toric
pairing and move the pairs accordingly. Since we are on a
finite table, this method will either end at step 4, or create
a repeating cycle. But the later one is not possible. Note
that cell A cannot be part of the cycle, as it has no pair, and
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Figure 4: Two examples of connections between
pairings

it would break the repetition. The first move that entered
the cycle creates a hole “behind” (outside the cycle), and
when the cycle comes to the same cell, the pair will move
backwards, and the cycle is not entered again. Also, it is
easy to see that we get an optimal pairing by this method.
Since the original pairing was optimal, moving a pair (an 8-
toric way) along the blocked edge keeps that direction (i.e.
8 edges) blocked. Since the method ends in step 4, there are
no cells without a pair. We also move the pairs on a torus,
so no overblocking is possible. We say that two pairings
are connected, if one can obtain the second pairing from the
first one by the method described above (of course, we con-
sider only different pairings as it was defined in the previous
section). This relation is symmetric: moving back the last
pair of the above method gives back the first pairing from
the second one. This creates a graph, where the vertices
are the pairings and the edges are defined by the moving
transition. Fig. 4 shows two examples for this moving tran-
sition. In both cases, the first pairing contains only the blue
pairs, and the red dominoes show the transition to the other
pairing. After computing all possible different pairings our
program can easily find this graph. It tries to move all pair-
ings (by trying to free up each cell in the 8 x 8 board), and
use the method described in the previous section to find the
lexicographically smallest representative for the new pair-
ing. It takes about 1 minute to finish this task on the same
hardware as in the previous section.

In the next section we will investigate the properties of the
obtained graph.

2.3 Analyzing the graph

The basic parameters of the obtained graph can be seen
in Tab. 1. The graph is not connected, which means that
repeating the moving transition described in the previous
section we cannot reach an arbitrary pairing from another.
One of the 14 components of the graph is a giant component
containing almost all (194333) vertices. The diameter of this
component is 34, which shows us that even this giant com-
ponent does not seem to be a “small-world” network. There
are 5-5 smaller components of 10 and 16 vertices and 1-1
components of size 6, 26, 48. Note that every graph com-
ponent containing 16 vertices is the net of a 4-dimensional
cube. Fig. 5 shows some small components.

The graph is triangle-free, moreover, the length of all in-
duced cycles is four. The degree distribution of the graph
can be seen in Tab. 2.



Table 1: Basic parameters of the constructed graph
vertices | edges | #components | max degree | min degree | avg. degree
194543 | 532107 14 11 1 5.47

Table 2: Degree distribution of the graph
1 2 3 4 5 6 7 8 9 10 | 11
17 | 392 | 395 | 39811 | 66185 | 53222 | 25309 | 7547 | 1472 | 183 | 10

Figure 5: Some components of the obtained graph

3. CONCLUSIONS [7] A. W. Hales and R. I. Jewett. Regularity and
In this study, we investigated the 9-in-a-row Maker-Breaker positional games. Trans. Amer. Math. Soc. 106
positional game focusing on its pairing strategies which guar- (1963) 222-229; M.R. # 1265.

antee Breaker’s win. We found all different 8-toric pairing [8] G. Makay. Personal homepage

strategies using a computer program. The main concepts http://wuw.math.u-szeged.hu/ makay/amoba/
of the program were described in detail. In order to find a downloaded: 06. 04. 2016.

structure of the 194543 pairings, we arranged them into a
graph where the vertices are the pairings itself and the edges
are some moving transitions of pairs. Analyzing the graph
and calculating standard parameters may help in a better
understanding of pairing strategies in general.

4. REFERENCES

[1] L. V. Allis, H. J. van den Herik and M. P. Huntjens.
Go-Moku solved by new search techniques. Proc. 1993
AAAI Fall Symp. on Games: Planning and Learning,
AAAI Press Tech. Report FS93-02, pp. 1-9, Menlo
Park, CA.

[2] J. Beck. Combinatorial Games, Tic-Tac-Toe Theory.
Cambridge University Press, 2008.

[3] E. R. Berlekamp, J. H. Conway and R. K. Guy.
Winning Ways for your mathematical plays, Volume
2. Academic Press, New York, 1982.

[4] A. Csernenszky, R. Martin and A. Pluhar. On the
Complexity of Chooser-Picker Positional Games.
Integers 11, 2011.

[5] R. K. Guy and J. L. Selfridge, Problem S.10, Amer.
Math. Monthly 86 (1979); solution T.G.L. Zetters 87
(1980) 575-576.

[6] L. Gyorfly, G. Makay and A. Pluhér. Pairing
strategies for the 9-in-a-row game. Submitted, 2016.
http://www.math.u-
szeged.hu/~1gyorffy/predok/9_pairings.pdf
downloaded: 28. 08. 2016.

35



Construction of orthogonal CC-set

Andrej Brodnik
University of Primorska
Koper, Slovenia
andrej.brodnik@upr.si

Vladan Jovici¢
Ecole Normale Superieure
Lyon, France
vladan94.jovicic@gmail.com palangeticmarko95

Marko Palangetic¢
University of Primorska
Koper, Slovenia

@hotmail.com

Daniel Siladi
University of Primorska
Koper, Slovenia
szilagyi.d@gmail.com

ABSTRACT

In this paper we present a graph-theoretical method for cal-
culating the maximum orthogonal subset of a set of coiled-
coil peptides. In chemistry, an orthogonal set of peptides is
defined as a set of pairs of peptides, where the paired pep-
tides interact only mutually, and not with any other peptide
from any other pair.

The main method used is a reduction to the maximum inde-
pendent set problem. Then we use a relatively well-known
maximum independent set solving algorithm which turned
out to be the best suited for our problem. We obtained an
orthogonal set consisting of 29 peptides (homodimeric and
heterodimeric) from initial 5-heptade set. If we allow only
heterodimeric interactions we obtain an orthogonal set of 26
peptides.

Keywords
Algorithms, NP-hard problem, Modeling

1. MOTIVATION

In the last 30 years, impressive 3D structures have been
built using DNA, in a field called DNA origami. Complex
structures built from proteins would have many advantages,
since amino acids provide much more functionality. The
main problem is that the simple Watson-Crick paring rules
present in DNA have no simple analogue for proteins. Using
a special class of polypeptides, called coiled-coil polypep-
tides, the orthogonal binding rules of DNA can be emulated
By specifying only the primary structure of those polypep-
tides (the order of amino acids), complex 3D structures can
be built, such as the recent protein tetrahedron [2]. More
specifically, that structure is determined by taking the wire-
frame of the desired object, doubling every edge, and per-
forming an Euler traversal of the obtained graph. Then,
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we know that the peptides associated with edges that were
initially parallel must bind, and all others must not.

Essential for such designs is that each pair of peptides in-
teracts only mutually, and not with any other pair. Thus,
the notion of an orthogonal set is introduced. Obviously,
the greater our orthogonal set is, the more complex are the
structures we can create. Currently the limiting factor in
designing larger structures is the small set of available pep-
tides.

In this paper, we describe a method for determining a max-
imal orthogonal set, from a given set of admissible peptides.
Also, in section 6 we present a possible approach for extend-
ing an already-calculated orthogonal set.

2. PROBLEM DESCRIPTION

As input we are given a set of peptides P = p1,p2,...Pn
(their primary structures — given as strings of fixed length)
and interaction matrix I. If I; ; = 1, then p; interacts with
p; and if it is O they do not interact. We have to construct
a set of pairs S, where (p;,p;) € S, iff I;; = land for all
other p that are in any pair of S I; x, = 0. Moreover, if
i =7 in (ps,pj) we are talking of homodimer and otherwise
of heterodimer.

We can model this problem as a graph-theoretical one: We
create an undirected graph G = (V, E) where V is set of
peptides P, and the edge set E containing an edge p;p; (or
aloop at p;, denoted by p;p;) if and only if p; and p; interact.
Therefore, the problem definition is the following;:

DEFINITION . [Mazimum Independent Set of Pairs (MISP)]
Let G = (V, E) be undirected graph and let k be positive inte-
ger. Does there exist set S C E such that for uivi, usve € S

{U1,’U1} N {Ug,vz} = Qa

{Hu,u1 }, {u,v1}, {v,ur b, {v,v1}}NE =10
and |S| > k?

3. HARDNESS OF THE PROBLEM

In order to determine the best possible solution of our prob-
lem, in this section we will prove that MISP is NP-complete.



THEOREM I. [] Maximum independent set of pairs is NP-
complete.

Algorithm 1 NP certifier

PrOOF. 1: S+ given set of pairs
2: if |S| < k then
3 return No
4: for uivy € S do
5
6

for usve € S — uiv; do
: if uius € EV uivs € EV vius € EV vivg €
EVuivi € E then
7: return No
8: return Yes

It is easy to check that Algorithm 1 is a polynomial certifier
for MISP. Now we will reduce the independent set problem
to MISP in order to show that MISP is NP-hard.

Let G = (V, E) be a graph. We want to check if there exists
an independent set of size greater than k. Define a new
graph G’ = (V' E') as follows. Initially, let V' = V and
E’' = E. Then, for each vertex v € V add another vertex v’
(twin vertex) to V' and add the edge vv’ to E’.

LEMMA 1. [[Every mazimal independent set of pairs con-
sists only of the edges of the form vv'.

PRrROOF. Let S be a MISP in G’. Suppose the contrary,
i.e. there is a pair uv € S which is not of the form ww’
for w € V. Then, for all u1v; € S we have uju ¢ E’,
uv € B, viu € E', viv € E'. Then we can delete the pair
uv from S and add pairs uu’ and vv’ where v’ and v' are
twin vertices of u and v, respectively. We can do this since
the only neighbors of u’ and v’ are u and v, respectively. We
obtained an independent set of pairs, with more more than
|S| elements, a contradiction. [

We want to prove now that there is an independent set |S| >
k of G if and only if there is an independent set of pairs
|Sp| >k of G.

(=) Suppose that S is independent set of G and |S| > k.
Then, define the independent set of pairs Sp of G’ on the
following way:

Sp={w'|veS}
It is easy to verify that this is independent set of pairs by
the above definition. Then |Sp| = |S| >= k.

(<) Suppose that Sp is an independent set of pairs of G’
with |Sp| >= k. Then, by previous lemma, we can define
the following independent set S of G:

S={veV|w e€Sp}

By the construction of graph G’ and by the lemma, one can
show that S is a independent set of G. Then |S| = |Sp| >=
k which completes proof that MISP is NP-hard.

Combining the NP-hardness with the earlier fact that MISP
is in NP, we conclude that MISP is NP-complete
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4. REDUCING MISP TO THE MAXIMUM
INDEPENDENT SET

Now that we know that MISP is NP-complete, we can use
one of the the vast number of algorithms already developed
for solving various problems in NP, once we reduce MISP
to that problem. The most natural choice is the maximum
independent set problem.

Based on the MISP graph G = (V, E), we construct a new
graph G’ = (V' E’), where V' = E, and two vertices are
connected (in G') if and only if their corresponding edges
in G share a common vertex or have two of their vertices
connected by an edge. It is easy to see that finding an inde-
pendent set in G’ will give us an independent set of pairs,
as per the definition in section 2. Moreover, due to our con-
struction, an independent set of pairs in G also gives us a
unique independent set in G’.

Thus, we have obtained a bijection between the independent
sets of G’ and the independent sets of pairs of G.

S. RESULTS

We use results from the previous section to solve the MISP
of the input graph G which is constructed from the input
set of peptides P = pl, pa, ..., pn in several steps.

1. Based on previous work by [3], we calculate the inter-
action scores s;; for each pair of peptides p;p; (includ-
ing homodimers p;p;), and store that matrix for the
following steps

2. Choose thresholds ¢t and T based on which we decide
whether peptides p; and p; with interaction score s;;
will interact. If s;; < t, we declare that p; and p;
are not interacting (or, more precisely, interacting in a
negligibly small proportion), and likewise, if s;; > T,
p; and p; interact. The greater the difference T'—¢t, we
are more certain that in the obtained orthogonal set
only the designated pairs will interact.

3. Construct the graph G on the set of peptides by con-
necting the interacting ones, as in section 2.

4. Reduce G to G’, suitable for calculating the indepen-
dent set, as in 4.

5. Find the maximum independent set in G’, as shown be-
fore, it corresponds to the MISP (or, orthogonal set) in
G. We use the (exact) maximum clique solving algo-
rithm presented in [1], which is based on greedy graph
colorings — i.e. if we can color a particular subgraph
with k colors, we know that that the maximum clique
in that subgraph has size at most k.

In order to test our algorithm, we generated synthetic ini-
tial sets of peptides, based on two observations: Firstly, the
interaction scoring function is designed to consider only 4
positions in each heptad. Secondly, using electrostatic argu-
ments about individual amino acids and their positions in
the coiled-coil, we reduced the variation even further, by al-
lowing only 2 different amino acids on 3 of those 4 positions,
and completely fixing the remaining amino acid. Thus, we



obtain 8 essentially different heptads, which we use to build
up larger peptides. Our main result is the calculation of
a 29-peptide orthogonal subset of the 5-heptad initial set
(2'5) peptides generated as described above), as well as a 26-
peptide purely heterodimeric orthogonal subset of the same
initial set. The interaction score heatmap can be seen on
Figures 1 and 2
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The peptidets which belong to orthogonal set are in both
figures colored in dark red.

6. FUTURE WORK

Up to now, we have only considered orthogonal sets derived
from synthetically generated peptides, as described in the
previous section. To actually use such an orthogonal set, we
have to manually synthesize all of those peptides.
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Alternative is to construct a maximal orthogonal set from
the set of all natural tetraheptads (coiled-coils where each
of the 4 heptads occurs naturally). Since there are 1171
known natural heptads, we can combine them to get 1171% =
1880301880081 possible tetraheptads. Finding a maximal
orthogonal subset of this set would require finding the max-
imum independent set of a graph with more than 10'? ver-
tices — a task clearly impossible to do in a reasonable amount
of time.

Our idea is to use heuristic to reduce the initial set to a
more manageable size: Since it is possible to calculate the
interaction matrix for single natural heptads, we can approx-
imate scores for tetraheptads as shown at Figure 3. More
specifically, we will add up the precalculated scores between
(adjacent) heptads which are connected as on figure 3. Of
course, some interactions will be left unaccounted for in the
final score, for example the last amino acid in heptad 1 on 3
may interact with first amino acid of heptad 7 which is not
added to the final score.

This observation enables us to construct more meaningful
initial peptide sets consisting of longer peptides, based on
the already-calculated orthogonal sets of shorter peptides.

heptad 1 heptad 2 heptad 3 heptad 4

heptad 5 heptad 6 heptad 7 heptad 8

Figure 3: Proposed way of scoring

7. CONCLUDING REMARKS

In this paper, we presented an exact method for determin-
ing an orthogonal set of coiled-coil polypeptides, if we are
given a numeric measure of their interaction strength. Our
approach has been demonstrated to be successful for moder-
ately large initial peptide sets (tens of thousands), and has
given us optimal orthogonal sets that could not have been
calculated by hand.

Unfortunately, for even larger initial sets, we are maximum-
clique solver becomes an apparent bottleneck, as it has to
operate on graphs of size O(n*), where n is the size of the
initial set. In that case, we suggest investigating a bottom-
up method described in the section 6.
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ABSTRACT

There are computationally demanding problems that can
be solved by k-clique search algorithms in auxiliary prod-
uct graphs. The best clique search programs heavily rely
upon good colorings. But obtaining a good coloring is a de-
manding task itself. We present some coloring schemes that
exploit the property of the product graph itself and can be
constructed with ease. We call these colorings hereditary.
There are indications that using these colorings some hard
problems would become feasible.

Keywords

clique, maximum clique, product graph, graph isomorphy

1. INTRODUCTION

Let G = (V, E) be a finite simple graph. Let D be a subset
of V and let A be the subgraph of G induced by D. The
subgraph A is called a clique in G if any two distinct ele-
ments of D are adjacent in G. If the set D has k elements,
then we call A a k-clique in G.

Finding cliques in a given graph is an important problem in
discrete applied mathematics with many applications inside

and outside of mathematics. For further details see [1], [2],
[4], [7], [13], [14].

We formally state the following clique search problem.

PROBLEM 1. Given a finite simple graph G and given a
positive integer k. Decide if G contains a k-clique.

Many practical clique search algorithms employ coloring to
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speed up the computation by reducing the search space.
Finding optimal or nearly optimal colorings is itself a com-
putationally demanding problem. From this reason in the
above computations computationally more feasible greedy
algorithms are used to construct suboptimal colorings. It
is customary to color the nodes of a graph G satisfying the
following conditions.

1. Each node of G receives exactly one color.

2. Adjacent nodes in G cannot receive the same color.

This is the most commonly encountered coloring of the nodes
of a graph and it is referred as legal coloring of the nodes. It
is well known that coloring can be used for estimating clique
size.

For each finite simple graph G there is a well defined non-
negative integer k such that the nodes of G admit a legal
coloring with k colors but the nodes of G cannot be col-
ored legally using k — 1 colors. This number k is called the
chromatic number of the graph G and it is denoted by x(G).

Let us suppose that A is an [-clique in G and let us suppose
that the nodes of G have a legal coloring with k colors. Then
[ < k holds.

PROBLEM 2. Given a finite simple graph G and given a
positive integer k. Decide if the nodes of G have a legal
coloring using k colors.

Both Problems 2 and 1 are decision problems. From the
complexity theory of computations we know that these prob-
lems belong to the NP-complete complexity class.

Let G = (V,E) be a finite simple graph and let s be a
positive integer such that s > 2. A subset U of V is called
an s-free set if the graph spanned by U in G does not contain
any s-clique. A partition Uy, ..., U, of V is called an s-clique
free partition of V if U; is an s-clique free subset of V for



each i, 1 < i < r. We can look at this partitioning as an
alternative coloring method and we will call it s-clique free
coloring [12].

2. PRODUCT GRAPHS AND THEIR COL-
ORINGS

In our paper we are interested in some special problems.
We assume that these problems can be reduced to k-clique
search in a given product graph. The problems of graph
isomorphism and spanned subgraph isomorphism are rep-
resentatives of this type of problems so we will use the
spanned subgraph isomorphism problem to illustrate the
method. Other problems can be dealt with by similar means.
Spanned subgraph isomorphism has important applications
for example in drug design, chemical database problems, ar-
tificial intelligence or pattern recognition. Let us state the
spanned subgraph isomorphism problem more formally:

PROBLEM 3. Let G = (V,E),H = (V' E') be finite sim-
ple graphs. Is there a spanned subgraph Go in G such that
Go is isomorphic to H. In other words is there a Go =
(Vo, Eo) : Vo C V where vi,v2 € Vo and {vi,v2} € E then
and only then {v1,v2} € Eo such that Go =2 H?

A possible method of solving this problem is to construct
an auxiliary graph I' = (W, F) where |W| = |V||V’|. The
nodes of the graph I' are labeled by ordered pairs of nodes
from G and H. That is if a1 € V,b; € V' then (a1,b1) € W.
The edges of the graph I' are constructed as follows. Let
us consider (a1,b1), (az,b2) as two distinct nodes of I'. We
put an edge between them if {a1,a2} € E and {b1,b2} € E’.
We also put and edge between them if {ai1,a2} ¢ E and
{b1,b2} ¢ E' for a1 # a2,b1 # ba. This means that {a1, a2}
and {b1,b2} both should be connected or both should not
be connected. A k-clique where k = |V’| in the graph T rep-
resents the function f: Vo — V' such that by = f(a1),be =
fla2),{a1,b2} € Eo & (f(a1), f(a2)) € E.

It is well known, that the k-clique search algorithm can be
sped up by using a good coloring of the given graph. We
will describe several coloring schemes in the following sub-
sections. We called these colorings “hereditary” because of
the fact that they derive solely from the two input graphs
and the constructing method of the auxiliary product graph.

2.1 First hereditary coloring scheme

Note that the nodes (al, b1), (a1, bz), (a1, bg), cey (a1, b‘v/‘)
of the graph T' form an independent set. Intuitively this
means that the node a; can be paired only with only one of
the nodes in V' at the same time. Thus we can define |V|
number of color classes in I' where the nodes labeled by the
same node from G fall into one color class. That is the first
color class will consist of nodes (a1, b1), (a1, b2), (a1, b3),. ..,
the second will consist of nodes (az, b1), (az,b2), (az,b3),. ..,
the third of nodes (as, b1), (as, b2), (as, b3), ..., and so on.

Similarly, the nodes (a1,b1), (a2,b1), (a3, b1), ..., (ajv|, b1) of
the graph I' form an independent set. Thus we can define
|V’| number of color classes in I where the nodes labeled by
the same node from H fall into one color class.
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Note that if there is a solution to the spanned subgraph
isomorphism problem then the second coloring defines also
a “best” coloring as it uses equal to the chromatic number
of colors, because k = |V'| = x(T).

We also should point out an interesting phenomenon. In
real life if one constructs a product graph for a given prob-
lem the nodes of this product graph will be listed in such
order that they will be also listed by color classes by one of
the above scheme. It is because one lists the nodes of the
product graph by a double nested for loop listing the nodes
of one graph and the nodes of the other graph. From this it
follows that programs using sequential greedy coloring may
result in the best possible coloring and will run extremely
fast comparing to other programs which use other coloring
methods. By our knowledge this phenomenon was not de-
tected previously.

2.2 Second hereditary coloring scheme

We take an independent set I C V from G, and a clique
K C V'’ from H. Note that nodes of T (a,b) € W,a €
1,b € K form an independent set. This follows from that all
the nodes of I are independent and all the nodes of K are
connected thus no (a1, b1) and (a2, b2) pair can be connected
as {a1,a2} € V and {b1,b2} ¢ V'. Thus if we partition
the nodes from G into ¢ independent sets and partition the
nodes from H into k cliques then we can define i x k color
classes in I" where the color classes are formed by pairs of
an independent set from G and a clique from H.

Obviously we can partition G into cliques and H into inde-
pendent sets as well.

The described method can be used with many different par-
titioning, thus resulting with several different colorings.

2.3 Third hereditary coloring scheme

Similarly to the previous method we partition the set of
nodes of G and H graphs. But instead of independent sets
in G we shall use s-clique free set I, and instead of cliques
in H — which is equivalent to an independent set in the H
complement graph — we shall use an r-clique free set K, in
H. Using nodes from these two sets, a € I;,b € K, the
nodes (a,b) in T' form an (s + r — 1)-clique free set. For
further details of s-clique free colorings in clique search see
[12].

3. PROPOSED PROGRAM AND PRELIMI-
NARY RESULTS

The proposed k-clique search program is working as follows.
In the first part several different colorings are prepared and
saved. In the second part we use the standard Carraghan-
Pardalos clique search method. In this procedure we always
check the remaining nodes against the saved different color-
ings and use the best possible one.

As the presented work is still in progress the proposed soft-
ware is yet to be completed. For the sole purpose of demon-
stration we present here just two problem instances. The
take a basic graph B, which is a 25 node graph named
s3myc-3x3.clq. From this graph two EVIL graphs were
build using 3 and 10 instances as described in our paper



“Benchmark problems for exhaustive exact maximum clique
search algorithms” presented in this same conference. The
first graph, G1 has 75 nodes, the second one, G2 has 250
nodes. The 25 node B graph and 250 node G2 graph can be
downloaded from the site http://clique.ttk.pte.hu/evil
as the generator program which were used producing the 75
node G graph. We pictured these three graphs on Figure 2
and Figure 1.

We state the problem of spanned subgraph isomorphism that
if the 25 node B graph is isomorphic to a subgraph of the 75
node G and the 250 node G2 graph. For this purpose we
produced the two auxiliary product graphs I'y = (W7, F1)
and 'y = (Wa, F») having |Wi| = 1875 and |W2| = 6250

nodes accordingly as described in the Introduction. We pic-
tured the 1875 node I'1 product graph on Figure 3. Obvi-
ously the base graph B of 25 node is part of the 75 node G1
and the 250 node G2 graph, so both auxiliary graphs have
maximum cliques of size 25 representing a mapping between
the base graph B and the 75 node G and the 250 node G2
graph.

Figure 1: The 250 node G graph.

We used the following 12 clique search algorithms on these
product graphs from the following researchers. To eliminate
the effect of pre-ordered nodes by color classes noted in Sub-
section 2.1 we shuffled randomly the nodes of the auxiliary
graphs. Note though, that most programs did not perform
much better even with the unshuffled variants.
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Figure 2: The 25 node B base graph and the 75 node
G1 graph.

1. San Segundo' [8], [9], [10], [11] (BBMC, BBMC-R,
BBMC-1L and BBMC-X).

2. Li? [5], [6] (MaxCLQ 10, MaxCLQ 13-1 and MaxCLQ
13-2).

3. Prosser® (who implemented Tomita’s algorithm [13])
(MCR)

4. Ostergard* [7] (Cliquer),
5. Konc® [3] (mcqd and mcqd-dyn)

There are three ways to use the 2013 version of C.-M. Li
program. A switch can be set to either “1” or “2” to select
between two built in orderings of the nodes of the graph. In
case no value of the switch is specified the program chooses
between the “1” and “2” possibilities. During our test we
explicitly used the switch “1” and “2” ( M-cql 13-1 and M-
cql 13-2).

