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ABSTRACT

Radiotherapeutic treatment of cancer is best conducted if the prescription dose is given to the tumor while
surrounding normal tissues are maximally spared. With the aim to meet these requirements the complexity
of radiotherapy techniques have steadily increased under a strong technological impulse, especially in the
last decades. One problem involves the rate of the particular disposition of the structures of interest in a
patient. Recently the authors (Tomatis et al., 2010; 2011) have proposed a computational approach in order to
represent quantitatively the geometrical features of organs at risk, summarized in characteristics of distance,
shape and orientation of such organs in respect to the target. A basic problem to solve before to compute the
risk index, is the segmentation of the organs involved in the radiotherapy planning. Here we described a 3D
segmentation method by using the clinical computed tomography (CT) data of the patients. Our algorithm is
based on different steps, a preprocessing phase where a nonlinear diffusion filter is applied; a level set based
method for extract 2D countours; a postprocessing reconstruction of 3D volume from 2D segmented slices.
Some comparisons with manually traced segmentation by clinical experts are provided.
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INTRODUCTION

Radiotherapy is a treatment of cancer and other

diseases with ionizing radiation. Ionizing radiation

deposits energy that injures or destroys cells in the

area being treated, the “target”, by damaging their

genetic material, making it impossible for these cells

to continue to grow. Although radiation damages both

cancer cells and normal cells, the latter are, in general,

able to repair themselves and function properly.

However, Radiotherapeutic treatment of cancer is best

conducted if the prescription dose is given to the

tumor while surrounding normal tissues are maximally

spared. With the aim to meet these requirements the

complexity of radiotherapy techniques have steadily

increased under a strong technological impulse,

especially in the last decades (Connell and Hellman,

2009). The development of computer and of medical

imaging provides the possibility of new approaches

to improve the balance of coverage of target versus

normal tissues, with computer aided optimization and

control of planning, delivery and verification. As a

fundamental part of the complex process of realizing a

radiotherapy treatment, planning is often a demanding

task. The planner work load depends on the employed

technique and dose constraints but, at the same time,

on the spatial distribution of the designed anatomical

structures, with a major care needed when critical

organs are closer to the target volume. But, how can

the particular disposition of the structures of interest

in a patient be rated? A complete answer to this basic

question has not been provided yet, but it would allow

to start a quantitative assessment of the influence of

structures geometries on the treatment plan results.

A desirable consequence of this evaluation would

be a better control for plan optimization and a

standardization of the planning procedures and results.

In recent papers (Tomatis et al., 2010; 2011) a new

computational approach is presented based on what the

authors call Expansion Intersection Histogram (EIH),

a function defined as the intersection between an organ

at risk and the target volume, while the target is

expanded in 3D through a scanning procedure. This

index is able to represent quantitatively the geometrical

features of organs at risk (OARs), summarized in

characteristics of distance, shape and orientation of

such organs in respect to the target.

179



NALDI G ET AL: Segmentation for assessment of organ

Fig. 1. Three dimensional view of anatomical volumes

manually contoured for a radiotherapy treatment

in the head and neck region. Besides the tumour

(target) organs shown are spinal cord, brainstem and

omolateral parotid gland.

A 3D representation of anatomical structures in

a typical clinical situation is shown in Fig.1 where a

real case was selected in the head and neck region.

Although potentially all the contoured volumes could

be taken into account, we focused on the high dose

target for which the planned dose was 70 Gy and on

spinal cord, brainstem and right parotid selected as

OARs.

In order to quantify the geometrical features of

patient volumes, a necessary step is the segmentation

of the organ of interest. This task is currently

performed by the radiation oncologist who traces the

organ contours on each slice of the CT data manually

(in some cases interactively). These procedures are

time consuming. The problem to develop an automatic

or semi-automatic method for several organs (for

example for abdominal organs) from CT data is still

open due to many factors. In particular, these factors

include the high inter- and intra-patient variability

of shapes and gray-levels, some factors that limit

the image quality (as an example, beam hardening,

reconstruction artifacts, and patient movements).

Moreover, different organs are often represented with

similar gray-levels due to their similar tissue densities.

Many contributions have been made to the

field of automatic and semi-automatic segmentation

(Pham et al., 2000; Bankman et al., 2008) for

biomedical applications. However, the complicated

structures found in medical imaging offer several

unsolved challenges to automated algorithms,

including the lack of global morphological

characteristics, scanner noise and artifacts, and

an incomplete or weak separation between points

representing neighboring tissue. Then the same

algorithm which gives excellent results for one

application, might not even work for another (for

example, the segmentation of lungs has different issues

than the segmentation of liver). Any of the existent

automated algorithms can be shown to fail on certain

dataset for reasons specific to each method.

