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1 INTRODUCTION  

 

This study built upon our past work in the field of metagenomics and metabolomics and significantly 

extended our analytical approaches developed for the Planetary Habitat simulation project (PlanHab) 

(Debevec et al., 2014; Sket et al., 2017a; Sket et al., 2017b; Sket et al., 2018), which was used to 

study the short-term and reversible effects of human host physical inactivity. The effects of short-

term inactivity resulted in maladjustments in physiology, intestinal microbiota, and metabolomic 

profiles giving rise to increased inflammation, depression, and insulin resistance, resembling 

metabolic syndrome and type 2 diabetes symptoms. In contrast, the effects of long-term physical 

inactivity, the lack of oxygenation (e.g., cardiovascular fitness) and signals from large body muscles 

(e.g., lower limbs) are not well understood despite their direct and widespread biomedical relevance 

for people delivered preterm and/or genetic disorders, such as Spinal Muscle Atrophy (SMA), 

obesity, cardiovascular deconditioning, chronic obstructive pulmonary disease, and many other 

noncommunicable diseases. 

 

To extend our understanding in the field of human physiology in relation to human gut microbiome, 

a diverse range of samples was collected within the following three major projects: i) the 

physiological responses at adulthood as a result of preterm delivery (PreTerm project; ARRS J3-

7536; EU project https://recap-preterm.eu/); ii) the Spinal Muscular Atrophy (project at the University 

Clinical Centre Ljubljana) as an extreme case of physical inactivity, and iii) cross-adaptation between 

heat and hypoxia: a novel strategy for performance and work-ability enhancement in various 

environments (X-Adapt; research project ARRS J5-9350). The SMA and PreTerm projects dealt with 

the lifelong exposure to systemic effects of reduced physical activity that can be summarized as 

following: i) intermittent episodes of systemic hypoxia at rest/sleep (PreTerm), and ii) continuous 

systemic hypoxia due to reduced physical activity of the host and the alleviation of hypoxia after 

therapy. The X-Adapt project dealt with the influence of a standard 10-day training regime on the 

physiology of healthy trained and untrained individuals. The biochemical characterization of bodily 

fluids collected within the three projects was used to explore the biochemical makeup (metabolites) 

and their interactions (metabolic pathways) next to the differences between studied groups. The 

PreTerm and X-Adapt projects contained healthy baseline data collection for the SMA project to 

determine the different metabolic pathways between the healthy and affected groups, as well as before 

and after SMA genetic treatment. Additionally, samples from healthy individuals and their children 

(father and sons, mothers and daughters) were collected to match those of SMA group and in addition 

to provide a baseline healthy cohort for metabolomic database. As a result, a national Slovenian urine 

nuclear magnetic resonance (NMR) database was established with the intent to enable distinction 

between various “diseased” groups of participant form “healthy” group of participants based on urine 

metabolites in the future. The extended inclusion of novel samples is planned.    
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In addition, little is known about the existence of differences in the human-gut microbiome 

relationship due to the lifelong exposure to hypoxic episodes in the preterm (compared to full-term 

born adolescents (The PreTerm project)) that could affect the functionalities and metabolism of 

microbiomes within such hosts and be linked to the various physiological differences observed 

globally between the two groups in previous research (Martin et al., 2018). 

 

In short, a high number of wet-lab measurements was conducted on a large number of parameters, 

utilizing makeup of three major projects in the field of biomedical science, utilizing metagenomics, 

metabolomics, bioinformatics, and data integration approaches. The data generated within each 

‘omics technology was analysed and finally integrated to gain better understanding of humans as 

(holobiont) systems. 

 

1.1 HUMAN SYSTEMS BIOLOGY AND HEALTH 

 

Systems medicine or systems biology is a relatively new term (even as of 2022) that combines the 

application of systems biology concepts, methods, and analytical tools to scientific research and 

medical practice. The main goal of systems medicine is to integrate data from different levels of 

research into biomedical models that can predict the behaviour of a system, enhance our 

understanding of it, and ultimately be used in the prevention, cure, or treatment of disease. These 

approaches are utilized to study the daunting complexity of chronic (noncommunicable) and acute 

diseases, be they in humans, animals, or plants. Noncommunicable diseases were shown to develop 

slowly over prolonged periods of time (years to decades; Alzheimer’s disease, type 2 diabetes, 

metabolic syndrome, insulin resistance, psychological disorders, etc.). Multiple factors were shown 

to contribute to the development of particular disease types, making them even more complex to study 

and understand. These factors range from host gene variants, epigenetic regulation of expression, to 

the microbiome and its metabolic activities, all in response to detrimental environmental factors (e.g., 

sedentary lifestyle, diet, stress, hydration, circadian rhythm, etc.) (Craig, 2008; Bousquet et al., 2011; 

Mizeranschi et al., 2016)). The term “system” has thus far been used depending on the scale of the 

study domain to describe behaviour at selected chemical compounds at the molecular level, extending 

to its reaction (an enzyme bound to a ligand) or a microbe or complex microbiome at the level of a 

single human gut or the population globally. Consequently, a system can be observed at different time 

and size scales (a few milliseconds and a few micrometres compared to the entire human body and 

70 years) (Noble, 2002; Hunter and Nielsen, 2005). At the same time, the surrounding short- and 

long-term environment with its physical and chemical parameters exerts significant multivariate 

effects on the entire system of observation (diet, level of activity, use of medications, society, etc.). 

From this point of view, the microbiome is only one subsystem of the many present in human body, 

which interacts in many directions over various ‘omic layers, thus generating a complex network of 

interfering signals acting differently over time and space (Figure 1, (Stres and Kronegger, 2019)). 

The first step in the systems medicine approach is to identify the key structuring variables important 

for systems functioning out of all that are measured in relation to the nature of the disease. In the 
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design of ‘omics studies, each layer of ‘omics data provides a list of differences associated with the 

disease state relative to previous time point or healthy state. Analysing a single type of ‘omics data 

in the absence of other datasets has the potential to generate oversimplified conclusions; therefore, 

researchers should integrate various types of ‘omics data from large cohorts (Hasin et al., 2017). 

 

 
 

 
Figure 1:   Interactions between biological systems (Kronegger and Stres, 2019, Hasin et al., 2017). 

Bidirectional interaction between different biological systems (e.g. Microbiome and human), between ‘omics layers 

((meta)genomics, transcriptomics, proteomics, metabolomics) and within individual ‘omic layers. 

 

Slika 1:   Interakcija med biološkimi sistemi (Kronegger in Stres, 2019; Hasin in sod., 2017). 

Obojestranska interakcija med različnimi sistemi (npr. Mikrobiomom in človekom), med ‘omskimi nivoji 

((meta)genomiko, transkriptomiko, proteomiko, metabolomiko) in znotraj posameznih ‘omskih nivojev. 

 

The rise of ‘omics technologies has enabled researchers to measure thousands of data points; this 

ability is now at the heart of systems biology and medicine. These high throughput technologies 

(genomics, transcriptomics, metabolomics, proteomics) enabled the discovery of complex sets of 

biomarkers describing healthy and disease states that can be objectively measured and evaluated. 

These variables can be used as indicators of a biological process (healthy versus diseased, active 

versus inactive, pre-treatment versus post-treatment) in the data-driven top-down research coupled to 

multivariate statistics and machine learning/artificial intelligence. Using high-throughput methods for 

analysis that capture the properties of systemic homeostasis and dysregulation, we can examine a 

large number of ‘omic markers (also called “biochemical entities”) simultaneously (Biomarkers 

working group, 2001; Holmes et al., 2008b; Fanos, 2016; Tebani et al., 2016; Apweiler et al., 2018; 

Gallo Cantafio et al., 2018). In this work, metabolomics and microbial metagenomics were used as 

the ‘omics methods of choice. 
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1.1.1 Metabolomics 

 

Metabolites are small molecules (< 1 kDa) in body fluids such as urine and serum. All metabolites 

detected in samples are part of the metabolome, which a quantitative description of low molecular 

weight molecules in a biological sample above the detection threshold of analytical approach. The 

metabolome is controlled partially by the host genome (primary metabolome), but it also depends on 

the microbiome metabolic activity (co-metabolome) (Holmes et al., 2008a; Vignoli et al., 2019) in 

response to changing local and outer environments. Using different spectroscopy methods (nuclear 

magnetic resonance, mass spectrometry (MS)), metabolic profiles can be analysed at a precise time 

point. This provides a top-down view of the biochemical processes that occur due to physiological 

status or environmental exposure (Barr, 2018). The genome is (as currently accepted) unchanged 

throughout the life span of an individual compared to the high responsiveness and fluidity of 

metabolome. The latter is heavily influenced by environmental factors such as gender, age, diet, 

physical activity, health status, and microbiome, to name the most relevant. Metabolome-wide 

association studies are improving the understanding of the relationship between metabolic profiles 

and disease risk factors in the general population (Holmes et al., 2008b; Elliott et al., 2015; Vignoli 

et al., 2019). Metabolomics complements functional metagenomics by mapping the complex 

metabolic interactions between the host and microbiota via metabolic profiles, compound identity 

and quantity, characterization of unknown small molecules produced by microbes, and defining the 

biochemical pathways of metabolites and biochemical reactions (Peisl et al., 2018). 

 

In the previous two decades, NMR has become one of the most important methods for measuring 

metabolites in different samples (liquid or solid) (Emwas et al., 2019; Wishart, 2019). It is based on 

the quantum mechanical property (spin) of each nucleus in the molecule. When a nucleus is excited 

in a magnetic field, a frequency domain spectrum with a peak corresponding to the frequency of the 

nucleus can be scanned. The frequency, or chemical shift, is reported in parts per million (ppm), and 

the amplitude of the peak corresponds to the number of nuclei present in the sample (Figure 2). Both 

can be used to determine the concentration of a molecule in the sample (Maguire, 2014; Keun and 

Athersuch, 2022). 1H-NMR spectroscopy is used in the majority of NMR based studies. Protons (1H) 

are present in every metabolite and exhibit the greatest NMR signal sensitivity (Emwas et al., 2019). 

NMR spectra are usually recorded in water and therefore require solvent suppression (Zheng and 

Price, 2010; Giraudeau et al., 2015). Compared to MS, the NMR method is robust and reproducible, 

requires minimal sample preparation, sample measurement is rapid and robust, hence highly 

replicable; at the same time, it is non-destructive, no chemical derivatization is required, and all types 

of metabolites can be measured simultaneously and automatically (Table 1). However, the analytical 

sensitivity is low (10 to 100 times lower than MS), the spectra are complex and computationally 

intensive to deconvolute, and the NMR spectrometer requires a significant amount of physical space 

compared to MS. NMR detects molecules at concentrations greater than 1 µM, while MS can detect 

molecules at concentrations greater than 10 nM (Emwas et al., 2019; Wishart, 2019). 
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Figure 2:   Representative spectra obtained in the X-Adapt study. 

 

Slika 2:   Spektri pridobljeni v okviru projekta X-Adapt.  

 

Table 1:   Representation of differences between nuclear magnetic resonance (NMR) and mass spectrometry (MS) 

(Wishart, 2019). 

 

Preglednica 1:   Primerjava razlik med jedrsko magnetno resonanco (NMR) in masno spektrometrijo (MS) (Wishart, 

2019). 
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Thus far, 1H-NMR has been used to investigate the modulation of metabolites on cellular stress 

(Lindon et al., 2003), breast cancer markers (Bro et al., 2015), acute pancreatitis (Dumas et al., 2014), 

the influence of the metabolome on health and disease (Marin et al., 2015), biomarkers for Crohn’s 

disease and ulcerative colitis (Bjerrum et al., 2015), obesity (Zhang et al., 2015), and coronary heart 

disease and stroke (Holmes et al., 2008a; Murovec et al., 2018; Sket et al., 2018; Vignoli et al., 2019). 

However, it is very difficult to distinguish between microbial and human metabolites. The metabolism 

of all parts of the holobiont (human cells and microbial cells) is highly dynamic and variable. For this 

reason, some authors have used the term “dark matter” of metabolomics, which (in short) means that 

some metabolites have already been described, but orders of magnitude higher numbers of other 

metabolites remain unknown. With each study, the data increase which will aid in illuminating the 

metabolomic dark matter. Modern statistical approaches and data integration combined with ongoing 

‘omics research and methods development will accelerate the reduction of dark matter and reveal new 

insights, which will lead to the use of metabolomics methods in general diagnostics (da Silva et al., 

2015; Peisl et al., 2018). 

 

1.1.2 Microbial metagenomics 

 

Classical microbiological approaches such as cultivation methods are notoriously incomplete, 

tedious, irreproducible, and ineffective as only 1% of microorganisms (out of 1500 species) can be 

easily cultured. For the study of the entire gut microbiome system (microbiome, host, and 

environment), top-down approaches have taken the leap forward with the introduction of ‘omics 

technologies (Stres and Kronegger, 2019; Lin et al., 2021). For decades, amplicon sequencing was 

the most commonly used method in microbiome research. The most commonly used gold standard 

for amplicon sequencing was the sequencing of the gene for 16S rRNA. Variable regions of 16S 

rRNA are used to determine taxonomic profiles of the microbiota. The major weakness of this method 

is that we can only determine which taxa are present in the sample, and this can be effectively 

accomplished only down to the genus level, while species or strain resolution cannot be achieved. In 

addition, the functional potential of such a community remains obscured as only predictions of 

functional genes, metabolic pathways involved in the community of interest can be accomplished 

utilizing different tools such as Picrust2 tool (Langille et al., 2013b; D’Amore et al., 2016; Sinha et 

al., 2017; Fricker et al., 2019; Douglas et al., 2020). Recently, pipelines for automated analysis of 

amplicon sequences have been developed for more standardized and efficient analysis on high-

performance computing clusters (HPC) (Murovec et al., 2020). The amplicon-sequencing approach 

is fast, simple, and requires low-cost sample preparation and analysis. However, it is not possible to 

distinguish living, dead or active microbes. The amplification method can lead to biases (selection of 

primers for PCR reaction), requires negative control, and functional information is limited (Knight et 

al., 2018). 
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Metagenomics, in contrast, uses whole genome shotgun sequencing to fragment and sequence the 

entire DNA pool of the microbiome in the sample, rather than just one gene (e.g., gene for 16S rRNA) 

as in amplicon sequencing. The data, quality control, and the information derived from this method 

are orders of magnitude more comprehensive and enable the recovery of information about phages, 

viruses, bacteria, archaea, fungi, protozoa, and human DNA. With this approach there is no need for 

gene prediction based on 16S rRNA as functional genes are determined by comparison to complex 

gene-family databases with concomitant contamination recognition and removal. With the 

development of novel quality control tools (KneadData), microbiome taxonomy can be deciphered at 

the species level with MetaPhlAn3 next to the functional genes recovered from the sample 

(HUMAnN3) (Brown et al., 2013; Nayfach and Pollard, 2016; Garud et al., 2019; Beghini et al., 

2021). Due to the tens of thousands up to millions of variables obtained, the analysis of such 

datamatrices becomes computationally intensive and requires the utilization of HPC clusters. The 

metagenomics approach also allows us to use the latest method in microbial genomics: de novo 

metagenome assembly. Metagenomics can reveal microbial taxonomic and phylogenetic identity, 

require no PCR amplification, and enable identification of previously known and new species 

(MAGs) next to new gene families. However, the metagenomics wet-lab and HPC operations are 

currently still very costly (Knight et al., 2018). 