We compared these programs to our own program using the
first hereditary coloring scheme. The program can be found
on the same site as the EVIL instances and named antiB.
The brief description of the program is the following.

1. Use the given coloring to color the nodes and save these
colors.

2. Set k to be the number of colors of the legal coloring
we have been given.

3. Carry out a k-clique search.

4. If a k-clique is found, then it is a maximum clique of
the graph. Otherwise reduce the value of k and go to
step 3.

"https://www.biicode.com/pablodev/examples_clique
’http://home.mis.u-picardie.fr/~cli/EnglishPage.
html

Shttp://www.dcs.gla.ac.uk/ pat/maxClique/
distribution/

‘http://users.aalto.fi/ pat/cliquer.html
*http://insilab.org/maxclique/


http://clique.ttk.pte.hu/evil
https://www.biicode.com/pablodev/examples_clique
http://home.mis.u-picardie.fr/~cli/EnglishPage.html
http://home.mis.u-picardie.fr/~cli/EnglishPage.html
http://www.dcs.gla.ac.uk/~pat/maxClique/distribution/
http://www.dcs.gla.ac.uk/~pat/maxClique/distribution/
http://users.aalto.fi/~pat/cliquer.html
http://insilab.org/maxclique/

Figure 3: The 1875 node I'; auxiliary graph for test-
ing if B graph is isomorphic to a subgraph of the 75
node (G; graph.

The k-clique search is based on the Carraghan-Pardalos al-
gorithm, where we utilized original coloring of the nodes.
The ordering of the nodes was done by the size of the color
classes and the node degrees.

The results of our small test can be seen in Table 1. As one
can easily see our simple program is two magnitude faster
than the best performing programs on these examples. This
clearly indicates the possible potential of the proposed col-
oring schemes.
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Testing the Markowitz Portfolio Optimization Method with
Filtered Correlation Matrices’

Imre Gera
Institute of Informatics
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H-6701 Szeged, Hungary

ABSTRACT

In this work we analyze the performance of the Markowitz
portfolio optimization method on the Budapest Stock Ex-
change data set using two different filtering techniques de-
fined for correlation matrices. The results show that the
estimated risk is much closer to the realized risk using filter-
ing methods. Bootstrap analysis shows that ratio between
the realized return and the estimated risk (Sharpe ratio) is
also improved by filtering.

Categories and Subject Descriptors

1.6 [Simulation and Modelling]: Applications

; G.1.6 [Optimization|: Constrained optimization, Nonlin-
ear programming

Keywords
Portfolio optimization, Markowitz model, Correlation ma-
trices, Random matrix theory, Hierarchical clustering

1. INTRODUCTION

The portfolio optimization is one of the most important
problem in asset management aims at reducing the risk of an
investment by diversifying it into independently fluctuating
assets [5]. In his seminal work [14], Markowitz formulated
the problem through the criteria that given the expected re-
turn, the risk - measured by the variability of the return -
has to be minimized. The classical model measures the risk
as the variance of the asset returns resulting in a quadratic
programming problem. Recently, the analysis of the correla-
tion coefficient matrix, that appears through the covariance
matrix in the objective function of the model, has become
the focus of interest [2, 4, 9, 10, 17, 19]. Many attempts
have been made in order to quantify the degree of statisti-
cal uncertainty present in the correlation matrix and filter
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the part of information which is robust against this uncer-
tainty [2, 7, 9, 10, 11]. The filtered correlation matrices have
been successfully used in portfolio optimization in terms of
risk reduction [10, 17, 19]. In these studies, it was often as-
sumed that the investor has perfect knowledge on the future
returns.

In this work we investigate the portfolio selection problem
using different filtering procedures applied to the correla-
tion matrix. We measure the performance of the proce-
dures in terms of both the predicted and realized risk and
return, respectively. The future returns are not known at
the time of the investment. In Section 2 we briefly describe
the Markowitz portfolio optimization problem and two ap-
proaches for the correlation matrix filtering (Random Matrix
Theory, Clustering). In Section 3 we present our results us-
ing standard performance measures on the return and risk,
and finally, in Section 4 we draw some conclusions and indi-
cate future work.

2. PORTFOLIO OPTIMIZATION

In Markowitz’ formulation, the portfolio problem is a single
period model of investment. At the beginning of the pe-
riod (¢o), an investor allocates the capital among different
assets. During the investment period ([to,T]), the portfolio
produces a random rate of return and results a new value
of the capital. In the original model of Markowitz, the risk
of a single asset is measured by the variance of its returns,
while the risk of the portfolio is measured via the covariance
matrix of the returns of the assets in the portfolio. In this
section we briefly introduce the Markowitz portfolio opti-
mization problem and describe two filtering procedures of
the covariance matrix in order to obtain less noisy matrix to
decrease the statistical uncertainty it contains.

2.1 Markowitz’s model

Given n risky assets, a portfolio composition is determined
by the weights p; (¢ = 1,...,n), such that > p; = 1, in-
dicating the fraction of wealth invested in asset i. The ex-
pected return and the variance of the portfolio p = (p1,...,pn)
are

n
rp = Zpﬂ“i = prT (1
i=1
and

n n
op =YY pipjoi; =pEp’, (2)

i=1 j=1



where 7; is the expected return of asset i, 0;; is the covari-
ance between asset i and j and 3 is the covariance matrix.
Vectors are considered as row vectors int this paper.

In the classical Markowitz model [14] the risk is measured
by the variance providing a quadratic optimization problem
which consists of finding a vector p, assuming >_7 , p; = 1,
that minimizes O'z for a given “minimal expected return”
value of r,. Now, we assume that short selling is allowed and
therefore p; can be negative. The solution of this problem,
found by Markowitz, is

p =211 4 4= T (3)

where 1 = (1, ..
A=(C—rpB)/D and v = (r,A— B)/D,

., 1), while the other parameters are

where

A=1x""1" B=1=""T,Cc=r="vT,D = AC - B>
Considering the daily price time series of n assets and de-
noting the closure price of asset ¢ at time ¢ (¢t =1,...,T) by
P;(t), the daily logarithmic return of ¢ is defined as

rit = log P'P ()

ﬁ =log P;(t) — log Pi(t — 1).

(4)
In case of stationary independent normal returns, which is
usually assumed for asset prices, the maximum likelihood
estimator is the sample mean of the past observations of r;,
is defined as

()

Py =

T

1
E Tit-
t=1

Hence, for the portfolio we define & = (71,...,7n).
covariance o;; between assets ¢ and j is estimated by

el

The

T
] 1 . "
Gij = g D (rie = 1) (rje = 75)

t=1

(6)

and for the portfolio 33 = (64;):,;. The correlation coefficient
between asset i and j is defined as

pij = 0ij/\/0ii055),

where o;; is often called the volatility of asset i.

(7)

2.2 Random matrix theory and correlation ma-

trices

A simple random matrix is a matrix whose elements are ran-
dom numbers from a given distribution [15]. In context of
asset portfolios random matrix theory (RMT) can be use-
ful to investigate the effect of statistical uncertainty in the
estimation of the correlation matrix [19]. Given the time
series of length T' of the returns of n assets and assuming
that the returns are independent Gaussian random variables
with zero mean and variance o2, then in the limit n — oo,
T — oo such that Q = T'/n is fixed, the distribution Py, (A\)
of the eigenvalues of the random correlation matrix (Cym)
is given by

P ) — @ VO = N hmax =)

T 2mo2 A

(8)
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Figure 1: Indexed hierarchical tree - obtained by the
single linkage procedure - and the associated MST of
the correlation matrix of 40 assets of the Budapest
Stock Exchange

where Amin and Amax are the minimum and maximum eigen-
values, respectively [18], given in the form

1 1
)\max,min = 0-2 <1 + = +2 *> .
Q Q

Previous studies have pointed out that the largest eigen-
value of correlation matrices from returns of financial assets
is completely inconsistent with Eq. 8 and refers to the com-
mon behavior of the stocks in the portfolio [9, 16]. Since
Eq. 8 is strictly valid only for n — oo, T' — o0, we con-
structed random matrices for certain n and T values of the
data sets that are used and compare the largest eigenval-
ues and the spectrum with C. We found high consistency
with Eq. 8. Since Trace(C) = n the variance of the part
not explained by the largest eigenvalue can be quantified
as o2 =1-— /\mgest/n. Using this, we can recalculate Amin
and Amax in Eq. 9 and construct a filtered diagonal matrix
Crumr, that we get by setting all eigenvalues of C smaller
than Amax to zero and transform it to the basis of C with set-

(9)

—



ting the diagonal elements to one (and using singular value
decomposition). A possible RMT approach for portfolio op-
timization, following [17], is to use X ryr (that can be eas-
ily calculated form Crar) instead of ¥ in the Markowitz
model.

2.3 Clustering

The correlation matrix C has n(n — 1)/2 ~ n? distinct el-
ements therefore it contains a huge amount of information
even for a small number of assets considered in the portfolio
selection problem. As shown by Mantegna and later many
others [3, 8, 12, 19, 20], the single linkage clustering ap-
proach [6] (closely related to minimal spanning trees (MST),
Fig. 1) provides economically meaningful information using
only n — 1 distinct elements of the correlation matrix. To
construct the filtered matrix, the correlation matrix C is
converted into a distance matrix D, for instance following
[12, 13], using d;; = 1/2(1 — p;;) ultrametric distance’. The
distance matrix D can be seen as a fully connected graph
of the assets with edge weights d;; representing similarity
between time series of them. Then the filtered correlation
matrix Cprsr is constructed with just n — 1 distinct cor-
relation coefficients by converting the filtered ultrametric
distance matrix back. It was proven that the ultrametric
correlation matrix obtained by the single linkage cluster-
ing method is always positive definite if all the elements of
the obtained ultrametric correlation matrix are positive [1].
This condition has been observed for all correlation matrices
we used. Then, for portfolio optimization, we can use the
obtained X ;51 instead of X in the Markowitz model.

3. RESULTS
3.1 Data set

To compare the performance of the methods we analyze the
data set of n = 40 stocks traded in the Budapest Stock
Exchange (BSE) in the period 1995-2016, using 5145 records
of daily returns per stock.

We consider ¢t = to as the time when the optimization is
performed. Since the covariance matrix has ~ n? elements
while the number of records used in the estimation is nT', the
length of the time series need to be T' >> n in order to get
small errors on the covariance. On the other hand, for large
T the non-stationarity of the time series likely appears. This
problem is known as the curse of dimensionality. Because
of this, we compute the covariance matrix and expected re-
turns using the [—7,0] interval, i.e. using 7' = 50 =~ n,
T =100 > n and T' = 500 >> n days preceding ¢t = 0.
Furthermore, filtering techniques are able the filter the part
of the covariance matrix which is less affected by statistical
uncertainty. To quantify and compare the different methods
are considered, we use the measures described below.

3.2 Performance evaluation

To measure the performance of the portfolios determined by
the different models, we use the following quantities for the
estimated return and risk at the time of investment and the
realized risk and returns after the investment period. For

!Ultrametric distances are such distances that satisfy the in-
equality d;; < max{d;,dk;}, which is a stronger assumption

that the standard triangular inequality.
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Figure 2: The ratio of the realized risk ¢? and

the predicted risk &12, as the function of expected

portfolio return r, for the different procedures as
T = 50,100,500 (top-down). The data set contains 40
BSE stocks in the period

portfolio p, the ex-ante Sharpe ratio measures the excess
return per unit of risk:

S, ="t (10)

while the ex-post Sharpe ratio uses the same equation but
with the realized return r,. Here, ry is the risk-free rate
of return. The portfolio risk, due to the estimation of the
correlation matrix is calculated as

B |02 — &

R, ol (1)

o3
where &,2, is the predicted risk, while o2 is the realized risk

of the portfolio.



Table 1: Bootstrap experiments using 50 random
samples for each value of T in case of 120% expected
return

rp =12 Original RMT MST

Return || 0.145 (0.330)  0.180 (0.425)  0.186 (0.348)
T=50 Sp 0.009 0.180 0.186

Ry 16.66 0.99 0.99

Return || 0.319 (0.332)  0.315 (0.541)  0.362 (0.418)
T=100 Sp 0.036 0.315 0.364

Ry 8.954 0.99 0.99

Return || -0.185 (0.928) -0.313 (1.234) 0.264 (0.724)
T=500 Sp -0.077 -0.313 0.264

Ry 2.415 0.99 0.99

3.3 Experiments

Fig. 2 shows the ratio of the realized risk o2 and the pre-
dicted risk &f, as the function of the estimated return r,
obtained by the different procedures. For each T, the in-
vestment time ¢g and the set of stocks were the same. The
ratio is significantly smaller in case of the portfolios that
obtained by using filtering. Interestingly, for 7' = 100 the
MST method gave better results than the RMT.

To check the robustness of the methods, we performed a
bootstrap experiment as follows. We considered 50 random
initial times to solve the optimization problem using the
time series on the intervals [—T',to] (T" = 50, 100, 500). For
each portfolio, we computed the predicted risk using Eq. 2
for expected returns r, = 1,1.1,...,2 (0 — 100% gain). We
further constrained p; to the interval [—1, 1] and used the La-
grange multiplier method for the optimization. In all cases,
the portfolios with realized returns in the top and bottom
10% were neglected. We computed the realized risk using
the calculated stock weights at to and the realized covariance
matrix on [to, T]. We also computed the realized returns by
comparing the value of the portfolio at ¢ty and T'. The aver-
age Sp, R, values and returns with standard deviations for
rp = 1.2 are shown in Tab. 1. It can be seen, the R, values
are significantly smaller in case of the RMT and MST than
in case of the original method for each T' confirming the reli-
ability of the filtering methods. The post-ante Sharpe ratio,
however it is much smaller than 1 in every case, also shows
the that the RMT and MST methods outperforms the origi-
nal method. We note, interestingly, that the highest average
return was obtained for T = 100 (and not for 7' = 500) using
the BSE data set.

4. CONCLUSIONS

In this study, we performed portfolio optimization using fil-
tered correlation matrices obtained by two different proce-
dures, namely a random matrix theory approach and the
single linkage clustering. A large set of experiments have
shown that using filtered covariance matrices the original
Markowitz solution is outperformed in terms of standard
portfolio performance measures.

In the future, it would be interesting to analyze portfolio
optimization using various estimators of expected returns
together with different filtering procedures and check the
methods using various stock exchange data sets and also
varying the number of stocks considered.
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ABSTRACT

In this paper we investigate the online bin packing problem
with constant buffer size, where the item sizes are in the
interval (0, %],Where r > 2 is an integer. The problem was
originally given by Zheng et al [13]. They gave a lower bound
and an algorithm, which were later improved by Zhang et
al[12]. We close the gap on the competitive ratio and give a
First Fit based optimal solution for the parametric version
for arbitrary r.

General Terms
Theory

Keywords

asymptotic competitive ratio, next fit, first fit, lower bound

1. INTRODUCTION

One-dimensional bin packing is a well-known problem of
combinatorical optimization. It can be defined as follows:
we are given a list L = {z1,x2,...,2z,} of real numbers
(called items) from the interval (0,1], and we want to pack
each item into a unique capacity bin. The aim is to use
the minimal number of bins. It is known that finding the
optimal assignment is NP-hard [6]. Consequently, it is in-
teresting to find polynomial time approximation algorithms
with good approximate behaviour (see surveys [3] [4]).

In practical situations it often happens, that the input is
not known completely by the algorithm. This is the reason
that researchers focused on studying online problems. In this
case the items come one by one and the algorithm should
assign the next item to a bin immediately after its arrival.
Later the items can no be repacked. The algorithms defined
for online problems are called on-line algorithms. Of course

*This research was supported by the Austrian-Hungarian
Action Foundation (Project number: 916u2).
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the approximation of the optimal algorithm by an online
algorithm is harder than the one by an offline algorithm,
which knows the whole input in advance.

To measure the efficieny of an online algorithm, we have
several possibilities. In case of bin packing one of the clas-
sical methods is the worst case analysis. Traditionally the
so called asymptotic competitive ratio R is used to mea-
sure the efficiency of an online algorithm in the bin packing
literature. Its definition for algorithm A is the following:

Roo(A) := lim sup {mgx { @‘ OPT(L) = z}} GY

l— o0

The online algorithm with the best known asymptotic com-
petitive ratio 1.5815 is due to Heidrich and van Stee [9],
while the best lower bound is 1.54037. .. given by Balogh et
al. in [2]. One of the simplest online algorithms is Next F'it.
It uses only one open bin and puts the next element into it,
if it is possible. Otherwise it closes the bin and opens a new
one. It is well-known that R3r = 2. A very famous online
algorithm is First Fit (FF). It keeps open all bins used dur-
ing the algorithm, and packs the next item into the first bin
where it fits. Ullmann [11] proved first that the asymptotic
competitive ratio of FF is 1.7.

It is clear that the online restriction results in a bad com-
petitive ratio. To avoid this several relaxations of the online
property and space limitations appear in the literature. Us-
ing lookahead buffers, repacking or preordering of the input
are the most common methods. In general the algorithms
that use such techniques are called semi-online algorithms.
For example arriving of the input in decreasing order im-
proves the asymptotic competitive ratio of NF to 1.69103...
[1]. A similar improvement can be achieved by repacking,
which was proved by Galambos and Woeginger in [5]. Garey
et al. [7] and Johnson et al.[8] proved that FF works much
better if the elements of the input are sorted in decreasing
order. In this case Roo(FFD) = L. These techniques can

9
be used in many practical applications.

Based on such an application Zheng et al [13] defined a vari-
ant of the original bin packing problem. In this version a list
of items with sizes bounded by a small interval arrive and
they can be temporarily stored in a capacitated buffer be-
fore packing them into bins. Zheng et al gave a lower bound
of % and defined an algorithm with competitive ratio of %



[13]. Later Zhang et al improved this to 1.423 and 1.4243 re-
spectively [12]. So a small gap of 0.0013 remained and they
analysed only the case when the upper bound of the sizes
of the item is % In this paper we investigate the so-called
r-parametric case where the item sizes are in the interval
(0, %] First, we give an improved lower bound for any on-
line algorithm with constant buffer size S. We also give an
algorithm, which based on the method given by Galambos
and Woeginger in [5]. We prove that the competitive ra-
tio of our algorithm is equal to the value of the new lower
bound. So, we close the gap for arbitrary values of r, where
r=2,3,...

2. PRELIMINARIES

We will use a sequence which was first introduced by Sylvester
in [10] (1880) for the case r = 1, therefore, we refer to this
sequence as generalized Sylvester sequence.

For integers £k > 1 and r > 1, the generalized Sylvester
sequence mp, ..., my, can be given by the following recursion.

mi=r-+1, my =1+ 2,

mi; =mj_1(mj_; —1)+1,forj=3,... k.

m r=1] r=2 r=3 r=4 r=5
j=1 2 4 5 6
j=2 3 4 5 6 7
ji=3 7 13 21 31 43
j=4 43 157 421 931 1807
j=5 | 1807 | 24493 | 176821 | 865831 | 3263443

Table 1.1. The first few elements of the generalized
Sylvester sequences if k < 5.

These sequences have the following properties.

1 1 1
Doy 22
= ™ mj;—1 mp,,—1

and
k
1 1
TT—|—Z —=1-—— ifr>2.
my = mg my,, — 1

In the above equiations the sizes of the lists were derived
from the generalized Sylvester sequences. For example, if
r =1, then the sizes are % + e, %—i—&, %—&—5, ﬁ—i—s,.... We
will use these sequences to give lower bounds. Similarly, we
will allude to the following constants.

m;

— 1
hoo(r) =14 ———.
i =2

The first few values of hoo (1) : hoo(1) & 1.69103, hoo(2) =
1.42312, hoo(3) ~ 1.30238.

Generally, to avoid the pilling of indexes we will denote m;
by my.
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3. LOWER BOUND CONSTRUCTION

We will construct the following instance. Let n > 0 be a
large integer and let k¥ > 4 be an integer. Then we will
consider the concatenated list L = (L1, Lo, ..., Li), where

e L, contains n(my —1)(m1 — 1) items with size %1 +e.

e L; contains n(my — 1) items with size mi +¢, for 2 <
i<k—1,

o Ly contains n(my — 1) items with size -1 — ke,

where ¢ is arbitrary small, ie. %1 —(mi1+k—3)e> %k

M
Using the above construction we can prove the following
theorem for the given problem.

THEOREM 3.1. Let us consider the r-parametric case. If
there is a buffer with buffer size |B| = S, then for any online
algorithm Roc(A) > hoo(r).

Since for 7 = 2 hoo(r) = 1.423117..., for the problem con-
sidered in [13] and [12] this lower bound gives an improve-
ment.

4. THE WEIGHTING FUNCTION

Investigating online bounded-spaced algorithms in [5] a weight-
ing function was defined to use during the analysis of an
algorithm. Generalizing the idea we define the following
weighting function.

1
, if <<
( ) ermz'(mz'—l) 1 A ——
Wi(x) =
m; + 1 . 1 1
Tix, if mi+1_1<x§m—i.

The weight of a bin is defined as the weight of all elements in
it, and generally, the weight of a set is the weight of all items
in the set. It is easy to see that the following statements are
true.

Fact 4.1.
(i) W(z) is nondecreasing in (0, 1].

(ii) Fori>1, W& < mitl gy < L

= m;’

(iii) Fori>1, W&l > mitl jpg > T

First we prove the following theorem.

THEOREM 4.2. Let us consider the r-parametric problem.
Then any packing of a list L the weight of any bin is at most
hoo(T).

As a consequence of the above theorem, the following corol-
lary is true.

COROLLARY 4.3. For any list L, W(L) < hoo(r) OPT(L).



S. THE ALGORITHM

Our algorithm — called First Fit Decreasing with Buffer-
length 3, FFD3B - is as follows.

(1) Fill up the buffer with the subsequent elements of
the list until the next item fits into the buffer.

(2) Order the items in the buffer in nonincreasing order,
and put the items in three virtual bins each of them
with capacity 1 using the FFD rule.

(3) Check the sum of the weights in the virtual bins.
Find a set of items in the virtual bins with weight
greater or equal than one, open a new empty bin, put
the items from the virtual bins into this new-opened
bin, and close the bin.

(4) If there is an unplaced item then goto (1),

(5) Empty the contents of the virtual bins into new-
opened bins. Close the bins, and quit.

THEOREM 5.1. If we pack the items of any list by the al-
gorithm FFD3B then either in the step (3) we have a good
subset of items (a subset of weight greater or equal than one)
or we have enough place in the buffer to accept a new item
from the list.

Because of the above theorem, as a consequence we get the
following theorem.

THEOREM 5.2. For any list L, W (L) > FFD3B(L) — 3.

Therefore we get the following corollary.

COROLLARY 5.3. For the r-parametric case Roo (FFD3B)
= hoo(r).

6. CONCLUSION

In this paper we gave an online bin packing algorithm for the
special problem when the sizes of the items are in the interval
(0, %] for arbitrary values of r,r = 2,3, ... and when we can
use a capacitated lookahead buffer to temporarily store some
elements. We proved that the asymptotic competitive ratio
of our algorithm is tight.
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ABSTRACT

This paper studies the Multi-Depot Rural Postman Problem
on an undirected graph. This problem is the extension of
the well-known Undirected Rural Postman Problem to the
case where there are several depots instead of just one. A
linear integer programming formulation that only uses bi-
nary variables is proposed, which includes three families of
constraints of exponential size. An exact branch-and-cut
algorithm is presented, where violated constraints of both
types are separated in polynomial time. Despite the diffi-
culty of the problem, the numerical results from a series of
computational experiments with various types of instances
illustrate a quite good behavior of the algorithm.

Categories and Subject Descriptors

[Theory of computation]: Mathematical optimization Branch-

and-bound Algorithm design techniques

General Terms
Theory

Keywords
Arc routing; multi-depot rural postman problem; worst-case
analysis; polyhedral analysis; branch-and-cut

1. INTRODUCTION

In this work we develop a branch-and-cut algorithm for the
Multi-Depot Rural Postman Problem (MDRPP), which ex-
tends the classical Rural Postman Problem (RPP) [13] where
there is only one depot. Similarly to the RPP, routes must be
designed to serve a given set of required edges. In contrast,
in the MDRPP the depot from which each required edge is
served is not known in advance. The MDRPP combines two
types of decisions: the allocation of required edges to depots
and the planning of routes. The objective is to determine a
minimum cost set of routes, each starting and ending at the
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same depot, and such that each required edge is traversed
at least once.

The motivation for studying the MDRPP comes not only
from its theoretical interest but also from its real-life appli-
cations. Similarly to other arc routing problems, such ap-
plications arise in a wide variety of practical cases, namely
garbage collection, road maintenance, mail delivery, snow
plowing or pipelines inspection, to name just a few. In large-
scale instances, there is usually more than one depot from
which service demand can be satisfied. Such depots may be
vehicle stations, dump sites, replenishment points or relay
boxes. A way of handling such problems is to first define a
smaller operating area for each depot, by using a districting
procedure in which each district contains a single depot, and
then solving the RPP associated with each district. This so-
lution strategy is of course suboptimal.