Here we focus on a semi-automatic gray-

level based segmentation framework inspired by

recent works on liver segmentation (Pratissoli, 2009;

Campadelli et al., 2010). Our aim is to develop a

simple segmentation algorithm based on established,

and not critical, anatomical knowledge. Then it can be

easily generalized, and adapted to segment different

organs, overcoming problems due to the high inter-

and intra-patient gray-level and shape variabilities.

Moreover we start form the clinical framework, for this

we require,

– to trace the organ contours on each slice of the

CT data (as was done by medical experts), the

extracted volumes are then combined to produce

the final results. In this way we can make a

comparison between the automatic method and the

experts results with the ability to easily test the

method (and eventually correct).

– To have some “analytical control” on each slice

contours in order to perform geometrical and

morphological operations.

We point out that with our real CT data was not

possible to proceed with a direct 3D (evolution of a

surface) segmentation algorithm due to the difference

in resolution within each 2D slice and the distance

between slices. Then, in order to consider direct 3D

segmentation, we would have had to introduce an

interpolation process which may typically introduce

artifacts.

We illustrate the method by using the bladder as

an internal organ of interest (at risk). In any case,

our method appears to have good potential to become

a general segmentation method (while many existing

algorithms are specific to a particular problem).

A SEMI-AUTOMATIC

SEGMENTATION

We address the problem of semi-automatic

organs segmentation from computed tomography

(CT) images in order to compute a risk index for

radiotherapy planning. At present this task is usually

done by experts who trace the liver contour using

some graphical interface: this procedure is very
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time-consuming and affected by operator’s errors
and biases. Our system, inspired by work on liver
segmentation (Campadelli et al., 2010), is a semi-
automatic framework which only requires manual
intervention only in the initialization phase.

The method is based on the following steps:
preprocessing, noise reduction, fast marching (FM)
contour evolution, postprocessing.

PREPROCESSING

The CT image is much larger than the region
containing the organ of interest (in our case the
bladder). Then, each CT slice is resized in order to
reduce the computational time of the successive steps.
First, we perform the binarization of the gray level
image by using a suitable thresholding (the threshold
level is determined by observing the typical average
gray level of tissues). After binarization, we eliminate
the small artifact by using morphological filter. Now,
we obtain a suitable mask for the selection of the
region of interest. In Fig. 2 we show an example of
the procedure, the final region is obtained by a simple
superposition between the binary mask and the original
image.

Next, after the resizing of the image, in order
to reduce noise and make regions as piecewise
constant as possible, without blurring edges, we use
a non-linear diffusion filter (Weickert, 1998). This
Partial differential equation (PDE) based method is
an adaptive smoothing method which is based on
the idea of applying a process which itself depends
on local properties of the image. The resized image
Ires is considered as the initial data of a non-linear
anisotropic diffusion equation,

∂ I

∂ t
= div(c(I,∇I,x, t)∇I) x ∈ Ω, t > 0 ,

I(x,0) = Ires ,

where I = I(x, t) is the image at the time t, Ω ⊂ R
2 is

the spatial domain of the image (div is the divergence
operator while ∇I the gradient of I). Here the diffusion
coefficient c depends on the gradient of the image and
it is defined as

c = c(∇I) =
1

1+(|∇I|/K)2
,

where K is a suitable positive parameter which may
depend on different organs. We point out that it is
possible to show that the non-linear diffusion equation
is equivalent to a robust procedure that estimates a
piecewise-constant image from a noisy input image
(Sapiro, 2001). We chose experimentally the parameter
K = 8, and the final time T = 100.

Fig. 2. Resize operation, (A) original CT image; (B)

binary image after thresholding; (C) Binary image

after morphological operation (opening), the blue line

indicates the boundary of the region of interest; (D)

resized image.

Fig. 3. Non-linear diffusion filter, (A) resized CT

image; (B) filtered image, we can observed that now

the image is “piecewise smooth”.

In Fig. 3 we report a numerical experiment
concerning the non-linear diffusion step (here we
impose homogeneous Neumann boundary condition).

We observe that initial anisotropic smoothing
allows a rough initial segmentation. In fact, as
explained by Kawohl (2004), there is a connection
between the variational approach for segmentation due
to Mumford and Shah, and an anisotropic diffusion
approach leading to an evolution type equation by
Perona and Malik. Then, the anisotropic smoothing
reduces noise and provides a first segmentation.
Without this step the level set based algorithm
produces “jagged curves”. We implemented the
anisotropic smoothing filter by suitable convolution
operations and by using central finite difference
schemes in order to approximate the spatial gradient
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coupling with a classical forward Euler method. The

computational cost is proportional to N2 if N is the

number of involved pixel.

