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Abstract

A Leonardo polyhedron is a 2-manifold without boundary, embedded in Euclidean 3-
space E3, built up of convex polygons and with the geometric symmetry (or rotation) group
of a Platonic solid and of genus g ≥ 2. The polyhedra are named in honour of Leonardo’s
famous illustrations in [19] (cf. also [12]). Only six combinatorially regular Leonardo poly-
hedra are known: Coxeter’s four regular skew polyhedra, and the polyhedral realizations
of the regular maps by Klein of genus 3 and by Fricke and Klein of genus 5. In this paper
we construct infinite series of equivelar (i.e. locally regular) Leonardo polyhedra, which
share some properties with the regular ones, namely the same Schläfli symbols and related
topological structure. So the weaker condition of local regularity allows a much greater
variety of symmetric polyhedra.

Keywords: Equivelar polyhedron, Leonardo polyhedron, regular polyhedron, genus, Schläfli symbol,
symmetry group.

Math. Subj. Class.: 52B15, 52B70

1 Introduction
A polyhedron is a compact 2-manifold without boundary embedded in Euclidean 3-space
E3, hence oriented. It is built up of finitely many (planar) convex polygons, any two of
which meet, if at all, in a single edge or a single vertex.

If v, e and f denote the number of vertices, edges and faces, respectively, of the poly-
hedron, then one has the basic Euler-Poincaré equation

v − e+ f = 2− 2g = χ,

E-mail addresses: gevay@math.u-szeged.hu (Gábor Gévay), wills@mathematik.uni-siegen.de (Jörg M.
Wills)

Copyright c© 2013 DMFA Slovenije



2 Ars Math. Contemp. 6 (2013) 1–11

where g ≥ 0 denotes the genus and χ the Euler characteristic. In this paper we do not
consider the case of tori (g = 1), but only the polyhedra with g ≥ 2. If all faces of a
polyhedron are p-gons, p ≥ 3, and all vertices q-valent, q ≥ 3, then the polyhedron is called
locally regular or equivelar and is denoted by its Schläfli symbol {p, q} (cf. [3, 15]). We
note that the extended Schläfli symbol {p, q; g} is also used. A much stronger condition is
(global combinatorial) regularity: a polyhedron is called regular if its automorphism group
acts transitively on its flags (incidence triples of vertex, edge and face).

Regular maps and their groups play a central role in classical complex analysis and al-
gebraic geometry (e.g. Riemann surfaces, automorphic functions, Poincaré model). Hence
regular polyhedra can be interpreted as 3D geometric models or visualizations of regular
maps, and they are closely related to the Platonic solids.

The geometric (or Euclidean) symmetry group of the polyhedron is the group of isome-
tries of E3 stabilizing the polyhedron. It is a subgroup of the automorphism group; to be
precise, the automorphism group has a (proper, or improper) subgroup that is isomorphic
to the geometric symmetry group. For a combinatorially regular polyhedron the geometric
symmetry group is, in general, much smaller than the automorphism group; they coincide
only in the case of Platonic solids. For any polyhedron with given combinatorial structure
we tacitly assume that it has maximal geometric symmetry.

Polyhedra which have the geometric rotation or full symmetry group of a Platonic solid
deserve particular interest. They are called Leonardo polyhedra, because Leonardo was
the first to draw such polyhedra in Luca Pacioli’s book [19] in 1500-1503 (see also [6]
and [12]). It is easy to check that the polyhedra in this book are neither equivelar nor
regular. Leonardo also drew some polyhedra with lower symmetry groups (e.g. dihedral),
but we only use the name for Platonic symmetries.

Obviously there are no Leonardo polyhedra of genus g = 1, because tori can have at
most dihedral symmetry. For similar reasons there are no Leonardo polyhedra with g = 2.
For g = 3 there are some with tetrahedral symmetry.

2 Regular and equivelar Leonardo polyhedra
Regular Leonardo polyhedra seem to be very rare. Only six are known yet. The first four
are Coxeter’s regular skew polyhedra [5], first discovered by Coxeter in 1937 and partially
by Alicia Boole Stott already in 1913 [1]. There is one dual pair of genus g = 6, with
tetrahedral symmetry and of type {4, 6} and {6, 4}, and one dual pair of genus g = 73,
with octahedral symmetry and of type {4, 8} and {8, 4}. (In standard notation: {4, 6|3},
{6, 4|3}, {4, 8|3} and {8, 4|3}, cf. [5, 15, 21].) The spines of Coxeter’s regular skew poly-
hedra are isomorphic to the 1-skeletons of the regular 4-simplex or the regular 24-cell, i.e.
the only self-dual regular 4-polytopes. We note that the term spine, borrowed from topol-
ogy, is meant here as a graph, embedded in E3, such that its regular neighbourhood [18] is
a 3-manifold with boundary, and the boundary of this manifold is just our polyhedron.