The literature on Multi-Depot Arc Routing Problems (MDARP)

is scarce. To the best of our knowledge, [4, 3] are the only
existing exact algorithms for the MDRPP. Both use natural
decision variables which explicitly indicate the depot with
which each traversed edge or arc is associated. Other than
this, previous work on MDARPs focused on multi-depot
capacitated arc routing problems (MDCARPs). Although
there are some theoretical works and exact algorithms [14,
9] most of the existing literature on MDCARPs focuses on
heuristic solution algorithms (see, [1, 12, 11, 8, 7, 6].

Multi-depot routing problems are also related to districting-
arc routing problems where a set of clusters or districts that
suitably partition the required edge set is sought. The de-
sign of good districts at an strategic level, where demand
points or edges are allocated to depots, allows finding ef-
ficient routes at each district at an operational in a later
phase. There exists a rich districting literature in relation
to arc routing (see, for instance, [12, 11, 10]). Two recent
works on districting for arc routing are [2, 5].

A natural option when dealing with routing problems with
multiple depots is to associate routes with depots and then
to define the routes for each depot. From a modeling point of
view, this can be easily done by using decision variables that
explicitly indicate the arcs/edges traversed by the routes of
each depot. Such an alternative offers two main advantages.
On the one hand, in absence of capacity or other type of con-



straints, the feasibility of a route corresponding to a fixed
depot is guaranteed by connectivity plus parity constraints.
On the other hand, routes can be easily reproduced once
the values of the decision variables are known. The obvious
disadvantage of this option is that the number of variables
increases with the number of depots, so the success of exact
solution methods for large size instances becomes a chal-
lenge. The two previous MDRPP works referenced above
[4, 3] use this type of decision variables. In [4] which deals
with exactly the same undirected MDRPP that we study in
this paper, instances with up to 100 vertices and 4 depots
were solved to optimality. In [3], which addresses a directed
MDARP dealing with carriers collaboration, instances with
up to 50 vertices and 2 depots were optimally solved.

2. THE MULTI-DEPOT RURAL POSTMAN
PROBLEM

In this work we carry out a worst-case analysis to study the
potential savings that can be obtained, with respect to the
RPP and some variations, when multiple depots are consid-
ered. We denote by z*(MDRPP) the optimal value of a
MDRPP instance and by z*(RPP) the optimal value of the
same instance with only one depot. It is possible to prove
that savings can be obtained in both directions, since the
best solutions are not necessarily obtained using more than
one depot. A summary of the results that we prove are:

Theorem 2.1. There exists no finite upper bound for the
ratio z*(RPP)/z*(MDRPP).

Theorem 2.2. z*(RPP)/z"(MDRPP) > 1/2, and the
bound is asymptotically tight.

Furthermore, we present a new integer linear formulation for
the MDRPP with binary decision variables, which are solely
associated with edges, but not with depots. In particular,
two sets of binary variables are used, associated with the
first and second traversals of edges, respectively. For each
e € F, let x. be a binary variable indicating whether or not
edge e is traversed by some route. We denote by EY C E
the set of edges that can be traversed twice in an optimal
solution. For each e € EY, let y. be a binary variable that
equal to one if and only if edge e is traversed twice. Indeed,
the reduction on the number of decision variables used in our
formulation comes at the expenses of additional difficulties.
Now, connectivity and parity constraints are not enough to
guarantee well-defined routes. To overcome this difficulty we
propose a new set of constraints that guarantee that each
route terminates at the same depot where it has started,
which can be separated in polynomial time.

Likewise, we study the polyhedral properties of the formula-
tion. In this sense, we prove that the convex hull of the poly-
hedron associated with feasible solutions is full-dimensional
under a certain conditions. Furthermore, under mild condi-
tions the trivial inequalities and some families of constraints
are facet defining.

We finally propose an exact branch-and-cut algorithm with
exact separation for all the families of inequalities of expo-
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nential size. The algorithm has been implemented and its
computational effectiveness tested on a series of computa-
tional experiments with a set of benchmark instances. The
numerical results assess the good performance of the solu-
tion algorithm, as it is capable of solving to optimality, in
reasonable computing times, instances with up to 700 ver-
tices and four depots.

3. CONCLUSIONS

We have studied the Multi-Depot Rural Postman Problem
(MDRPP), which is the extension of the RPP to the case
of several depots. A worst-case analysis of the MDRPP
with respect to the RPP indicates that the potential sav-
ings can be arbitrarily large, but also that the RPP may
produce better solutions. Worst case analysis has been car-
ried out and binary linear formulation for the MDRPP has
been presented. The formulation includes a new family of in-
equalities that ensure that routes start and end at the same
depot. The properties of the polyhedron associated with the
formulation have studied. Furthermore, we have developed
a branch-and-cut algorithm for the MDRPP based on the
proposed formulation. The algorithm is capable of solving
to optimality within reasonable computing times instances
with up to 700 vertices and four depots.
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1. INTRODUCTION

We discuss network optimization problems that arise natu-
rally in the context of optimally allocating and pricing indi-
visible homogeneous items to unit-demand agents in a net-
work, with the caveat that the agents face negative allocative
externalities. Specifically, agent’s value for (not) getting an
item depends on whether any of its rivals did (not) get an
item. The rivalry is represented by a network with nodes
representing agents and arcs representing whether an agent
considers another agent its rival.

An agent ¢ could have four different values depending on the
allocation structure: w; is the value if agent i gets an item
but no rival gets it; v; is the value if agent ¢ gets an item and
at least one if its rivals also gets it; without loss of generality,
we normalize to zero agent i’s value for no item allocated to
i nor any of its rivals; finally, agent ¢ experiences a loss —a;
if ¢ does not get an item but one of the rival’s does get it.
(Note that this valuation structure could be generalized be-
yond binary, so that agent i’s value depends on the number
of rivals who also got an item.) With normalization for one
value, agents’ valuation function is three-dimensional. Such
valuation structure generalizes those studied in [10] and [2]
where results analogous to those presented below were ini-
tially established.

The settings that can be represented with such allocation
structure are prevalent in business. For example, represen-

tation w; > v; > 0 = —q; describes a setting in which agents
put a premium w; — v; on an exclusive allocation, and lose
nothing (0 = —ay) if a rival gets the item. Exclusivity is

considered valuable in a variety of settings. For example,
the right to sell a product or offer a service exclusively is
more valuable than having to compete for a market share
with rivals who might secure the same right. The scope of
exclusivity rights might be limited to a geographic area or
a market segment, as is common with franchising and with
exclusive sales, service and distribution agreements. For an-
other example, representation w; = v; > 0 > —a; describes
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a fierce competitive setting in which rival obtaining an item
imposes a loss for agent ¢ who did not get an item. Indus-
tries that involve patent and intellectual property protection
or a regulatory approval are examples in which an agent
who obtains an item imposes negative externalities on all
of its rivals. For example, when pharmaceutical companies
race to develop a drug, the company who is first to obtain
the patent and/or regulatory approval essentially eliminates
competition from the market for that drug, thereby turning
into losses all of the rival’s R&D investment for the same
purpose drug development.

We focus on the setting in which agents’ values are private
and the monopolist seller’s objective is to maximize expected
revenue. In other words, we are looking for the optimal de-
terministic mechanism in presence of multi-dimensional in-
dependent private values. The mechanism design problem
with externalities has been studied in computer science lit-
erature, mostly motivated by mechanisms for allocation and
pricing of digital ads. (The prevailing approach to design an
auction procedure is to design a polynomial time algorithm
for solving given mechanism design problem and then inter-
pret it as an auction.) Allocative externalities in digital ad
context arise naturally: an advertiser could value an exclu-
sive ad placement; similarly an advertiser who lost out on
ad placement might prefer competitor ad not being shown
either. Some notable works that focus on related problems
include [6],[11],[8],[3],[12],[9], 7). 4],[3]

2. EXCLUSIVITY MODEL

A monopolist seller has K identical items that can be al-
located among N = {1,2,...,n} unit-demand agents. Re-
lationships among agents are defined by a network (IV, E)
where E is the 0-1 adjacency matrix: e;; = 1 if and only if
agent ¢ considers agent j, j # 4, to be its rival (e.g., ¢ consid-
ers j a competitor or ¢ and j are geographical neighbors or
directly connected in a social network). Let S(i) C N \ {i}
denote the set of agent i’s neighbors, i.e., the set of all other
agents that ¢ considers to be related to her: S(i) = {j € N :
€ij = 1}.

Agent i’s type is represented by a vector v; = (w;, v;), where
w; is agent i’s (exclusivity) valuation for the item if none of
her neighbors j € S(i) gets an item, and where v; is agent 4’s
(non-exclusivity) valuation for the item if there is a neighbor
Jj € S(i) who also obtains the item. We assume

w; > v > 0,



where, without the loss of generality, we can normalize by
setting agent i’s value for not getting an item to zero. Note
that w; — v; can be thought of as the exclusivity premium.

We consider the setting in which v; is privately known, while
network (N, E) and the number of available items K are
publicly known. Agent i’s private information v; = (w;, v;)
is drawn independently (across agents) from a joint cumula-
tive distribution function F; with support V = [w, @] X [v, D].
The corresponding density function is denoted by f;. Seller’s
valuation vector is (0, 0).

By the Revelation Principle [14], we consider direct mecha-
nisms that allocate items based on agents’ reports. Reports
from all agents are denoted by v = (v;,Vv_;) € V2, with
commonly (ab)used convention that subscript —; denotes in-
formation corresponding to all agents except agent ¢ (e.g.,
V_; is a shorthand notation for {V; : j # ¢}). A direct mech-
anism specifies the allocation: p; : V2 — {0, 1} is agent 4’s
probability to get an item, and payments: m; : V2 — R is
the payment from agent ¢ to the seller, for each v € V2. If
agent i does not participate, she does not get any item.

Agent 7’s ex post utility when she reports her type as v;,
while her true type is v;, and when other agents report v_;,
is

Ui (Vi, Vi, v—i) wipi (Vi, v—_s) H (1 —p; (Vi,v_i))

JES(Y)

+ vipi(Ve, v | 1= [ =p; (Vi v—0))
JES(D)
—  my (Gl, V_i) . (1)
Therefore, the LP relaxation of the seller’s Revenue Maxi-
mization Problem (General-RMP) is

N

max Y- [ mi (vivo) dF(v)

{P'iam'i}gvzl i=1

subject to
(EPIC) Ui (vi,vi,v_i) > Us (Vi, Vi, v_i)
for all 4 and all v;, v, v_;,
(EPIR) Uz' (Vi,Vi,Vfi) 2 0
for all ¢ and all v;,v_;,
(Feasibility) Zpi (V) < Kand 0<p;(v) <1
i=1

for all 1,

where (EPIC) is the ex-post incentive compatibility con-
straint to ensure truth-telling and (EPIR) is the ex-post in-
dividual rationality constraint to ensure participation. (In
the rest of this paper, we simplify the notation by denoting
U; (vi,vi,v—;) by U (vi, v—_;).)

Problem (General-RMP), as well as the corresponding so-
cial surplus maximization problem, is a multi-dimensional
mechanism design problem which is extremely difficult to
solve analytically. It is well known that solutions to multi-
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dimensional mechanism design problems are sensitive to var-
ious details of the environment, e.g., the seller’s belief about
the agents’ types. Hence, there is little hope for finding
closed-form solutions. This unappealing feature of multi-
dimensional mechanism design problems has been demon-
strated by [15], [1], and [13]. Furthermore, a numerical ap-
proach to solving this problem also has a limited potential
given that even simplistic instances exhibit computational
complexity obstacles: for example, even if v, = (1,0) for
all i (i.e., agents only value exclusivity and this valuation is
the same for all agents and is publicly known, so there is
no private information at all in this setting), the Problem
(General-RMP) reduces to determining whether there exists
a K-independent set on (N, E).

To avoid this inherent analytical obstacle stemming from
mechanism design, we focus on valuation structures that
have one-dimensional representation. The mechanism de-
sign problem can be solved for a large class of such valua-
tions, including additive premium valuations w; = v; + b;
or multiplicative premium valuations w; = b;v;, where b; is
publicly known. Here, we illustrate our findings with modu-
lar valuations which we name local linear exclusivity (LLE):

w; = v; + Z Qi V;j (2)

JES(Y)

with publicly known non-negative matrix A = [a;;]. Also of
interest is a special case of LLE, where for every j,

{i:j€S(3)}
We say that such valuations satisfy bounded local linear ex-
clusivity (BLLE).

PROPOSITION 1. Suppose that valuations are BLLE and
publicly known and that the seller’s supply is unlimited, i.e.,
K >n. Then, allocating an item to every buyer ¢ who pays
v; is an optimal solution to the (FB-RMP) problem.

Hence, the problem is trivial with publicly known BLLE
valuations. However, introducing private values drastically
changes the complexity of the problem.

PROPOSITION 2. Suppose that valuations are BLLE, and
that the seller’s supply is unlimited, i.e., K > n. Then allo-
cating exclusively to some buyers could be optimal. Further-
more, finding a deterministic optimal solution to the (SB-
RMP) problem is at least as hard as finding the mazimum
independent set in (N, E), even if virtual valuations ¥; > 0
for all 1.

3. GENERALIZED EXTERNALITIES

We establish the following results within the exclusivity model
and hence it extends to a generalized negative externalities
setting.

THEOREM 1. The expected revenues from the optimal mech-
anism are not monotone with respect any dimension of agents’
valuations.



This result is in stark contrast with standard mechanism
literature that assumes no extarnalities. In fact, even with
positive externalities, the monotonicity of the expected rev-
enues in the optimal mechanism is established in a straight-
forward manner.

A direct consequence of this result involves rivalry networks.

COROLLARY 1. The expected revenues of the optimal mech-
anism for a given rivalry network are not monotone with
respect to arc addition/deletion.

Finally, consider the setting in which the seller could also
design/impose a rivalry network and answer the question
of the (non)-existence of an optimal (extremal) rivalry net-
work. In general, such an extremal network could depend
on the distributional assumptions on the bidder valuations.
However, we show that in some restricted settings such an
extremal network not only exists, but is also independent of
distributional assumptions.

THEOREM 2. Suppose there ezists v > 0 such that
vi=v>0>—q

for all agents i and that all values are publicly known. Sup-
pose that the seller has k = 1 item to allocate. Then there ex-
ists extremal networks that mazimize seller’s revenue across
all possible rivalry networks.
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We define the vertex sign balance of a (hyper)graph G as the minimum num-
ber of non-negative edges over all w : V(G) — R satisfying > (g w(z) > 0
(i-e., the minimum number of edges with non-negative sum of weights of ver-
tices in it). Clearly, the vertex sign balance of a (hyper)graph is always less
than or equal to the minimum degree, as it is shown by assigning a large pos-
itive number to a minimum degree vertex and close to 0 negative numbers to
all other vertices. We will denote the vertex sign balance of a (hyper)graph
by u(G), as it will be shown closely related to the matching number of the
(hyper)graph, v(G). Huang and Sudakov [1], and Pokrovsky[3] (probably inde-
pendently) introduced the so-called Manickam-Miklés-Singhi (MMS-)property
of a hypergraph: a hypergraph H has the MMS-property if pu(H) = 0(H), the
minimum degree of the hypergraph. (The definition is based on the 30 years
old conjecture of Manickam, Miklés[2], and Singhi, which says, in this language,
that the complete r-uniform hypergraph on n vertices has the MMS-property if
n > 4r.) Both of the papers (of Huang and Sudakov and Pokrovsky) used the
notion of MMS-property to prove a better than earlier known bound on n to
ensure the MMS-property of this complete r-uniform hypergraph on n vertices.
Huang and Sudakov showed that every r-uniform n-vertex hypergraph with

*This research was partially supported by National Research, Development and Innovation
Office - NKFIH Fund No. SNN-117879.
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equal codegrees and n > 10r3 has the MMS-property while Pokrovskiy proved
that if a (any) d-regular r-uniform n-vertex hypergraph has the MMS-property,
then the complete r-uniform hypergraph on n vertices has the MMS-property
as well.

Here we will explore this newly introduced graph parameter, the vertex sign
balance of graphs and — to some extend — hypergraphs.

Definition. The vertex sign balance of a (hyper)graph G (or H), denoted by
w1(G) ((H), resp.) is defined to be the minimum number of non-negative edges
for all weighting of vertices w : V(G) — R satisfying EIev(G)w(x) >0, ie.
the minimum number of edges with non-negative sum of weights of vertices in
it. For a given weight assignment to the vertices, an edge will be called positive
(non-negative, negative) if the sum of the weights of the vertices in the edge are
positive (non-negative, negative, resp.)

Remark. The vertex sign balance of a (hyper)graph is always less than or equal
to the minimum degree.

Theorem 1. For any graph G the following statements are equivalent:

1 (@) 21

2. the fractional matching number, v*(G) = n/2.

3. There exists no independent subset of vertices S C V(G) such that
IN(S)| = IS] - 1.

4. G has a perfect 2-matching, that is, there exists a collection of edges
(multiple choice of an edges is allowed) which covers every vertex exactly twice.

We mention here that a perfect 2-matching can always be pictured as the
union of disjoint odd cycles (whose edges are counted once) and a matching,
i.e., collection of disjoint edges (which are counted twice).

A similar theorem can be stated for hypergraphs as well:

Theorem 2. For r-uniform hypergraph H = (V, E) with n vertices, u(H) = 0
if and only if the fractional matching number of H, v*(G), is less than .

The existence and structure of a perfect 2-matching of a graph can be used
not only for determining whether x(G) > 0 but also to find the value of u(G),
as the following theorem gives:

Theorem 3. 1. u(G) = the min # of edges one can remove from G to get G*
such that there exists S* C V(GQ) and |S*| > |[N(S*)|.

2. (@) = the min # of edges one can remove from G so that the remaining
graph does not have a perfect 2-matching.

This characterization of 1(G), together with some recent result on the com-
putational complexity of the existence of a bounded size set of edges in a bipar-
tite graph covering all maximal size matchings by Zenklusen, Ries, Picouleau,
Werra, and Bentz[4] we managed to show that finding the vertex sign balance
of a graph is NP-complete:

58



Theorem 4. The following two problems about the vertex sign balance of a
(hyper) graph are NP — complete:

VSB(G, k)

Instance: An undirected (hyper) graph G = (V, E) and a positive integer 0 <
k <|E|.

Question: Is e(G) < k?

VSB(Q)

Instance: An undirected (hyper) graph G = (V, E)

Question: Is e(G) < 6(Q), that is, is it true that G does not have the MMS-
property?

Further, we succeeded in characterizing some classes of graphs which have
MMS property and gave lower bounds on u(G) in terms of the minimum degree
(which is constant in case of regular graphs) of the graphs:

Theorem 5. Suppose G is a graph with n many vertices. If §(G) > %, then
G has MMS-property.

The following theorem will give the exact bounds on §(G), the minimum
degreeof a graph to ensure the MMS-property.

Theorem 6. (Sharp bounds for minimum degree) For any graph G with n
vertices where n > 6, if n is odd and the minimum degree §(G) > "TJFS, orn s

even and 6(G) > ”'2"2, then G has MMS-property. This bound is sharp.

In case the minimal degree is smaller than the required lower bound, it still
implies high vertex sign balance value (though not as high as 9).

Theorem 7. For any graph G with n many vertices, if 6(G) > "22';?:2_1, then
w(G) >t for allt < 46(G).

The following theorems will give lower bound on the vertex sign balance for
regular graphs:

k
Theorem 8. For any k-regular graph G, u(G) > 5

Theorem 9. For a k-reqular graph, G, with n vertices, u(G) = g if and only if

G has an independent subset S such that |S| = 5% (or G is disconnected and
has some component with this property).

Corollary 1. For a k-regular graph G with n vertices, the lower bound u(G) = %
can only be achieved if G has an odd number of vertices and k < %H (These

are necessary but not sufficient conditions)

Corollary 2. For a connected k-reqular graph G on an even number of vertices,
w(G) > | & +1] is a sharp lower bound.
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ABSTRACT

A degree sequence D = di,ds,...d, is a series on non-
negative integers. A degree sequence is graphical if there
is a vertex labeled graph G in which the degrees of the
vertices are exactly D. Such graph G is called a realiza-
tion of D. The color degree matrix problem also known as
edge disjoint realization, edge packing or graph factorization
problem is the following: given a ¢ X n degree matrix D =
{{dl,h dig,... dl,n}7 {d2,17d2,27 d2,n}7 cee {dc,l,dcm dc,}}: in
which each row of the matrix is a degree sequence, decide
if there is an ensemble of edge disjoint realizations of the
degree sequences. Such set of edge disjoint graphs is called
a realization of the degree matrix. A realization can also
be presented as an edge colored simple graph, in which the
edges with a given color form a realization of the degree
sequence in a given row of the color degree matrix.

It is known that the color degree sequence problem is NP-
complete even if the number of colors is 3. Here we consider
a special case when two of the degree sequences are degree
sequences of trees. We show that this special case is easy.
We also show that the problem is still NP-complete if only
one of the degree sequences is a degree sequence of a tree.

We also consider counting the number of solutions. We show
that efficient approximations for the number of solutions ex-
ists as well as an almost uniform sampler exists if two degree
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sequences are degree sequences of trees and they do not share
common leaves.

1. INTRODUCTION

Packing degree sequences is related to discrete tomography.
The central problem of tomography is to reconstruct spatial
objects from lower dimensional projections. The discrete 2D
version is to reconstruct a coloured grid from vertical and
horisontal projections. In the simplest version, this prob-
lem is to reconstruct the colouring of an n x m grid with
the requirement that each row and colomn has a specific
number of entries for each colour. Such coloured matrix
can be considered as a factorization of the complete bipar-
tite graph K, . Indeed, for each colour ¢;, the 0-1 matrix
obtained by replacing ¢; to 1 and all other colours to 0 is
an adjacency matrix of a simple bipartite graph such that
the disjoint union of these simple graphs is Ky mn. The pre-
scribed number of entries for each colour are the degrees of
the simple bipartite graphs. Therefore, an equivalent prob-
lem is to give a factorization of the complete bipartite graph
given prescribed degree sequences.

Tt is also possible to consider the simple (not bipartite) ver-
sion of the graph factorization problem. Obviously, the sum
of the degrees for each vertex must be n — 1 when the com-
plete graph K, is factorized. Therefore, if there are k degree
sequences, the last degree sequence is unequivocally deter-
mined by the first k — 1 degree sequences.

When k = 2, the problem is reduced to the degree sequence
problem, and can be solved in polynomial time [2, 3]. When
k = 3, the problem already becomes NP-complete [1]. How-
ever, special cases are polynomial solvable even when k = 3.
Such a special case is when one of the degree sequences is
almost regular, that is, any two degrees differ at most by 1

[5].

In this paper we consider the case when k = 3 and two of the
degree sequences are tree degree sequences. We show that



this special case is polynomial solvable. Some results on the
solution space is also presented. We also provide a negative
result: when only one of the degree sequences is tree degree
sequence, the problem is still NP-complete.

2. PRELIMINARIES

In this section we give the definitions needed to state the
theorems. The central problem in this paper is the colour
degree sequence problem.

DEFINITION 1. A degree sequence D = di,ds,...dy is a
series on non-negative integers. A degree sequence is graph-
ical if there is a vertex labeled simple graph G in which
the degrees of the vertices are exactly D. Such graph G is
called a realization of D. The colour degree matrix prob-
lem is the following: given a ¢ X n degree matric D =
Hdi1,diz, . din}, {d2,d22,d2n ), {de, dey2, de, 3}, in
which each row of the matriz is a degree sequence, decide if
there is an ensemble of edge disjoint realizations of the de-
gree sequences. Such set of edge disjoint graphs is called a
realization of the degree matriz.

Although it is well known, we also define the tree degree
sequences and caterpillars.

DEFINITION 2. A degree sequence D = di,ds,...dy 1is
called a tree sequence if 3.7, di = 2n — 2 and each degree
18 positive.

DEFINITION 3. A tree is a caterpillar if the non-leaf ver-
tices form a path in it.

In this paper, we are using complexity classes which might
be unfamiliar for non-expert readers, therefore we give the
definition of them here.

DEFINITION 4. A decision problem is in NP if a non-
deterministic Turing Machine can solve it in polynomial time.
An equivalent definition is that a witness proving the “yes”
answer to the question can be verified in polynomial time.
A counting problem is in #P if it asks for the number of
witnesses of a problem in NP.

DEFINITION 5. A counting problem in #P is in FP if
there is a polynomial running time algorithm which gives
the solution. It is #P — complete if any problem in #P can
be reduced to it by a polynomial-time counting reduction.

DEFINITION 6. A counting problem in #P is in FPRAS
(Fully Polynomial Randomized Approximation Scheme) if
there erists a randomized algorithm such that for any in-
stance x, and €,6 > 0, it generates an approzimation f for
the solution f, satisfying

p(liﬂgfﬁ(ue))m—a )

and the algorithm has a time complexity bounded by a poly-
nomial of |z|, 1/e and —log(9).

62

The total variational distance drv (p,7) between two dis-
crete distributions p and 7 over the set X is defined as

drv(p,) = 5 3 lp(@) = 7(@) @

rzeX

DEFINITION 7. A counting problem in #P is in FPAUS
if there exists a randomized algorithm (a Fully Polynomial
Almost Uniform Sampler that is also abbreviated as FPAUS)
such that for any instance x, and € > 0, it generates a ran-
dom element of the solution space following a distribution p
satisfying

dTV (p, U) § € (3)

where U is the uniform distribution over the solution space,
and the algorithm has a time complexity bounded by a poly-
nomial of |z|, and —log(e).