 

Microbiome analyses are currently focusing on the use of metagenomics due to its wealth of data and 

reproducible analyses. The microbiome taxonomic description includes the representatives of the 

community (microbiota - bacteria, archaea, protists, fungi), while also providing the information on 

so-called “theatre of activity” (Figure 3). Therefore, the information provided includes not only 

taxonomic descriptions but also molecules produced by these taxonomic units (Whipps et al., 1988; 

Berg et al., 2020). This approach is becoming increasingly important as the estimates of the number 

of unique microbial genes per single unique human gene are becoming inherently higher over time, 

ranging from 50 (Qin et al., 2010) to more than 500 (as of 2022). For this reason, a holistic approach 

to the study of this system is required. Taking into account the considerable complexity, it becomes 

increasingly more evident that the disruption of the human microbiome and its activities is 

significantly associated to the development of various diseases, which in turn depend on the 

environment and lifestyle of the host (e.g., human). Various environmental factors can affect the gut 

microbiota: diet, medications, cultural habits, physical activity, transit time, gender, local 

environment, etc., to variable extent over time and space. (Schmidt et al., 2018; Deutsch and Stres, 

2021). 
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Figure 3:   Differences between “microbiota” and “microbiome” terms (Berg et al., 2020). 

 

Slika 3:   Razlike med izrazi “mikrobiota” in “mikrobiom” (Berg in sod., 2020). 

 

Metagenomics has become a powerful tool for understanding host-microbiome relationships and 

enables linking biomarkers (genera, species, functional genes) to noncommunicable diseases such as 

inflammatory bowel disease (Frank et al., 2007), liver cirrhosis (Qin et al., 2014), diabetes (Giongo 

et al., 2011; Qin et al., 2012), cardiovascular (Wang et al., 2011b) and Parkinson’s disease 

(Scheperjans et al., 2015), colorectal cancer (Kostic et al., 2012), rheumatoid arthritis (Scher et al., 

2013),  obesity, metabolic syndrome and others. Therefore, metagenomics has become the currently 

most important approach to study the genetic potential of microbial populations in the intestinal tract. 

Figure 4 shows the importance of microbiome influence on our future health span (Wilkinson et al., 

2021). 
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Figure 4:   Increase importance of microbiome research (Wilkinson et al., 2021).  

Research of microbiome is becoming more and more important from the angle of improved wellness, timely interventions 

and search for biomarkers. 

 

Slika 4:   Naraščajoča pomembnost raziskovanja microbiome (Wilkinson et al., 2021). 

Raziskovanje mikrobioma postaja vedno bolj pomembno iz perspektive izboljšanja naših življenj, medicinskih intervencij 

in iskanja biomarkerjev.  

1.1.3 Analysis of data 

 

Both methods (metagenomics and metabolomics) require various steps of quality control and data 

processing from the sequences or spectra obtained to the final conclusions. After quality checking the 

sequences with programmes such as FastQC, fastp (Chen et al., 2018) or KneadData, the next step is 

to obtain actionable sequence data. We can determine which taxa are present in the sample 

(MetaPhlAn), identify strains (StrainPhlAn), and determine which functional genes are present in the 

sample (HUMAaN3) or even predict metabolites (MelonnPan) (Segata et al., 2012; Beghini et al., 

2021; Mallick et al., 2019). To facilitate the use of such pipelines, workflows were developed by 

various groups, such as bioBakery or MetaBakery (in preparation by our group). These workflows 

simplify the use of programs for nature scientists, as they do not need to be installed separately and 

are already prepared as pipelines that work on HPC cluster as a Singularity images (Kurtzer et al., 

2017) or Docker containers. All of these tools generate various matrices for visualisations, statistics, 

modelling, and machine-learning approaches (Costea et al., 2017; Quince et al., 2017; Knight et al., 

2018; Moreno-Indias et al., 2021). These pipelines result in matrices of variables describing the 

samples. 

 

As a second option, de novo metagenome assembly represents a second option for metagenomics 

data analysis and results in the assembly of novel draft genomes that may represent new and not yet 

described species (Yang et al., 2021). Slightly different steps are required. After quality control, the 

read sequences have to be assembled. There are different assemblers, including metaSPAdes (Nurk 

et al., 2017), megahit (Li et al., 2015) or IDBA-UD (Peng et al., 2012). Assembled sequences are 

binned in the next steps using binning tools, such as BinSanity (Graham et al., 2017), CONCOCT 

(Alneberg et al., 2014), MetaBat, MaxBin, and DAStool (Wu et al., 2016; Sieber et al., 2018). 
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Assembled metagenomes can be scored for quality (% completeness and % contamination) using 

CheckM (Parks et al., 2015) according to the MIMAG standard (> 90% complete and < 5% 

contamination) (Bowers et al., 2017). All MAGs obtained can be used for annotation with Prokka 

(Seemann, 2014) in GeneBank format or analysed with Roary (Page et al., 2015) as pan and core 

genomes. ezTree (Wu, 2018) can be used to extract protein-coding single-copy orthologous marker 

genes with functional annotation and to build maximum likelihood trees from amino acid sequences. 

High-throughput analysis of average nucleotide identity (ANI) of MAGs is used in FastANI (Jain et 

al., 2018). All the above programs are available as a single pipeline for MAGs development in MAGO 

and prepared for HPC computing as a Singularity image or Docker container (Murovec et al., 2020). 

The JSpeciesWS taxonomic threshold web service measures the probability of whether genomes 

belong to the same species or not based on their complete or tentative nucleotide sequence (Richter 

et al., 2016). For more in-depth analyses, the recently developed Genome Taxonomy Database can 

be utilized. 

 

Metabolome profiling is usually performed using either targeted or untargeted methods. Targeted 

metabolomics studies (metabolic profiling) focus on the accurate identification and quantification of 

a defined group of metabolites in biological samples. Untargeted studies (metabolic fingerprinting) 

focus on measuring and comparing as many signals as possible in a sample set, followed by the 

assignment of these signals to metabolites IDs using metabolomics databases. NMR measurements 

generate spectra that must be processed (Bingol, 2018; Klein, 2021). The untargeted approach does 

not require prior knowledge of the metabolites in the sample, so its analysis can be more complex 

and difficult (Klein, 2021). NMR spectra can be referenced with an internal chemical shift standard, 

such as DSS or TSP, which are the most commonly used standards in the NMR community (Emwas, 

2015; Dona et al., 2016; Emwas et al., 2016; Emwas et al., 2018). In the pre-processing step, spectra 

must be phased and baseline corrected. With phasing, the absorptive character and symmetry of all 

NMR peaks are maximized (Wishart, 2008). Baseline correction is a processing step that removes all 

artefacts caused by electronic distortion or incomplete digital sampling, ultimately resulting in a 

completely flat part of the spectra in signal-free regions (Emwas et al., 2018). Several elements of the 

spectra need to be removed as they represent artefacts originating from protons in water (4.5-4.9 ppm) 

and urea (5.5-6.1 ppm). Software for targeted approaches, such as Chenomx NMR Suite, Amix, and 

AssureNMR, match the obtained spectra with reference spectra (in Human Metabolome Database 

(HMDB) (Wishart et al., 2007a; Wishart et al., 2013; Wishart et al., 2018; Wishart et al., 2022)) to 

calculate the concentrations of identified metabolites in the sample (Klein, 2021). Untargeted 

approaches can be divided into two groups of spectra processing. The peak-picking approach requires 

clearly visible peaks and generates a feature list for the spectral positions of the successfully detected 

peaks. This approach is not able to identify low intensity signals or signals with distorted line shapes. 

AlpsNMR (Madrid-Gambin et al., 2020), rDolphin (Cañueto et al., 2018), or speaq 2 (Beirnaert et 

al., 2018) are tools that use the peak-picking approach. The other approach is spectral binning, which 

can be used to identify signals that are missed by the peak-picking approach. The data from binning 

contain a large number of features from spectral regions. However, they also contain signals from 

spectral noise, which can reduce the statistical power of the data analysis in the next step (Klein, 
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2021). Data from untargeted approaches often contain negative values. These negative values must 

be replaced by an affine transformation of the negative values, which is implemented in the R package 

mcrbin (Klein, 2021). The resulting bins or matrices of concentrations and metabolites are processed 

for statistical analysis (Ebbels et al., 2013; Barnes et al., 2016). 

 

Metabolomics and metagenomics generate different data matrices with a large number of variables 

(taxa, functional genes, enzymatic reactions, metabolic pathways, metabolites) that are variably 

associated with different additional datamatrices describing the environmental factors, such as diet or 

patient metadata (health status, body mass index (BMI), age, etc.). These data matrices require more 

modern statistical approaches that use multivariate statistics (Figure 5). The high dimensionality of 

‘omics data can range from 300+ metabolites in NMR metabolomics to several thousand and millions 

of variables from microbiomes (taxa, functional genes, enzymatic reactions, metabolic pathways, 

predicted metabolites) and require data reduction methods (Argmann et al., 2016; Barnes et al., 2016) 

and nonparametric statistical methods (NPMANOVA) (Legendre and Legendre, 2012; Anderson and 

Walsh, 2013). Normalization must be used to remove variation between samples and make them 

comparable to each other (Emwas et al., 2018). To find the best normalization approach, the web tool 

NOREVA was developed to compare 20 different normalization methods (Yang et al., 2020). Scaling 

and transformation should also be applied to reduce the stronger influence of analysing features that 

are present in larger quantities compared to others, which means that this approach helps to distribute 

the data more normally (Ebbels et al., 2013; Emwas et al., 2018). There are two different approaches 

to data analysis. First, the unsupervised methods that do not require prior knowledge, such as principal 

component analysis (PCA) or hierarchical cluster analysis (HCA), utilize loadings plot created within 

PCA analysis to see which feature discriminates target groups of interest (Barnes et al., 2016). 

Second, the supervised methods assume that a known structure of patterns exists and use rules to 

predict new data. Supervised methods include partial least squares regression discriminant analysis 

(PLSDA) (Wold et al., 2001; Trygg and Wold, 2002), regression, and classification. The Variable 

Importance in Projection (VIP) score can be used to see which feature contributed the most to 

discrimination (Barnes et al., 2016). Supervised methods are very powerful and require validation 

methods to confirm the true relationship between different groups (Ebbels et al., 2011). Unsupervised 

methods may miss an interesting correlation, while supervised methods are more likely to produce 

false positives (Maguire, 2014). Web servers were developed to facilitate the use of these methods, 

such as MicrobiomeAnalyst (Dhariwal et al., 2017; Chong et al., 2020), MetaboAnalyst (Chong et 

al., 2018; Chong et al., 2019; Pang et al., 2021) or OmicsAnalyst (Zhou et al., 2021). 
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Figure 5:   Representation of data analysis in multi-omics research (Tebani et al., 2016). 

 

Slika 5:   Prikaz analize podatkov pridobljenih z multi-omskimi metodami (Tebani in sod., 2016). 

 

Multivariate statistical methods provide results whose feature can successfully distinguish between 

different groups. The next step in modern data science is the machine learning (ML) approach, which 

creates models that can be used in the future to diagnose, treat, and predict the health status of 

individuals. ML methods rely on algorithms that describe the relationship between variables (Sidey-

Gibbons and Sidey-Gibbons, 2019). ML models, such as Support Vector Machines, K Nearest 

Neighbours, Naïve Bayes, Random Forest, and others, can be used for this purpose (Cristianini and 

Shawe-Taylor, 2000; Shen et al., 2003; Susnow and Dixon, 2003; Bender et al., 2007; Deo, 2015; 

Ekins et al., 2019). There is no clear boundary to distinguish statistical from ML methods. In short, 

the main goal of the statistical approach is to draw conclusions and inferences about populations 

based on measured data. The primary goal of ML methods, in contrast, is to make predictions. The 

main steps for ML are (i) importing and preparing the data set, (ii) training the ML model, (iii) testing 

the ML model (validating the model), (iv) evaluating the sensitivity, specificity, and accuracy of the 

model, (v) plotting the area under the curve and the receiver operating characteristics curve, and (vi) 

applying new data to the trained model (Sidey-Gibbons and Sidey-Gibbons, 2019). Regularization 

techniques must be used to ensure the correctness of the model. The regularization or penalty 
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parameter controls the complexity of the model (controls the number of features included in the 

prediction). Each model must be subjected to cross-validation, which means that the data must be 

split into a training set (for training the model) and a validation set (for validating the model). Model 

validation compares the predictive performance of the selected model if its performance from training 

is similar (Teschendorff, 2019). In recent years, AutoML platforms have been created for building 

ML models without human intervention JADBIO (Tsamardinos et al., 2020; Tsamardinos et al., 

2022), AutoWEKA (Thornton et al., 2013; Kotthoff et al., 2017), AutoSklearn (Feurer et al., 2021), 

GoogleAutoML, RapidMiner) (Mustafa and Rahimi Azghadi, 2021). AutoML has already been 

applied in various fields of human healthcare, such as diabetes diagnosis, Alzheimer’s disease, 

electronic medical record analysis, and medical imaging (Borkowski et al., 2019; Karaglani et al., 

2020; Tsamardinos et al., 2020; Waring et al., 2020; Mustafa and Rahimi Azghadi, 2021). AutoML 

automates the main processes of ML, from data preparation to feature extraction and selection, 

algorithm selection, hyperparameter optimization and evaluation (Feurer et al., 2015; Kotthoff et al., 

2017; Hutter et al., 2019; Mustafa and Rahimi Azghadi, 2021). However, experienced data scientists 

are still required to professionally evaluate the results obtained with AutoML (Mustafa and Rahimi 

Azghadi, 2021). 

 

For proper interpretation of the obtained results, the right data integration process should be used. 

Identifying a combination of distinguishing characteristics satisfies biological assumptions that 

cannot be satisfied by univariate methods. Therefore, the combination of different statistical methods 

(univariate, multivariate, machine learning) provides the key to answer complex biological questions. 

The mixOmics-R package (Rohart et al., 2017; Singh et al., 2019) is dedicated to the multivariate 

analysis of biological datasets with a particular focus on data exploration, dimensionality reduction 

and visualisation, thus providing a systems biology approach, a wide range of methods that 

statistically integrate multiple datasets simultaneously to explore relationships between 

heterogeneous ‘omics datasets to identify molecular signatures. mixOmics supports the inclusion of 

different types of biological data and their analysis beyond the scope of ‘omics, as long as they are 

expressed as continuous values.  