Furthermore, there is the polyhedral realization [20] of Felix Klein’s regular map of
genus 3 with tetrahedral rotation group and of type {3, 7}. Its dual with non-convex hep-
tagons was recently discovered [13], but here we only consider polyhedra with convex
faces.

The sixth regular polyhedron is the realization of the regular map of Fricke and Klein
from 1890. This polyhedron was found by Grünbaum and Shephard in 1984 [11], because
of its vertex-transitivity. But its regularity was only recently discovered [2]. It is of type
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{3, 8}, with genus 5, and it has octahedral rotation symmetry.
The spines of these last two polyhedra are isomorphic to the 1-skeleton of the tetrahe-

dron or the cube, hence of convex 3-polytopes in both cases. No other regular Leonardo
polyhedra are known yet.

In this paper we construct series of equivelar polyhedra, which are related to the previ-
ous 6 regular polyhedra:

Theorem 2.1. There are infinite series of equivelar Leonardo polyhedra with tetrahedral,
octahedral and dodecahedral symmetry group and of Schläfli type {3, 7}, {3, 8}, {3, 9},
{4, 6} and {6, 4}, and whose spine is isomorphic to the 1-skeleton of a convex 3- or 4-
polytope.

Remark 2.2. The result shows that there are infinite series of equivelar polyhedra, which
are closely related to the regular Leonardo polyhedra. Only the types {4, 8} and {8, 4} are
missing.

Remark 2.3. In the previous papers [9] and [23] the authors provided infinite series of
equivelar Leonardo polyhedra of type {4, 6} and {6, 4}. But these were of very different
spatial structure than the six known regular ones, as they are built up of connected shells
(like an onion). The search for closer equivelar analogues was one motivation for this pa-
per. The other one was the recently discovered regularity [2] of the Grünbaum-Shephard
polyhedron.

Among the polyhedra of “small” Schläfli-type (i.e. those with p+q < 12) the equivelar
polyhedra of type {4, 5} and {5, 4} differ from the others, as follows. The only known
regular polyhedra of these types have genus 5 and a small symmetry group of order 4,
namely (Z2 × Z2) (cf. [17] and [14]).

The equivelar Leonardo polyhedra of this type also differ from the others as the follow-
ing result shows.

Theorem 2.4. a) Type {4, 5}: There exist four infinite series of equivelar Leonardo
polyhedra with the following genera and symmetry groups:

• g = 1 + 6k with tetrahedral symmetry group, in two non-isomorphic versions;
• g = 1 + 12k with octahedral symmetry group;
• g = 1 + 30k with icosahedral symmetry group (k = 1, 2, . . . ).

b) Type {5, 4}: There exist equivelar Leonardo polyhedra with the following genera
and symmetry groups:

• g = 13, 31 with tetrahedral symmetry group;
• g = 7, 13, 25, 97, 289 with octahedral symmetry group;
• g = 31, 61, 3601 with icosahedral symmetry group.

In [22] there is a pair of equivelar Leonardo polyhedra of type {4, 5} and {5, 4} with
g = 7 and octahedral symmetry, and in Figure 1 we show a new example of type {4, 5}
with g = 19 and icosahedral (rotation) symmetry. This polyhedron consists of an outer and
an inner shell, homothetic to each other and positioned concentrically. Both of them are
composed of 60 quadrangular faces; besides, there are 20 triangular holes in each. The two
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Figure 1: The Leonardo polyhedron of type {4, 5; 19}; f = 36(4, 10, 5).

shells are joined by triangular prismatic tubes along these holes. Since this polyhedron has
shortest non-0-homotopic paths of length 3 and 4, it is not regular. It follows from Conder’s
list of regular maps [4] that for g = 19 there is precisely one regular map of type {4, 5}.
So the only possible Leonardo polyhedron of such type would be a realization of this map,
and it is an open question if it exists or not.

We note also that the polyhedron of type {5, 4; 7} with octahedral symmetry group was
found already in 1983 (see [22], Figure 2). In [9] it is constructed in a slightly different
way. The other related types are new and here we show in Figure 2 the example with genus
13.

3 Proof for the existence of equivelar series
In this section we prove Theorems 2.1 and 2.4 by constructing the polyhedra in question.

Proof of Theorem 2.1

CONSTRUCTION for Schläfli type {3, 7}.

The construction was already done in [16], but without any symmetry assumptions. We
split our proof into three parts.

First we show that there are infinitely many simple convex 3-polytopes, i.e. such that all
their vertices are 3-valent, for each of the required symmetry groups. The first polytopes
of this type are the tetrahedron, the cube and the dodecahedron. They have 4, 8 and 20
3-valent vertices, respectively. We now continue by induction.
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Figure 2: The Leonardo polyhedron of type {5, 4; 13}; f = 24(5, 10, 4).