3. PACKING TWO TREES

Our main result is about packing two tree sequences with
no common leaves.

THEOREM 1. Let D =di,dz,...dn and F = f1, fa,... fn
be two tree degree sequences, such that min;{d; + fi} < 3.
Then D and F have edge disjoint caterpillar realizations.

The theorem implicitely states that if two degree sequences
do not share common leaves then their sum is graphical.
The proof of this theorem is skipped here. If the two trees
have common leaves, their sum is not necessarily graphical.
However, when their sum is graphical, they do have edge
disjoint realizations, as Kundu already proved it.

THEOREM 2. [6] Let D = di,da,...dn and F = f1, fo,... fn
be two tree degree sequences. Then there exist edge dis-
joint tree realizations of D and F iff D+ F(=d1 + f1,d2 +
f2,...dn+ fn) is graphical.

We also give another theorem that also provide edge disjoint
realizations.

THEOREM 3. Let D =di,ds,...dn and F = f1, fo,... fn
be two tree degree sequences, such that min;{d; + f;} < 3.
Let Ty and Ts be random realizations of D and F uniformly
distributed. Then the expected number of common edges of
Ty and T» is strictly less that 1 if there exists a vertex which
is not a leaf in both trees and at most 1 if each vertexr is a
leaf in exactly one of the trees.

If there is a vertex which is not a leaf in both trees then
there must exist edge disjoint realizations 77 and 7%, oth-
erwise the number of common edges cannot be less than 1
in expectation. If each vertex is a leaf in exactly one of the
trees then there must be vertices v1 and vs which have de-
gree 1 in D and v3 and vs4 which have degree 1 in F' (recall
that any tree contains at least 2 leaves). Then there exist a
pair of trees T1 and T, such that both trees contain edges



(v1,v3) and (v2,vs4). Indeed, the degree 1 vertices can be
connected to any of the non-leaf vertices. This means that
there are trees having at least 2 common edges, which is
above the average. However, then there must be a pair of
trees with less than average number of common edges. That
is, they are edge disjoint realizations.

Now we turn to the case when there are common leaves. The
following lemma helps here.

LEMMA 4. Let D =di,d2,...dy and F = f1,f2, .. fn be
two tree degree sequences, such that di + f1 > do + fo >
... >dn + fn) is graphical. Define

1= mln{j|] > 1/\[(d1 > 1IAf; > DV(f1 > IAd; > 1)]} (4)

Furthermore, assume that d, + fn, = 2. Then the degree
sequence is also graphical which is obtained from D + F by
removing 1 from di + fi1 and d; + f; and deleting d,, + fn.

This lemma says that we can construct an edge disjoint re-
alization of D and F' by iteratively removing the common
leaves and modifying the remaining degree sequences, and
the lemma guarantees that the remaining degree sequence
will be graphical. Once there is no common leaf, then we
can apply Theorem 1.The so obtained caterpillar realizations
can be extended to edge disjoint realizations of the original
degree sequences by adding back the common leaves.

4. COUNTING AND SAMPLING REALIZA-
TIONS

Since typically there are more than one realizations when a
realization exists, and typically the number of realizations
might grow exponentially, is is also a computational chal-
lenge to estimate their number and/or sample almost uni-
formly a solution. Here we have the following theorem.

THEOREM 5. Let D =di,ds,...dy and F = fi1, fo,... fn
be two tree degree sequences, such that min;{d; + fi} < 3.
Then there is an FPRAS for estimating the number of dis-
joint realizations and there is an FPAUS to almost uniformly
sample realizations.

This theorem is based on Theorem 3. If there is a vertex
which is not a leaf then it is easy to show that the expected
number of common edges is polynomially separated from 1,
that is, the inverse of 1 minus the expectation is polynomi-
ally bounded. It means that in a polynomial number of trials
of random couple of trees, at least one edge disjoint realiza-
tion is expected. It follows from the central limit theorem
that an FPRAS algorithm can be designed based on this
property. It is also well known that an FPAUS algorithm
can be desiged in this case, see [4] for techical details.

When each vertex is a leaf in exactly one of the trees than
it is easy to show that a non-negligible fraction of the ran-
dom pair of trees contains at least two common edges. In
fact, the inverse of the fraction of the couple of trees 77 and
T> that have the above mentioned common edges (v1,vs)
and (v2,v4) is polynomially bounded. Then the inverse of
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the fraction of edge disjoint realizations is also polynomially
bounded. This means that FRPAS and FPAUS algorithms
can be designed in exactly the same way than above.

It remains an open question whether or not similar theo-
rems exist for the case when the tree degree sequences have
common leaves. Also it is open if exact counting of the edge
disjoint solutions is possible in polynomial time, although
the natural conjecture is that this counting problem is #P-
complete.

S. AN NP-COMPLETE THEOREM

What can we say when only one of the degree sequences is
a tree degree sequence and the other is arbitrary? Unfortu-
nately, we have a negative result here.

THEOREM 6. [t is NP-complete to decide if there is an
edge disjoint realization of a tree degree sequence and an
arbitrary degree sequence. (It is not required that the tree
degree sequence have a tree realization).

PROOF. We use the theorem by [1] that it is NP-complete
to decide if two bipartie degree sequences has an edge dis-
joint realizations. We have the following observations.

e A bipartite degree sequence pair

D = (d171, d172, L dl,nl), (dgyl, dzyz, . dgynz)

and

F=(fi1, fi2,-- fin), (fo1, f22, - fono)

has an edge disjoint realization iff the simple degree
sequence pair

D = (d171 +ni—1,.. .d1,n1 +n1 — 1,d2,1, .. .dg,n2)
and
F = (f171,...f17n1,f2,1 “+no — 1,...f27n2 + ng — 1)

has an edge disjoint realization. Indeed, if an edge
disjoint bipartite realization of D and F' is given, then
the complete graph on the first vertex class can be
added to the first realization and the complete graph
on the second vertex class can be added to the second
realization to get a (now non-bipartite) realization of
D’ and F’. On the other hand, it is easy to see that any
realization of D’ contains K,, on the first n; vertices,
and any realization of F' contains K, on the last na
vertices. Given an edge disjoint realization of D’ and
F’, deleting K,,, from D" and K,, from F’ yields an
edge disjoint realization of D and F'.

e The degree sequence pair D = dj,ds,...d, and F =
fi, f2,... fn. has an edge disjoint realization iff the de-
gree sequence pair D' =d; +1,d2+1,...d, +1,n and
F'" = f1,f2,... fn,0 has an edge disjoint realization.
Indeed, let G1 and G2 be an edge disjoint realization
of D and F. Then add a vertex v,41 to GG1, and con-
nect it to all the other vertices to get a realization of
D’. Add an izolated vertex v,11 to G2 to get a real-
ization of F’. These realizations of D’ and F’ are edge
disjoint. On the other hand, in any realization of D’,



Un+1 is connected to all the other vertices. If edge dis-
joint realizations of D’ and F’ are given, delete v, 11
from both realizations to get edge disjoint realizations
of D and F.

e The degree sequence pair D = di,da2,...d, and F =
fi, f2,... fn has an edge disjoint realization iff the de-
gree sequence pair D' = di,ds,...dn,1,1 and F' =
fi+ 1, f2+1,... fr+1,n,0 has an edge disjoint real-
ization. Indeed, any edge disjoint realization G and
G2 of D and F can be extended to an edge disjoint
realization of D’ and F’ by adding two vertices v,11
and vp42, and then connecting vn41 to all vi,... v,
in G2 and connecting vn41 and vp42 in G1. On the
other hand, in any edge disjoint realizations G and
G5 of D' and F’, v,11 is connected to all v1,...v,
in G%, therefore, v,+; must be connected to v,42 in
G'. Therefore deleting v,+1 and vn42 yields an edge
disjoint realization of D and F'.

We can use the first observation to prove that it is also NP-
complete to decide that two simple degree sequences have
edge disjoint realizations. The second observation provides
that it is NP-complete to decide if two degree sequences
have edge disjoint realizations such that one of the degree
sequences does not have 0 degrees. Finally, we can use the
third observation to iteratively transform any D degree se-
quence (that already does not have a 0 degree) to a tree
degree sequence. Indeed, in each step, we add two vertices
to D and extend the sum of the degrees only by 2. There-
fore in a polynomial number of steps, we get a degree se-
quence D’ in which the sum of the degrees is exatly twice
the number of vertices minus 2. Therefore it follows that
given any bipartite degree sequences D and F', we can con-
struct in polynomial time two simple degree sequences D’
and F’ such that D and F have edge disjoint realizations iff
D’ and F’ have edge disjoint realizations, furthermore, D’
is a tree degree sequence.

O

6. DISCUSSION AND CONSLUSIONS

In this paper, we considered packing tree degree sequences.
Our main theorem is that two tree degree sequences have
edge disjoint tree realizations iff their sum is graphical. This
is similar to the Kundu’s theorem [5] stating that a degree
sequence and an almost regular degree sequence have an
edge disjoint realization iff their sum is graphical. This raises
the natural question if a degree sequence and a tree sequence
have edge disjoint realizations iff their sum is graphical. We
showed that the answer is no to this question, and actually,
it is NP-complete to decide if an arbitrary degree sequence
and a tree degree sequence have edge disjoint realizations.

We also considered to approximately count and sample edge
disjoint tree realizations with prescribed degrees. We showed
that it is possible if there are no common leaves. It remains
an open question when the two degree sequences have com-
mon leaves.
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Benchmark problems for exhaustive exact maximum
clique search algorithms
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ABSTRACT

There are well established widely used benchmark tests to
assess the performance of practical exact clique search algo-
rithms. In this paper a family of further benchmark prob-
lems is proposed mainly to test exhaustive clique search pro-
cedures.

Keywords

clique, maximum clique, random graph

Let G = (V, E) be a finite simple graph. Here V is the set
of vertices of G and E is the set of edges of G. Let C be a
subset of V. If two distinct nodes in C' are always adjacent in
G, then C is called a clique in G. When C has k elements,
then we talk about a k-clique. A k-clique is a maximum
clique in G if G does not contain any (k + 1)-clique. We
call this well defined number the clique number of G and we
denote it by w(G).

A number of problems is referred as clique search problems.

PROBLEM 1. Given a finite simple graph G and given a
positive integer k. Decide if G has a k-clique.

PROBLEM 2. Given a finite simple graph G. Determine
w(G).

The complexity theory of the algorithm tells us that Problem
is in the NP-complete complexity class. (See for instance
12].) Consequently, Problem [2] must be NP-hard. Loosely
speaking it can be interpreted such that the maximum clique
problem is computationally demanding.

As at this moment there are no readily available mathe-
matical tools to evaluate the performance of practical clique
search algorithms, the standard procedure is to carry out nu-
merical experiments on a battery of well selected benchmark
tests.
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The most widely used test instances are the Erddés—Rényi
random graphs, graphs from the second DIMACS challeng
combinatorial problems of monotonic matrices [5], and hard
coding problems of Deletion-Correcting Codeﬁﬁl]

Evaluating the performances of various clique search algo-
rithms is a delicate matter. On one hand one would like to
reach some practically relevant conclusion about the com-
peting algorithms. On the other hand this conclusion is
based on a finite list of instances.

One has to be ever cautious not to draw overly sweeping con-
clusions from these inherently limited nature experiments.
(We intended to contrast this approach to the asymptotic
techniques which are intimately tied to infinity.) The sit-
uation is of course not completely pessimistic. After all,
these benchmarks were successful at shedding light on the
practicality of many of the latest clique search procedures.
However, we should strive for enhancing the test procedures.
The main purpose of this paper is to propose new benchmark
instances.

There are occasions when we are trying to locate a large
clique in a given graph such that the clique is not necessar-
ily optimal. This approach is referred as non-exact method
to contrast it to the exhaustive search. For instance con-
structing a large time table in this way can be practically
important and useful even without a certificate of optimal-
ity.

The benchmark tests are of course relevant in connection
with non-exact procedures too. In order to avoid any unnec-
essary confusion we would like emphasize that in this paper
we are focusing solely on the exact clique search methods.

Let n be a positive integer and let p be a real number such
that 0 < p < 1. An Erddés-Rényi random graph with pa-
rameters n, p is a graph G with vertices 1,2,...,n. The
probability that the unordered pair {z,y} is an edge of G is
equal to p for each z, y, 1 <z <y < n. The events that the
distinct pairs

{xi(n, yi(l)}7 ) {ﬂfi(s)7 yi(s)}

are edges of GG are independent of each other for each subset
{i(1),...,i(s)} of {1,2,...,n}, where s > 2.

Iftp://dimacs.rutgers.edu/pub/challenge/
Zhttp://neilsloane.com/doc/graphs.html


ftp://dimacs.rutgers.edu/pub/challenge/
http://neilsloane.com/doc/graphs.html

In a more formal way the Erdés-Rényi random graph of pa-
rameters n, p is a random variable whose values are all the
simple graphs with n vertices. The probability distribution
over these graphs is specified in the manner we have de-
scribed above. In this paper we can work safely in a more
intuitive level. We start with a complete graph on n vertices
and we decide the fate of each edge by flipping a biased coin.

In the case p = 0 we end up with a graph consisting of n
isolated nodes. In the case p = 1 we end up with a complete
graph on n nodes. (Paper [1] is the basic reference on Erdés-
Rényi random graph.)

Let I, n be positive integers. Let H; = (V;, E;) be a graph
consisting of [ isolated nodes. This means that |V;| = and
E; =0 for each 4, 1 < i < n. Let V; = {vi,1,...,vi1}.
We construct a new graph G = (V,E). We set V = V1 U
---UV,. The nodes v;,r, vj,s are connected by an edge in G
whenever i # j. We may say that the graph G is isomorphic
to the lexicographic product of the graphs H and K, where
H consists of [ isolated nodes and K is the complete graph
on n nodes. (For further details of graph products see [3].)

Clearly, V; is an independent set in G for each i, 1 < i < n.
The subgraph induced by V;UVj in G is a complete bipartite
graph for each 7, j, 1 <14 < j < n. Obviously, x(G) = n and
w(G) = n hold. In fact G contains [™ distinct n-cliques.

At this stage we choose a real number p such that 0 < p < 1.
At each edge of G we flip a biased coin. The edge stays
with probability p. We call this step randomizing G. The
resulting random graph G’ belongs to the parameters I, n,
p. The | = 1 particular case corresponds to the Erdés-Rényi
random graph of parameters n, p.

It is clear that x(G') < n and w(G’) < n. In order to
guarantee that w(G’) = n holds we will plant an n-clique
into G’. One can achieve this by picking z; € V; for each i,
1 <4 < n and connect each distinct pairs among i ...,Zn
by an edge in G’.

Benchmark tests based on these random graphs are collected
in the BHOSLIB libraryﬁ (The acronym BHOSLIB stands
for Benchmarks with Hidden Optimum Solutions Library.)

After all these preparations we are ready to describe the
graphs we would like to propose for testing clique search al-
gorithms. Let k, m be positive integers. Let Mi(k) = (Vi, Ey)
be the Mycielski graph of parameter k. (For the definition of
Mycielski graphs see [4].) Let V; = {vi1,...,vin} for each
i, 1 <4 < m. We construct a new graph G = (V, E). We
set V=ViU---UVp. Let v;,,vis € V. If the unordered
pair {vir, v;,s} is an edge of Mi(k)7 then we add this pair as
an edge to G. These edges will be the blue edges of G. In
other words the subgraph induced by V; in G is isomorphic
to Mi(k) for each i, 1 < i < m.

Pick vi» € Vi, vj,s € V;. We connect the nodes v;,., vj,s by
an edge in G whenever ¢ # j. These edges will be the red
edges of G.

3http://www.nlsde.buaa.edu.cn/ kexu/benchmarks/
graph-benchmarks.htm
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Note that the graph G is isomorphic to the lexicographic
product of the graphs M® and K, where M* is the My-
cielski graph of parameter k and K is the complete graph on
m nodes. One can verify that x(G) = (k)(m) and w(G) =

(2)(m).

We choose a real number p such that 0 < p < 1. We random-
ize the red edges of G. We flip a biased coin and keep each
red edge with probability p. The resulted random graph
is denoted by G’. It is obvious that x(G’) < (k)(m) and
w(G") < (2)(m). By planting a (2m)-clique into G’ we can
guarantee that w(G’) = (2)(m). We pick x;,y; € V; such
that the unordered pair {x;,y;} is an edge in G’ for each i,
1 <4 < m. Finally, we construct a (2m)-clique whose nodes
are T1,Yi,-- -, Tm, Ym-

Figure 1: The adjacency matrices of the Mycielski
graph M® and the random graph G'.

Note that other graphs can be used instead of the My-
cielski graphs. Presumably the kind of graphs where the
clique number is far from the chromatic number. Using
this method we constructed several test problems. The pro-
posed new collection of test graphs can be found on the site
clique.ttk.pte.hu/evil. The sourse code of the program
that generates the adjacency matrices of these graphs are
also available on this site.

We carried out a large scale numerical experiment to check
the proposed EVIL benchmark problems. We used 55 test
graphs. We took 35 BHOSLIB graphs and 20 EVIL graphs.
The experiment involved 7 programs implementing 12 dif-
ferent algorithms and so we are able to compare the running
times of 660 clique searches. We shall present the results in
the extended version of out paper. One particular result was
that there is a test graph with 220 nodes — 20 copies of the
M® graph, p = 98% edge probability — whose clique num-
ber could be determined by only one program in slightly less
than 12 hours. We suppose that this problem is the hardest
one of such small size.

We would like to close the paper with a few remarks why
the reader should appreciate the proposed benchmark prob-
lems. Although it seems that there is a large number of


http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
clique.ttk.pte.hu/evil

benchmark problems for maximum clique search the plain
fact is that there are not enough of them. Many of these test
problems are too easy for the modern solvers as the sizes of
these problems are small. On the other hand there are test
instances that are overly hard for the contemporary clique
solvers. The proposed EVIL test graphs are forming param-
eterized families. The parameters can be tuned to produce
benchmark problems in various degrees of difficulty.
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ABSTRACT

Assume that we are given two graphic sequences, w1 and ma.
We consider conditions for 1 and w2 which guarantee that
there exists a simple graph G2 realizing w2 such that Gs is
the subgraph of any simple graph 1 that realizes 7.

Categories and Subject Descriptors
G.2.2 [Graph theory]: Extremal graph theory; Matchings
and factors; Graph coloring

General Terms
Graph theory

Keywords

degree sequence, embedding, extremal graph theory

1. INTRODUCTION

All graphs considered in this paper are simple. We use stan-
dard graph theory notation, see for example [4]. Let us
provide a short list of a few perhaps not so common no-
tions, notations. Given a bipartite graph G(A, B) we call it
balanced if |A| = |B|. This notion naturally generalizes for
r-partite graphs with r € N, r > 2.

If S C V for some graph G = (V, E), then the subgraph
spanned by S is denoted by GJ[S]. Moreover, let @ C V so
that SNQ = 0, then G[S, Q] denotes the bipartite subgraph
of G on vertex classes S and @, having every edge of G that
connects a vertex of S with a vertex of . The number of
edges of a graph is denoted by e¢(G). The chromatic number
of a graph G is x(G). The complete graph on n vertices is
denoted by K, the complete bipartite graph with vertex
class sizes n and m is denoted by Ky m.

*Partially supported by ERC-AdG. 321400 and by the Na-
tional Research, Development and Innovation Office - NK-
FIH Fund No. SNN-117879.

JrSuppor‘ced by TAMOP-4.2.2.B-15/1/KONV-2015-0006.
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A finite sequence of natural numbers 7 = (d1,...,d,) is a
graphic sequence or degree sequence if there exists a graph
G such that 7 is the (not necessarily) monotone degree se-
quence of G. Such a graph G realizes m. The largest value
of m is denoted by A(7). We sometimes refer to the value of
m at vertex v as 7(v).

Let G and H be two graphs on n vertices. They pack if
there exist edge-disjoint copies of G and H in K,. Two
degree sequences 71 and 72 pack, if there are graphs G and
G2 realizing 71 and 72, respectively, such that G; and G2
pack. Equivalently, G1 and G pack if and only if G1 C Ga,
that is, G1 can be embedded into @2, where G denotes the
complement of G.

It is an old an well-understood problem in graph theory to
tell whether a given sequence of natural numbers is a degree
sequence or not. We consider a generalization of it, which is
remotely related to the so-called discrete tomography [3] (or
degree sequence packing) problem as Welﬂ The question
whether a sequence 7 of n numbers is a degree sequence
can be formulated as follows: Does K, have a subgraph
H such that the degree sequence of H is w7 The question
becomes more general if K, is replaced by some (simple)
graph G on n vertices. If the answer is yes, we say that =«
can be embedded into G, or equivalently, m packs with G.
In order to state our main result let §(G) and A(G) denote
the minimum and maximum degree of G, respectively. We
prove the following.

THEOREM 1. For every e > 0 and D € N there exists an
no = no(e, D) such that for all m > no if G is a graph onn
vertices with §(G) > 5§ +en and m is a degree sequence of
length n with A(w) < D, then m is embeddable into G.

We also state in an equivalent complementary

form, as a packing problem.

THEOREM 2. For every e > 0 and D € N there exists an
no = no(e, D) such that for all n > ng if m1 and w2 are
graphic sequences of length n satisfying A(m) < (% - E) n
and A(m2) < D then there exists a graph G2 that realizes o
and packs with any G1 realizing 1.

It is easy to see that is sharp up to the en ad-

ditive term. For that let n be an even number, and sup-

$This relation is discussed in the full version of the paper



pose that every element of w is 1. Then the only graph
that realizes 7 is the union of n/2 vertex disjoint edges. Let
G = Ky /2-1,n/241 be the complete bipartite graph with ver-
tex class sizes n/2 — 1 and n/2 + 1. Clearly G does not have
n/2 vertex disjoint edges.

2. PROOF OF THEOREMI]

We are going to construct a 3-colorable graph H that realizes
7 and has the following properties. There exists A C V =
V(H) such that

(1) |A] < 5A%(x),

(2) the components of H[V — A] are balanced complete
bipartite graphs, each having size at most 2A(7w),

(3) x(H[A]) = 3 if A is non-empty, and
(4) e(H[A,V — A]) =0.

In order to construct H we will use two types of "gadgets”.
Type 1 gadgets are balanced complete bipartite graphs on 2k
vertices, where k € {1,..., A(m)}, these are the components
of H[V — A]. Type 2 gadgets are composed of at least two
type 1 gadgets and at most two other vertices, these are the
components of H[A].

We find type 1 gadgets with the following algorithm.

ALGORITHM 3. Assign the elements of 7 arbitrarily to V.
Set every vertex active. Let k = 1.

Step 1 If there are at least 2k active vertices with degree
k, then take any 2k such vertices, create a balanced
complete bipartite graph on these 2k vertices, and
then unactivate them.

Step 2 If the number of active vertices with degree k drops
below 2k, set k =k + 1.

Step 3 If k < A(w), then go to Step 1. Else stop the algo-
rithm.

This way we obtain several components, each being a bal-
anced complete bipartite graph. These are type 1 gadgets.
It is easy to see that for every k € {1,...,A(m)} at most
2k — 1 vertices are left out from the union of type 1 gadgets,
a total of at most A%(r) — 2A(7) vertices. Furthermore, if
a vertex v belongs to some type 1 gadget, then its degree is
exactly 7(v).

Let R denote the set of vertices that are uncovered by the
above set of type 1 gadgets. As we noted earlier |R| <
A(m)? — 2A(w). In order to get the right degrees for the
vertices of R we construct type 2 gadgets, using some type
1 gadgets as well.

Notice first that the sum of the degrees of the vertices of
R must be an even number, hence, R,, the subset of R
containing the odd degree vertices, has an even number of
elements. Find |R,|/2 disjoint pairs in R,, and join vertices
by a new edge that belong to the same pair. With this we
get that every vertex of R misses an even number of edges.
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We construct the type 2 gadgets using the following algo-
rithm.

ALGORITHM 4. Set every type 1 gadget unmarked and
every vertex in R — R, uncolored.

Step 1 Choose an uncolored vertex v from R— R, and color
it.

Step 2 Choose a type 1 unmarked gadget K and mark it.

Step 3 Choose an arbitrary perfect matching Mg in K
(Mg exists since K is a balanced complete bipartite
graph).

Step 4 Choose an arbitrary zy edge in Mg.
Step 5 Replace the edge zy with the new edges vz and vy.

Step 6 If v is still missing edges, then if Mk is not empty,
go to Step 4, else go to Step 2.

Step 7 If v reaches its desired degree and there are still
uncolored vertices in R — R,, then go to Step 1, else
stop the algorithm

It is easy to see that in m(v)/2 steps v reaches its desired
degree, while the degrees of vertices in the marked type 1
gadgets have not changed. It is straightforward to use this
algorithm for vertices in R,, since each of these miss an even
number of edges.

shows examples of type 2 gadgets. Let ' C H
denote the subgraph containing the union of all type 2 gad-
gets, thus F' = H[A]. Observe that type 2 gadgets of F' are
3-chromatic, and all have less than 5A%(7) vertices. This
easily implies the following claim.