 

The other important issue should also be discussed. Batch effects are an important part of the natural 

sciences. Different processing, different samples can lead to spurious findings and obscure the true 

signals due to differences in experiments and methods. Biological studies depend on many different 

factors. This can lead to confounding factors that are unavoidable and come from biological, 

technical, and computational sources (Ma et al., 2019; Wang and Lê Cao, 2020). Batch effects are an 

obstacle to comparing the results of different studies. Traditional meta-analysis techniques for 

combining p-values from independent studies, such as Fisher’s method, are effective but statistically 

conservative. If batch effects can be corrected, statistical tests can be performed on data pooled across 

studies, increasing the sensitivity for detecting differences between treatment groups. Removing or 

accounting for batch effects requires computational and analytical multivariate methods (Wang et al., 

2019), such as ConQuR (Ling et al., 2021) or ComBat (Gibbons et al., 2018). Most of the above-

mentioned methods were use in different projects of this work (Figure 6).  
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Figure 6:   Data analysis methods use in current work. 

 

Slika 6:   Metode analize podatkov zajete v tem delu.  
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1.2 INACTIVITY 

 

Physical inactivity associated with the modern sedentary lifestyle (Figure 7) is becoming a global 

problem and is ranked as the fourth largest behavioural risk for mortality worldwide (Kohl et al., 

2012; Kelly et al., 2020a). Every adult should engage in at least 75 minutes of vigorous physical 

activity per week or 150 minutes of moderate physical activity per week (Sallis et al., 2016), engage 

in muscle training twice per week, and try to spend as little time as possible in a sedentary position 

(Kelly et al., 2020a). Regular physical activity reduces the risk of obesity, some cancers, diabetes, 

coronary heart disease, stroke, dementia, etc. (Booth et al., 2012). Several observational, short-term 

and long-term intervention studies have used different metabolomics methods to monitor changes in 

physiological levels due to inactivity as they change following different exercise regimes (Kelly et 

al., 2020a). Varying levels of physical activity are associated with quantifiable changes in the 

metabolic profile of individuals. Possible changes may be observed in metabolism of fatty acid, 

cholesterol and carnitine, lipolysis, the tricarboxylic acid (TCA) cycle, glycolysis, and insulin 

sensitivity (Kelly et al., 2020a). Metabolic syndrome has a number of risk factors associated with the 

development of type 2 diabetes mellitus and atherosclerotic cardiovascular disease. Biogenic amines, 

such as trimethylamine N-oxide (TMAO), choline and L-carnitine (all found in red meat), and 

branched-chain amino acids may increase the likelihood of metabolic syndrome. In contrast, histidine 

and lysine correlate with a lower likelihood of metabolic syndrome. Moreover, there is a plethora of 

molecules, and more research is needed to understand their role in the development of metabolic 

syndrome (Lent-Schochet et al., 2019). Inactivity also causes hypoxic conditions leading to redox 

imbalance, which may also be observed on metabolic levels. Differentially expressed levels of 

creatine, hypoxantine, acetylcarnitine, and taurine were reported, due to hypoxic conditions (Crass 

and Lombardini, 1977; Franconi et al., 1985; Malcangio et al., 1989; Aureli et al., 1994; Michalk et 

al., 1997; Amano et al., 2003; Chen et al., 2009; Scafidi et al., 2010; Powers et al., 2011; Chen et al., 

2013; Turner et al., 2015; Scheer et al., 2016; Lee et al., 2017; Sibomana et al., 2021; Wilken et al., 

2022). Inactivity also leads to muscle loading (alteration I muscle protein synthesis) and heart failure 

(Rittweger et al., 2016), both leading to systemic hypoxemia and elevated levels of reactive oxygen 

substances (ROS). For the majority of people, life can be improved with moderate activity. Physical 

exercise is one of the main stimuli in restoring prooxidant to antioxidant balance in chronic disease 

patients (Vincent at el., 2007). Sitting less and moving more (low-to-moderate exercise) or a staircase 

approach with an increase in activity can prevent the development of metabolic syndrome (Debevec 

et al., 2017; Dunstan et al., 2021). However, this approach must be considered a never-ending story, 

which means that physical activity must continue even if health has improved (Figure 8). However, 

there are also people who face various health problems from birth (premature born infants, patients 

with spinal muscular disease) and whose possibilities of being physically active are limited, such as 

in spinal muscular atrophy, which will be discussed later in this work. 
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Figure 7:   Lifestyle of modern humans (Dunstan et al., 2021). 

 

Slika 7:   Življenjski stil modernega človeka (Dunstan in sod., 2021).  

 

 
 

Figure 8.   Staircase approach for increased activity level (Dunstan et al., 2021). 

Staircase approach should be used to increase level of activity with small steps towards reduced probabilities of 

reducing non-communicable disease. 

 

Slika 8.   Postopno povečevanje aktivnosti (Dunstan in sod., 2021).   

Postopno povečevanje aktivnosti z majhnimi koraki zmanjša verjetnost kroničnih bolezni. 

 

1.3 PURPOSE OF THE RESEARCH 

 

As stated above, three biomedically relevant reduced-exercise models form the backbone of our 

current work (Figure 9). The overall aim of our research was to determine the physiological responses 

at metabolic level to different levels of physical (in)activity and health status (PreTerm, SMA, X-

Adapt) in relation to personal characteristics of participants.  

 

To achieve this goal, it was necessary to prepare the entire infrastructure of bioinformatics analytical 

pathways for pre-processing of molecular data and the correct statistical, modelling, and integration 

approaches for data processing and interpretation. 
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Within each project, additional explorations were made based once different ‘omics layers are made 

available in our measurements (Figure 8): 

i) PreTerm ((taxonomy (Bacteria, Archaea, Fungi, Protozoa, Viruses) + functional genes + 

metabolic pathways + predicted metabolomes + MAGs assembly)) coupled to 1H-NMR 

metabolomics (metabolites + metabolic pathways);  

ii) SMA (1H-NMR metabolomics (metabolites + metabolic pathways)); 

iii) X-Adapt (1H-NMR metabolomics (metabolites + metabolic pathways)) 

iv) Healthy baseline (1H-NMR metabolomics) 

 

 
 
Figure 9:   Graphical presentation of collected samples and ‘omics layers. 

Graphical presentation of collected samples and ‘omics layers in PreTerm, SMA and X-Adapt projects. In addition, a 

healthy urine database was also collected, and it represents healthy baseline for Slovenian NMR urinary database. 

 

Slika 9:   Grafična predstavitev pobranih vzorcev in ‘omskih nivojev 

Grafična predstavitev pobranih vzorcev in ‘omskih nivojev v projektih PreTerm, SMA in X-Adapt. Dodatno so bili še 

pobrani vzorci zdravih, ki predstavljajo bazno linijo za Slovensko NMR podatkovno bazo.  

 

1.4 HYPOTHESES  

 

1.4.1 PreTerm related  

The PreTerm-related hypotheses are discussed in the published paper presented in chapter 2.1.7 and 

additionally in chapters 2.2.1 and 3.1.6. 

 

H0: No significant difference exists between preterm and term groups of participants at the levels of 

faecal or urine metabolomes or faecal metagenomes. 

 

H1: There are significant differences between preterm and term groups of participants in faecal and 

urine metabolomes that can be linked to their physical performance in experiments and physiological 

data at exercise and rest. 

 

H2: There are significant differences at the level of metagenomics makeup of both groups, giving rise 

to identification of specific metabolic pathways differing between the two groups and their gut 

environment characteristics. 
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H3: Term and preterm gut samples contain specific MAGs associated with differences in gut 

environmental conditions between the two groups. 

 

1.4.2 SMA related 

The SMA-related hypothesis is discussed in published paper presented in chapter 2.1.3 and 

additionally in chapter 3.1.4. 

 

H0: There are no significant differences in metabolomes before and after treatment. 

 

H1: There are significant differences in urine (systemic) and liquor (local) metabolomes before and 

after treatment with gene therapy, enabling identification of characteristic metabolic pathways 

discerning the two groups. 

1.4.3 Hypotheses of merged dataset 

Hypotheses of the merged dataset are discussed in chapters 2.2.2 and 3.1.7. 

 

H0: There is no significant difference between metabolomes of prematurely born, born on time, 

before SMA treatment, and after SMA treatment groups. 

 

H1: There are significant differences in urine metabolomes that enable identification of biomarker 

pools and metabolic pathways delineating various groups under investigation. 
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2 SCIENTIFIC WORKS 

 

2.1 PUBLISHED SCIENTIFIC WORKS 

 

2.1.1 Computational framework for high-quality production and large-scale evolutionary 

analysis of metagenome assembled genomes 

 

Murovec B., Deutsch L., Stres B. 2019. Computational framework for high-quality production and 

large-scale evolutionary analysis of metagenome assembled genomes. Molecular Biology and 

Evolution, 37, 2: 593-598 

 

Abstract 

 

Microbial species play important roles in different environments and the production of high-quality 

genomes from metagenome data sets represents a major obstacle to understanding their ecological 

and evolutionary dynamics. Metagenome-Assembled Genomes Orchestra (MAGO) is a 

computational framework that integrates and simplifies metagenome assembly, binning, bin 

improvement, bin quality (completeness and contamination), bin annotation, and evolutionary 

placement of bins via detailed maximum-likelihood phylogeny based on multiple marker genes using 

different amino acid substitution models, next to average nucleotide identity analysis of genomes for 

delineation of species boundaries and operational taxonomic units. MAGO offers streamlined 

execution of the entire metagenomics pipeline, error checking, computational resource distribution 

and compatibility of data formats, governed by user-tailored pipeline processing. MAGO is an open-

source-software package released in three different ways, as a singularity image and a Docker 

container for HPC purposes as well as for running MAGO on a commodity hardware, and a virtual 

machine for gaining a full access to MAGO underlying structure and source code. MAGO is open to 

suggestions for extensions and is amenable for use in both research and teaching of genomics and 

molecular evolution of genomes assembled from small single-cell projects or large-scale and complex 

environmental metagenomes.  

 

 
 

This work was published as an Open Access article distributed under the terms of the Creative 

Commons Attribution Non-Commercial License (CC-BY-NC 4.0). 

 

For my personal contributions as a doctoral student and author of this thesis, please refer to Table 2 

(page 142). 
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2.1.2 General unified microbiome profiling pipeline (GUMPP) for large scale, streamlined and 

reproducible analysis of bacterial 16S rRNA data to predicted microbial metagenomes, 

enzymatic reactions and metabolic pathways 

 

Murovec B., Deutsch L., Stres B. 2021. General unified microbiome profiling pipeline (GUMPP) for 

large scale, streamlined and reproducible analysis of bacterial 16S rRNA data to predicted microbial 

metagenomes, enzymatic reactions and metabolic pathways. Metabolites, 11, 6: 336, doi: 

https://doi.org/10.3390/metabo11060336, 14 p. 

 

Abstract 

 

General Unified Microbiome Profiling Pipeline (GUMPP) was developed for large scale, streamlined 

and reproducible analysis of bacterial 16S rRNA data and prediction of microbial metagenomes, 

enzymatic reactions and metabolic pathways from amplicon data. GUMPP workflow introduces 

reproducible data analyses at each of the three levels of resolution (genus; operational taxonomic 

units (OTUs); amplicon sequence variants (ASVs)). The ability to support reproducible analyses 

enables production of datasets that ultimately identify the biochemical pathways characteristic of 

disease pathology. These datasets coupled to biostatistics and mathematical approaches of machine 

learning can play a significant role in extraction of truly significant and meaningful information from 

a wide set of 16S rRNA datasets. The adoption of GUMPP in the gut-microbiota related research 

enables focusing on the generation of novel biomarkers that can lead to the development of 

mechanistic hypotheses applicable to the development of novel therapies in personalized medicine.  

 

 

 
 

 

This work was published as an Open Access article distributed under the terms of the Creative 

Commons Attribution License (CC-BY 4.0). 

 

 

 

For my personal contributions as a doctoral student and author of this thesis, please refer to Table 2 

(page 142). 
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2.1.3 Spinal muscular atrophy after nusinersen therapy: improved physiology in pediatric 

patients with no significant change in urine, serum, and liquor 1H-NMR metabolomes in 

comparison to an age-matched, healthy cohort  

 

Deutsch L., Osredkar D., Plavec J., Stres B. 2021. Spinal muscular atrophy after nusinersen therapy: 

improved physiology in pediatric patients with no significant change in urine, serum, and liquor 1H-

NMR metabolomes in comparison to an age-matched, healthy cohort. Metabolites, 11, 4: 206, doi. 

https://doi.org/10.3390/metabo11040206, 15 p. 

 

Abstract 

 

Spinal muscular atrophy (SMA) is a genetically heterogeneous group of rare neuromuscular diseases 

and was until recently the most common genetic cause of death in children. The effects of 2-month 

nusinersen therapy on urine, serum, and liquor 1H-NMR metabolomes in SMA males and females 

were not explored yet, especially not in comparison to the urine 1H-NMR metabolomes of matching 

male and female cohorts. In this prospective, single-centered study, urine, serum, and liquor samples 

were collected from 25 male and female pediatric patients with SMA before and after 2 months of 

nusinersen therapy and urine samples from a matching healthy cohort (n = 125). Nusinersen 

intrathecal application was the first therapy for the treatment of SMA by the Food and Drug 

Administration (FDA) and the European Medicines Agency (EMA). Metabolomes were analyzed 

using targeted metabolomics utilizing 600 MHz 1H-NMR, parametric and nonparametric multivariate 

statistical analyses, machine learning, and modeling. Medical assessment before and after nusinersen 

therapy showed significant improvements of movement, posture, and strength according to various 

medical tests. No significant differences were found in metabolomes before and after nusinersen 

therapy in urine, serum, and liquor samples using an ensemble of statistical and machine-learning 

approaches. In comparison to a healthy cohort, 1H-NMR metabolomes of SMA patients contained a 

reduced number and concentration of urine metabolites and differed significantly between males and 

females as well. Significantly larger data scatter was observed for SMA patients in comparison to 

matched healthy controls. Machine learning confirmed urinary creatinine as the most significant, 

distinguishing SMA patients from the healthy cohort. The positive effects of nusinersen therapy 

clearly preceded or took place devoid of significant rearrangements in the 1H-NMR metabolomic 

makeup of serum, urine, and liquor. Urine creatinine was successful at distinguishing SMA patients 

from the matched healthy cohort, which is a simple systemic novelty linking creatinine and SMA to 

the physiology of inactivity and diabetes, and it facilitates the monitoring of SMA disease in pediatric 

patients through non-invasive urine collection.  