For a simple convex polytope with v vertices we cut off these vertices by a plane each,
such that no cuts intersect and that the global symmetry is preserved. We obtain a new
convex 3-polytope with the same symmetry group and with 3v vertices, all of them 3-
valent. Clearly this polytope is not equivelar, because it contains faces of different type.

The second step is to construct from each of these polytopes a new one with 5-valent
vertices.

For each of the convex polytopes with 3v vertices we make the following operation.
We shrink all faces by the same factor, such that each face remains in its given affine
hull. Hence they are disjoint. Now we take the convex hull of the system of these new
polygons, so that we obtain a new convex polytope with 4-valent vertices. Each vertex of
the former polytope corresponds to a triangle, so does each edge to a quadrangle, and the
vertex-number of the new polytope is 9v.

We now split the new quadrangles by a diagonal into two triangles in the right order,
such that the global symmetry is preserved. More precisely, by this operation the full
symmetry group is lost and reduced to the rotation subgroup of index two. We now have a
convex 3-polytope with 5-valent vertices and the required symmetry.

The third step leads us to the construction of tunnels and the required polyhedron of
type {3, 7}. First we take the boundary complex of our polytope, and put a smaller copy of
this complex into the former one with the same centre and orientation. Then we delete in
both objects the shrinked polygons. The remaining faces are all triangles. We now connect
any two corresponding holes by tunnels, built up of quadrangles. Again we split each of
these quadrangles by a diagonal in the right order, so that the symmetry is preserved. We
obtain a polyhedron of Schläfli type {3, 7} with the required symmetry. Finally, by a slight
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rotation of the holes (originating from the shrinked faces), each within its affine hull and to
different extent in the two spherical complexes, it is ensured that no adjacent triangles are
coplanar (this can also be done in symmetry-preserving way).

CONSTRUCTION for Schläfli types {4, 6} and {6, 4}.

The construction was already described in [16], although without any symmetry con-
siderations. In order to make the paper self-contained, we sketch the proof for the {6, 4}
series. The dual {4, 6} series are constructed similarly. Let P be one of the simple 3-
polytopes with Platonic symmetry group obtained in the first step of our former proof and
let SD be the Schlegel diagram of the 4-prism with base P such that it is in one of the
Platonic bases of the prism. All vertices of SD are 4-valent. We take the midpoints of
all edges of SD, and then the convex hull of the midpoints of any four edges which are
incident to a vertex of SD. Thus to each vertex of SD corresponds a 3-simplex and each
vertex of a simplex is shared with a vertex of a neighboring simplex. Now we enlarge each
simplex by the same factor 1 + ε, ε > 0 sufficiently small. We delete those parts of the
simplices which lie inside another simplex and obtain a polyhedron of type {6, 4} with the
required symmetry properties.

CONSTRUCTION for Schläfli-types {3, 8} and {3, 9}.

From each polyhedron of type {6, 4} we obtain one of type {3, 8} as follows. In each
hexagon one connects a triplet of non-consecutive vertices by segments and obtains a tiling
of the hexagon into 4 triangles. If one does this in the right order on the whole {6, 4}
polyhedron, one obtains the required {3, 8} polyhedron.

The {3, 9} series is obtained from the {4, 6} series as follows. Each quadrangle can be
divided into two triangles by a diagonal. If one does this in the right order on the whole
polyhedron, one obtains the required {3, 9} polyhedron. The crucial point for this proce-
dure (which was already described in [16]) is the fact that, when applied to any polyhedron
of type {p, q}, the valency q of the vertices is even. �

Proof of Theorem 2.4

CONSTRUCTION for Schläfli-type {4, 5}.

Start from two distinct types of Archimedean polyhedra, P1 and P2. P1 is the truncated
octahedron with six square faces and eight hexagonal faces. P2 is the rhombicuboctahe-
dron, which has 6+12 square faces and eight triangular faces. For the following construc-
tion it is crucial that P1 has only 3-valent vertices, and P2 only 4-valent vertices. Note that
both the octuple of the hexagonal faces of P1 and the octuple of the triangular faces of P2

decomposes to two disjoint classes. In each case such a class is a quadruple forming an
orbit under the action of the tetrahedral symmetry group (a subgroup of the octahedral sym-
metry group of these polyhedra). Delete these hexagonal and triangular faces, and denote
the complexes obtained in this way by P ′

1 and P ′
2, respectively. Take 2k (k ≥ 2) concentric

and homothetic copies of P ′
1. We call them shells of our polyhedron under construction.