CrAamM 5. We have that |V (F)| < 5A3().

We are going to show that H C G. For that we first em-
bed the 3-chromatic part F' using the following strength-
ening of the Erdés—Stone theorem proved by Chvéatal and
Szemerédi [1].

THEOREM 6. Let ¢ > 0 and assume that G is a graph on
n vertices where n is sufficiently large. Let r € N, r > 2. If

r

E(@) > (ﬁ w) n?,

then G contains a K, (t), i.e. a complete r-partite graph with
t vertices in each class, such that

logn

—_— 1
500 logé (1)

Since §(G) > n/2+en, the conditions of are sat-

isfied with 7 = 3 and ¢ = ¢/2, hence, G contains a balanced
complete tripartite subgraph T on Q(logn) vertices. Using
and the 3-colorability of F' this implies that F' C T.
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Figure 1: Type 2 gadgets of H with a 3-coloring

Observe that after embedding F' into G every uncovered
vertex still has at least 6(G) —v(F) > n/2+en/2 uncovered
neighbors. Denoting the uncovered subgraph of G by G’ we
obtain that §(G’) > n/2 + en/2.

We need a definition from [2].

DEFINITION 7. [2] A graph H on n vertices is well-separable,
if it has a subset S C V(H) of size o(n) such that all com-
ponents of H — S are of size o(n).

In order to prove that H — F' C G’ we will apply a special
case of the main theorem of 2], which is as follows:

THEOREM 8. [2] For every v > 0 and positive integer
D there exists an no such that for all n > ngo if J is a
bipartite well-separable graph on n vertices, A(J) < A and
§(G) > (3 + ) n for a graph G of order n, then J C G.
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Since H — F' has bounded size components, we can apply

for H — F and G’, with parameter v = /2.

With this we finished proving what was desired.

3. A GENERALIZATION

While[Theorem 1]is best possible up to the en additive term,
if 7 has a special property, one can claim much more as[The]
shows below. Let us call a bipartite graph H(A, B)
u-unbalanced if |A| = u|B| for some u € N. A bipartite de-
gree sequence m is u-unbalanced if w can be realized by a
u-unbalanced bipartite graph. We need the notion of edit
distance of graphs: the edit distance between two graphs on
the same labeled vertex set is defined to be the size of the
symmetric difference of the edge sets.

A generalization of is the following:

THEOREM 9. For everye > 0 and D,u € N there exist an



no = no(e,u) and a K = K (e, D,u) such that if n > no,  is
a u-unbalanced degree sequence of length n with A(w) < D,
G is a graph on n vertices with 6(G) > 7 +en, then there
exists a graph G’ on n vertices so that the edit distance of
G and G’ is at most K, and w is embeddable into G'.

Hence, if 7 is unbalanced, the minimum degree requirement
of can be substantially decreased, what we pay
for this is the "almost embedding” of 7. For example, if 7 is
a 10-unbalanced bounded degree sequence of length n and
G is a graph on n vertices having 6(G) > n/11+en for some
€ > 0, then after deleting/adding a constant number (i.e. a
function of eaﬁ) of edges, we obtain a graph G’ from G into
which 7 can be embedded.

In another direction, one can also show that if © has little
less elements than the number of vertices in GG, then 7 can
be embedded into G under very similar conditions.

THEOREM 10. For every € > 0 and D,u € N there exist
an ng = no(e,u) and an M = M(e, D, u) such that if n >
no, ™ is a u-unbalanced degree sequence of length n with
A(r) < D, G is a graph on n + M vertices with 6(G) >

’Lj_]‘f +e(n+ M), then w is embeddable into G.

The proofs of [Theorem 9| and [Theorem 10| are much more
involved than that of they are given in the full
version of the paper. Let us note that the conditions for
0(G) are best possible in the above theorems up to the en
additive term.
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ABSTRACT

We consider auctions of items that can be arranged in rows,
for instance pieces of land for real estate development. The
objective is, given bids on subsets of items, to find a subset of
bids that maximizes auction revenue (often referred to as the
winner determination problem). We show that for a k-row
problem with connected and gap-free bids, the winner deter-
mination problem can be solved in polynomial time, using a
dynamic programming algorithm. We study the complexity
for bids in a grid, complementing known results in liter-
ature. Additionally, we study variants of the geometrical
winner determination setting. We provide a NP-hardness
proof for the 2-row setting with gap-free bids. Finally, we
extend this dynamic programming algorithm to solve the
case where bidders submit connected, but not necessarily
gap-free bids in a 2-row and a 3-row problem.

Keywords
Auctions, winner determination problem, computational com-
plexity, rows, dynamic programming

1. INTRODUCTION

In combinatorial auctions, bidders can place bids on combi-
nations of items, called packages or bundles. Clearly, combi-
natorial auctions allow bidders to better express their pref-
erences compared to the traditional auction formats, where
bidders place bids on individual items. In particular, it
makes sense to use a combinatorial auction when comple-
mentarities or substitution effects exist between different
items. For an introduction to combinatorial auctions, we
refer to [5]; for a survey of the literature, we refer to [1] and
[6].

One important challenge within this domain is, given the
bids, to decide which items should be allocated to which
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bidder, i.e., which bids to accept. In general, this winner
determination problem is NP-hard [11], and does not allow
good approximation results [10].

We discuss a combinatorial auction in a restricted topology.
In this setting, an item corresponds to a rectangle, and all
items are arranged in (a limited number of) rows, see Fig-
ure 1 for an example. Notice that the individual items (or

Figure 1: An example of an instance with 3 rows and 5 bids.

rectangles) need not have the same size. A bid consists of
a set of items satisfying some restrictions (see Section 2 for
a precise problem definition), together with a value. The
objective is to select a set of bids that maximizes the sum
of the expressed values, while making sure that each item is
present at most once in a selected bid.

There are several situations in practice that motivate this
specific geometric setting. We mention the following:

e Real estate. Goossens et al. [7] describe how space in
a newly erected building, to be used for housing and
commercial purposes, is allocated using a combinato-
rial auction. The geometric structure of each of the
levels of the building features the properties described
here. Quan [8] reports on empirical studies in real es-
tate auctions. Several of these studies have focused on
verifying and quantifying the afternoon effect. This af-
ternoon effect describes similar items consistently sell-
ing for significantly less in later rounds in multi-object
sequential auctions. A combinatorial auction, by sell-
ing all items simultaneously, can mitigate this effect.

e Mineral rights. Imagine a region that is partitioned
into lots, with the lots organized in rows. For sale is
the right to extract minerals, oil or gas found on or
below the surface of the lot. Clearly, having adjacent



lots allows for exploration and production efficiencies,
a complementarity. For more about this particular set-
ting, we refer to [4]. Figure 2 shows an example of oil
and gas leases neatly arranged in rows.

Figure  2: Oil and Gas Leases managed
by the Texas General Land Office. Taken
from: http://www.glo.texas.gov/GLO/agency-

administration/gis/gis-data.html.

e Seats in a grandstand, theater or stadium. In some
of these cases, one can even assume that a grid, con-
sisting of rows and columns, is given where each cell
represents a seat. Typically, demand exists for sets
of adjacent seats - think of a family of four going to a
ball game, or a group of friends visiting a concert. The
complementarities that people perceive from adjacent
seats offer possibilities for combinatorial auctions. Al-
though tickets are usually sold at a fixed price, there
are occasions where sports teams have auctioned off
(part of) their seat licenses.

In all these cases, it is clear that complementarities between
adjacent items exist; a combinatorial auction is best-placed
to take these effects into account.

Goossens et al. [7] show that when a constraint is imposed
stating that a bidder can have at most one winning bid, the
winner determination problem is NP-hard even if all items
are arranged on a single row. Hence, to have any prospect
of coming up with a positive result, we allow bidders to win
multiple bids.

Our problem is a special case of finding a maximum-weight
independent set in a geometric intersection graph. In such a
graph, there is a node for each bid (in our case: a (connected)
set of rectangles), and two nodes are connected if and only if
the corresponding bids overlap. Finding a maximum-weight
independent set in a geometric intersection graph is a well-
studied problem for several types of intersection graphs. For
instance, in the work of [9], it is shown that if all items are
arranged in a single row, and bids are only allowed for sub-
sets of consecutive items, the resulting winner determina-
tion problem is polynomially solvable. These results follow
from the equivalence of this problem to finding a maximum-
weight independent set in an interval graph. For an overview
on results for more general intersection graphs we refer to
[3].

In this paper, we study the computational complexity of
the winner determination problem for the specific geometric
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setting described above. We show that it can be used to
efficiently solve the winner determination problem (which is
hard in general), using dynamic programming procedures.
Additionally, we settle the complexity of the winner deter-
mination problem for bidding in a grid.

2. PROBLEM DESCRIPTION

The geometric setting that we consider can be described as
follows. Given are k rows. Each row contains an (ordered)
set of items (or rectangles). If, on some row, an item wu
lies to the left of item v, then we write u < v. We use
X; ={0,1,...,m;} to denote the set of items in row j, j =
1,..., k. The set of items that can be bid on is U§:1 X;\{0};
item O cannot be part of any bid, and is only present for
notational convenience. We assume that item ¢ lies directly
to the left of item £+ 1, for each £ € X;\{m;},j=1,... k.

Definition 1. We say that a pair of items are adjacent if
and only if they share a border with non-zero length.

Clearly, items ¢ and ¢ + 1 are adjacent. However, items on
different (but consecutive) rows can be adjacent as well. We
use m to denote the number of items in the instance, i.e.,
m = 25:1 m;. Figure 3 visualizes this.

Row 1 1] 2 mp
Row 2 112 ms9
Row 3 1] 2 ms

Figure 3: An example of an instance with k = 3 (i.e. 3 rows)
and m1 =6, me =8, ms=1T1.

We investigate the following problem, called the winner de-
termination problem (WDP). Given is a set of bids B on
subsets of items, with v(b) denoting the value of bid b, for
each b € B. We set n = |B|, i.e. there are n bids; specifying
a bid implies specifying a set of items, as well as a value
v(b) > 0. The problem is to find an allocation that maxi-
mizes the sum of the values of the accepted bids, ensuring
that each item is allocated at most once.

Given a bid b, consider the item graph, H(b), which has a
node for each item in bid b, and there is an edge between a
pair of nodes in H(b) if and only if the corresponding items
are adjacent. There are two main restrictions on the bids
that we consider. We define the concept of a connected bid.

Definition 2. We say that bid b is connected if the sub-
graph H(b) induced by the items of bid b is connected. If
bid b is not connected, we say that it is disconnected.

Further, let us define the concept of a bid that is gap-free. A
formal definition of a bid having no gaps (i.e. being gap-free)
is formulated as follows.



Definition 3. We say that bid b is gap-free if no three
items v < v < w on a single row exist for which u € b,v ¢
b,w € b.

A bid that is not gap-free has at least one gap. Notice that
it is easy to exhibit examples of connected bids that are
not gap-free (see Figure 4a), and gap-free bids that are not
connected (see Figure 4b). It is also easy to see that in the
case of a single row, i.e. k = 1, connectedness of a bid is
equivalent to a bid being gap-free.

(a) A bid that is connected and not gap-free.

(b) A bid that is disconnected and gap-free.

Figure 4: Examples illustrating the concepts of a connect-
edness and gap-freeness.

Finally, it is important to see that bids on identical sets
of items but with different values need not all be consid-
ered. Indeed, one need only consider the bid with the high-
est value. If more than one bid has the highest value, one
could use the bid entry time as a tie-breaker. Thus, all but
the highest value bid on a specific set of items can be elimi-
nated and bids will be unique in the sense that they are all
for different sets of items.

3. RESULTS

For the setting where items are arranged in rows, we show
the following:

e For connected and gap-free bids, the winner determi-
nation problem is easy when the number of rows is
fixed. We solve this problem using a polynomial time
dynamic programming algorithm.

e For the setting where the bid space is a grid and both
the number of rows and columns are a part of the in-
put, we show that even when bids are constrained to
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be row bids or column bids, the resulting winner de-
termination problem is NP-hard.

e For gap-free bids, the winner determination problem
is NP-hard, even on two rows.

e For connected bids, the winner determination problem
is easy on three rows or fewer. We show this by adapt-
ing and expanding upon the general dynamic program-
ming algorithm developed for connected and gap-free
bids.

We point out that the complexity of the winner determina-
tion problem with connected bids on a fixed number of rows
k, with k > 4, is still an open problem. If the number of
rows is part of the input, a result in [9] implies the problem
is NP-hard.

Due to the page limitation imposed on this manuscript, the
following section only describes our dynamic program for
winner determination for the case of k rows, with connected
and gap-free bids. For the proofs of our other claims, we
refer the reader to our working paper [12].

4. A DYNAMIC PROGRAM FOR WINNER

DETERMINATION FOR CONNECTED AND

GAP-FREE BIDS

In this section we assume that bids are connected and gap-
free. We show how the winner determination problem for a
setting with k rows can be solved as a shortest path prob-
lem on a graph G = (V, A), which is constructed as fol-
lows. There is a node in V for each element in the Carte-
sian product of the sets Xi,X2, ..., Xi. We write V =
Hle X;. Nodes in V are k-tuples. We consider the k-
tuple @ = (x1,x2,...,Tk), where z1 € X1, 2 € Xo, ...
and xr € Xi. This k-tuple represents a state, i.e. a collec-
tion of assigned items. More specifically, the k-tuple @ rep-
resents a state where irrevocable decisions concerning the
items {0,...,z:1}U{0,..., 22} U---U{0,..., 2z} have been
made, i.e. for each row i all items from left to right up to
and including z;. As there is a node in V' for every k-tuple,
this leads to O(mF) nodes.

The arc set A includes two types of arcs: the zero arcs and
bid arcs. The zero arcs have a weight of 0, and are used
to handle items not included in the set of winning bids.
Consider some node & = (x1,%2,...,%s,...,Tk) € V, with
1 <i<kandxz; # m;. A zero arc goes from node x to
node (z1,...,x; +1,...,2x) € V, for each 1 < i < k. Thus,
up to k zero arcs emanate node @ € V, giving rise to O(m*)
zero arcs in the graph G.

The bid arcs correspond to actual bids and have a weight
equal to the value of the bid v(b). We represent a bid by
listing k pairs of elements; each pair represents the first ele-
ment, and the last element present in a bid on a particular
row. For a bid b that contains elements from each of the k
rows, we write: b = {(z%,9?), («5,43),..., (2%, 92)}, where
the element 2} € X; (1 < j < k) refers to the leftmost
element of X; present in bid b, and the element y? € X;
(1 < j < k) refers to the rightmost element of X; present
in bid b. We use the symbol (&, ) to denote that a bid



does not include items from that row. Thus, as an exam-
ple, when we write b = {(2, @), (z5,95), (5, 43), (&, @)} this
means that the bid b does not include any items on the first
row, it includes items x2 up to and including y2 on the sec-
ond row, it includes items x3 up to and including y3 on the
third row, and it does not include any items on the fourth
TOW.

The bid arcs can be described as follows. Let us, for con-
venience, first assume that bid b contains elements from
each of the k rows. To represent bid b in the graph G,
we draw an arc from node (2} — 1,25 —1,...,2% — 1) to
node (y?,45,...,y%) with weight v(b). Consider now a bid
b such that there are rows with no elements in b. Ob-
serve that, due to connectedness of b, these rows can only
have indices 1,2,...,s(b) and f(b), f(b) +1,...,k with 0 <
s(b) < f(b) < k+ 1. Note that if a bid b is present on
the row 1 then s(b) = 0. Similarly, if a bid b is present
on row k then f(b) = k+ 1. Now, to represent bid b, for
each ©1 € X1, 2 € Xo, ..., Tsb) € Xs(b), Trw) € Xf(b),
Trwy+1 € Xf@)+1s -+ -5 Tk € X there is an arc from node
<£L'1,{E2, ey xs(b), a?l;(b%q*l, ey xl}@),l 71,{Ef(b), ey
node (z1, z2, . .. ,xs(b)7y§(b)+1, . 7yi1(b)71,xf(b)7 ..., Ty with
weight v(b). Notice that there are O(nm*~') bid arcs (of
course it is conceivable that the number of bid arcs will be
far less).

Zk) to

We now compute a longest path from node 0 = (0,...,0)
to node m = (ma,...,my). The length of this path cor-
responds to the optimal revenue of the auction, and the
winning bids can be derived from the arcs in the path. No-
tice that G = (V, A) is acyclic by construction and con-
sists of O(mm*) nodes and O(m”*~*(n 4+ m)) arcs. Hence, a
longest path can be found efficiently by solving a shortest
path problem in G = (V, A) with edge weights multiplied
by -1. Since Ahuja et al. [2] show that shortest path prob-
lems in directed acyclic graphs with p nodes and g arcs can
be solved in O(p + ¢q) time, our dynamic program requires
O(m” +nm* 1) time.

Once a longest path is found, it is easy to see which bids
are accepted. Every arc that is not a zero arc in G = (V, A)
corresponds to exactly one bid. To find the set of winning
bids, for every non-zero arc in the longest path simply accept
the bid corresponding to that arc. For a numerical example
and and proof of correctness of our algorithm, we refer the
reader to [12].

5. CONCLUSIONS

We study the winner determination problem for a combina-
torial auction with a specific geometric structure. We argue
that this structure is relevant, as it occurs in real estate,
plots of land, and mineral rights. The complementarities
present in these situations offer great potential for combina-
torial auctions.

With our dynamic programming algorithm, we present auc-
tioneers a tool that enables them, under some reasonable
assumptions on the bids and with a fixed number of rows,
to efficiently compute the winning bids. Next, we comple-
ment existing results by showing that bidding in a grid is
difficult, even when only row and column bids are allowed,
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if the number of rows is part of the input. Our results may
also prove useful for experimental research on combinato-
rial auctions: our dynamic program will allow researchers
to study bidder behavior in larger settings, involving more
items and bidders than considered so far.
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ABSTRACT

Next Generation Sequencing (NGS) techniques revolution-
ized the collection of genomic data. It allows massively par-
allel sequencing of short fragments reducing the time and
cost of sequencing. When pairs of fragments are sequenced,
it is possible to detect rearrangement events using NGS,
but in case of diploid genomes, rearrangement events might
happen on both chromosomes of homologous pairs, and the
entire rearranged genome cannot be directly read out from
NGS data.

We consider the problem of reconstructing the rearranged
diploid genome from NGS data, and study the computa-
tional complexity of the problem. We prove that finding
one solution can be done in polynomial running time. On
the other hand, deciding if there is a solution without non-
homologous recombination between homologous chromoso-
mes is NP-complete.

1. INTRODUCTION

The Next Generation Sequencing technique breaks the geno-
me into small, overlapping pieces (several copies of the ge-

nomic DNA are broken) and these small pieces are sequenced.

From these small, overlapping copies, the whole genome is
reconstructed. The diploid genomes contain two copies of
each chromosome (except the sex chromosomes) and in case
of healthy genomes, the two chromosomes are identical.

However, cancer genomes might undergo a huge amount
of genome rearrangement events, see for example [11]. In
these genomes, the homologous chromosomes might be re-
arranged in different ways. It is possible to read out from the
NGS data where rearrangement events happened in terms of
chromosome positions, however, this data does not reveal in
which copy of the homologous chromosomes a particular re-
arrangement happened. However, if the rearranged intervals
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gyményosi u. 11, Hungary
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Figure 1: A pair of examples for diploid rearrange-
ment and NGS graph. Both examples contain a pair
of homologous chromosomes with 5 synteny blocks
(unit segments), labelled by A,B, ... E. The grey
edges of the NGS graphs are noted by dotted lines.
The two copies of the black edges are replaced with
one single edge due to sake of simplicity. See text
for more details.

overlap, then it is decidable if the two rearrangement events
happened on one or two copies of homologous chromosomes,
see Fig. 1. On the left, segment BC is inverted in one of the
chromosomes and the segment CD is inverted on the other
chromosome. This latter inversion affects the adjecency of
segments B and D and the adjecency of segments D and E.
On the right, first the BC segment is inverted in one of the
chromosomes, then another segment is inverted on the same
chromosome also affecting the adjacency of segments B and
C and the adjacency of segments D and E. The resulting
rearranged genomes are different, and their NGS graphs are
also different as shown at the bottom of the picture.

In this paper, we consider the problem of reconstructing the
diploid genomes from NGS data. We show that without
constraints, finding one solution is easy. On the other hand,
the reconstruction problem is NP-complete if a biologically
relevant restriction is introduced.



2. PRELIMINARIES

In this section, we transform the reconstruction problem into
a graph theoretical problem.

DEFINITION 1. A diploid genome {G(V, E), L} is an edge
labelled directed graph in which each vertex has a total de-
gree 1 or 2, each label in L is used exactly twice and the
graph contains mo cycles. The components of the diploid
genome are called chromosomes. The edges are called syn-
teny blocks. The beginning of an edge is called tail, and the
end of the edge is called a head. The edges with the same
labels are called homologous synteny blocks. The degree 1
vertices are called telomers, the degree 2 vertices are called
adjacencies.

A synteny block is a DNA sequence that can be identified
in a hereby not detailed biological way. Sometimes synteny
blocks are called genes, however, a synteny block might be
a large cluster of genes. A diploid genome contains two
(almost) identical copies of each synteny block; this is why
each label is used exactly twice in the graph representation.
The differences in the two copies of the synteny blocks are
point mutations that happen at less than one percentage
of the nucleotides and causes the genetic varience of the
individuals.

The NGS sequencing technique obtains short fragments from
the genomes, typically at most one hundred of nucleotides.
The typical length of a synteny block contains tenthousands
or even more nucleotides. A run of few tens of nucleotides
is typically unique in a genome, and thus, can identify a
synteny block. Therefore the sequenced fragments are suffi-
ciently long to identify which synteny blocks are neighbours
(when a fragment covers the endings of two synteny blocks),
however, it does not tell which copies of the two identical
ones. Indeed, the rare point mutations do not provide suffi-
cient information to distinguish the two copies of the synteny
blocks. Furthermore, the sequenced fragments are not long
enough to reveal the corresponding neighbours at the end
of one copy of a synteny block. The information revealed
from the NGS data can be summarized in the NGS graph,
defined below.

DEFINITION 2. A NGS (Next Generation Sequencing) graph
{G(V,E), L} is an edge colored directed multigraph and la-
bels with the following properties:

o The edges are coloured with black and gray. Black
edges are directed and come in pairs, i.e. if there is
a black edge from u to v, then there are exactly two
black edges going from u to v.

e Fach vertex has exactly 2 black edges and at most 2
gray edges. Loops are allowed only for gray edges, if a
vertex has a grey loop, then it counts as 2 gray edges.

e Fach couple of black vertices has a unique label coming
from the label set L.

The couples of black vertices are called diploid synteny blocks.
A diploid synteny block is a genomic segment that underwent
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a rearrangement event in neither of the chromosomes. A
verter with no gray edge is the end of a pair of homologous
synteny blocks that are telomers in two chromosomes, in an
extreme case, it might be the two telomers of the same chro-
mosome. A werter with one gray edge is an end of a pair
of synteny blocks whose one copy is a telomer, and whose
another copy is in an adjacency with another synteny block.
Finally, a vertex with two grey edges is the end of a pair of
synteny blocks such that both copies are in adjacency with
another synteny block ends.

Example genomes and NGS graphs can be seen on Fig. 1.
For example, on Fig. 1 a), the two grey edges at the head
of the synteny block A indicates the two synteny blocks ad-
jacent to the head of synteny block A in the rearranged
genome: head of C and tail of B.

DEFINITION 3. A diploid genome {G'(V', E'), L'} is a re-
alization of a NGS graph {G(V,E),L} if L = L' and there
is a bijection between the grey edges in G and the degree
2 wertices in G’ such that the grey edges connect the same

endpoints of the diploid synteny blocks that are adjacent in
G

Equivalently, a realization is a decomposition of the NGS
graph into alternating walks, defined below. We also define
the alternating circuits for technical reasons.

DEFINITION 4. An alternating walk on an NGS graph is
a series of edges e1,ea,...,e, such that all edges are dif-
ferent, for alli =1,2,...,n — 1, edges e; and e;+1 have a
common vertex, and the edges have alternating colourings
in the series. Similarly, an alternating circuit is a series
of edges ei1,ea,...,e2, such that all edges are different, for
all i = 1,2,...,2n — 1, edges e; and e;+1 have a common
vertex, furthermore, ea,, and e1 have a common vertex, and
the edges have alternating colourings in the series.

3. FINDING ONE SOLUTION FOR THE DI-
PLOID REARRANGEMENT PROBLEM

Here we consider two versions of the diploid rearrangement
problem. The first version allows non-homologous recombi-
nations between the same chromosomes. Such a rearrange-
ment yields a chromosome that contains 2 copies of the same
diploid synteny block. (In comparision, a homolgous recom-
bination swaps the almost identical synteny blocks between
two chromosomes.) The second version does not allow such
rearrangements, this happens for example, when the rear-
rangement events contain only reversals. We show that the
first version is an easy problem while the other is an NP-
complete one.

3.1 Diploid rearrangement allowing non-homo-
logous recombinations between homologous

chromosomes
The diploid rearrangement with non-homologous recombi-
nations is the following problem: given a NGS graph, con-
struct a diploid genome which is a realization of the NGS
graph such that one chromosome might contain two copies
of the same diploid synteny block.