 

 
 

This work was published as an Open Access article distributed under the terms of the Creative 
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For my personal contributions as a doctoral student and author of this thesis, please refer to Table 2 

(page 142). The hypothesis from section 1.4.2 from this work were discussed in this paper.  
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2.1.4 The importance of objective stool classification in fecal 1H-NMR metabolomics: 

exponential increase in stool crosslinking is mirrored in systemic inflammation and associated 

to fecal acetate and methionine 

 

Deutsch L., Stres B. 2021. The importance of objective stool classification in fecal 1H-NMR 

metabolomics: exponential increase in stool crosslinking is mirrored in systemic inflammation and 

associated to fecal acetate and methionine. Metabolites, 11, 3: 172, doi. 

https://doi.org/10.3390/metabo11030172, 16 p. 

 

Abstract 

 

Past studies strongly connected stool consistency-as measured by Bristol Stool Scale (BSS)-with 

microbial gene richness and intestinal inflammation, colonic transit time and metabolome 

characteristics that are of clinical relevance in numerous gastro intestinal conditions. While retention 

time, defecation rate, BSS but not water activity have been shown to account for BSS-associated 

inflammatory effects, the potential correlation with the strength of a gel in the context of intestinal 

forces, abrasion, mucus imprinting, fecal pore clogging remains unexplored as a shaping factor for 

intestinal inflammation and has yet to be determined. Our study introduced a minimal pressure 

approach (MP) by probe indentation as measure of stool material crosslinking in fecal samples. 

Results reported here were obtained from 170 samples collected in two independent projects, 

including males and females, covering a wide span of moisture contents and BSS. MP values 

increased exponentially with increasing consistency (i.e., lower BSS) and enabled stratification of 

samples exhibiting mixed BSS classes. A trade-off between lowest MP and highest dry matter content 

delineated the span of intermediate healthy density of gel crosslinks. The crossectional transects 

identified fecal surface layers with exceptionally high MP and of <5 mm thickness followed by 

internal structures with an order of magnitude lower MP, characteristic of healthy stool consistency. 

The MP and BSS values reported in this study were coupled to reanalysis of the PlanHab data and 

fecal 1H-NMR metabolomes reported before. The exponential association between stool consistency 

and MP determined in this study was mirrored in the elevated intestinal and also systemic 

inflammation and other detrimental physiological deconditioning effects observed in the PlanHab 

participants reported before. The MP approach described in this study can be used to better understand 

fecal hardness and its relationships to human health as it provides a simple, fine scale and objective 

stool classification approach for the characterization of the exact sampling locations in future 

microbiome and metabolome studies.  
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2.1.5 Systems view of deconditioning during spaceflight simulation in the PlanHab project: the 

departure of urine 1H-NMR metabolomes from healthy state in young males subjected to 

bedrest inactivity and hypoxia 

 

Šket R., Deutsch L., Prevoršek Z., Mekjavić I.B., Plavec J., Rittweger, J., Debevec T., Eiken O., 

Stres B. 2020. Deutsch L., Stres B. 2021. Systems view of deconditioning during spaceflight 

simulation in the PlanHab Project: The departure of urine 1H-NMR metabolomes from healthy state 

in young males subjected to bedrest inactivity and hypoxia. Frontiers in Physiology, 11: 532271, doi. 

https://doi.org/10.3389/fphys.2020.532271, 15 p. 

 

Abstract 

 

We explored the metabolic makeup of urine in prescreened healthy male participants within the 

PlanHab experiment. The run-in (5 day) and the following three 21-day interventions [normoxic 

bedrest (NBR), hypoxic bedrest (HBR), and hypoxic ambulation (HAmb)] were executed in a 

crossover manner within a controlled laboratory setup (medical oversight, fluid and dietary intakes, 

microbial bioburden, circadian rhythm, and oxygen level). The inspired O2 (FiO2) fraction next to 

inspired O2 (PiO2) partial pressure were 0.209 and 133.1 ± 0.3 mmHg for the NBR variant in contrast 

to 0.141 ± 0.004 and 90.0 ± 0.4 mmHg (approx. 4,000 m of simulated altitude) for HBR and HAmb 

interventions, respectively. 1H-NMR metabolomes were processed using standard quantitative 

approaches. A consensus of ensemble of multivariate analyses showed that the metabolic makeup at 

the start of the experiment and at HAmb endpoint differed significantly from the NBR and HBR 

endpoints. Inactivity alone or combined with hypoxia resulted in a significant reduction of metabolic 

diversity and increasing number of affected metabolic pathways. Sliding window analysis (3 + 1) 

unraveled that metabolic changes in the NBR lagged behind those observed in the HBR. These results 

show that the negative effects of cessation of activity on systemic metabolism are further aggravated 

by additional hypoxia. The PlanHab HAmb variant that enabled ambulation, maintained vertical 

posture, and controlled but limited activity levels apparently prevented the development of negative 

physiological symptoms such as insulin resistance, low-level systemic inflammation, constipation, 

and depression. This indicates that exercise apparently prevented the negative spiral between the 

host’s metabolism, intestinal environment, microbiome physiology, and proinflammatory immune 

activities in the host.  
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2.1.6 Exercise and interorgan communication: short-term exercise training blunts differences 

in consecutive daily urine 1H-NMR metabolomic signatures between physically active and 

inactive individuals 

 

 

Deutsch L., Sotiridis A., Murovec B., Plavec J., Mekjavić I., Debevec T., Stres B. 2022. Exercise 

and interorgan communication: short-term exercise training blunts differences in consecutive daily 

urine 1H-NMR metabolomic signatures between physically active and inactive individuals. 

Metabolites, 12,6: 473, doi. https://doi.org/10.3390/metabo12060473, 18 p. 

 

Abstract 

 

Physical inactivity is a worldwide health problem, an important risk for global mortality and is 

associated with chronic noncommunicable diseases. The aim of this study was to explore the 

differences in systemic urine 1H-NMR metabolomes between physically active and inactive healthy 

young males enrolled in the X-Adapt project in response to controlled exercise (before and after the 

3-day exercise testing and 10-day training protocol) in normoxic (21% O2), normobaric (~1000 hPa) 

and normal-temperature (23 °C) conditions at 1 h of 50% maximal pedaling power output (Wpeak) per 

day. Interrogation of the exercise database established from past X-Adapt results showed that 

significant multivariate differences existed in physiological traits between trained and untrained 

groups before and after training sessions and were mirrored in significant differences in urine pH, 

salinity, total dissolved solids and conductivity. Cholate, tartrate, cadaverine, lysine and N6-

acetyllisine were the most important metabolites distinguishing trained and untrained groups. The 

relatively little effort of 1 h 50% Wpeak per day invested by the untrained effectively modified their 

resting urine metabolome into one indistinguishable from the trained group, which hence provides a 

good basis for the planning of future recommendations for health maintenance in adults, irrespective 

of the starting fitness value. Finally, the 3-day sessions of morning urine samples represent a good 

candidate biological matrix for future delineations of active and inactive lifestyles detecting 

differences unobservable by single-day sampling due to day-to-day variability.  
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2.1.7 Urine and fecal 1H-NMR metabolomes differ significantly between pre-term and full-

term born physically fit healthy adult males 

 

Deutsch L., Debevec T., Millet G.P.., Osredkar D., Opara S., Šket R., Murovec B., Mramor M., 

Plavec J. Stres B. 2022. Urine and fecal 1H-NMR metabolomes differ significantly between pre-term 

and full-term born physically fit healthy adult males. Metabolites, 12: X, doi. 

https://doi.org/10.3390/metabo12060536, 23 p.  

 

Abstract 

 

Preterm birth (before 37 weeks gestation) accounts for ~10% of births worldwide and remains one of 

the leading causes of death in children under 5 years of age. Preterm born adults have been 

consistently shown to be at an increased risk for chronic disorders including cardiovascular, en-

docrine/metabolic, respiratory, renal, neurologic, and psychiatric disorders that result in increased 

death risk. Oxidative stress was shown to be an important risk factor for hypertension, metabolic 

syndrome and lung disease (reduced pulmonary function, long-term obstructive pulmonary disease, 

respiratory infections, and sleep disturbances). The aim of this study was to explore the dif-ferences 

between preterm and full-term male participants’ levels of urine and fecal proton nuclear magnetic 

resonance (1H-NMR) metabolomes, during rest and exercise in normoxia and hypoxia and to assess 

general differences in human gut-microbiomes through metagenomics at the level of taxonomy, 

diversity, functional genes, enzymatic reactions, metabolic pathways and predicted gut metabolites. 

Significant differences existed between the two groups based on the analysis of 1H-NMR urine and 

fecal metabolomes and their respective metabolic pathways, enabling the elucidation of a complex 

set of microbiome related metabolic biomarkers, supporting the idea of distinct host-microbiome 

interactions between the two groups and enabling the efficient classification of samples; however, 

this could not be directed to specific taxonomic characteristics.  

 

 
 

 

This work was published as an Open Access article distributed under the terms of the Creative 

Commons Attribution License (CC-BY 4.0). 

 

For my personal contributions as a doctoral student and author of this thesis, please refer to Table 2 

(page 142). The hypothesis from section 1.4.1 from this work were discussed in this paper. 

 

 

 

 

 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

111 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

112 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

113 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

114 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

115 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

116 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

117 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

118 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

119 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

120 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

121 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

122 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

123 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

124 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

125 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

126 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

127 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

128 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

129 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

130 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

131 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

132 

 

 

 
 

 

 

 

 

 

 

 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

133 

 

2.2 ADDITIONAL SCIENTIFIC WORK 

2.2.1 Metagenomes assembled genomes from the PreTerm project 

2.2.1.1 Introduction 

 

In the context of taxonomic and functional analysis of the microbiome community, the third option 

is to assemble short-read sequences obtained with modern sequencing technologies into fully 

recovered genomes from the microbiome using available tools. This process is used to assemble new 

metagenome-assembled genomes. There are many genome assemblers specifically designed for 

metagenomic data, but none of them are perfect. A whole range of specialised tools have been 

developed to solve the problems of metagenomic assembly caused by the properties of the collected 

data. Depending on the length of the generated reads, assemblers are based on different approaches, 

from overlap-layout-consensus tools based on overlap strategies to those using de Bruijn graphs to 

work with data. It is important to note that it is not only the efficiency and quality of work that 

influence the popularity of assemblers, but also the ease of use of the tool, the existence of a simple, 

detailed and easy-to-understand manual, the continuous development of the tool, and the speed and 

quality of feedback form the tool’s support team (Lapidus and Korobeynikov, 2021). For this reason, 

we have combined the multitude of different tools needed for metagenome assembly into the MAGO 

pipeline (Section 2.1.1). This approach can lead to the discovery of new species that cannot be 

cultured and that have become increasingly important in recent years (Fricker et al., 2019; Nayfach 

et al., 2019; Murovec et al., 2020; Lapidus and Korobeynikov, 2021). Sequence assembly can be 

divided into two necessary steps, all of which are already included in the MAGO pipeline:  

 

1. metagenomic assembly (assembly of short read sequences (250 base pairs) into longer contigs).  

2. binning (grouping of contigs with the same sequences into their taxon ID (e.g., closely related 

organisms)). 

 

This process can also produce some artefacts in de novo assembled sequences, such as “bulges” or 

“tips”, which are often artefacts due to sequencing errors (Zerbino and Birney, 2008). For this reason, 

MAGs need to be validated. For this purpose, the CheckM tool (Parks et al., 2015) is used to check 

the completeness and contamination of the assembled genomes. MAGs can be divided into high- and 

medium-quality groups according to the standards for minimum information about a metagenome-

assembled genome (MIMAG). MAGs in the high-quality group contain < 5% contamination and are 

> 90% complete. Medium-quality MAGs contain < 10% contamination and are > 50% complete 

(Parks et al., 2015; Bowers et al., 2017).  

 

The hypothesis from section 1.4.1 were partly discussed in this chapter (table 2).  
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2.2.1.2 Materials and methods 

 

For this work, we used sequences from the PreTerm project and assembled the MAGs from the 

preterm and full-term groups individually. The main purpose was to obtain some characteristic 

species belonging to preterm group’s adolescents involved in the PreTerm project. 

 

Sequences from the Preterm Project (Deutsch et al., 2022b) were used to compile characteristic 

MAGs for the preterm and full-term groups of participants. Sequences from the preterm and control 

groups were assembled separately using the MAGO Singularity Image on the Leo4 HPC cluster 

(University of Innsbruck, Austria). Fastp (Chen et al., 2018) and FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) were used for quality control and pre-

processing. Three different assemblers were used for assembly: metaSPAdes (Nurk et al., 2017), 

MEGAHIT (Li et al., 2015) and IDBA-UD (Peng et al., 2012). Contigs were binned and bins were 

improved using the tools BinSanity (Graham, Heidelberg and Tully, 2017), CONCOCT (Alneberg et 

al., 2014), MetaBAT (Kang et al., 2015) and MaxBin (Wu et al., 2016). In the end, DAStool (Sieber 

et al., 2018) was used to refine and dereplicate the resulting bins to obtain near-complete MAGs, 

which were then checked for completeness and contamination level using the ChekM (Parks et al., 

2015) tool. High-quality MAGs from both groups were used for average amino acid identity 

calculation with ezTree (Wu, 2018), genome annotation with Prokka (Seeman, 2014), pan- and core-

genome analysis with Roary (Page et al., 2015), and high-throughput average nucleotide identity 

calculation with FastANI (Jain et al., 2018), all of which were integrated into the MAGO tool 

(Murovec et al., 2020). JSpeciesWS Online Service (Richter et al., 2016) was used to determine 

taxonomic thresholds with tetra-correlation search (Teeling et al., 2004) by comparing our high-

quality MAGs with the reference genome database (GenomesDB). A mosaic plot was generated using 

Past software (Hammer et al., 2001). 

2.2.1.3 Results 

 

The total number of sequencing reads was lower in the preterm group (491 million total reads 

compared to 531 million reads in the control group). After filtering with fastp, 494.6 million reads 

were obtained in the control group and 486 million reads in the preterm group. Other reads were 

removed because they were of poor quality or contained too many Ns (it was not possible to basecall 

for these bases). The remainder of the sequences were used for metagenome assembly; 320 MAGs 

were assembled in the preterm group, and 27 of these MAGs belonged to the MAGs in the high-

quality group (average completeness was 93.93±2.9% and contamination was 2.9±1.43%). In the 

control group, 124 MAGs were assembled, 24 of which belonged to the high-quality group (average 

completeness was 95.4±2.8% and contamination was 2.5±1.4%). MAGs from the preterm groups 

were approximately 1 Mb larger and counted almost twice as many contigs. Preterm MAGs also had 

a higher percentage of GC base pairs (5% higher on average). All high-quality MAGs were submitted 

to the online service JSpeciesWS for a tetra-correlation search with the genome reference database 

GenomesDB, which contains more than 55,000 genomes. No significant differences were observed 
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between preterm and control group (Figure 10, Figure 11). Approximately the same number of high-

, medium-, and low-quality MAGs were assembled in both groups. 