After the preprocessing step, we obtained for each

CT slice a resized and filtered image Ip. Now, we start a

segmentation step based on level set methods (Sethian,

2003).

CONTOUR EVOLUTION

In order to identify the boundary of the bladder (or

the region of the organ of interest) in each 2D slice,

and to perform image segmentation we consider a

curve evolution approach. In particular, we use a level

set based, or implicit active contour, approach which

is a PDE-based techniques (Osher and Sethian, 1988;

Sethian, 2003; Osher and Paragios, 2003). In level set

methods, a contour (or more generally a hypersurface)

of interest is embedded as the zero level set of a

level set function (LSF). Then the contour is moved

by suitable image driven forces to the boundaries of

the desired objects. In Fig. 4 we show an example of

curve evolution, the black line is the starting contour,

while the blue line is the final contour (the boundary

of the object). Other lines in figure other represent

intermediate stages of the contour evolution.

The level set method was introduced

(Osher and Sethian, 1988) to approximate the

propagating interfaces which occur in a wide variety

of settings (as physical entities, they include, for

example, burning flames, ocean waves, and material

boundaries). In the level set approach a “speed

function” for the movement of the zero level set

must be defined. Typically, this user defined velocity

combines a data term with a smoothing term, which

prevents the solution from fitting too closely to noise-

corrupted data. In our work, we proposed a new speed

function of front propagation suitable for our gray-

level based segmentation framework.

A closed curve Γ in R
2 is an initial position for

a front, the level set method takes the perspective of

viewing Γ as the zero level set of a function φ(x, t = 0),
from R

2 to R. For example, let φ(x, t) = 0) = ±d,

where d is the distance from x to Γ, and the plus

(minus) sign is chosen if the point x is outside (inside)

the initial curve Γ. Suppose now that the front moves

with a (normal) speed F , we can link the evolution

of this function φ to the propagation of the front

Γ(t) itself by a time-dependent initial value problem,

namely the following Hamilton-Jacobi equation,

dφ

dt
=

∂φ

∂ t
+F |∇φ | = 0 , x ∈ Γ(t) ,

Fig. 4. Example of contour evolution, the black line

represents the initial front; red and green lines are

some of the fronts at intermediate times; the blue line

is the final contour.

where the initial data at time t = 0 is given.
There are several advantages to this level set
framework: although φ(x, t) remains a function, the
zero level propagating surface φ = 0 may change
topology; a discrete grid can be used together with
finite differences to devise a numerical scheme to
approximate the solution; the intrinsic geometric
properties of the front are easily determined from the
level set function; finally, the formulation is unchanged
for propagating interfaces in multidimensional case.

Suppose we now restrict ourselves to the particular
case of a front propagating with a speed F that is
either always positive or always negative. We then
have a monotonically advancing front. In this case,
we can convert our level set formulation from a
time dependent PDE to a stationary one. In our
two-dimensional case, in which the interface is a
propagating curve, let T (x,y) be the time at which the
curve crosses the point (x,y). The surface T (x,y) then
satisfies the equation

F |∇T | = 1 , (1)

which simply says that the gradient of arrival time
surface is inversely proportional to the speed F of the
front. In our approach we introduce, as news, a velocity
F related to the image properties in order to have as
stationary zero level set the boundary of the organ of
interest. The following expression for F is considered

1

F2(x,y)
= α

∣

∣Ip(x,y)−µ
∣

∣

2
+β

∣

∣∇Ip(x,y)
∣

∣ ,

where Ip is the CT slice after the preprocessing step,
µ is the average gray level inside the region bounded
by the initial curve Γ, while α and β are two positive
parameters. Heuristically, the speed F gets smaller and
smaller near the edges of the organ. Moreover we
have a monotone advancing front. Eq. 1 is numerically
approximated by using a suitable entropy method. On
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a 2D grid with an uniform grid spacing of size h the

velocity Fi j is computed as

1

F2
i j

= max(D−x
i j T,0)2 +min(D+x

i j T,0)2

+max(D−y
i j T,0)2 +min(D+y

i j T,0)2 , (2)

where D±x
i j T = (Ti±1, j − Ti j)/h, D

±y
i j T = (Ti, j±1 −

Ti j)/h. Then, the scheme for the front propagation

follows the Fast Marching Level Set Method proposed

by Sethian (2003). The initial curve Γ is manually

traced, this is the only manual intervention in the

segmentation process. We point out that It would

be possible to have a fully automatic method by

computing the initial guess curve. We point out that

the fast-marching approach can be applied if the front

moves always either outward, F > 0, or inward, F < 0,

so that the evolving front never crosses the same point

more than once. The scheme for the curve evolution is

as follows (see Sethian, 2003).