THEOREM 1. Let {G(V, E), L} be a NGS graph. It has at
least one diploid genome realization iff each component of G
contains at least one vertex with degree less than 4.

PrROOF. If there is a component in G whose vertices all
have degree 4 then it is impossible to map its grey edges onto
linear components of a diploid genome. Indeed, since each
vertex has 2 grey edges in the component, both copies of the
diploid synteny blocks must be in adjacency with another
synteny block, and thus, they cannot be telomers.

On the other hand, if there is a vertex with a degree less
than 4 then there is a vertex with degree 2 or there are at
least 2 vertices with degree 3, since the sum of degrees must
be an even number. Starting with a vertex wich has less
grey edges than black ones, take an alternating walk on the
component, starting with a black edge, and ending with a
vertex with no remaining edges with the alternating colour.
Such walk ends in a vertex which has less grey edges than
black ones, and thus, it ends with a black edge.

Once the walk is finished, remove this walk from the compo-
nent. Either the walk covers the entire component, or there
are remaining vertices. In this later case, removing the walk
might create more than one components, take any of them.
If there are remaining vertices in the component having less
grey edges than black ones, start a new alternating walk
in such a vertex, taking a black edge first, and finish it in
another such vertex, remove this walk from the component,
consider the remaining component, etc. After removing a
few alternating walks, either the remaining component is
empty or the remaining component contains only vertices
having the same number of grey and black edges. There
must exist a vertex with a degree less than 4, otherwise the
removed alternating paths were vertex disjoint from the re-
maining component, thus disjoint from the component, a
contradiction.

Choose any vertex with degree 2 from the remaining compo-
nent, let it be denoted by v, and take an alternating circuit
starting with v. Since this alternating circuit shares the
vertex v with one of the removed walks, it can be merged
with this alternating walk thus obtaining a larger walk. If
the component is still not empty after removing the alter-
nating circuit, keep processing it in the same way: take an
alternating circuit having a vertex shared with one of the
already removed walks, and merge the circuit and the path,
thus obtaining a larger walk. Eventually, the component is
decomposed into alternating walks.

Now, each alternating walk represents a chromosome by con-
tracting the grey edges into a single vertex. Clearly, this set
of chromosomes give a realization of the component. []

It is also trivial that the decomposition of a component into
alternating paths and thus into chromosomes can be done
in polynomial time.

3.2 Diploid rearrangement excluding non-homo-
logous recombinations between homologous

chromosomes
The diploid rearrangement without non-homologous recom-
binations between homologous chromosomes ask if a real-
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Figure 2: The NGS graph for the CNF (z1 V —z2) A
(—z1 Va2 Vas) A (z2 Vros). Gray edges are indicated
with dotted lines. Pairs of black edges are repre-
sented with a single black edge for sake of simplic-
ity, and their directions are also omitted. The gray
path for each boolean variable as well as the alter-
nating grey-black cycle for each clause are labelled.
See text for more details.

ization of a NGS graph {G(V,E), L} exists in which the
chromosomes can be split into two sets such that each set
contains the entire label set L. Unfortunately, this question
is hard to answer, as the following theorem states.

THEOREM 2. The diploid rearrangement problem without
non-homologous recombinations between homologous chro-
mosomes is NP-complete.

ProOF. It is trivial that any solution can be verified in
polynomial time, thus the problem is clearly in NP. Below
we prove that the problem is NP-hard by proving that SAT
is polynomially reducible to it.

Clearly, a NGS graph has a realization without non-homologous

recombination between homologous chromosomes if the gray
edges can be coloured with two colours, say, blue and red
such that the red edges and one copy from each pair of black
vertices can be decomposed into a collection of alternating
paths, furthermore, the blue edges and the other copies of
black vertices can be decomposed into a collection of al-
ternating paths. Each vertex of the NGS graph contains at
most two gray edges, therefore the gray subgraph can be de-
composed unequivocally into paths and cycles. It is obvious
that in any solution to the problem, these paths and cy-
cles are coloured alternating, hence there are two candidate
colourings of each component. In the polynomial reduction,
there will be a grey path for each boolean variable, and the
two possible colourings will correspond to the logical true
and false assignments of the boolean variables.

Consider a conjuctive normal form with n boolean variables
and k clauses. Construct a NGS graph for the diploid re-
arrangement problem in the following way (see also Fig. 2):
Make n + 1 chains of grey edges, for j = 1,2,... n, the jth



chain contains 4m; — 1 vertices, where m; is the number of
clauses in which the jth boolean variable participates (ei-
ther negated or not negated). Number the vertices in each
chain starting with 1, and in each of these chains, the ver-
tices with indices 4¢ — 2 accomodate the incoming pair of
black edges for the ith clause having the boolean variable in
it. The vertices with indexes 4¢ will have a ”separator” pair
of black edges, whose other vertex is a "dead end”, namely,
has a degree 2. The vertices with indexes 4i — 1 and 47 — 3
are connected to the outgoing pair of black edges of the ith
closure. If the logical true value of the jth boolean variable
satisfies the ¢th clause, then the black edges going out from
the 47 — 1st vertex have a dead end, and the black edges
going out from the 4¢ — 3rd vertex will be the incoming edge
for the next grey chain. Otherwise, the edges going out from
the 47 — 3rd vertex will have a dead end, and the other pair
will be the incoming pair of the next gray chain.

The last gray chain contains 4k — 1 vertices, the vertices
with indexes 4¢ — 2 will have the incoming pair of black
edges for the ith clause. The vertices with indexes 4i will
have a ”separator” pair of black edges, whose other vertex
is a "dead end”, namely, has a degree 2. The vertices with
indices 4¢ —1 and 47— 3 are connected to the outgoing pair of
black edges of the ith clause. The black edges going out from
the 4i¢ — 1st vertex are are the incoming edges in the first
gray chain for the ith clause, and the pair of vertices going
out from the 47— 3rd vertex have a dead end. In this way, for
each clause, we create a cycle, containing alternatingly pairs
of black edges and grey edges. The gray edges indicate the
logical assignments of the boolean variables providing that
the clause is not satisfied (and there is an additional grey
edge in the last grey chain). If these grey edges have the
same colour, then such colouring cannot provide a solution
to the problem, since it contains a cycle.

We claim that the diploid rearrangement is solvable for the
so-constructed graph if and only if the CNF is satisfiable. If
the CNF is satisfiable, then there is a colouring of the gray
edges such that the red edges and one copy of the black
edges have at least one dead end for each clause, so the red-
black subgraph contains only paths. The last chain can be
coloured such that the blue edges and the other copies of
black edges will have dead ends in this chain, so the blue-
black subgraph contains only paths, and thus, we have a
solution for the diploid rearrangement problem.

On the other hand, if the CNF is not satisfiable, then for
any colouring of the first n gray chains, at least one of the
clauses does not have a dead end for the blue-black subgraph
in the first n gray chains and also at least one of them does
not have a dead end for the red-black subgraph. Whatever is
the colouring of the n + 1st gray chain, one of the colourings
will create a circular chromosome, hence there is no solution
for the diploid rearrangement problem. []

4. DISCUSSION AND CONSLUSIONS

In this paper, we considered the diploid rearrangement prob-
lem and showed that it is polynomial solvable when there is
no restriction and NP-complete if the solution space is re-
stricted.

There might be more than one solution to the problem, and
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therefore it is also an interesting question what can we say
about the computational complexity of counting or sampling
these solutions. These types of questions have impact in
bioinformatics, and were considered and partially answered
for other genome rearrangment problems, see [1, 2, 3, 5, 6,
7, 8,9, 10].

The diploid rearrangement problem is slightly similar to
finding Eulerian circuits in an Eulerian graph, in fact, if
a component of an NGS graph contains one vertex with de-
gree 2 and all other vertices have degree 4 then each solution
is a closed Eulerian walk that in fact is an Eulerian cycle.
It is known that counting the Eulerian cycles in an undi-
rected graph is #P-complete, and it is an open question if
there are efficient algorithms for approximating the number
of solutions and sampling almost uniformly the solutions [4].
Therefore it is natural to conjecture that counting and sam-
pling the solutions for the diploid genome rearrangement
problem is also #P-complete.
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ABSTRACT

We introduce a quite general scheduling model we call Team
Work Scheduling. It mainly means that a team works to-
gether to process any job. Its special version is recently
defined as MultiProfessor scheduling, and even a more spe-
cial version is the RAR problem. This last one means that
parallel machine scheduling is considered with job assign-
ment restrictions, i.e., each job can only be processed on a
certain subset of the machines. Moreover, each job requires
a set of renewable resources. Any resource can be used by
only one job at any time. The objective is to minimize the
makespan. We present approximation algorithms with con-
stant worst-case bound in the case that each job requires
only a fixed number of resources. For some special cases
optimal algorithms with polynomial running time are given.
On the other hand we prove that the problem is APX-hard,
even when there are just three machines and the input is
restricted to unit-time jobs.

Keywords

multiprofessor scheduling, approximation algorithm

1. INTRODUCTION

We define a general problem we call Team Work Scheduling,
TWS for short. In this model given jobs (as usual in the
area of scheduling), but now each jobs is executed simul-
taneously by certain machines, i.e. a team. We minimize
the makespan. Now we give the exact definition of the new
model as below.

Given m machines, and n jobs, the set of machines is denoted

by M, and the set of jobs is denoted by N. Moreover for
any job j € N,

e given an integer 1 < t; < m, this parameter means

*another affilitation is: Department of Computer Science
and Systems Technology, University of Pannonia, Veszprém,
Hungary
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that the team that processes job j consists of ¢; differ-
ent types of collaborators/machines,

e also given a collection of t; sets C; = (M}, M7, ..., M;j),
these sets are pairwise disjoint and MJ’-c C M for any

kEe{l,..t},

o furthermore given a collection of t; integer numbers
n},n?,...,n;j, such that nf < |Mf|. Then nf means
the required number of machines from set M}. (That
is, from the k-th type of machines specified for the

job, there are MJ’-C possible machines, and from these
k

machines ”only” n; machines will be chosen.) Let n; =

tj

Zn? , this integer means that alltogether exactly n;
k=1

machines will be chosen to process job j, from all types.

When we schedule the jobs, for any job j, the n;‘ required
number of machines must be chosen from set of machines
M]’-", for any k. In case n? < ‘Mﬂ these machines are
elective, we can freely choose any n? machines from the
!Mﬂ machines. Otherwise, if n? = ‘Mﬂ these machines
are mandatory, all of them are needed for the execution of
the job. The chosen machines are denoted by T; and called
the team (chosen for job j).

Finally, given the processing time p; ; for any (4, 7) pair (i €
M, 7 € N), this is the time needed to execute job j by
machine 7. Each job will be executed by the team chosen for
the job, so, all these intended machines will run in parallel.
For any job j, we choose the team, and we take the maximum
of the p;,; processing times for the chosen machines (i.e. the
team). This is the processing time of the job by the team,
denoted by g;. Naturally, ¢; is not given in advance, it
depends on the choice of the team to execute job j. Any
machine can process at most one job at any time, and if
a team is chosen for a job, no matter if some machine’s
processing time is smaller and another machine’s processing
time is larger in the team, all machines of the team are
considered busy during the longest p; ; processing time for
1€ Tj.

We ask for the minimum time (i.e. makespan) until all jobs
are executed by the machines. We are interested in both the
offline and online case.



2. APPLICATIONS

A typical online model is the following one. Accidents hap-
pen in an unpredictable way in a city, and the injured people
are taken into a hospital to perform the necessary operations
for them. These operations are the jobs. For any opera-
tion, according to the nature of the injury, a special team is
needed, the members of the team play the role of the ma-
chines. Let us consider one operation. It is possible that the
presence of some doctors is indispensable. For example only
one doctor can make the anesthesia, so he/she will surely
be there during the operation. Also, there is an expert, the
only one who can make a special kind of operation. So both
of them will be there, they play the role of some mandatory
machines. Moreover there are also several nurses who are
free at that time, and either of them can be chosen as the
one who helps the doctors. For example from five such per-
sons three must be selected, they play the role of elective
machines. Suppose there are two operating rooms that are
available at moment, one of them must be choosen, this is
also an elective machine in our model. Naturally, the injured
person plays the role also of a manditory machine. The du-
ration of the operation may depend on the chosen persons
(as a proficient worker makes some activity faster than a
beginner).

For another (offline) application let us consider a fast food
restaurant, where some kinds of salads are made (among
other foods). The machines are of different types.

a, Members of the staff (called makers) who make the salad.

b, Machines for mixing, heating, and other prepearing op-
erations.

¢, Ingredients. For example mustard is stored in some bottle,
and the whole bottle is reserved for some salad-maker during
he makes the salad, but not all content will be used, only
some portion. So the battle of the mustard is a (mobil)
machine.

Then all machines (i.e. the member who makes the salad,
the devices that are needed, and all ingredients) are collected
together, and by use of them the salad will be made ready.
We want to make ready all ordered foods as soon as possible.

3. RELATED MODELS

Multiprofessor Scheduling (MPS for short). The MPS prob-
lem is characterized by the following settings: For any job
j, 1 <t; < 2. The team that processes job j consists of at
most 2 different types of collaborators, if {; = 2, then one
type is mandatory, another is elective. The set of mandatory
machines contains several machines, also the set of elective
machines, but exactly one machine must be chosen from the
elective machines. The problem is defined and considered
in [1]. It is evident, that MPS is a special case of the TWS
problem.

To explain better the MPS model, in this model we have a
set P ={P1,...,P,} of professorsand aset L ={L1,..., Ly}
of lectures with two sets C and C* of conditions given by
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pairs: (P;, L;) € C means that professor P; can deliver lec-
ture L; if it is assigned to him, while (Ps, L;)* € C* means
that professor Ps has to be present when L. is delivered by
some other professor, who is assigned to this lecture. The
MPS problem is still quite general, in [1] many (other) ap-
plications are also given. For example, MPS is still general-
ization of the Restricted assignment (RA for short) problem
or the Hierarchical scheduling problem (HS for short).

Restricted Assignment with Resources Problem (RAR for
short, [3]). Finally we define an even more special case of the
TWS model, which is a special case of the MPS model. We
are given n independent jobs 1,...,n that are to be sched-
uled on m’ parallel machines M, ..., M,,. In the restricted
assignment problem (RA, for short, [2]) each job j can be
executed on a specific subset M(j) of the machines, and on
those machines the processing time of job j is p;. The ob-
jective is to minimize the makespan. In the three field nota-
tion, we abbreviate this problem by R|pi; € {p;j, 00}|Cmax-
Assume that additionally there are p renewable resources
Ri,..., R, (then m +p = m). Let Ar be the set of jobs
which require resource Ry, and let Ay denote the cardinal-
ity of set Ax, k = 1,...,u. Job j requires simultaneous
availability of all resources in the set R(j) C {Ri,...,R.}
for processing; we denote by p; the cardinality of R(j),
j = 1,...,n. Any resource can be used by only one job
at any time. It means that two jobs which require the same
resource cannot be processed simultaneously. We abbreviate
this problem by R|pi; € {pj, 0}, 7esu|Cmax. The degree of
the problem is defined as the quantity B = jglaanj, that

is the maximum number of resources required by a job.

4. RESULTS

Professors of the MPS model correspond to machines of the
RAR model; the lectures are the jobs, the duration of a lec-
ture means the processing time. But RAR is only a particu-
lar case of MPS: distinction between machines and resources
means a partition of professors into two classes: those only
delivering lectures (‘Professors’), and the others only attend-
ing (‘Instructors’). This special case of MPS is termed the
PI model.

Among several results, it is proved in [1] that PI with unit-
time lectures is N P-hard to O(n'~¢)-approximate for any
fixed € > 0 if there are n professors and O(n?) instructors,
even in the more restricted PI model where C establishes
a bijection between lectures and professors and when it is
assumed further that any instructor is involved in just two
conditions of C*. On the other hand, still considering unit
times, if the number of professors, or the number of lectures
is fixed, then MPS can be solved in linear time.

For the RAR model, we can prove inapproximability results
and design approximation algorithms. Our main negative
result is that the problem with unit-time jobs is AP X-hard,
already on three machines. In the case that each job requires
only a bounded number of resources, we design approxi-
mation algorithms with constant worst-case bound, without
any restrictions on processing times. For some special cases
(e.g., unit-time jobs with degree B = 1) we design optimal
algorithms with polynomial running time. To derive the
main negative result, we prove a theorem on graph coloring,



which seems to be of interest on its own right, too. It states
AP X-hardness of the chromatic number on a restricted class
of graphs.
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ABSTRACT

The incremental nearest-point search successively inserts query

points into the space partition data structure, and the nearest-
point for each of them is simultaneously found among the
previously inserted points. The paper introduces a new ap-
proach to solve this problem in 2D-space. Dynamic par-
tition successfully prevents situations with over-populated
strips but still fails to reach optimality. A variant with two
perpendicular partitions and four types of deterministic skip
lists is therefore discussed as a possible extension.

Categories and Subject Descriptors

E.1 [Data Structures]: Lists, Stacks and Queues, Trees;
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—geometrical
problems and computations, sorting and searching

General Terms
Algorithms, Performance, Theory

Keywords
Incremental nearest-point, dynamic partition, deterministic
skip list

1. INTRODUCTION

The nearest-point search means a search for the target point
pi € S ={p1,...,pn}, such that the distance between p; and
a given query point p is minimal. It enables or at least
facilitates solving numerous practical problems from vari-
ous research and application areas, such as computational
geometry [12], GIS [6], motion planning [9], and computer
graphics [1]. Note that the distance need not refer to pure
geometric relation between two spatial points (e.g. Euc-
lidean distance). This generalization extends the usability
of the nearest-point search to database quering in the most
versatile applications.

If the distance is computable in 6(1) time, the nearest-point
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search is trivially handled in 6(n) time, but the problem be-
comes more demanding when a recurring nearest-point prob-
lem has to be solved. A straightforward repetition of the ba-
sic nearest-point search results in 9(n2) time when applied to
6(n) query points. More advanced approaches use space par-
titioning to bound the number of possible nearest-point can-
didates in each iteration [11]. The partition is accomplished
by constructing a hierarchical or a grid data structure, typ-
ically a tree [4], the Voronoi diagram [7], a regular grid [2],
or a multi-level organization of these structures [11]. Such
a data structure is aimed to accelerate solving the point-
location problem i.e. determination of the region where a
query point lies. A static partition does not adapt itself to
the point distribution. On the contrary, a dynamic partition
maintains the numbers of points in all cells within previously
determined limits. Particularly in higher dimensions, where
either query time or storage space must be sacrificed, a user
may also be satisfied by approximate solutions provided by
the reasonably fast locality sensitive hashing technique [10].

In this paper, we introduce an original dynamic plane parti-
tion into parallel strips and utilize it to handle the so-called
incremental nearest-point search in 2-D space. This rep-
resents a special case of the recurring nearest-point search
where: (1) the set of target points S and the set of query
points coincide, and (2) the points p1, ..., pn are successively
inserted into the data structure and their nearest-points are
simultaneously found. The incremental search adequately
models interactive processing of database queries where the
results of previous queries are usually irrelevant for pro-
cessing the current one. In computational geometry, a re-
markably fast incremental Delaunay triangulation algorithm
is based on the incremental nearest-point search [12].

2. DP-DSL APPROACH TO INCREMENTAL
NEAREST-POINT SEARCH

The Voronoi diagram enables optimal O(nlogn) time in the
preliminary points arrangement approach, but the incremental
nearest-point search requires some of the incremental Voro-
noi diagram construction algorithms which all, although fast
on average, require quadratic time in the worst case [5]. For
this reason and because of a relatively complex mainten-
ance of the Voronoi diagrams, we preferably study other
space partitioning techniques. First of all, we wish to keep
practical advantages of the HT-DSL approach [11] and, sim-
ultaneously, to improve its theoretical behaviour. The pion-
eering HT-DSL approach represents even nowadays the only
work where the incremental nearest-point search is explicitly



Figure 1: (1, 3)-deterministic skip list.

considered. It is based on a uniform plane subdivision into
parallel strips. These static strips are directly accessible in
O(1) time through a hash table (HT). On the other hand,
our DP-DSL approach uses a dynamic partition (DP) into
evenly populated strips. In both methods, the points in
a particular strip are stored in (a,b)-deterministic skip list
(DSL) [8], providing a point insertion in O(logn) time and,
on the average, efficient nearest-point search inside the strip.
The DP-DSL approach must additionally provide the func-
tionality of DSL splitting when an over-populated strip is
split into two (or three) strips.

2.1 Deterministic skip lists

Our implementation of (a, b)-DSL, inherited from [11], con-
sists of a doubly linked list of points sorted regarding the
x-coordinate. Double connectivity assures that the move
from an arbitrary point to its direct predecessor or successor
takes O(1) time. This list represents the basic level (level
1) of the DSL. Its nodes (leaves) are accessible from simply
linked lists of the internal nodes at higher levels. Each par-
ent node (for example P in Fig. 1) at level h, h > 1, points
to a single child node (C) at level h—1. Nodes at level h—1,
between the child nodes (C and C”) of two successive parent
nodes (P and P’) form a gap. The gap size must be in range
[a,b]. Values stored in a gap are lower or equal to the value
in the parent node. Consequently, value M must be set to
some "safely” high value.

To access a particular leaf or to insert a new one, at most
one child node and the successive gap must be examined at
each of the [log,(n+1)] levels, resulting in O(blogn) worst
time. By keeping b small, the logarithmic access time is
provided. Typical pairs (a,b) in practice are (1, 2), (1, 3),
(2, 5), and (3, 7). Fig. 1 shows a (1,3)-DSL.

The actual search for the nearest point to the query point p
was also inherited from [11]. It consist of the local search in
the strip where p was inserted, and the inter-cluster search

which progresses up and/or down through the adjacent strips.

2.2 Dynamic partition

The HT-DSL is remarkably fast for nearly uniform point dis-
tributions. However, examples with much slower perform-
ance and also strongly affected by the points ordering can
effortlessly be constructed and, not rarely, also met in prac-
tice. Example in Fig. 2a consists of a few over-populated
strips and, on the other hand, of a large majority of strips
containing only few points. The DP-DSL approach is dir-
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Figure 2: a) HT-DSL and b) DP-DSL approach em-
ployed on clusters of points.

ectly designed to prevent from such situations. The idea is
straightforward: when a particular strip contains too many
points, the algorithm splits it into a pair of strips, each con-
taining half of the points of the original strip. Under certain
conditions, splitting may also result in three strips. The DP-
DSL approach in Fig. 2b cuts the clusters by many narrow
strips, and leaves wide undivided strips between the clusters.

The DP-DSL approach requires additional data structure to
store the strips’ borders. We use additional DSL named
Borders for this purpose. It plays the same role as the
hash table in the HT-DSL approach, but requires longer
search time (logarithmic instead of constant) and dynamic
construction. Two types of strips are stored in Borders. A
line strip is a horizontal line, and an interval strip is a re-
gion between two horizontal lines. The role of line strips
is to keep sizes of the interval strips limited. A line strip
is introduced when the y-coordinates of two or more points
correspond to the splitting threshold.

Points in each DSL are sorted according to x-coordinates,
but an over-populated strip should be split with regard to y.
All the points in a line strip have the same y-coordinate and,
therefore, splitting is only sensible for the interval strips.
The splitting algorithm must firstly determine the splitting
threshold. We utilize the well-known SELECT algorithm [3]
which performs this task in linear time. The physical DSL
splitting is realized by the original bricklaying approach.
This firstly constructs level 1 for each of the two or three
separate DSLs. This is achieved by moving the leaves of
the input DSL, one after another, to the end of the cor-
responding separate list. Upper levels are then built from
the elements of the so-called global list of recyclable nodes,
consisting of the eventual unused nodes from previous split-
ting operations, the input DSL’s internal nodes and, only if
necessary, from newly allocated nodes. At each level, the
algorithm groups the nodes into gaps of size b — gsc, where
gsc is a user-selected gap size correction parameter.

3. RESULTS AND ANALYSIS

The number of strips in HT-DSL was experimentally de-
termined in the range m = 6(y/n). Consequently, the num-
ber of points in a strip is O(y/n) in an optimal case of the
uniform point distribution. We have retained this result in
the DP-DSL approach as well, and experimentally determ-
ined the best performance by splitting a strip when its size
reaches g = [34/n]. We use (1, 3)-DSLs in the HT-DSL ap-
proach, and (2, 5)-DSLs in the DP-DSL approach. We have



Figure 3: Dynamic partition into strips: a) uniform
point distribution, b) grid, and c-d) GIS datasets.
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Figure 4: Point organization in the ladder example.

also determined the best long-term performance by using
the gap size correction parameter gsc = 1.

In Table 1, the comparison between the HT-DSL and DP-
DSL approach is given. The time ratios in the second column
were obtained for configurations of 5.000.000 points. Figs.
2, 3 and 5 show the tested distributions with reduced num-
bers of points. The realistic examples in Figs. 3c-d consist of
70.334 and 193.360 points, respectively. Expected time com-
plexities are listed in the last two columns. The examples
from Figs 5a and 5c entitled the ladder, were synthetically
generated and represent the worst-case for the local search.
The construction is emphasized in Fig. 4. The condition
T, —x1 < w < h results in 9(r2) time for a ladder with
2r = n — 1 points in the same strip. Thus the HT-DSL ap-
proach spends #(n?) local search time for the example from
Fig. 5c.
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Figure 5: Testing examples of a) a ladder across all
strips, b) clusters with uniform noise, c¢) a ladder
in a single strip of the HT-DSL approach, and d)
Gaussian distribution with additional point.