 

 
 

Figure 10:   Relationship between completeness and contamination of MAGs in control and preterm group. 

 

Slika 10:   Odnos med popolnostjo in kontaminacijami na novo sestavljenih metagenomov v kontrolni in preterm 

skupini.  
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Figure 11:   Number of MAGs per both groups and their quality.  

Number of high (completeness>95%, contamination<5%), medium (completeness>75%, contamination<10%) and low 

(completeness>50%, contamination<25%) quality MAGS in the preterm and control groups. 

 

Slika 11:   Število na novo sestavljenih metagenomov med skupinami in njihova kvaliteta.  

Število na novo sestavljenih metagenomov visoke (popolnost>95 %, kontaminacija<5 %), srednje (popolnost>75 %, 

kontaminacija<10 %) in nizke (popolnost>50 %, kontaminacija<25 %) v preterm in kontrolni skupini.  

2.2.1.4 Discussion 

 

Sequences from the preterm and full-term (control) groups were assembled separately in order to 

search for group-specific MAGs that could lead to discovery of taxonomic differences that were not 

observed in the previously published metaBakery analysis. Although a greater number of high-, 

medium-, and-low quality MAGs were assembled in the preterm group according to the MIMAG 

standard (Bowers et al., 2017), we did not observe MAGs specific to the preterm group. The quality 

of the sequences was comparable and not significantly different in both groups. The higher number 

of MAGs is consistent with higher diversity indices in the PreTerm group, as previously observed 

(Deutsch et al., 2022). One of the most important parts of the de novo MAGs assembly is the ability 

to detect the “uncultured majority”, which is also what we hoped to detect, especially in the preterm 

group. Based on these results, we can conclude that preterm and adult full-term born adults are not 

different in terms of microbial taxonomy, albeit due to the unequal variance within the groups. In 

contrast, we have shown that the functionality of the microbial worlds differs between adult preterm 

compared to adult full-term groups in terms of enzymatic reactions, metabolic pathways, and 

predicted metabolites (Deutsch et al., 2022b). This once again shows the higher relevance and 
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importance of microbial functionality relative to microbial taxonomic composition for the inference 

of relationships with human phenotypic characteristics through the production of various metabolites. 

 

2.2.2 Data integration 

2.2.2.1 Introduction 

 

To properly understand the complexity of biological systems, well-being, and diseases, various 

‘omics high-throughput technologies (e.g., sequencing, various types of spectrometry, etc.) have been 

used and are becoming more affordable for scientists (Zitnik et al., 2019). It soon became clear very 

that we cannot capture the whole understanding of the system based on only one level of datasets. 

“Top-down” approach is the term that was evaluated in the context of systems biology research. In 

general, this means that we measure a set of parameters at the system level and then make inferences 

about the overall functionality of the system (Kohl et al., 2010; Price et al., 2017). Without ‘omics 

methods, all domains relied strictly on single types of data that could not explain the entire system. 

‘Omics methods enabled the development of modern statistical approaches (data reduction methods) 

and data integration. With these methods, it became easier to draw conclusions based on thousands 

of parameters that could be measured with these methods (Zitnik et al., 2019). These approaches, 

along with machine learning, are converging into precision medicine, which is composed of four 

words (also referred to as P4 for short): predictive, preventive, personalized, and participatory 

precision medicine. The combination of all four terms leads us to maintain our health longer and 

prevent noncommunicable diseases (Hood and Friend, 2011; Hood and Flores, 2012; Price et al., 

2017). With the combination of ‘omics methods, developed models, and evaluation of these methods 

in practical medicine, future health policies will also change and the chances of detecting diseases as 

early as possible and before it is too late for effective treatment will also increase. However, there is 

also a need for caution in introducing this approach into daily use, especially in data protection and 

better and more secure computing infrastructure (Thapa and Camtepe, 2021).  

 

The hypothesis from section 1.4.3 were assessed in this chapter (table 2).  

2.2.2.2 Materials and methods 

 

Total urinary NMR metabolomes collected from five different projects-Slovenian NMR database 

(PlanHab (Debevec et al., 2014; Sket et al., 2017a; Sket et al., 2017b; Sket et al., 2018; Šket et al., 

2020), X-Adapt (Deutsch et al., 2022a), healthy women and men, SMA (Deutsch et al., 2020), 

PreTerm (Deutsch et al., 2022b)) were integrated with the aim to build up Slovenian NMR database 

(manuscript in preparation). We used the DIABLO (Singh et al., 2019) and PLSDA (Wang and Lê 

Cao, 2020) methods, which are integrated into the miXomics R package (Rohart et al., 2017).  
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2.2.2.3 Results 

 

All urinary metabolites collected in five different projects were utilized: PlanHab (522 samples), 

PreTerm (183 samples), Spinal Muscular Atrophy (48 samples), X-Adapt (239 samples), Healthy 

Women and their daughters (94 samples), and Healthy Men and their sons (133 samples); 185 

samples were included in the low physical activity group (bedrest part of the form the PlanHab study 

and spinal muscular atrophy participants), 919 samples were included into medium physical activity 

group (healthy women and men, start of the PlanHab and Hamb end from the PlanHab study, preterm 

and full-term born participants from the PreTerm project, untrained participants of the X-Adapt 

study), and 115 samples were included in the high physical activity group (trained X-Adapt study 

participants) (Figure 12). The largest area under the curve was observed when comparing the low 

activity group (AUC=0.91) with the others and the lowest when comparing the moderate activity 

group with the others (AUC=0.75) (Figure 13). 

 

 
 

Figure 12:   PSLDA of all metabolomes stratified by activity. 

The sample plot representing PLSDA centroids of all 1200 metabolomes obtained in five different dataset and 

corresponding to their level of physical activity. 

 

Slika 12:   Rezultati analize PLSDA vse metabolomov glede na aktivnost. 

Graf prikazuje centroide PLSDA vseh 1200 zbranih metabolomov v petih različnih študijah in razdeljenih glede na nivo 

njihove fizične aktivnosti preiskovancev.  
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Figure 13:   The success of classification with PLSDA. 

ROC curves and with the accompanying AUC values representing the success of classification of metabolomes between 

three different levels of activity. 

 

Slika 13:   Uspeh klasifikacije z metodo PLSDA. 

Krivulje ROC s pripadajočimi vrednostmi AUC, ki prikazujejo uspešnost klasifikacije metabolom glede na nivo fizične 

aktivnosti.  

 

2.2.2.4 Discussion 

 

We combined more than 1200 collected samples of urine 1H-NMR metabolomes into the Slovenian 

urine NMR database. Information from all our previous projects (PlanHab, spinal muscular atrophy, 

X-Adapt, PreTerm, healthy women and men) were integrated. All measured spectra were analysed 

with the same procedure of spectral deconvolution to obtain metabolites in all projects. We have 

shown that we can distinguish between the different levels of physical activity based on the 

metabolites in urine. Future integration of additional data on various diseases with medical diagnoses 

could provide basis for the development of a pre-screening tool amenable for routine information 

gathering at clinical setting. 

 

Such a large integrations of metabolomics data into a single database are also susceptible to several 

sources of systematic error that can lead to lack of reproducibility and poor data quality. To minimize 

this, all samples were processed in the same way using our in-house processing pipeline (Sket et al., 

2017a; Sket et al., 2017b; Sket et al., 2018; Šket et al., 2020; Deutsch et al., 2021a; Deutsch et al., 

2021b, Deutsch et al., 2022a; Deutsch et al., 2022b), alongside commercially available software for 

targeted spectral deconvolution analysis utilizing the same version of the Human Metabolome 

Database 4.0. Our pipeline is therefore generic and accessible to other interested researchers making 
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repeated exploration of the same data a reality. In addition, significant extensions with novel data can 

be made every year with reasonable effort. This should lead to database updates as the Human 

Metabolome Database has grown from a few thousand metabolites in the first edition (Wishart et al., 

2007) to 217,000 metabolites in the latest edition, published in 2021 (Wishart et al., 2021). The data 

recorded in the past can be effectively reanalysed for novel insight and increased percent of explained 

spectral information.  

 

Second, standardized analytical protocols in our laboratory allowed us to minimize the systematic 

errors that normally occur due to batch effects. However, there is still room for improvement. Batch 

effects need to be eliminated in the integration and construction of databases (Ding et al., 2022). 

There are already approaches to eliminate batch effects, usually developed in other ‘omics domains. 

These approaches include Dirichlet-multinomial regression (Dai et al., 2019), percentile-

normalization methods (Gibbons et al., 2018), quantile regression methods (Ling et al., 2021), the 

ComBat Bayesian approach (Johnson et al., 2007), Norm ISWSVR (Ding et al., 2022), and the 

sPLSDA (Wang and Lê Cao, 2020), which was implemented in miXomics. Batch effects can occur 

when comparing different studies for biological reasons (uniqueness of each biological system due to 

health status, diet, or lifestyle in general), technical reasons (different batches of the same buffers, 

different vendors, protocols, NMR devices), or computational reasons (use of different parameters 

and different software) (Wang and Lê Cao, 2020). Another question is which normalization method 

is the best for the data being analysed. In the field of metabolomics, the NOREVA software was 

developed to overcome this challenge. The only limitation is that it is not suitable for NMR 

metabolomics and was developed for MS metabolomics (Yang et al., 2020). In our case, Box-Cox 

normalization and sPLSDA approach were used to integrate all metabolomes. This method showed 

competitive performance in removing batch effects on one side, but still preserves variations due to 

lifestyle or other biological metadata categories (Wang and Lê Cao, 2020). 

 

We have shown that urinary metabolic fingerprinting has the potential to reveal an individual’s 

metabolic status and provide a snapshot of health and disease (Azad and Shulaev, 2019; Mussap et 

al., 2021). Metabolomics in general involves the systematic identification of metabolites in the human 

body. To increase its use in daily medical practise, all levels of metabolomics research should be 

standardised (sampling, wet lab analysis, and also analytical approaches at the level of algorithms) 

(Ashrafian et al., 2021). Building a national database will improve the understanding of the Slovenian 

metabolome and the identification of metabolites specific to particular disease or physical condition. 

This approach was demonstrated in the Netherlands based on 26,000 collected blood metabolomes in 

the Dutch Biobanking and BioMolecular Resources and Research Infrastructure (Bizzarri et al., 

2022). They showed that 1H-NMR metabolomics can capture a wide range of conventional clinical 

variables in epidemiological studies and that it is possible to generate predictors for discriminating 

between different diseases such as diabetes, metabolic syndrome, insulin resistance, inflammation 

(Crohn disease, ulcerative colitis) based on machine learning. Top-down interpretation of 

metabolomic datasets consisting of different studies is impossible using simple approaches due to the 

enormous amount of data (Lakrisenko and Weindl, 2021. In addition, and in line with the above, 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

141 

 

metabolomics accounted for the majority of funding and potential research between all ‘omics fields. 

However, it was also noted that the main problem is the lack of standardisation for integrating 

different metabolomics datasets and that this could be important in the future to increase the 

confidence of metabolite identification in large datasets but also to address the variability within and 

between different ‘omics fields (Yu et al., 2022). For this reason, newly developed methods that were 

tailored to specifically address these problems in statistically sound way should be used.  

 

Due to the complexity of the data linked to metadata of patients and/or participants, computational 

models are needed to understand these data in different ways, such as machine-learning methods 

(Bizzarri et al., 2022), metabolic networks (Töpfer et al., 2015), constraint-based and kinetic models 

(Volkova et al., 2020; Lakrisenko and Weindl, 2021). Our database already provides one 

implementation of the above considerations into sound and effective approach transforming the 1H-

NMR urine data into a form amenable for building machine-learning models in the very near future 

for their use in medical diagnostics. Unknown urine samples could easily be classified as members 

of either healthy or various disease groups. With this work, we aim to stimulate the interest of other 

researchers in the field of biomedicine to include NMR metabolomics in their research process in 

order to complement our newly established database with their concise descriptions of medical 

conditions in order to reach some 10,000 samples at national scale. This is of relevance due to the 

central European geographic location of the Republic of Slovenia and its local genetic characteristics 

coupled to lifestyle habits, dietary characteristics, and environmental conditions. 

 

To summarize, the assembly and modelling of these data to create ML models is a viable approach 

that can be used in medical practise to distinguish between various disease phenotypes and healthy 

groups. Taking this approach is one step closer to precision data-driven medicine that would improve 

health care approach on a national scale. A Slovenian urine NMR database paper is currently in 

preparation.   
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3 DISCUSSION AND CONCLUSIONS 

3.1 DISCUSSION 

 

In this chapter, we summarise the developments presented within this doctoral thesis in a more 

comprehensive interrelated manner. First, we focus on “3.1 Developed tools for data integration” then 

“3.2 Physico-chemical characteristics of microbial world in the gut” and continue with the most 

important review of the data and findings produced within the four projects “3.3 Metabolomics in the 

PlanHab study”, “3.4 Spinal muscular atrophy”, “3.5 X-Adapt project – the influence of short term 

training on inactive individuals” and “3.6 metabolomes and microbial metagenomes can distinguish 

pre-term and full-term born adults”. Finally, we focus on the most informative part of “3.7 data 

integration” with concluding remarks “3.8 What about the future?” and extensions of the presented 

work.  

 

Table 2 lists my personal contributions to each paper published within four years of this PhD. 

 

Table 2:   My contributions to published and unpublished work and postulated hypothesis in the frame of this PhD. 

 

Preglednica 2:   Moj doprinos k objavljenim člankom in postavljene hipoteze v okviru doktorata.  

 

Published or additional work Leon Deutsch contributions 

Postulated hypothesis in PhD 

proposal 

Murovec B., Deutsch L., Stres B. 2019. 

Computational framework for high-quality 

production and large-scale evolutionary 

analysis of metagenome assembled 

genomes. Molecular Biology and 

Evolution, 37, 2: 593-598 

Conceptualization of analysis, 

B.S.; methodology, B.M., L.D., 

B.S.; formal analysis, L.D., 

B.S., B.M.; data curation, 

L.D., B.S., B.M.; writing—

original draft preparation, 

B.S., L.D.; visualization L.D., 

B.S.; project administration, 

B.S.; funding acquisition, B.S., 

B.M. 

  

Murovec B., Deutsch L., Stres B. 2021. 

General unified microbiome profiling 

pipeline (GUMPP) for large scale, 

streamlined and reproducible analysis of 

bacterial 16S rRNA data to predicted 

microbial metagenomes, enzymatic 

reactions and metabolic pathways. 

Metabolites, 11, 6: 336, doi: 

https://doi.org/10.3390/metabo11060336, 

14 p. 

Conceptualization of analysis, 

B.S.; methodology, B.M., L.D., 

B.S.; formal analysis, L.D., 

B.S., B.M.; data curation, 

L.D., B.S., B.M.; writing—

original draft preparation, 

B.S., L.D.; visualization L.D., 

B.S.; project administration, 

B.S.; funding acquisition, B.S., 

B.M. 