1. Inizialization

- Set Ti j = ∞ for all grid points;

- set Ti j = 0 if the point (i, j) is on the initial

curve and mark it as done;

- set Ti, j = h/Fi, j for all points (i, j) in the band,

where band is the set of all 4−neighbors of the

points on the front.

2. Marching forward. While any point is left in band,

- choose the point z = (imin, jmin) in the band

with the lowest value of Ti, j;

- mark z as done and move its neighbors to band,

if they are not already in it or is done;

- recompute T for all the neighbors in band using

upwind finite difference method.

In Fig. 5 we report an example for a single

patient of bladder segmentation, for each plane

(slice) we perform the preprocessing step and

the level set method in order to extract the edge

of the bladder. From the numerical experiments

good values for the parameters are α = 1, β = 2.

Moreover, to stop the evolution of the front we

control the value of the speed and stop the algorithm

when it falls below the minimum tolerance of

0.3, this tolerance value was found experimentally.

Fig. 5. Example of bladder segmentation by using

different slice from CT data for a patient. In each

picture we show the 2D slice and the final contour

(green line) at the end of the fast marching algorithm

(the final time was determined experimentally).

The computational labor involved in the fast

marching step is proportional to N2 logN, with N

points in each grid direction (Sethian, 2003).

3D POSTPROCESSING

The last step is the 3D reconstruction of the organ

by stacking the collected planar segmented image.

First we compute a binary image from each slice

where we assign the value one if the pixel belongs

to the organ, zero otherwise. We consider binary

image because if we do this then apply morphological

operators may have algorithms faster and easier

implementation. Then we collect all the planar data

in order to obtain the finale 3D organ. The distance

between the various slices generally varies from 3 to

5 mm, for this reason to have a spatial resolution of

1 mm in the z direction we use local cubic interpolation

scheme. In Fig. 6 we have outlined the process of

reconstruction from 2D sections to 3D segmentation.

Because of not very high resolution of the initial data,

the stair-case effect occurred in the binary volume.

Since human organs mostly have smooth structure, it

was reasonable to use some smoothing filter. Then, to

smooth the 3D contour we apply a convolution with a

Gaussian kernel. At this point we have also completed

the post-processing and we have the final segmented

organ.
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Fig. 6. The reconstruction of three-dimensional

structure of the organ (here the bladder), at the each

slice we consider a binary image obtained after the

2D segmentation, then the whole organ is computed by

stacking the planar data.

NUMERICAL RESULTS AND

CONCLUSIONS

To evaluate our semi-automatic segmentation

algorithms we compared the computed volumes, Vcom,

to the ground truth, Vman, manually traced by experts

for bladder in 20 patients. This patient population

(66.7% of males) was randomly selected from clinical

records at Fondazione IRCCS Istituto Nazionale

dei Tumori among non-bladder pathologies, (mainly

prostate and rectal cancer 73.3%). Median age was 67

years with a 48–87 years range. The CT data were

in DICOM (Digital Imaging and Communications

in Medicine) format. Each CT scan involves from

10 to 20 slices, the distance between the various

slices varies from 3 to 5 mm, while the size of

each slices was of 512 pixels with which corresponds

a spatial resolution of 0.9375 × 0.9375 mm2. We

consider the following measures (here |V | means

the counting voxels measure of the volume V ):

Overlap O = 100
|Vcom∩Vman|

|Vman|

Sensitivity S = 100
|Vcom∩Vman|

|Vcom|

Symmetric Volume

Overlap

SVO = 100
|Vcom∩Vman|

1/2(|Vcom|+|Vman|)

Overlap Error OE = 1− |Vcom∩Vman|
|Vcom∪Vman|

Volume Difference VD = |Vcom|−|Vman|
|Vman|

Each of the previous measures is related to the

quality of the segmentation but suffers from some

drawbacks, for example overlap can not detect over-

segmentation errors while sensitivity can not consider

the under-segmentation errors. However, the set of the

volume measures can give an overall estimate of the

goodness of the proposed method. In Table 1 we report

the estimates of the volume measures for all patients.

From the Table appears the good performance of our

segmentation algorithm.