Table 1: Comparison of times between HT-DSL and
DP-DSL approaches

Fig. HT/DP Time HT Time DP
3a 0.79 O(nlogn) O(nlogn)
3b 0.84 O(nlogn) O(nlogn)
3c 0.50 O(nlogn) O(nlogn)
3d 0.47 O(nlogn) O(nlogn)
4b 1.46 O(ny/n)  O(nlogn)

2 7.21 O(ny/n)  O(nlogn)
4d 9.91 O(ny/n)  O(nlogn)
4a 0.59 O(ny/n) O(ny/n)
4c  203.73 0(n?) O(ny/n)

3.1 Theoretical time complexity analysis

Table 2 gives expected worst-case time complexities of all
phases of both approaches. The construction of strips and
maintenance of DSLs are optimal in both cases, assuring the
desired O(nlogn) time. On the other hand, the local search
and the inter-strip search time are both above this limit.
Note that the local search time of the DP-DSL approach
could be improved to O(nlogn) by splitting the DSLs of
size ¢ = O(logn) instead of current ¢ = [3y/n]. This change
does not modify theoretical worst-case time complexities of
other phases above the desired limits, but it usually results
in slower practical performance due to the increased number
of DSL splits and initial positioning operations in much more
DSLs during the inter-strip search.

We have also managed to construct an example that requires
O(n?) inter-strip search time in the DP-DSL approach. The
construction is too extensive to find place in this paper. It
is based on a geometric progression of x-coordinates with
common ratio 2. Even for relatively low n, the exponential
growth will quickly produce x-coordinates out of the range of



Table 2: Time complexities of particular phases in
both approaches.

Phase HT-DSLP DP-DSL
Strip identification O(n) O(nlogn)
Point insertion O(nlogn)  O(nlogn)
DSL splitting 0 O(n)
Maintenance of Borders 0 O(y/nlogn)
Local search O(n?) O(ny/n)
Inter-strip search O(n?) O(n?)

Table 3: Comparison of three approaches in con-
sidered critical cases: I - ladder, II - rotated ladder,
ITT - geometric progression, IV - rotated geometric
progression, V - ”regular”.

Example HT-DSLDP DP-DSL  DP-4DSLs Winner
I O(n?) O(ny/n)  O(nlogn) YH
II O(n?) O(n?) O(nlogn) XV
111 O(n?) O(n?) O(nlogn) XV
v O(nlogn) O(nlogn) O(nlogn) YH
\Y O(nlogn) O(nlogn) O(nlogn) various

the IEEE 754 floating-point specification, making this con-
struction fully theoretical, as we do not expect such extreme
values in industrial, GIS and other practical applications.
However, a rotated ladder can, with some additional con-
straints, also represent the O(n2) inter-strip time example.

3.2 DP-4DSLs approach

We have recently developed an engineering solution which
handles all the considered problematic examples in the de-
sired (optimal) time bounds. Besides the horizontal DP, it
additionally performs the vertical DP. In each strip, two or-
thogonal DSLs are constructed, the horizontal one sorted
regarding the x-coordinate, and the vertical one sorted re-
garding the y-coordinate. Each point is therefore placed into
four DSLs: XH-DSL (the one used in the DP-DSL approach)
and YH-DSL are assigned to each horizontal strip, and XV-
DSL and YV-DSL are constructed in each vertical strip. In
each iteration of the local search, the method performs one
move in each DSL which are all addressing the same radius r.
The nearest-point of g is found when the first DSL (the win-
ner) manages to examine all the points within the distance
r around q. We have not managed to theoretically prove op-
timal time complexity but the performance in the considered
problematic cases appears promising as seen in table 3. On
the other hand, the HT-DSL and the DP-DSL outperform
the DP-4DSLs approach in “regular” cases as maintenance
of two partitions and four DSLs is quite expensive.

4. CONCLUSION

The paper considers a new (DP-DSL) approach to the incre-
mental nearest-point search in 2-D. It guarantees 0(y/n)
strips, each containing O(y/n) points and, therefore, success-
fully prevents situations with over-populated strips and de-
creases the local search time from O(n?) to O(ny/n). In our
opinion, this is an important acceleration, although the al-
gorithm still fails to achieve an optimal O(nlogn) time per-
formance characteristic for the preliminary points arrange-
ment approach. In addition, examples can be constructed
(although hardly met in practice) which, just as the "tradi-
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tional” HT-DSL approach still achieve quadratic inter-strip
search time. The DP-4DSLs variant seems to solve the con-
sidered problematic examples in optimal time, but a formal
proof is still missing. Construction of the Voronoi diagram
on 6(y/n) points and utilization of two perpendicular DSLs
in each Voronoi cell could have a potential, but one should
first prove that such dynamic partition is generally possible,
and then provide an efficient region splitting algorithm.
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ABSTRACT

An exploratory equivalent (EE) partition of the vertex set
of a graph G comprises sets of vertices that can be regarded
as interchangeable when searching for copies of G in some
other graph. This property may be used to speed up the
search process. Since a graph may have multiple EE parti-
tions, a natural problem is to find one that gives rise to a
greatest speedup factor, i.e., a maximum EE partition. This
problem is GI-hard for general graphs, so it makes sense to
study restricted graph classes. In this paper, we focus on
the challenging class of hypercube graphs. We present a set
of rules to construct an EE partition for any such graph and
prove that the resulting partition is maximum.

Categories and Subject Descriptors

G.2 [Discrete Mathematics|: Graph Theory; F.2 [Analy-
sis of algorithms and problem complexity]: Nonnu-
merical Algorithms and Problems

General Terms
Graph Theory, Algorithm

Keywords
exploratory equivalence, hypercube, algorithm, Hamming
distance

1. INTRODUCTION

In the world of planetary-scale networks, efficient subgraph
search is of paramount importance. However, the problem
of determining whether a pattern graph G is a subgraph
of a host graph H (the subgraph isomorphism problem) is
NP-complete, and although several algorithms perform rea-
sonably well in practice [1, 5, 6], they may fail if G has
many isomorphisms. In such cases, exploratory equivalence
[3] can be used to speed up the search. In particular, an
exploratory equivalent (EE) partition of G comprises equiv-
alence classes (disjoint sets) of vertices that can be regarded
as interchangeable during the search for copies of G in H. It
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can be proved that an EE partition consisting of equivalence
classes Pi, ..., Ps reduces the number of subgraph isomor-
phisms f: G — H that have to be considered during the
search by a factor of [[}_, |P|!. The goal of the mazimum
EE partition problem (MAXEE) is to find an EE partition
that maximizes the reduction factor.

For general graphs, the MAXEE problem is Gl-hard [2].
Therefore, it makes sense to study restricted classes of graphs.
In this paper, we deal with hypercube graphs, which are im-
portant both theoretically and practically. Being regular
and hence highly symmetric, these graphs are considered a
suitable choice for the topology of a communication network
[4].

The MAXEE problem on hypercube graphs has turned out
to be surprisingly challenging. Nevertheless, we have devised
a set of simple rules to construct a maximum EE partition
for any such graph. Following the necessary definitions (Sec-
tion 2), we give the construction rules and prove that they
indeed produce a maximum EE partition (Section 3). Sec-
tion 4 concludes the paper.

2. PRELIMINARIES

Let G = (V, E) with the vertex set V = {1, ..., n} and the
edge set E C V xV be a simple undirected graph. Given an-
other simple undirected graph, H = (U, F'), an isomorphism
f: G — H is a bijective mapping such that (f(u), f(v)) € F
iff (u, v) € E. An automorphism G is an isomorphism from
G to itself, and a subgraph isomorphism f: G — H is an
isomorphism between G and a subgraph of H.

The set of automorphisms of a graph G, Aut(G), forms a
group under composition. A set A C Aut(G) covers a set
P C V (denoted cover(A, P)) if for each permutation o of P
there exists an automorphism a € A such that a(i) = o(3) for
all i € P. The pointwise stabilizer of a set A C Aut(G) with
respect to aset P C V is the set PointStab(A, P) ={a € A |
Vi € P: a(i) = i}. An ordered partition (Py | P2 | ... | Ps)
of G (with U_, Ps =V, ¥i,j,i # j: PN P; =0, and
Vi: P; # () is exploratory equivalent if cover(A;_1, P;) and

A; = PointStab(A;—1, P;) for all i € {1, ..., s}, where
Ao = Aut(G).
If (P | ... | Ps)is an EE partition of G and P; = {vi,

.., Uik, }, then for each copy G’ of G in H there exists an
isomorphism f: G — G’ with f(vi1) < ... < f(vix,) for
all i € {1, ..., s}. The number of subgraph isomorphisms



to be considered during the search for copies of G in H is
thus reduced by [[;_, |Pi|! — the score of an EE partition
(P1]...| Ps). The goal of the MAXEE problem is to find a
maximum-score EE partition of G.

For example, the maximum EE partition of a graph G with
n =4 and F = {(1,2), (2,3), (3,4), (1,4)} (a 4-cycle and
also a 2-hypercube) is (1,3 | 2,4). The set Aut(G) includes
the automorphisms 1234 and 3214 (1 — 3, 2 — 2, 3 —
1, 4 — 4), which cover the set P = {1,3}, and the set
PointStab(Aut(G), P1) = {1234, 1432} covers the set P, =
{2,4}. The partitions (1,2 |3 |4) and (1| 2| 3| 4) are also
EE but not maximum.

The Hamming distance between binary vectors p = (p1, ...,
pa) and ¢ = (qu, ..., qa) is h(p, q) = X0, Ipi—qi|- A binary
vector bing(r) = (b1, ..., bq) is the binary representation of
an integer r if r = Zle 2971, The d-hypercube graph (or
simply the d-hypercube) is the graph Qg with n = 2% and
E = {(u,v) | h(bing(u), bing(v)) = 1}. The vertices of a d-
hypercul;e will be labeled bing(1), ..., bing(2¢) rather than
1,..., 2%

3. HYPERCUBES

In this section we focus on the exploratory equivalence of
hypercube graphs. Such a graph contains vertices and edges
of a d-dimensional hypercube and is denoted with Qg. It
contains 2% vertices, d2?7! edges, and is a regular graph of
degree d. Its number of automorphisms is |Aut(Qq)| = d! 2%.

A straightforward procedure to generate the hypercube of
a given dimension d is to create a vertex for each d-digit
binary number and connect two vertices with an edge if their
Hamming distance is one. See Figure 1 for several examples
of hypercubes of dimensions from 1 to 4 as well as their
respective maximum exploratory equivalent partitions; for
example, the corresponding partition of Q4 is (0000, 1111 |
1000, 0100, 0010, 0001).

Figure 1: Several hypercubes and their maximum
exploratory equivalent partitions. Vertices in the
same class are of the same shade of gray; singletons
are white.
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In what follows, we first show how to construct maximum
exploratory equivalent partition of a hypercube graph Qg of
dimension d, then we prove its correctness and optimality.

3.1 Construction

There are at most two non-singleton classes in an optimal
exploratory equivalent partition of Q4 for any dimension d.
In particular, hypercubes @1 and @3 result in one such class,
whereas all other QQ4’s result in two such classes. Our con-
struction (described below and denoted with HCEE) results
in an exploratory equivalent partition, which is also opti-
mal for any hypercube Q4 except for Q@3 which we deal with
separately. The classes are as folows:

e The first class consists of any two vertices which are the
farthest apart, i.e., their Hamming distance is d. For
example, Q1 gives {0,1}, Q2 gives {00,11} or {01,10},
and Q4 gives {0000,1111}, etc.

e The second class (when d > 2) consists of all the ver-
tices adjacent to one of the vertices in the first class.
For example, taking the vertex labeled with d zeros,
Q2 gives {10,01}, and Q4 gives {1000,0100,0010,0001}
as the second class.

e All other classes (when d > 4) are singletons, i.e., each
vertex not in the first or the second class is a separate
class.

Several examples of such construction of exploratory equiv-
alent partitions are shown in Figure 1 (for Q1, Q2, and Q4),
and Figure 2 a) (for Q3, non-optimal).

LEMMA 1. Given a hypercube graph Qa of dimension d,
where d > 1, the HCEE construction produces an exploratory
equivalent partition.

ProOOF. The first class is clearly exploratory equivalent;
indeed, any two vertices of Q4 would suffice, but selecting
the two farthest apart (denoted here with v and v) leaves the
most room for the second class. There is no other class in Q1.
Alternatively, notice that, N'(u) = N(v) in Q2, otherwise,
when d > 3, neighborhoods are disjoint, i.e., N (u) NN (v) =
0 (since h(u,v) = d, hence, the distance between vertices
from N (u) and N (v) is at least d — 2 > 1).

Fix both vertices u and v from the first class, i.e., A1 =
PointStab(Aut(Qa), {u,v}). Observe that, cover(Ai, N (u))
is satisfied, since interchanging any two vertices from N (u)
is possible (and leaving all other from A (u) on their posi-
tion). Consequently, all possible permutations of N (u) are
attainable. [

Observing that [N (u)] = |[N(v)] = d, gives the following
corollary.

COROLLARY 1. Given a hypercube graph Qa of dimen-
sion d, where d > 2, the HCEE construction produces an
exploratory equivalent partition having d + 2 vertices in its
non-singleton classes, and 2¢ —d —2 in its singleton classes.
The score of such partition is 2d!.



Following the steps of the construction gives rise to many
different exploratory equivalent partitions. We give their
count in the following lemma.

LEMMA 2. The HCEE construction can produce 2% differ-
ent exploratory equivalent partitions of the hypercube graph
Qa of dimension d, where d > 3.

PROOF. The first pair of vertices may be selected on 2471

ways, but then there are only two available neighborhoods
to select from. [

Representing a hypercube @4 explicitly with a list of vertices
and edges is deemed very inefficient. Hence, we assume the
input to the partition construction algorithm is only a num-
ber d of dimensions, which is, in general, of n = O(lgd)
bits long. In this sense, even outputting one vertex label
requires exponential time, i.e., O(d) = O(2"). Furthermore,
when d > 2, there are 2+ d vertices in non-singleton classes.
Thus, we have the following lemma.

LEMMA 3. The time complexity of the HCEE construction
is O(d?).

In practice, when d is small enough, i.e., on today’s archi-
tectures d < 64, one can assume that outputting a d-bit
number is O(1).

3.2 Optimality

To prove the optimality of our construction we need an ad-
ditional notion of vertices whose distance from each other
is the same. First, for each graph Qq, we define a param-
eterized family of sets containing vertices of (04, where the
Hamming distance between any two nodes in the set equals
to h, i.e.,

Ha(h) ={H CV(Qa) | Vu,v € H : h(u,v) = h}.
Now, we determine the size of a maximum set in Hq(h), i.e.,

h) = max |H|.
ulh) = mavx 1]
In what follows we are interested into an upper bound on
&a(h), since exploratory equivalent classes are subsets of
Hq(h). In particular, we have the following lemma.

LEMMA 4. Given a hypercube graph Qa of dimension d
and its exploratory equivalent partition (Pi, ..., Ps), for any
1 <1< s, it holds that P; € Ha(h) for some h.

PROOF. Singleton classes are contained in H4(0), and any
two-vertex class {u,v} € Hq(h(u,v)). Now, consider three-
vertex class {u,v,w}. If we interchange u and v, then w
remains fixed only if h(u,w) = h(v,w), and, similarly, for
all other pairs in the class. [

The following two theorems specify £q(h) for odd and even h,
respectively, and are also of its own interest (see also Figure

1).
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d\h|O 2 4 6 8 10 12 14 16
T |1

2 |1 2

3|1

4 |1 4 2

5 |1 5 2

6 |1 6 2

7ol o7 2

8§ |1 8 4 2

9 |1 9 4

10 [1 10 5 2

m (1 11 5 2

12 |1 12 6 4 2 2

13 |1 13 6 4 2 2

14 |1 14 7 4 2 2 2
5 |1 15 7 5 2 2
6 |1 16 8 5 4 2 2 2

Table 1: A tabular representation of {;(h) from The-
orem 2. Exceptions using the third case are framed.
Empty cells are zeros.

THEOREM 1. Given a hypercube graph Qg of dimension
d, where d > 1, if h is odd then £q(h) = 2.

ProOOF. For d = 1 this is straightforward. Without loss
of generality, consider the vertex labeled 0...0. Any vertex
with the distance h from it contains h ones and d — h zeros.
Now to obtain the third vertex with the distance h from
the second toggle p ones to zero, and q zeros to one, where
p + q = h. However, the third cannot be on the distance h
from the first: their distance is h — p + ¢ = 2h — 2p # h,
since h is odd. []

THEOREM 2. Given a hypercube graph Qg of dimension
d, where d > 1, if h is even then

0 d<h
1 h=0

4 3/2h < d < 2h

l3%z] h<d<3/2hvd>2h.

§a(h) =

PRroOF. The first two cases are obvious: there are no ver-
tices u,v € Qq with h(u,v) > d and h(u,v) = 0 if only if
u=nv.

Now, consider the last two cases, where 0 < h < d. To
construct the maximum size set begin from any vertex and
observe positions (in binary representation) altered when
constructing the next vertex. Obviously, at each step there
are h positions altered, but to permit further steps h/2 of
them are the ones just altered in the previous step, and h/2
of them are the new ones (i.e., not yet altered). Observe
that, any other technique blocks further steps. Proceeding
in this manner one can produce |d/(h/2)| vertices, since
there are at most d positions altered in total. For example,
for Q4 and h = 2 we get 10000, 0100, 0010, 0001, and for



Qo and h = 4 we get 110000000, 001100000, 000011000,
000000110.

There is an exception to the technique (represented by the
second case), when only three vectors are generated, e.g.,
for Q3 and h = 2 we get 100,010,001, but better solution is
000, 110, 101, 011. Notice, that the second condition gives
7zl +1=4. O

Using these two theorems and Lemma 4 we now have the
upper bound specified by the following corollary.

COROLLARY 2. Given a hypercube graph Qg of dimension
d and its exploratory equivalent partition (Pi,...,Ps), for
any 1 < i <s, it holds that

p<{t d=3
d d+#3.

Now, separately consider the hypercube Q3. Its optimal
solution is shown in Figure 2 b). Indeed, observe that it is
exploratory equivalent (by interchanging any two vertices in
the non-singleton partition the other vertices remain fixed).
Additionally, its size is 4, which is, due to Theorem 2, at
most &3(h) < 4 for any h. The solution is thus optimal, and
we have the following theorem.

THEOREM 3. A mazximum exploratory equivalent parti-
tion of the hypercube graph Qs is {000,011,101,110} with
the score of 24.

a) constructed b) optimal

Figure 2: 3-dimensional hypercube: constructed vs.
optimal exploratory equivalent partition.

Our main results is summarized in the following theorem.

THEOREM 4. Given a hypercube graph Qu of dimension
d, where d > 4, the HCEE construction produces a maximum
exploratory equivalent partition with the score 2d!.

PROOF. We will prove that 1) we cannot improve the two
constructed classes and 2) we will show that using more than
two classes would also produce a lower score. The optimality
of the obtained solution thus follows.

1) Since the size of any class is < d, we cannot increase the
second class, i.e., the d! factor. Assume, that we can improve
upon the first class, say k = |P1| > 3, potentially decreasing
the size of the second partition by x. The improved score

would thus be k!(d — z)! > 2d!. Furthermore, =25 gx
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Thus, z < k—3 and the size of the second class > d— (k—3).
Observe that a class of size [ alters at least [ — 1 positions
in its containing vectors. Together both classes would now
alter (k — 1)+ (d — (k—3) — 1) = d + 1 positions, which is
impossible on Q4.

2) Notice also that, d — k + 2 is the upper bound on the size
of the second class as well as on the total size of all non-
singleton classes except the first. Thus, using even more
than two classes cannot improve the score, since c! > alb!,
where c=a+b. [

4. CONCLUSIONS

In this article we dealt with the exploratory equivalence on
d-dimensional hypercube graphs. We presented an efficient
construction algorithm for an exploratory equivalent parti-
tion, which was further proven to be optimal.

While proving the optimality we also observed another in-
teresting property of hypercubes: the maximum cardinality
of the vertex sets with a given Hamming distance (pairwise).

For the future work we will explore a generalisation of hy-
percubes, i.e. hypergrids.
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Partitioning polyominoes into polyominoes of

at most 8 vertices, mobile vs. point guards

Ervin Gyori** Tamas Rébert MezeiP!
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Abstract

We prove that every simply connected polyomino of n vertices can

be partitioned into L?’Tg‘l (simply connected) polyominoes of at most

8 vertices. It yields a new and shorter/simpler proof of the theorem

of A. Aggarwal that L?”fg‘lj mobile guards are sufficient to control the
interior of an n vertex orthogonal polygon. Moreover, we strengthen
this result by requiring combinatorial guards (visibility is only needed
at the endpoints of patrols) and prohibiting intersecting patrols. This
yields positive answers to two questions of O’Rourke [7, Section 3.4].
Our result is also a further example of the metatheorem that (or-
thogonal) art gallery theorems are based on partition theorems. We
also found and interesting sharp bound on the ratio of the necessary

number of appropriate mobile and point guards

Kahn, Klawe and Kleitman in 1980 proved that |%] guards are sometimes

necessary and always sufficient to cover the interior of an orthogonal polygon

*MTA Renyi Institute/CEU Math. Dept. (Budapest) gyori@renyi.hu
TCEU Math. Dept. (Budapest) tamasrobert.mezei@gmail.com
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of n vertices. Later the first author of this paper provided a simple and short

proof of

Theorem 1 ([3], [7, p. 68]). Every simply connected polyomino of n vertices

can be partitioned into | %] polyominoes of at most 6 vertices.

[?] is a deeper result than that of Kahn, Klawe and Kleitman, and gave
the first hint of the existence of a “metatheorem”: (orthogonal) art gallery
theorems have underlying partition theorems. The general case was proved

by Hoffmann [5].

Theorem 2 ([5]). Every (not necessarily simply connected!) polyomino with

n vertices can be covered by [n/4] guards.

Hoffmann’s method (partitioning into smaller polyominoes that can be cov-

ered by one guard) is another proof of the metatheorem.

In this paper, we present further evidence that the metatheorem holds,

namely we prove the following partition theorem:

Theorem 3. Any simple polyomino of n wvertices can be polyomino-

3n+4
16

partitioned into at most { J polyominoes of at most 8§ vertices.

The mobile guard art gallery theorem for simple orthogonal polygons follows

immediately, as a polyomino of at most 8 vertices can be covered by a guard.

Theorem 4 ([1], proof in [7, p. 91]). {%J mobile guards are sufficient for

covering an n vertex simple orthogonal polygon.

The proof of Aggarval is about 20 pages, so we not only present a shorter
proof, but also provide a stronger result which is very interesting on its own.
It fits into the series of results in [3], [5], [7, p. 68] showing that rectilinear
art gallery theorems are based on theorems on partitions of polyominoes into

smaller (one guardable) polyominoes.
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The proof of the main theorem is similar to O’Rourke’s proof in that it finds a
suitable cut and then uses induction on the parts created by the cut. However,
here a cut along a line connecting to concave vertices is not automatically
good. In case we have no such cuts, we also rely heavily on a tree structure
of the polyomino. However, we must consider L-shaped cuts too, which are
responsible for most of the extra complexity of our analysis.

The proof yields an O(n?) algorithm partitioning P into at most 2244 simple
polyominoes. The running time can be improved to O(n) by using linear-time
triangulation (Chazelle). Theorem 4 fills a gap between two already estab-
lished (sharp) results: in [3] it is proved that polyominoes can be partitioned
into at most % polyominoes of at most 6 vertices, and in [4] it is proved that
any polyomino in general position (a polyomino without 2-cuts) can be par-
titioned into § polyominoes of at most 10 vertices. However, we do not know
of a sharp theorem about partitioning polyominoes into polyominoes of at
most 12 vertices. Furthermore, for k& > 4, not much is known about partition-
ing (not necessarily simply connected) orthogonal polygons into polyominoes
of at most 2k vertices. According to the metatheorem, the first step in this

direction would be proving that an orthogonal polygon of n vertices with h

3n+4h+4
16

would generalize the corresponding art gallery result in [4, Thm. 5.].

holes can be partitioned into polyominoes of at most 8 vertices. This
From the mentioned results we can read off that from an extremal point of
view point guards are 3/4 as efficient as mobile guards. The following theorem
provides insight into why this is the case, as the 3/4 bound appears already

for a single polygon.

Theorem 5. Given a P simple orthogonal polygon let my be the minimum
number of vertical mobile quards necessary to cover P, and let my be defined
analogously for horizontal mobile guards, and finally let p be the minimum

number of point guards necessary to cover P. Then %"‘H_l >3

_4'

The proof of this theorem can be turned into an 8/3 -approximation algo-
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rithm for covering simple orthogonal polygons with point guards.
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On Linear Grammars with Exact Control
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ABSTRACT

Grammars with exact control are controlled grammars with
the condition that every word of the control language re-
sults at least one word of the derived language. In this pa-
per, an infinite family of semi-linear languages is presented
where the base grammar is a linear grammar and the control
language is a linear language or a language class obtained
in this manner. Already the class of languages generated
by linear grammars with exact linear control contains some
non context-free languages. Normal form result for these
systems and pumping lemmas are shown to help to prove
the infinite hierarchy.