  

                                                                                                             Continued on next page 
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Table 2 (continued) 

Published or additional work Leon Deutsch contributions 

Postulated hypothesis in PhD 

proposal 

Deutsch L., Osredkar D., Plavec J., Stres B. 

2021. Spinal muscular atrophy after 

nusinersen therapy: improved physiology in 

pediatric patients with no significant change 

in urine, serum, and liquor 1H-NMR 

metabolomes in comparison to an age-

matched, healthy cohort. Metabolites, 11, 4: 

206, 

doi.https://doi.org/10.3390/metabo11040206, 

15 p. 

Conceptualization for 

metabolomic analysis, B.S.; 

samples collection, L.D., B.S. 

and D.O.; metabolome 

analysis, L.D. and B.S.; 

methodology, D.O., B.S. and 

J.P.; formal analysis, L.D., 

B.S., D.O. and J.P.; data 

curation, L.D. and B.S.; 

writing—original draft 

preparation, L.D., B.S., D.O. 

and J.P.; visualization L.D. and 

B.S.; project administration, 

D.O. and B.S.; funding 

acquisition, D.O. and B.S. A 

H0: There are no significant 

differences in metabolomes 

before and after treatment. 

H1: There are significant 

differences in urine 

(systemic) and liquor (local) 

metabolomes before and 

after treatment with gene 

therapy, enabling 

identification of 

characteristic metabolic 

pathways discerning the two 

groups. 

Deutsch L., Stres B. 2021. The importance of 

objective stool classification in fecal 1H-

NMR metabolomics: exponential increase in 

stool crosslinking is mirrored in systemic 

inflammation and associated to fecal acetate 

and methionine. Metabolites, 11, 3: 172, doi. 

https://doi.org/10.3390/metabo11030172, 16 

p. 

Conception and design of the 

study (B.S.), data collection 

(L.D., B.S.), data preparation 

and analysis (L.D., B.S.), 

writing and critical revision of 

the manuscript (L.D., B.S.). A 

  

Šket R., Deutsch L., Prevoršek Z., Mekjavić 

I.B., Plavec J., Rittweger, J., Debevec T., 

Eiken O., Stres B. 2020. Deutsch L., Stres B. 

2021. Systems view of deconditioning during 

spaceflight simulation in the PlanHab Project: 

The departure of urine 1H-NMR 

metabolomes from healthy state in young 

males subjected to bedrest inactivity and 

hypoxia. Frontiers in Physiology, 11: 532271, 

doi. 

https://doi.org/10.3389/fphys.2020.532271, 

15 p. 

BS provided the concept for 

metabolome analysis and 

drafted the manuscript. TD and 

JR collected the samples. BS, 

RŠ, and JP designed the 

metabolome analyses. RŠ, BS, 

ZP, LD, OE, and IM conducted 

the research. RŠ, BS, and LD 

analyzed the data. RŠ and BS 

provided necessary code to 

streamline 1H-NMR spectra 

analyses and provided statistical 

analyses.  

  

Deutsch L., Sotiridis A., Murovec B., Plavec 

J., Mekjavić I., Debevec T., Stres B. 2022. 

Exercise and interorgan communication: 

short-term exercise training blunts 

differences in consecutive daily urine 1H-

NMR metabolomic signatures between 

physically active and inactive individuals. 

Metabolites, 12,6: 473, doi. 

https://doi.org/10.3390/metabo12060473, 18 

p. 

Conceptualization, T.D. and 

B.S.; methodology, L.D. and 

B.S.; conceptualization for 

metabolomic analysis, J.P. and 

B.S., formal analysis, L.D. and 

B.S.; data curation, B.M., L.D. 

and B.S; exercise database, 

T.D., A.S., I.M; writing-

original draft preparation, 

L.D. and B.S.; visualization, 

L.D. and B.S.; supervision, 

B.S.; project administration, 

A.S., T.D., I.M., B.S.; funding 

acquisition, T.D., I.M., B.S.  
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Table 2 (continued) 

Published or additional work Leon Deutsch contributions 

Postulated hypothesis in PhD 

proposal 

Deutsch L., Debevec T., Millet G.P.., 

Osredkar D., Opara S., Šket R., Murovec 

B., Mramor M., Plavec J. Stres B. 2022. 

Urine and fecal 1H-NMR metabolomes 

differ significantly between pre-term and 

full-term born physically fit healthy adult 

males. Metabolites, 12: 6, doi. 

https://doi.org/10.3390/metabo12060536, 

23 p.  

Conceptualization, T.D., D.O., 

G.P.M. and B.S.; data 

collection, M.M., S.O., R.Š., 

L.D. and B.S.; methodology, 

L.D., R.Š. and B.S.; 

conceptualization for 

metabolomic analysis, J.P. and 

B.S., formal analysis, L.D. and 

B.S.; data curation, B.M.; 

writing—original draft 

preparation, L.D. and B.S.; 

visualization, L.D. and B.S.; 

supervision, B.S.; project 

administration, T.D., G.P.M., 

D.O. and B.S.; funding 

acquisition, T.D., D.O. and B.S.  

H0: No significant 

difference exists between 

preterm and term groups of 

participants at the levels of 

faecal or urine metabolomes 

or faecal metagenomes. 

 H1: There are significant 

differences between preterm 

and term groups of 

participants in faecal and 

urine metabolomes that can 

be linked to their physical 

performance in experiments 

and physiological data at 

exercise and rest. 

H2: There are significant 

differences at the level of 

metagenomics makeup of 

both groups, giving rise to 

identification of specific 

metabolic pathways differing 

between the two groups and 

their gut environment 

characteristics. 

H3: Term and preterm gut 

samples contain specific 

MAGs associated with 

differences in gut 

environmental conditions 

between the two groups. 

MAGs assembly 
Data collection, formal analysis, 

visualisation, writing 
 

Data integration 
Data collection, formal analysis, 

visualization, writing 

H0: There is no significant 

difference between 

metabolomes of prematurely 

born, born on time, before 

SMA treatment and post 

SMA treatment groups. 

H1: There are significant 

differences in urine 

metabolomes that enable 

identification of biomarker 

pools and metabolic 

pathways delineating various 

groups under investigation. 
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3.1.1 Developed tools for data integration 

 

Microbial species play important roles in diverse environments characterised by a wide range of 

organismal complexity (Murovec et al., 2020). Microbes living in the gut are in constant not only 

bidirectional interactions with the host but also multidirectional interaction with their microbial 

counterparts through the production of various molecules that can improve the health status of the 

host or, in contrast, lead to the development of a noncommunicable disease or its progression 

(Murovec et al., 2020). Disease progression can manifest as mild gastrointestinal symptoms or as 

serious diseases such as inflammatory bowel disease, colon cancer, or liver cancer.  

 

It has to be kept in mind that specific proteins and peptides next to metabolites from metabolic 

reactions mediate the crosstalk between gut, brain, and other peripheral metabolic organs in order to 

maintain energy homeostasis. The multidirectional interactions between metabolic organs and the 

central nervous system have evolved in parallel with the multicellularity of organisms to maintain 

whole-body energy homeostasis and ensure the organism’s adaptation to external environmental 

parameters. These interactions become severely affected in pathological conditions of 

noncommunicable diseases, such as obesity, insulin resistance, metabolic syndrome or type2 

diabetes. Bioactive peptides and proteins next to hormones and cytokines, produced by both 

peripheral organs and the central nervous system, plus molecules from muscle wear and tear including 

metabolites from microbiome and energy production/consumption are key messengers in this inter-

organ communication (Castillo-Armengol et al., 2019). 

 

A number of diseases were linked to metabolic imbalances that are partially or completely related to 

the gut microbiome (from metabolic syndrome and obesity to autoimmune diseases, infections, and 

mental disorders (Murovec et al., 2021). The discovery of sequencing technologies enabled the study 

of microbes that cannot be cultured. It quickly became clear that most microbes (i.e., 99%) cannot be 

cultured in the laboratory environment, but we can sequence their genetic material and see which 

microbes are present in the sample. Based on amplicon sequencing (e.g., 16S rRNA) or whole 

metagenome sequencing, we can determine which microbes are present in the samples (microbiota) 

and if coupled to their genetic potential through inference (based on 16S rRNA coupled to nearest 

genome sequences) or analyse all the genes (based on whole metagenome) that are present in the 

sample. Based on their genetic potential, we can infer the microbial functionality of the sample (what 

these microbes most likely can do), enzymatic reactions that they support, next to the metabolic 

pathways that result from enzymatic reactions and metabolites that are most likely the result of all 

these numerous transformations (Berg et al., 2020). 

 

A number of different methods were developed for the analysis of sequences in the context of 

microbiome research. Based on 16S rRNA, Mothur (Schloss et al., 2009) can be used to analyse 

amplicon sequence material at three different levels: (i) genus (Rühlemann et al., 2021), (ii) 97% 16S 

rRNA identity operational taxonomic units (Mysara et al., 2017), or (iii) amplicon sequence variants 

(Callahan et al., 2017; Schloss, 2021). In addition, another set of tools was developed for predicting 
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microbial functionality based on amplicon sequences: PICRUSt (Langille et al. 2013a), PICRUSt2 

(Douglas et al., 2020), Tax4Fun (Aßhauser et al., 2015), Tax4Fun2 (Wemheuer et al., 2020), and 

Piphillin (Narayan et al., 2020). These tools link 16S rRNA sequence information to reference 

genome sequences and predict microbial potential based on metagenomic functional gene content 

(Sun et al., 2020). We have developed GUMPP for large-scale, streamlined, and reproducible analysis 

of bacterial amplicon data and prediction of their functional potential (Murovec et al., 2021), 

consisting of Mothur (Schloss et al., 2009), PICRUSt2 (Douglas et al., 2020), and piphillin (Narayan 

et al., 2020) in order to support large scale data analyses. Thus far, more than 600 samples from 32 

studies amounting to 120 million reads were analysed in meta-analysis project (Klammsteiner, 

University of Innsbruck, in preparation).  

 

The more objective analysis of functionality of microbes cannot be studied without sequencing the 

entire metagenome directly. Whole metagenome sequencing involves the untargeted sequencing of a 

random subset of all sequences to certain read depth, not like in targeted (amplicon) sequencing in 

which only a small portion of a specific gene is sequenced. BioBakery (McIver et al., 2018; Beghini 

et al., 2021) is the workflow for whole metagenome sequence analysis that combines different tools 

for quality analysis, taxonomic analysis (MetaPhlAn), functional genes, enzymatic reactions, and 

metabolic pathways of interest in the microbial community (HUMAn3). In addition, the extension of 

this method by utilizing training on actual metagenomes coupled to lipid-soluble and water-soluble 

metabolomes determined through mass spectrometry allows prediction of microbial metabolites on 

metagenome information alone and hence describing the metabolomes that might be produced in this 

community (MelonnPan). Another positive aspect of whole-genome sequencing is that information 

on genetic material can be obtained from different taxonomic groups (archaea, bacteria, protozoa, 

fungi, DNA viruses, (also human DNA)), which can improve the understanding of the complexity 

and interactions between different taxonomic layers. We are in the process of publishing the 

developed metaBakery workflow (manuscript in preparation), which is a re-implementation of the 

BioBakery workflow, with the addition of the sequence QC steps, extended with diversity calculators 

implemented within Mothur, guided by our in-house skeleton application, and implemented as 

Singularity container for large-scale, streamlined, and reproducible analyses at HPC setting.  

 

The next step in whole metagenome sequencing is the possibility of de-novo metagenome assembly. 

This is a process in which reads are screened for quality, assembled, and binned together to yield 

assembled metagenomes. This process can lead to the discovery of entirely new species. However, 

care must be taken in this process regarding the completeness and contamination of the newly 

assembled genomes. According to the MIMAG standard (Bowers et al., 2019), we should all strive 

to assemble the most complete (> 95%) and least contaminated (< 5%) MAGs. These will enable the 

next stage of evolutionary analysis and hopefully provide new ideas on how microbes interact with 

human beings as their host. We have developed the Metagenome-Assembled Genomes Orchestra 

(MAGO (Murovec et al., 2020)) from highly successful tools for quality analysis (FastQC, fastp 

(Chen et al., 2018)), assembly (IDBA-UD (Peng et al, 2012), metaSPAdes (Nurk et al, 2017) and 

megaHIT (Li et al., 2015)) and binning (maxBin (Wu et al., 2016), MetaBAT (Kang et al., 2015), 
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CONCOT (Alneberg et al., 2014), BinSanity (Graham et al., 2017), and DAStool (Sieber et al., 

2018)). In conjunction, the CheckM tool (Parks et al., 2015) is used to filter out which MAGs are of 

high quality according to the MIMAG standards (Bowers et al., 2019). The MAGO tool also allows 

the user to analyse the evolution of the MAGs obtained using ezTree (Wu, 2018), average amino acid 

identity (AAI) enables insight into species cut-off values, Prokka (Seemann, 2014) serves for genome 

annotation while Roary (Page et al., 2015) provides pan- and core-genome analysis, and FastANI 

enables nucleotide identity analysis of genomes. The resulting bins are then selected based on their 

completeness and contamination according to MIMAG standard and analysed subsequently using 

other tools (Castro et al., 2018; Rodriguez-R et al., 2018; Ruiz-Perez et al., 2021). 

 

The three tools for large scale data analyses presented in our work (MAGO, GUMPP, metaBakery 

(manuscript in preparation)) were prepared as a skeleton framework consisting of more than 10,000 

lines of code written in Python, which orchestrates the execution of each part and takes care of the 

execution of programs and the creation of their command lines (Murovec et al., 2020; Murovec et al., 

2021). The parameters for the execution of the workflow are entirely in the hands of the user. All 

tools were developed as Singularity images (Kurtzer et al., 2017) prepared for straightforward 

deployment on HPC for large-scale, straightforward analysis of 10,000 samples as well as for 

educational purposes. Both, metaBakery and MAGO tools were used for metagenomic sequence 

analysis in the PreTerm project (Deutsch et al., 2022b). Both tools are under the CC-BY 4.0 open-

source license and are open to any extensions, thus providing the opportunity to develop further and 

become standardized workflows for microbial analysis on a global scale. metaBakery (in preparation) 

will be used in the future project that is part of the Million Microbiomes from Human Project (MMHP, 

(Fang et al., 2018; Han et al., 2018; Patterson et al., 2019)) and will provide insight into the Slovenian 

gut microbiome. Currently, 5000 deep sequencing samples (10 mio reads/sample) encompassing 13 

gastrointestinal diseases including depression next to healthy state (14 conditions) from 22 states were 

processed utilizing 1.2 million CPUh on a VEGA supercomputer (in preparation), providing thus 

another well represented dataset amenable for ML exploration. 