Table 1. Segmentation results by using overlap (O),

sensitivity (S), symmetric volume overlap (SVO),

overlap error (OE), and volume difference (VD) for 20

patients (pat). In the last line we have computed the

mean values (Av).

Pat. O (%) S (%) SVO (%) OE (%) VD (%)

1 87.7 86.7 87.2 12.6 1.1

2 96.5 85.5 90.5 17.3 12.5

3 97.3 80.6 88.2 11.1 20.7

4 92.7 87.2 89.8 18.4 6.3

5 95.4 89.7 94.8 10.9 2.3

6 96.3 88.9 94.0 10.5 1.9

7 81.3 75.6 78.3 25.5 7.5

8 91.4 92.4 91.9 14.9 -1.1

9 85.2 78.3 81.6 21.0 8.7

10 92.9 89.9 91.5 15.7 3.3

11 93.1 90.2 92.0 10.4 4.7

12 95.5 87.0 93.8 9.9 2.1

13 95.5 84.7 89.8 18.4 12.7

14 95.1 79.2 86.5 13.8 20.1

15 93.4 86.2 90.1 12.3 3.3

16 90.3 80.8 85.3 15.6 11.7

17 94.6 79.6 86.2 14.2 19.5

18 89.9 87.8 88.0 11.2 7.9

19 93.6 85.7 89.5 19.0 9.2

20 92.8 84.3 90.1 15.6 8.9

Av. 92.5 85.0 89.0 14.9 8.2
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Fig. 7. The comparison between the traced manual

volume (blue volume) and the volume computed by

the semi-automatic method (green volume). In the four

pictures it shows the same numerical experiment from

different points of view.

For a graphical comparison between manual

segmentation and our semi-automatic segmentation we

show in Fig. 7 a numerical example where the two

volume are overlapped.

In order to understand where the biggest errors

may occur we look to the 2D segmentation. In fact,

there is some difference if the slice is at the top,

in the middle or at the bottom of the organs. For

a quantitative comparison we consider some metric

similar to the one used in clustering algorithms. Let

Ccom the close contour computed by the level set

approach, and Cman the close contour manually traced

by medial experts. We define the distance dC(x,Γ) =
minx′∈Γ d(x,x′) between a point x and the closed curve
Γ, here d(x,x′) is the usual Euclidean distance in R

2.

Then we consider the average distance dA(Ccom,Cman),

dA(Ccom,Cman) =

1

2

(

max
x∈Ccom

dC(x,Cman)+ min
x∈Ccom

dC(x,Cman)

)

, (3)

the maximum distance dM(Ccom,Cman),

dM(Ccom,Cman) = max
x∈Ccom

dC(x,Cman) ,

and the analogous minimum distance dM(Ccom,Cman).
In Table 2 we report the numerical comparison by

using different metric.

Table 2. Evaluation of the quality of the 2D

segmentation with respect to the subregion of the

bladder, we consider different metric (the unit is the

mm).

Region mean of dmin mean of dM dA

bottom 0.66 11.56 6.17

middle 0.53 6.52 3.59

top 0.88 8.53 4.81

whole organ 0.63 8.74 4.73

Fig. 8. Some example of difference between manual

and semi-automatic contour, the blue line is the

manual contour while the green line is the computed

contour. (A) a slice in the first 20% of slices (we have

an over-segmented case); (B) a slice in the last 20% of

slices (we have an under-segmented case); (C), (D) the

comparison in the case of a value of the distance close

to the mean value of the all slices.

With reference to the same table, bottommeans the

first 20% of slices, top the last 20% of the slices, and

middle the other slices. From numerical experiments

it is evident that the worst cases are among the first

and last slices. In Fig. 8 we report some example of

over(under)-segmentation which typically arises in the

first and, respectively, the last slices. In the same figure

a case with a good agreement between computed and

manual traced contour is reported.

A semi-automatic segmentation method for 3D

volume extraction was introduced and some numerical

experiments for the identification of bladder volume

were presented. Our method seems works well but
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several improvements are possible, among others

– a completely automatic version could be

implemented by generating the initial contour in

the 2D segmentation without manual tracing (for

example by some under-segmentation estimates).

– Some a priori geometrical knowledge regarding

the organ of interest may be introduced in order to

reduce the error in the subregions (for the bladder

at the top and at the bottom). this is possible but it

would make the method less easily generalizable.

– The smoothing of the final 3D volume could

be improved by considering, for example, 3D

subdivision schemes.

We are currently testing the method on different organs

also to check the robustness of EIH for risk evaluation

of radiotherapy planning. In particular, we are carrying

out some numerical test for prostate.
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