Now join the holes of the neighbouring shells by hexagonal prismatic tubes. The tubes are
arranged so that each intermediate shell is joined to its outer or inner neighbour, in both
cases using four tubes and using holes that belong to the same class (but different in the two
cases). The innermost shell is joined to the outermost shell. To avoid undesirable contacts,
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the holes of the outermost shell are shrinked to a suitable size with respect to those of the
intermediate shells, while keeping the symmetry. For P ′

2, the construction is the same with
the only difference that here one uses triangular tubes. We obtain two different infinite se-
ries of polyhedra, both of the desired Schläfli type, and with the (full) tetrahedral symmetry
group and genus g = 1 + 6k (k = 1, 2, . . . ).

Consider again the four orbits of faces of the rhombicuboctahedron with respect to the
action of the tetrahedral group. Clearly, analogous polyhedra can be constructed, likewise
with four orbits of faces with respect to the octahedral and the icosahedral group. In the
octahedral case these orbits are 6 squares, 8 regular triangles, 12 rhombi and 24 rectan-
gles, while in the icosahedral case there are 12 regular pentagons, 20 regular triangles, 30
squares and 60 symmetric trapezia. In both cases all the vertices are 4-valent (and the po-
lar dual is such that all the faces are kite-shaped and form two orbits). Now deleting the
square and triangular faces in the the octahedral case, and the non-quadrangular faces in the
icosahedral case, and applying an analogous construction as above, one obtains the desired
infinite series of polyhedra with genus g = 1 + 12k and g = 1 + 30k, respectively. The
starting member of the icosahedral series is shown in Figure 3.

Figure 3: The Leonardo polyhedron of type {4, 5; 31}; f = 60(4, 10, 5).

CONSTRUCTION for Schläfli-type {5, 4}.

Let P be a polyhedron satisfying the following conditions:

(1) the symmetry group G(P ) of P is equal to the full symmetry group of one of the
Platonic solids;
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(2) G(P ) is transitive on the faces of P ;

(3) the faces of P are quadrangles;

(4) each edge of P is contained in one of the mirror planes determined by G(P ).

It is easy to see that P is combinatorially equivalent to one of the following five polyhedra
(cf. [8]):

• cube;

• rhombic dodecahedron;

• rhombic triacontahedron;

• deltoidal icositetrahedron (dual of the rhombicuboctahedron) (see e.g. Figure 3 in
[9];

• deltoidal hexecontahedron (dual of the Archimedean polyhedron called rhombicosi-
dodecahedron) (see e.g. Figure 5 in [9] or Figure 9 in [7]).

Put on each of the quadrangular faces of P a bipyramid, each pairwise congruent, such that
the midpoints of the edges of the face form the basal vertices of the bipyramid. Then enlarge
each bipyramid from the centre of its own base by the same factor 1 + ε, ε > 0 sufficiently
small. Delete now those parts of the bipyramids which lie inside another bipyramid (along
with the original faces of P ). One obtains a polyhedron of the desired Schläfli type such
that its symmetry group remains the same as that of the example of P we started from. The
genus of this polyhedron is g = f2(P ) + 1, where f2(P ) is the number of the faces of P ;
hence the genera in the five cases above are 7, 13, 31, 25 and 61, respectively. Finally, we
note that there is a polyhedron called deltoidal dodecahedron, combinatorially equivalent
to the rhombic dodecahedron but with tetrahedral symmetry (a well-known figure in geo-
metric crystallography, see e.g. [10]). It also satisfies the conditions above. Hence starting
from it, our construction provides the tetrahedrally symmetric polyhedron with g = 13.

The conditions (1–4) above can be suitably modified such that they are satisfied by
equivelar polyhedra with quadrangular faces and with spine isomorphic to the 1-skeleton
of a regular 4-polytope Q. (Two of these polyhedra are even regular, namely that of type
{4, 6; 6} and {4, 8; 73} [21].) Thus, performing the construction in E4, then taking a suit-
able projection to E3, one obtains Leonardo polyhedra of the following genera: g = 31 (Q
is the regular 4-simplex), g = 97 (Q is either the 4-cube or the regular 16-cell), g = 289
(Q is the regular 24-cell) and g = 3601 (Q is either the regular 120-cell or the 600-cell).

In conclusion, we present a sporadic example of a polyhedron of type {3, 8; 7}, which
differs in its structure from those in Theorem 2.1. It is constructed from two solids P and
P ′, such that P ′ is a non-convex version of the convex 3-polytope P ; their boundary are
combinatorially equivalent to each other, and have the f -vector f = (30, 84, 56). The size
and shape of the bounding polyhedra is adjusted so that deleting a whole 8-element orbit of
faces from both, the complexes obtained in this way can be glued together along the holes,
thus forming the outer and inner shell of a new polyhedron. This polyhedron has octahedral
rotation symmetry; it is shown in Figure 4a, and its inner shell in Figure 4b.
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(a) The whole polyhedron.

(b) The inner shell of the polyhedron.

Figure 4: The Leonardo polyhedron of type {3, 8; 7}; f = 12(3, 12, 8).
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