3.1.2 Physicochemical characteristics of microbial world in the gut 

 

The peristaltic waves that create the contractile patterns of the small intestine create an environment 

that is constantly changing. The constant mixing of faecal material results in changes in 

environmental conditions for the microbes living in the gut, such as pH, which can affect microbial 

growth (Ehrlein and Schemann, 2005; Johnson et al., 2012; Cremer et al., 2016; Glover et al., 2016; 

Cremer et al., 2017; Sket et al., 2017a). A number of studies have linked stool consistency, the 

microbial living environment, to the richness of the gut microbiota, its composition, enterotypes, 

elevated inflammatory levels, lipopolysaccharides, and bacterial growth rates (Tigchelaar et al., 2016; 

Vandeputte et al., 2016). Stool consistency was mostly assessed with BSS method (Heaton et al., 

1992; Lewis and Heaton, 1997). Lower BSS scores were associated with longer colonic transit time, 

higher microbial richness, and protein catabolism (Roager et al., 2016). Alteration of the microbiota 

and the occurrence of local inflammation was previously found to be correlated with BSS. High intra- 
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and inter-rater variance was observed in the assessment of the BSS (Derrien et al., 2010; Chumpitazi 

et al., 2016). The assessment of the BSS is based on self-assessment, which may be biased. Therefore, 

only a well-trained expert can draw medically important conclusions based on the BSS alone 

(Matsuda et al., 2021). 

 

Faecal materials are semisolid materials (i.e., pastes) in terms of material physics (Grillet et al., 2012), 

which places them between viscoelastic materials (semipermanent deformation in response to 

external forces) and plastic materials (permanent deformation). This way of thinking led us to the 

evaluation of the minimal pressure approach for the less biased and high-throughput evaluation of the 

consistency of faecal material (Deutsch and Stres, 2021). Minimal pressure, expressed as force per 

unit area, is the pressure required to cause permanent deformation of faecal material. We have shown 

that MP increases exponentially compared to decreasing values of BSS, regardless of the sex of the 

individuals (Deutsch and Stres, 2021). We demonstrated that there is a nonlinear (asymptomatic) and 

complex relationship between dry matter and MP. Longitudinal mapping of the surface MP over the 

entire length of a single stool sample revealed that various fine-grained internal, local differences 

existed. In addition, despite the BSS uniform scoring of lower BSS values, our analysis showed that 

a more resistant stool surface layer was followed by softer internal structures, resulting in lower MP 

values associated with approximately healthy stool consistency (Deutsch and Stres, 2021). 

 

We found a boundary that may distinguish between healthy state (MP < 75) or constipation (MP > 

75) (Blake et al., 2016; Sket et al., 2017b; Sket et al., 2018). MP < 30 corresponded to aqueous stool 

samples. MP approach introduced the continuous scale, which can be measured to overcome the 

problems of BSS assessment errors in BSS around 3 and 4, which are difficult to determine based on 

visual inspection, despite the training and visual support in classification (Deutsch and Stres, 2021). 

 

MP was measured on the samples collected within the PlanHab (Šket et al., 2020) and the PreTerm 

study (Deutsch et al., 2022b). Notably, the past studies demonstrated that blockage of faecal surface 

pores and mucus retention were associated with selective pressure on the gut microbiome, its gene 

expression, and metabolic activity, leading to local inflammation (Vandeputte et al., 2016; Sket et al., 

2017a; Sket et al., 2017b; Sket et al., 2018; Aron-Wisnewsky et al., 2019). Thus, we showed that the 

MP approach can accurately describe the clinical significance of stool consistency (Deutsch and Stres, 

2021). In addition, the MP approach does not require the pre-treatment of samples and allows for ease 

of measurement without expensive equipment, as well as reproducibility of these measurements with 

different samples (fresh vs. frozen; male vs. female), with simple correction for the temperature of 

measurement. We also found that MP correlates with faecal methionine and acetate based on 1H-

NMR measurements. Based on these two metabolites, we can distinguish three different groups of 

faecal consistency (MP < 30, 30<MP<75, MP>75). Methionine was previously associated with 

oxidative stress and was elevated in inactive individuals, while acetate correlated negatively with 

insulin sensitivity, indicating that different stool consistencies may have an impact on the biological 

system of the host. The observed differences in methionine and acetate associated with MP, were thus 

apparently consequence of inactivity coupled with Western diet as based on the samples collected 
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within the PlanHab project. The MP approach enabled us to show that with the measurement of some 

physicochemical parameters and ‘omics methods, a completely new level of understanding of 

complex biological systems can be commenced and explored (Deutsch and Stres, 2021). 

 

3.1.3 Metabolomics in the PlanHab study 

 

The PlanHab study was the first study by our group to examine the metabolomics of human urine 

(Šket et al., 2020). The run-in and the following three 21-day interventions (NBR, HBR, and HAmb) 

in a crossover manner) were performed. Morning urine samples were collected throughout the 

experimental setup (Sket et al., 2017a; Sket et al., 2017b; Sket et al., 2018). The unique crossover 

design allowed us to consider the responses of the same participants to all three experimental variants 

under controlled dietary, environmental, and experimental conditions. A total of 523 urine samples 

were collected and prepared for 1H-NMR measurements. Participants in the bed rest group (NBR and 

HBR) had specific metabolic compositions compared with the HAmb group. We concluded that the 

decision of the host to minimize physical activity under hypoxic conditions can be detected within a 

few days at the level of the urine metabolome measured by NMR. Under normoxic bed rest 

conditions, these metabolic changes became detectable within the first ten days. The metabolites 

identified in this study were associated with a number of different diseases: (i) chronic obstructive 

pulmonary disease (Adamko et al., 2015; Ząbek et al., 2015) and (ii) cardiovascular disease associated 

with tissue hypoxia, which can also lead to type 2 diabetes, depression, and osteoporosis (Wang et 

al., 2011a; Senn et al., 2012; Adamko et al., 2015; Ząbek et al., 2015). The PlanHab study utilizing 

urine 1H-NMR metabolomes led us to conclude that there is no simple metabolic biomarker that could 

distinguish between different states (healthy vs. sick, active vs. inactive; active vs. sedentary). 

Complex multivariate descriptions of metabolism were needed to capture commonalities in human 

physiology, interpersonal variability, and temporal variability. This concept was utilized in all other 

subsequent studies. For instance, a metabolite could be up- or down-regulated depending on the 

metabolic pathway. Overall, inactivity alone or in combination with hypoxia resulted in decreased 

systemic metabolic diversity, increased number of metabolic pathways affected, and more rapid 

metabolic deconditioning leading to the development of negative physiological symptoms such as 

insulin resistance, low-level systemic inflammation, constipation, depression, and metabolic 

syndrome (Sket et al., 2017a; Sket et al., 2017b; Sket et al., 2018). The results of the PlanHab study 

encouraged us to continue our research utilizing samples from other studies involving different levels 

of inactivity, such as X-Adapt (differences between trained and untrained individuals), spinal 

muscular atrophy, and the PreTerm project (Figure 14), which compares different times of exposure 

to hypoxia, physical activity, and time of exposure to different conditions (Šket et al., 2020). 
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Figure 14:   Representation of studies involved in this work  

Representation of studies involved in this work with the relation to physical activity and hypoxia exposure. 

 

Slika 14:   Prikaz študij udeleženih v tem delu  

Prikaz študij udeleženih v tem delu glede na stopnjo fizikalne aktivnosti na eni strani in izpostavitve hipoksiji na drugi.  

 

3.1.4 Spinal muscular atrophy 

 

Spinal muscular atrophy is a neuromuscular disease that manifests as progressive atrophy and 

weakening of skeletal muscle due to progressive loss of motor neurons and also affects a number of 

other organ systems (Melki, 2017; Yeo and Darras, 2020). With an incidence of 1 per 11,000 births, 

it is still considered the most common genetic cause of child deaths (Sugarman et al., 2012). In SMA 

patients, mutations in the centromeric SMN2 gene lead to the formation of unstable proteins and, at 

the same time, the expression of the telomeric SMN1 gene is also impaired due to deletion (Lefebvre 

et al., 1995; Lorson and Androphy, 2000; Lunn and Wang, 2008; Smeriglio et al., 2020). In recent 

years, new therapies have been developed for the treatment of SMA. These therapies alter the natural 

course of the disease by changing the expression of or replacing mutated genes involved in the 

development of SMA (Chiriboga et al., 2016). Nusinersen was the first drug approved by the Food 

and Drug Administration in the United States and by the European Medicines Agency for SMA. 

Nusinersen is an antisense oligonucleotide that modifies mRNA splicing, resulting in an active SMN 

2 protein and thus better SMA outcomes (Chiriboga et al., 2016; Corey, 2017; Ramdas and Servais, 

2020). It must be administered intrathecally because it cannot cross the blood-brain barrier (Faber et 

al., 2007; Rigo et al., 2012). 
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Urine, liquor, and serum samples from SMA patients were collected before treatment and after the 

4th application of nusinersen. Medical examination at the 4th application showed improvement in 

mobility. The application of nusinersen resulted in better movement, easier writing and sitting or 

standing, and increase in strength, all as measured by the Children’s Hospital of Philadelphia Infant 

Test of Neuromuscular Disorders (CHOP INTEND (Glanzman et al., 2010), the Hammersmith 

Functional Motor Scale (HMFS (Pera et al., 2017)), the Expanded Hammersmith Functional Motor 

Scale (HMFSE (Pera et al., 2017)), or the Motor Function Measurement (MFM (Bérard et al., 2005)) 

tests. Patients showed improvement in wheelchair control, ambulation, fatigue, hygiene, speech, and 

sleep after the 4th application of nusinersen (Osredkar et al., 2021). 

 

In contrast to the physical examinations, we could not establish that based on the npMANOVA test 

on all metabolic matrices (urine, liquor, serum) regardless of gender or data transformation (Deutsch 

et al., 2021a). In this context, we could not reject the null hypothesis from section 1.3.2 and table 2, 

which states that there are no significant differences before and after treatment. Perhaps these 

differences could be confirmed after 10 applications of nusinersen, but this would take too much 

additional time to collect the samples and to complete within the timeframe of this doctoral thesis. 

These results show that the efficacy of nusinersen can be seen with the medical examinations and the 

assessment test. Perhaps the use of other metabolomics methods such as mass spectrometry, which is 

more sensitive to nanomolar concentrations compared with NMR, would lead to the detection of 

biomarkers that could be used as biomarkers for monitoring nusinersen treatment (Emwas et al., 

2019).  

 

In addition, a series of urine samples were collected from the matched healthy cohort to compare the 

metabolomes of SMA patients with the metabolomes of healthy individuals. This comparison led to 

the observation of a significant metabolic difference between females and males (p=0.0001), as well 

as the healthy cohort and the SMA patients. The npMANOVA showed the importance of gender 

(F=54.9; p=0.0001) and SMA status before and after treatment (F=20.7; p=0.0001) to be significant. 

Both methods, PLSDA and Random Forest, showed significant differences between female and male 

metabolomes, and we also detected different metabolic diversity when comparing SMA patients to a 

comparable healthy cohort. A significant reduction in the cumulative concentration of metabolites 

was observed in SMA patients (p < 0.05). The reduction in the number of metabolites was also 

observed in healthy females compared to healthy males. This was the first report describing the 

existence of differences between males and females. Because of these differences, it is important for 

future studies to include a larger number of females in studies such as this one to determine the 

important differences between female and male metabolic makeups and pathways. There are some 

preliminary parallels with studies of exercise showing that metabolite counts may increase after 

exercise (Nieman et al., 2013; Schranner et al., 2020) or studies of bed rest (e.g., PlanHab), which 

also showed a 30% reduction in metabolite counts after three weeks of bed rest (Sket et al., 2017a; 

Sket et al., 2017b; Sket et al., 2018). Symptoms such as insulin resistance, bone and muscle loss, 
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changes in lipid metabolism were all detected in bedrest studies, and all of these symptoms can be 

observed also on the list of conditions associated with SMA. 

 

We used urine metabolomes from SMA patients and healthy individuals to create a classification 

model to distinguish between these two conditions. For this purpose, the JADBIO machine learning 

was used (Tsamardinos et al., 2022), and logistic ridge regression was selected with an AUC value 

of 0.958 as the best model to distinguish SMA patients and healthy controls. Creatinine was the key 

metabolite separating healthy from SMA-affected participants as was also reported a few months 

before our publication in another study that monitored the SMA progression of denervation with 

elevated levels of creatinine in more severe forms of SMA disease (Alves et al., 2020). Creatinine 

concentrations did not change significantly in SMA patients before and after the 4th application of 

nusinersen. The increased creatinine levels were also observed in urine samples from our bed rest 

studies (PlanHab (Šket et al., 2020)). The reintroduction of exercise completely reversed the adverse 

effects in these studies (Sket et al., 2017a; Sket et al., 2017b; Sket et al., 2018; Šket et al., 2020). 

Immobilized patients receiving vibration therapies benefited compared with controls and may 

represent a potential step in the physical activation of SMA patients after nusinersen therapy (Hoff et 

al., 2015) in the future due to involuntary contractions of muscles during balancing (Figure 15).  
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Figure 15:   Model representing results of inactivity. 

Model representing the general results of long-term inactivity due to illness or bed-rest studies. All levels of inactivity 

can result in systemic symptoms leading to noncommunicable diseases. Resuming or reintroducing physical activity can 

reduce these symptoms and lead to better treatment and health outcomes. 

 

Slika 15:   Model predstavlja rezultate neaktivnosti.  

Model predstavlja rezultate dolgočasne neaktivnosti nastale zaradi bolezni ali študij ležanja. Ne glede na razlog, vse vrste 

neaktivnosti, vodijo v pojav sistemskih simptomov, ki se kažejo kot kronične bolezni. Povečana fizikalna aktivnost, lahko 

izboljša zdravje ali zdravljenje takih bolezni.  

3.1.5 X-Adapt project – the influence of short-term training on inactive individuals 

 

We investigated complete inactivity within the context of the SMA project. However, in the 21st 

century, it is becoming increasingly clear that physical inactivity, which is the consequence of a 

sedentary lifestyle and physically less challenging working conditions, is also a global problem that 

poses a risk for the development of chronic noncommunicable diseases and increased global mortality 

(Kelly et al., 2020b). It was showed that minimizing sedentary time can reduce the risk of chronic 

diseases such as coronary heart disease, type 2 diabetes, metabolic syndrome, etc. (Sallis et al., 2016). 