Keywords

linear grammars, controlled grammars, parsing, hierarchy

1. INTRODUCTION

The class of linear context-free languages is already defined
by Chomsky, and it is properly between the regular and
context-free language classes, even some of its properties is
inherited from the class of regular languages. They are rec-
ognized by finite automata equipped by two reading heads,
starting from the two extremes of the input word, see [6, 7].
Because of the big gaps between language classes there are
various formalisms to obtain other language classes. Sev-
eral such formalisms are belonging to the field of regulated
rewriting [2, 5]. As examples, matrix grammars and con-
trolled grammars are mentioned here. Let us see, this latter
ones in more details. In a controlled grammar there is a base
grammar and a control language. The control language is
used to filter the derivations of the base grammar: only those
derivations are valid in these systems in which the deriva-
tion word is belonging to the control language. We could say
that one can obtain only words that belong to derivations
of the intersection of the control language and the Szilard
language. If the control language is the Szilard language [4]
of the base grammar, then exactly the same language is gen-
erated without and with this control. Grammars with exact
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control were introduced in [1]. In these systems only those
control languages are allowed that are subsets of the Szilard
language (of the base grammar). In this way new classes of
languages are obtained. In this paper, our starting point is
the class of linear grammars, and they with linear exact con-
trol. We can also use the languages obtained in this manner
as control languages for linear base grammars, and so on.

2. DEFINITIONS AND PRELIMINARIES
Let FIN, REG, LIN, CF, CS, RE denote the family of fi-
nite, regular, linear, context-free, context-sensitive, recur-
sively enumerable languages, respectively. Let A denote the
empty word.

Definition 1. [3] A linear grammar is a quadruple G =
(N, T, S, P), where N is the finite set of nonterminal sym-
bols, T is the finite set of terminal symbols, S € N is the
start-symbol, and P is the finite set of productions of the
form R — aQb, where R€ N, Q € NU{\}, and a,b € T".
For uzv,uyv € (NUT)*, uzv = uyv, if t — y € P, and ="
is the reflexive and transitive closure of =. The language
generated by G is defined as L(G) :={w | S =" wAw €
T}

Now we recall a class of 2-head finite automata.

Definition 2. (Based on [6, 7]) A 2-head finite automa-
ton (Q, T, qo, 0, F) is defined, similarly to non-deterministic
finite automaton, with the finite set of states @, input (or
tape) alphabet T, initial state go € @, transition function
§:Q x (TU{\}? — 29, and set of final (or accepting)
states F' C . Initially the 2 heads are located at the two
extremes of the input word, and can read the first and the
last letter of the input, respectively (if any). The next state
is chosen according to ¢ based on the actual state and the
letters read by the two heads (also it is allowed to read the
empty word by any or both heads). The heads are mov-
ing opposite directions. The input word is accepted, if the
automaton reaches a final state when the heads meet. The
accepted language consists of every word that can be ac-
cepted by the automaton.

LEMMA 1. [6, 7] The class of 2-head finite automata ac-
cepts exactly the class of linear context-free languages.

LEmMA 2. (Bar-Hillel Lemma) /3] For every L € CF,
there exists a constant n € N, such that if z € L and |z| > n,



then z can be written as z = TOY1T1Y2T2 such that y1y2 # A,
ly1z1y2| < n, and Vi € N : zoyiz1ys22 € L.

Definition 3. [1] G = (N,T,S, P,C) is a grammar with
exact control, if

N is the finite set of nonterminal symbols,

T is the finite set of terminal symbols,

S € N is the start-symbol,

e P is the finite set of productions of the form « : u — v,
where

— « is the label (id) of the production,
—u€(NUT)"N(NUT)",
—ve(NUT)",
e and C'is a set of words over the alphabet Labels (P) :=
{a|a:u—veP}

e moreover the following constraint must hold:

Veieo...cn €C:Fw eT™ S =, -+ =, w;
where zuy = xvy, if c: u — v € P.
The generated language defined as
L(G):={w]|3cicz...cn €C: (S =¢; -+ =¢, wAw T}

We say that G is an X grammar with exact Y control, if

o (N,T,5{u—v|a:u—ve P})isagrammar of type
X and

e ( is a language of type Y,

where X, Y € {FIN, REG, LIN, CF, CS,RE}. We denote the
family of languages generated by X grammars with Y exact
control by EC(X,Y).

Definition 4. Let

e ECH(X,Y) := EC(X,Y),
e EC*(X,Y) := EC(X,EC™(X,Y)), if n > 1.

3. A SIMPLE PARSING ALGORITHM FOR
LINEAR GRAMMARS

In this section, we assume that in linear grammars, every
production is in one of the following forms: B — aC, B —
Ca, or B — A (where B,C € N and a € T).

Algorithm 1. Let w = w1 ... w, be the input word, where
w; €T (i € {1,...,n}). Let M denote an (n+ 1) x (n +
1) upper-left-triangular matrix. We index the rows and
columns from 0 to n. Each matrix entry is a subset of the
nonterminal symbols, initially the empty set.

Apply the following rules until no new nonterminal symbol
can be added to the matrix.
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e Add S to M(0,0).

e Fori>0: Add A to M(i,5),if3Be€ M(i—1,7): B —
Awn+1_i€P.

e For j > 0: Add A to M(4,5), if 3B € M(4,5 — 1) :
B*)ijGP.

After completing the matrix, check the diagonal entries for
nonterminal symbols that can be erased, where M(z,7) is a
diagonal entry, if and only if, i + j = n. The word w is in
the language generated by the given grammar, if and only
if, there exists E € N, such that E is in at least one of the
diagonal entries of M, and E — X\ € P.

Ezample 1. Let G = ({S, A, E}, {z,y},S,{S — yA,S —
Sz, S - yE,A— yS,E — \}) and w = yyyzx.

¥ y y X X
S A, E S A, E
X S A, E S A, E
X S A, E S A, E
y

-

-

We find that w € L(G), since E € M(2,3) and E — X\ € P.
4. THE FAMILIES EC*(LIN,LIN)

In this section, we investigate some interesting properties of
the language family EC"(LIN,LIN) (n € N).

THEOREM 1. Every language in EC"(LIN,LIN) (n € N)
s semi-linear (in Parikh-sense).

CrLAamM 1. There ezsits L € EC(LIN,LIN) such that L is
non-context-free.

CramM 2. EC"(LIN,LIN) is closed under union (n € N).

LEMMA 3. If L € EC"(LIN,LIN) and c is a terminal let-
ter, then L -{c},{c} L € EC"(LIN,LIN) (n € N).

THEOREM 2. EC™(LIN,LIN) is closed under (erasing) ho-
momorphisms (n € N).



S. NORMAL FORMS
LemMMA 4. LIN = EC(LIN,REG)

Definition 5. A linear context-free grammar is in simple
form, if it is given as a linear grammar with regular exact
control

e having a single nonterminal symbol (i.e., N = {S}),
and

e having no chain rule in its production set (i.e., there
is no production S — S).

LEMMA 5. For every grammar G of type LIN there exists
a grammar G’ of type EC(LIN,REG) that is in simple form
and L(G) = L(G").

Definition 6. A grammar G of type EC"(LIN,LIN) (n €
N), is in simple form if it has a single nonterminal symbol,
and it has no chain rules.

THEOREM 3. For every grammar G of type EC®(LIN,LIN),
there exists a grammar G’ of type EC"(LIN,LIN) in simple
form (n € N).

6. PUMPING LEMMAS FOR LANGUAGES

GENERATED BY EXACT CONTROL
LEMMA 6. For every L € EC(LIN,LIN), there ezists a
constant k € N, such that if w € L and |w| > k, then w can
be written as w = Toy1T1Y2X2Yysr3yaxs such that

o Yiyaysys £ A,

o Vi e N: zoylziybaoyicayizs € L.

ProoF. Let G = (N,T,S,P,C) be a grammar of type
EC(LIN,LIN) in simple form that generates L. The control
language C' is linear, therefore Lemma 2 can be applied.
Let n € N denote a pumping constant of C, and let C/|, :=
{w € C | |lw| < n}. Clearly C|, is a finite set. Consider
the grammar G’ := (N, T, S, P,C|.) of type EC(LIN,FIN).
L(G") € FIN and let

k=1 .
+wg§g,){lwl}

We claim that k is a pumping constant for L. The number
n was a pumping constant for the control language of L,
therefore every control word having length greater than or
equal to n can be pumped. By the definition of k, k — 1 is
the maximal length for a word in L that can be generated
by control words having length less than n. Therefore, if a
word in L has length of at least k, it has to be obtained by
a control word having length at least n, i.e., a control word
which can be pumped.

Suppose w € L, |w| > k and c¢ is a control word for w. Then
|c|] > n and by Lemma 2 ¢ = zoy1z1y222 and the subwords
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y1 and y2 can be pumped. Let y1 = y1,1...y1,1) and y2 =
Y21 ---Ya2,(2), Where y; j : S — a;,;5b; 5 is a production (S €
N, aij,bi; € T*), for every j € {1,...,1(3)} and 7 € {1,2}.
Finally, w = z(y) 1 y502y3@3y4 2y, where y1 = a1,1...a1,(1),
Yo = G2,1...G2,(2), Y5 = bay2)---b2,1, Y4 = byy1y---bi1.
It is easy to see that as we pump the control word ¢ =
Toy1T1yoxo for any i € N, the control word zoy}z1ybze will

generate the word z(yy' zhys whys xhyyay. O

THEOREM 4. For every L € EC"(LIN,LIN), there exists
a constant k € N, such that if w € L and |w| > k, then w
can be written as W = ToY1X1Y2L2 . . . Yon+1Ton+1 such that

® Y1Y2...Yon+1 # A,

o Vi N:zoyiziybes. .. y;n+1x2n+1 € L.
PRrROOF. By induction on n.

e Base case: n = 1.
Proved in Lemma 6.

e Suppose the claim is true for every m < n, we show
that it is also true for n.
If L € EC*(LIN,LIN) and G = (N,T,S,P,C) is a
grammar in simple form that generates L, then C €
EC™(LIN,LIN). By the induction hypothesis, there
exists k € N such that every word in C having length
at least k can be pumped. Now consider the grammar
G' = (N,T,S,P,{w e C| |w| < k}). Let

/
k=14 uénLa(%,){|w|}.

In other words, every word in L with at least length
k' can be generated by a control word that can be
pumped. Let y; := yi1... Yi,i(i) denote the subwords
of the control word to be pumped and let y;; : S —
ai,;Sbi; € P (S € N, a;,;,bi; € T"), for every j €
{1,...,l(¢)} and 7 € {1,...,2"}. Next we choose the
subwords of the generated word: let

(R RN NIOF
if1 <qi<2m,

b2"+1—i+1,l(2n+1—i+1) s b2"+1—i+1,1a
ifon 4+1<¢<ontt,

This formula is the generalised form of the formula
shown in Lemma 6. There are 2! subwords. The
first 2" subwords get the a;; words in order, and the
second 2" subwords get the b; ; words in reverse order.
It is easy to see that as the control word is pumped,
the generated word pumped too, i.e., for any ¢ € N the
control word wpy{xlyé ... Ybnxon generates the word

AL | ) 11 /
LoY1 L1Y2 - - - Yoyn+1Lon+1-

O

7. INFINITE HIERARCHY

Now we are ready to esatblish our main result.



TuEOREM 5. EC™(LIN,LIN) C EC*'(LIN,LIN) (n €
N).

PROOF. We are going to use the language family L(k) :=
{(a™™)* | n € N} as separating languages, where k € N.
Clearly L(1) € LIN, for instance G = ({S},{a,b},S,{S —
aSb, S — ab}) generates it.

We show that L(2F) € EC*(LIN,LIN). In every case, the
nonterminal alphabet, the terminal alphabet, the produc-
tion set and the start symbol are always the same, only the
control language changes.

. N={s},
o 7= {ab},
e P={a:5—>aSh,5:5 = bSa,y: S — A}

Let h : T* — {a,B}" be defined as h(a) := a, h(b) := 3.
Note that h can be interpreted as a simple letter substitu-
tion. There is no need for a general homomorphism.

Induction by k:

e Base case: kK =1:
L(2) is generated with the control set h(L(1)) - {7},
ie., {a"B"y | n € N} € LIN.

e Suppose the claim is true for m < k where k > 1, we
show that it is also true for k:
L(2*) € EC*(LIN,LIN) can be generated with the con-
trol set h(L(271)) - {7} € EC*!(LIN,LIN).

See Lemma 3 on the control set modifications.

Now, we show that L(2FT!) ¢ ECY(LIN,LIN). We can
use Theorem 4. Consider the word (a™b™)*™! where n is
a pumping constant of L(2**'). Every word in L(2°1)
has exactly 28! occurrences of the subword ab and exactly
2k+1 _ 1 occurrences of the subword ba, and therefore the
word consists of 287! blocks of a’s and the same number of
blocks of b’s. The subwords y1, Y2, ..., Ysk+1 have to be
chosen in a way such that each y; may contain only a’s or
only b’s. However, the 2571 subwords can take place in at
most 2871 blocks, leaving another at least 281 blocks out of
pumping. Pumping subwords in the selected blocks will re-
sult different number of letters in the different blocks, which
contradicts the language definition. [

8. CONCLUSIONS

Grammars with exact control are a relatively new family
of generative systems. In this paper linear grammars are
considered. The derivations of these grammars are simple,
actually, they have regular Szilard languages. However, by
using an exact linear control, they are able to generate some
non context-free languages. By allowing a kind of iteration
on the control language, an infinite hierarchy of language
classes is presented here. We close the paper with some
future directions of this research line.
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We have left open some interesting questions about these
classes. Is U2, EC!(LIN,LIN) closed under concatenation?
In other words, for arbitrary L1, Ly € EC*(LIN,LIN) is there
a language L € EC™(LIN,LIN) such that L;- Ly = L? Is the
Dyck-language contained in EC*(LIN,LIN) for some n € N?
And in general, what is the relation of the family of context-
free languages to the above families?

As a matter of our future work we are working on an exten-
sion of Algorithm 1 to the family EC(LIN,LIN).
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ABSTRACT

This paper is an overview of results that show the Brouwer
fixed-point theorem to be essentially non-constructive and
non-computable and discusses some computable functions
without computable fixed points. The counter-examples of
Orevkov and Baigger that imply that there is no procedure
for finding the fixed point in general and do so by giving an
example of a computable function which does not fix any
computable point. In this contribution, we discuss some
examples of computable functions not fixing any computable
point.

Categories and Subject Descriptors
G.1.0 [Mathematics of computing]: Numerical analysis—
General

General Terms
Theory

Keywords

Computable analysis, Brouwer fixed-point theorem

1. INTRODUCTION

Recall that computable real number is a number for which a
Turing machine exists that, on input n, produces a rational
approximation with error no more than 27". A computable
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point is a point all the coordinates of which are computable
reals. The notation

No for the non-negative natural numbers;
R, for the set of computable reals;
I. for INR.; and
§X  for the boundary of a set X, being X N X¢

is also used.

We consider the Brouwer fixed-point theorem in the follow-
ing form, where the standard unit interval is denoted by
I=10,1].

THEOREM 1 (BROUWER). Any continuous function f :
I? = I? has a fized point, i.e. there exists an x € I* such
that f(z) = x.

The two examples discussed use distinct definitions of a com-
putable function of real variables.

Russian school

In the Russian school of Markov and others, a computable
function maps computable reals to computable reals by a
single algorithm for the function that translates an algorithm
approximating the argument to an algorithm approximating
the value of the functions. It need not be possible to extend
a function that is computable in the Russian school to a
continuous function on all of the reals. These functions are
often called Markov-computable.

Polish school

In the Polish school of Lacombe, Grzegorczyk, Pour-El and
Richards, and others, a function is computable on a region if
it maps every computable sequence of reals to a computable
sequence of reals and it has a computable uniform modulus
of continuity on the region [9].

2. OREVKOV’S EXAMPLE

One can construct a Markov-computable function f through
a computable mapping of descriptions of computable points
x € I? to descriptions of f(z) € IZ, such that

flx)#x Ve I



That is, no computable point is a fixed point for f. Unfor-
tunately the f which is constructed in this way, cannot be
extended to a continuous function on 2. This is the (Rus-
sian school) construction of [7], another instance of which
can be found in [12].

3. BAIGGER’S EXAMPLE
For the nowadays more current approach of the Polish school,
a counter-example was constructed by Baigger [1]. Let a be
any non-computable point in I2. Consider the function f
which moves each point half-way to a,

f@)=z+ 3 (a-2)

and has a single fixed point, namely a itself. The function f
is continuous and defined on all of I? and has no computable
fixed point. Nevertheless, this is not really interesting since

e the fixed point a has no reasonable description—since
it is itself not computable; and therefore

e the function f has no reasonable description—it is not
computable in any sense.

One would like to see a function which is computable, defined
(and therefore continuous) on all of I? and yet avoids fixing
any of the computable points I2. The following example,
having appeared in [1] and in [12], modifies the construc-
tion of Orevkov to produce a computable f defined on all of
I’ having no computable fixed point. As in the example of
Orevkov, we need the following fact.

LEMMA 1  ([6], FOR EXAMPLE). There exist computable
sequences of rational numbers (an) and (by) in the interval
I =[0,1] such that the intervals J, = [an,byn] have the fol-
lowing properties.

(i) If n £ m then |Jp N Jm| < 1.

(i3) If an # O then an € {bo,b1,...} and if b, # 1 then
bn G{ao,a1,...}.

(iii) 1. € U,, Jn, i.e. the Jn cover the computable reals in
I=10,1].

One uses the intervals J,, = [an7 bn] of the lemma above and
sets

Co=|J e xJe
k,0<n
after which one defines f progressively, using the sets C.
The points
th = (Unyvn)
where
vn =min {z | (,2) & Cu)
EAS
are used as “target point” at each stage of the construction.
Note that

v= lim v,
n— oo

is not a computable number and (v,v) will be one of the
fixed points of f.
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DEFINITION 1. For any W C I? we define
W ={eeW | d(z,6W\6I") >¢c}
and

W ={eeWw | d(z,éW\dI*)=¢c}.
One can define f, such that

1. fn moves every point in the interior of C:Tn but is
the identity outside the set, and is computable;

. w2 ".3
2. fn+1 agrees with f, on Cn2 2 and therefore

3. f =lim,_ frn is computable.

Every computable point eventually lies in some
c (C:T”)

and is therefore moved by f. Clearly f(I?) C I? and f will
be as required. In fact, f has no fixed point in

Ucn= U Jx

k,e>1

mo—".3

Cn 2

Also, f as constructed here has no isolated fixed point—
its fixed points all occur on horizontal and vertical lines
spanning the height and breadth of the unit square. Fur-
ther details of the construction appear in Appendix A. The
construction cannot be applied in the one-dimensional case
because it is impossible to effect a change of direction by
continuous rotation and, of course, in one dimension one
can compute the fixed point.

4. THE KONIG LEMMA

In reverse mathematics it is known that in RCAg, the sys-
tem of recursive comprehension and X9 -induction, the weak
Konig lemma, WKLo, is equivalent to the Brouwer FPT [11].

LEmMMA 2 (WKLo, KONIG). Every infinite binary tree
has an infinite branch.

The Ko6nig lemma does not have a direct computable coun-
terpart.

THEOREM 2 (KLEENE [5]). There exists an infinite bin-
ary tree, all the computable paths of which are finite.

The relation of the Kleene tree to the Baigger counterexample
can be relatively easily constucted and is detailed in [8].

S. REMARKS

We close with some remarks about the fixed points of com-
putable functions that may be of interest.

THEOREM 3. If g :C R™ — R" is computable on [a1, b1] X
-+« X [an,bn] and has an isolated fized point in (ai,b1) X+« X
(an,bn) then that fixed point is a computable point.



This result is mentioned by [4], for example, with a proof
outline.

PRrOOF. It is sufficient to consider

h(z) = |lg(z) — ||
and to show that if h has an isolated zero then that zero is
computable. Assume therefore that h(z) = 0 where
X [en,fn] g (Cl,dl) X X (Cn,dn)
C (al,b1) X oo X (an,bn)

Z€[€1,f1]><---

and h(z) > 0 whenever © € (c1,d1) X -+ X (¢n,dn) \ {2z} and
all the given interval bounds are computable numbers.

Suppose now that z were non-computable. Let (g,) be any
computable enumeration of the rational points in (c1,d1) X
- X (¢n,dn). Since obviously z & {q1,q2, - ..},

h(gn) >0 Vn

and hence for each n it is possible to choose €, by setting
1
n — —h n
en = 1 h(an)

so that e, > 0 for each n. Since h is computable on [a1, bi] x
-+ X [an, by] it has a decreasing modulus of uniform continu-
ity mp. Define

0n = mpn (€n)

so that for each n it is true that

3

Jo—aull <0 = h() > Jh(an)

and that on the open ball B (gn, 6, ) the function h is bounded
strictly away from 0 by 3k (gn) > 0.

The B (gn,dn) now form an open cover of [eq, fi] X -+ X

[en, fn] \ {2}. For, given any x # z in [e1, f1] X -+ X [en, fn]
it is the case that h is bounded away from 0 on

V =le1, fi] X -+ X [en, fa] \ B (Z,%HZ*JCH)

and hence there exists a k > 0 such that €, > k whenever
qn € V and therefore

0n > mp(k) >0 for each g, € V.
As a result, x € B (i, mn(k)) C B (g, d;) for some ¢; € V.

We now have computable sequences (gn) and (6,) which
allow us to approximate z arbitrarily closely. For, given any
€ > 0 the balls B (gn, d») form an open cover of the compact
set

fer, fi] > -+ x [ew, fu] \ B (=, 5)

so, if a computable € is given, an enumeration of the balls
can be done, stopping as soon as the complement of

m

U B (Qi75i)

=1

has diameter less than e at which stage any point of

lex, 1] X -+ X [en, f] \ | B (¢, 67)

=1
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can be returned as the required approximation of z. The
hypothesis that z was not computable is thereby contra-
dicted. [

THEOREM 4. For any € > 0 there exists a computable f
on I? that fizes no computable point but the set of fized points
of which has Lebesgue measure at least 1 — €.

This is a straight-forward consequence of the fact that the
intervals in Lemma 1 can be chosen to be arbitrarily small.

6. FURTHER QUESTIONS

Suppose x is a non-computable fixed point of a computable
function f. By the preceding, it is not an isolated fixed
point but is it necessarily an accumulation point of the non-
computable fixed points?

On the other hand, can an accumulation point of non-computable

fixed points be a computable (fixed) point?

7. CONCLUSION

The existence of the Kleene tree can quite easily be derived
from the impossibility of ensuring the existence of a comput-
able fixed point for a computable function (in both Russian
and Polish senses), in two dimensions (or higher). The in-
genuous constructions of Orevkov and Baigger provide a way
of defining a computable function with no computable fixed
point from the set of intervals derived from the Kleene tree,
in a constructive manner. This correspondence is, perhaps,
more attractive for the “working mathematician” than the
elegant derivation of the result in reverse mathematics. In
one dimension, any computable f : I — I does have a com-
putable point x € I. such that f(z) = x, which can be seen
by fairly straight-forward reductio ad absurdum.

Non-computable fixed points of computable functions ap-
pear in a relatively complicated way.
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Appendix: details for Section 3
The constructions should guarantee that at each stage, the
function f,, moves every point of

b= (o e )

in the direction of ¢,, by an amount proportional to its dis-
tance to CH27".

The construction of fi with this property is trivial. We
proceed to construct f,,+1 from f,.

i) Extend and modify f, to Cc™27" so that every point x
+

of
W2 " W2 .5 °©
(et )
is moved in the direction of ¢, by an amount propor-
tional to d (Jc, C’Ef;n).
(ii) Modify the resulting function so that each point in

—-n 9

w2 m2—". g
Cnii \Cpis

is mapped a non-negative amount proportional to its
o (n+1)

distance to Ciiq in the direction of ¢,.

(iii) By rotation of the direction of the mapping, extend the

me—(n+1)

function to Cpyy such that every point x of

mo—(n+1)

Dpy1 = (Cn+l

—(n+1) .5
[ PJ (n )'Z

o )O

is mapped in the direction of ¢,11 by an amount pro-

portional to d (x, CE_%_I(TLH)).

The final step is the only one in which we use the fact that
we are working in two dimensions as this step requires the
continuous (computable) rotation of a vector in the direction
of t,, to a vector in the direction of t,,41.

A construction is given explicitly in [1] but it should be clear
from the preceding that it can be done in many different
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ways. The important part of the proof is that the construc-
tion is, at each stage, extended at the boundary to “look
right” from the outside. This ensures that, eventually every
point is in fact moved towards one of a sequence of points
that converge to the non-computable fixed point (v, v) on the
diagonal. The Baigger construction is a somewhat delicate
construction of a function that is in fact computable but
that—somehow—mimics a simple mapping of every point
in I? in the direction of (v, v).
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