The goal of the X-Adapt project was to examine the differences between physically active (trained 

participants) and inactive individuals (Sotiridis et al., 2018; Sotiridis, 2019b; Sotiridis et al., 2019; 

Sotiridis et al., 2020). The project pre-screened the participants and enrolled 10 active and matching 

10 inactive male participants in the 10-day training protocol, which consisted of daily training on a 

cycle ergometer at 50% of maximal pedalling power under normoxic and normobaric (~1000 hPA) 

conditions at 24°C ambient temperature. Before participating in the 10 days of training, all 

participants (active and inactive) underwent the three-day testing under thermoneutral normoxic and 

hypoxic conditions next to hot normoxic conditions. Study participants were classified as trained or 
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untrained based on their maximal oxygen output (untrained VO2max < 45 mL-kg-1-min-1, trained 

VO2max > 55 mL-kg-1-min-1) (Jay et al., 2011; Montero and Lundby, 2017). The trained participants 

practiced their activities several times per week (running, swimming, cycling) and the untrained 

participants were asked not to participate in organized sports but were allowed to be active because 

of commuting (cycling to work). Urine was collected from all participants before the start of the 

study, at pre-testing, after 10 days of training and after the study (Armstrong and Barker, 2011; 

Sotiridis et al., 2018; Sotiridis, 2019a; Sotiridis et al., 2019; Sotiridis et al., 2020; Deutsch et al., 

2022a). 

 

The measurements directed at human physiology showed that there were some nearly significant and 

statistically significant differences between trained and untrained subjects at pretesting, and that there 

were nearly significant (but still insignificant) differences even after only 10 days of training when 

comparing pre- and post-training, suggesting that some characteristics may be observed in subjects 

leading an active lifestyle. The differences between the condition before and after training were larger 

in the untrained groups and based on the measurements of VO2max before training and its change 

during the 10 days of training the rate of adaptation to training is greater in untrained individuals. 

Based on physiological measurements, we observed that the untrained and trained groups became 

synchronized in terms of the measured training parameters (Sotiridis et al., 2018; Sotiridis, 2019a; 

Sotiridis et al., 2019; Sotiridis et al., 2020; Deutsch et al., 2022a). 

 

Based on urine metabolomics, no significant difference could be detected between urine samples 

before and after 10 days of training. However, differences were observed between trained and 

untrained urine 1H-NMR metabolomes. In addition, urine physicochemical properties (pH, total 

dissolved solids, salinity and conductivity) also differed significantly between these two groups. For 

example, pH was decreased in untrained individuals, a condition previously associated with metabolic 

syndrome and chronic heart failure (Maalouf et al., 2007; Otaki et al., 2013; Kraut and Madias, 2016; 

Shimodaira et al., 2017). 

 

Metabolites (cholate, tartrate, cadaverine, lysine, N6-acetilysine, methanol, N-acetylglucosamine, 

butanone, and caprate) were identified as metabolites responsible for differentiation between trained 

and untrained group using multivariate statistics and machine learning. All metabolites were 

previously observed in studies related to muscle damage, hormone receptor levels, recovery after 

resistance training, lower cardiovascular risk (tartrate) (Abramowicz and Galloway, 2005; Spiering 

et al., 2008) or atrophic state in myotubes, and obesity (cholate) (Li et al., 2020; Abrigo et al., 2021; 

Alamoudi et al., 2021; Mercer et al., 2021; Pushpass et al., 2021; Zheng et al., 2021). Cholate is a 

primary bile acid that was enriched in the untrained group, which was previously associated with the 

development of cancer. Incidentally, increased concentrations of primary bile acids in the 

bloodstream were observed in less fit women, and a single training run may decrease the amount of 

these compounds (Danese et al., 2017; Maurer et al., 2020). 
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Lysine and cadaverine are polyamines previously associated with metabolic syndrome and colon or 

liver cancer (cadaverine was elevated in the untrained group). Lysine is involved in aminoacyl-tRNA 

biosynthesis, a metabolic pathway enriched in the trained group and previously correlated with higher 

physical activity, which may be due to changes in protein synthesis in active subjects (Robinson et 

al., 2017; Castro et al., 2019; Tabone et al., 2021; Tian et al., 2021). 2-hydroxy-3-methyl valerate was 

increased in untrained participants, which may affect energy metabolism via PPAR-α, as previously 

shown in older, functionally impaired adults (Coen et al., 2013; Lustgarten et al., 2014).  

 

Using this approach, we showed that the entire system in active subjects was significantly different 

from that of inactive subjects (p=0.003). After 10 days of training, the significance of difference 

disappeared at the end of the campaign (p=0.226) (Figure 16). It became clear that minor metabolomic 

differences existed between the metabolomes of trained and untrained subjects, which remained 

physiologically completely different with respect to their physical capabilities. Therefore, lifelong 

training would be required to maintain a healthy metabolome phenotype. Our study showed that an 

exercise load 5 times higher than the 75–150 minutes per week recommended by WHO is effective 

(Sallis et al., 2016; Kelly et al., 2020b). In addition, this experiment has shown that 3-day morning 

urine samples provide a good biological matrix for discriminating active from inactive individuals, 

which cannot be observed in a 1-day sampling because of diurnal variability. Systemic homeostasis 

depends on a number of different parameters and involves communication between different organs 

through which metabolic pathways affected by a metabolite in one organ can affect other metabolic 

pathways in another organ. A sedentary lifestyle can disrupt this communication between organs, 

leading to the manifestation of various diseases. Higher levels of exercise can restore interorgan 

communication in physically inactive individuals towards that of healthy and active individuals (Di 

Liegro et al., 2019; Deutsch et al., 2022a). 
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Figure 16:   Change between trained (T) and untrained (UT) participants of X-Adapt study. 

The entire system in active subjects was significantly different from that of inactive subjects (p=0.003) before the X-

Adapt study. After 10 days of training, the significance of difference disappeared at the end of the campaign (p=0.226). 

 

Slika 16:   Sprememba med treniranimi (T) in netreniranimi (UT) udeleženci študije X-Adapt.  

Na začetku kampanje je bil celoten sistem treniranih udeležencev študije X-Adapt drugačen od netreniranih udeležencev 

(p=0.003). Po 10-dnevnem treniranju je ta razlika na nivoju celotnega Sistema izginila (p=0.226).   

3.1.6 Metabolomes and microbial metagenomes can distinguish preterm and full-term born 

adults 

 

Preterm birth is defined as a birth before 37 weeks gestation; approximately 10% of births are preterm 

worldwide, and it is still one of the leading causes of death in children under 5 years of age. Preterm 

birth increases the risk of developing various chronic diseases such as cardiovascular, 

endocrine/metabolic, renal, neurological, and psychiatric disorders. One of the main causes of these 

disorders is increased oxidative stress in the first weeks of life (Moutquin, 2003; Magalhães et al., 

2004; Pialoux et al., 2009; Blencowe et al., 2012; Lushchak, 2014; Liu et al., 2015; Manley et al., 

2015; Debevec et al., 2017; Crump, 2020; Tingleff et al., 2021). There is a high probability that some 

clinical parameters such as body fat mass, arterial blood pressure, fasting glucose and cholesterol may 

be elevated (Kerkhof et al., 2012; Markopoulou et al., 2019; Crump, 2020). All of these characteristics 

were shown in various studies to be different between preterm and full-term born adults and that these 

differences are particularly related to the production of reactive oxygen species, and can be observed 

in association of different levels of exercise or physical activity (Magalhães et al., 2004; Powers et 

al., 2011; Filippone et al., 2012; Debevec et al., 2017; Martin et al., 2018). 

 

The aim of the PreTerm project was to investigate whether differences of blunted ventilatory response 

(HVR) exist in physically fit young men (born preterm and full-term) under hypoxic and normoxic 
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environmental conditions at rest and during physical activity (Debevec et al., 2019; Debevec et al., 

2022). In addition, a high-throughput analytical approach consisting of urine and faecal metabolomics 

and faecal metagenomics was used to describe the complexity of the human body and gut microbiome 

in its response to increased oxidative stress levels at rest and during exercise in normoxia and hypoxia 

(Martin et al., 2020). 

 

A total of 37 men were enrolled in this study (15 born full- term and 22 born preterm). Incremental 

cycling in normoxia and hypoxia were shown to increase levels of oxidative proteins, catalase, 

superoxide dismutase, and nitrosative markers in both groups immediately after exercise (Martin et 

al., 2020). Participants in the preterm group showed lower exercise capacity in normoxia compared 

with the full-term group and had lower HVR, whereas no such difference was observed in hypoxia 

(Vrijlandt et al., 2006; Lovering et al., 2013; Svedenkrans et al., 2013; Bates et al., 2014; Clemm et 

al., 2014; Farrell et al., 2015; Debevec et al., 2019). These results indicate that preterm infants may 

have increased oxidative stress during acute exercise in normoxia, whereas such a response was not 

observed in hypoxia (Martin et al., 2020). 

 

We measured 25 physicochemical variables in the stool samples (including the MP approach 

described above), and no significant differences were found between the preterm and full-term 

groups. These results indicate that there were no differences in gut environment parameters between 

preterm and full-term infants, regardless of environment (hypoxia vs. normoxia). Faecal and urine 

samples were collected three days before and three days after the hypoxic and normoxic tests. 

Multivariate statistics based on 1- and 2-way PERMANOVA showed that there were significant 

differences between preterm and full-term participants based on faecal and urine metabolome, but 

not between pre-test and post-test in normoxia and hypoxia (Deutsch et al., 2022b). 

 

Acetone, tartrate, and trans-aconitate were metabolites that were decreased in the preterm group 

according to the MetaboAnalyst’s results. These metabolites are associated with exercise, fasting, or 

diabetes mellitus (Paradis et al., 2015; Crump et al., 2019; Perrone et al., 2021). Based on the urinary 

metabolome, the most interesting enriched metabolic pathway (D-arginine and D-ornithine 

metabolism) was described previously in association with systemic or tissue hypoxia (Qiu et al., 2017; 

Haraldsdottir et al., 2019). The differences appear to be due to impaired autonomic function because 

heart rate recovers more slowly in preterm adults, which could lead to anoxia and increase their 

cardiovascular risk, as previously suggested (Sonntag et al., 2007; Ten, 2017). 

 

Faecal metabolomes also differed between preterm and full-term participants. Lactate, serotonin, and 

tyrosine were the major metabolites that accounted for the difference between the preterm and full-

term groups. The first two were increased in the preterm group, which, together with the enriched 

metabolic pathway (Warburg effect), shows that some metabolic changes can be observed in preterm 

infants. The Warburg effect was described previously in preterm infants and associated with 

mitochondrial dysfunction (McIver et al., 2018). These findings may represent the first evidence that 

systemic differences due to lifelong exposure to oxidative stress do indeed exist and raise the question 
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of whether these differences are associated with minute differences generated on the part of the 

preterm host or on the part of the microbiome responding to these environmental signals or with their 

mutual interaction in the form of a complex biochemical network in the steady state (Deutsch et al., 

2022b). 

 

The collected faecal samples were used for shotgun sequencing to investigate whether the observed 

differences in faecal metabolomes exist at the microbial level. No significant differences were 

observed at the taxonomic level, but the relative abundances of archaea and viruses were higher in 

the preterm group and would deserve further, more detailed inspection using larger sample 

collections. The calculation of Shannon and other diversity indices showed that microbial diversity 

was higher in preterm group. In the previous decade, it became clear that the more important question 

in the study of the microbiome is what the microbes in our gut are doing. For this reason, HUMAnN3 

and metaPHLAnN3 were used to determine which gene families, enzymatic reactions, metabolic 

pathways, and predicted metabolites can be used to distinguish between preterm and full-term born 

adults. Machine learning was used to build classification models for this purpose utilizing JADBio 

(Deutsch et al., 2022b). 

 

No significant differences were detected based on gene families, but we did detect some differences 

based on enzymatic reactions, metabolic pathways, and predicted metabolites. The previously 

described RXN-15378 enzymatic reaction of succinate dehydrogenase was increased in the preterm 

group. Succinate itself is a microbial metabolite and can accumulate in the intestinal tract during 

inflammation or microbial imbalances. It has tissue-specific but also pro-inflammatory properties and 

is also a source of propionate production by Bacteroides spp. and Prevotella sp. Succinate was shown 

to accumulate in cells under low-oxygen conditions and represents the metabolic signature of 

hypoxia. Excessive uptake of microbially produced succinate was shown to lead to higher levels of 

intracellular succinate, which slowed down prolyl- hydroxylase activity through product inhibition 

and lead to additional activation and stabilization of HIF-1α beyond the response to hypoxia itself, 

which significantly enhanced LPS-induced expression of proinflammatory cytokines in human cells 

(Rubic et al., 2008; Ariza et al., 2012; Tannahill et al., 2013; Akram, 2014; Littlewood-Evans et al., 

2016; Connors et al., 2018). 

 

PWY-7456 (β-(1,4)-mannan degradation), PWY-7323 (superpathway of GDP-mannose-derived O-

antigen building blocks biosynthesis) and GLYCOLY-SIS-TCA-GLYOX-BYPASS (superpathway 

of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass), P221-PWY (octane oxidation), 

PWY-5173 (unclassified) were pathways that were increased in the preterm group. Some of them 

may be beneficial and strive for mucosal integrity and host nutrition (β-(1,4)-mannan degradation) or 

significantly increase energy production, which would be important in the case of oxidative stress as 

in preterm individuals (super-pathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate 

bypass). Acetyl-CoA biosynthesis may also lead to increased production of butyrate via the 

production of acetyl-CoA. In contrast, some pathways have a more negative effect and were also 

increased in the preterm group. These pathways were shown to be involved in lipopolysaccharide 
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LPS production (GDP-mannose-derived O-antigen building blocks biosynthesis) associated with 

Gram-negative bacteria and causative agent of different degrees of inflammation (Samuel and 

Reeves, 2003; Wolfs et al., 2010; Shah et al., 2015; Kim et al., 2016; La Rosa et al., 2019; Lindstad 

et al., 2021). However, octane oxidation, previously described in the context of westernization of the 

human gut and associated with liver disease, was also observed (Deutsch et al., 2022b). All these 

differences can be associated with the physiologically significant deficits observed between both 

groups (Martin et al., 2018; Martin et al., 2020). 

 

Seventeen predicted metabolites were also detected by the 1H-NMR approach, none of which were 

considered important for differentiation in the machine learning. Significant differences were 

detected in the urine and faecal metabolomes in addition to predicted metabolites, suggesting that 

systemic differences between the two groups exist. Elevated metabolites were previously associated 

with cardiovascular disease (carnitine), increased intestinal permeability, elevated levels of 

inflammatory cytokines, metabolic syndrome, or cancer growth (putrescine and diacetylspermine). 

In contrast, some predicted metabolites were decreased in the preterm group. Deoxycholate is a 

secondary bile acid and a known promoter of colon cancer. The decreased levels of this molecule 

were generally observed due to the increased urinary excretion of cholate observed in urine 

metabolomics. Given the physiological differences between the two groups examined in this study, 

it seems plausible that there were also differences in the extent of utilization of these polyphenols in 

the preterm group. Hydrocinnamic acid was observed to a lesser extent in the preterm group. The 

lower content of reducing sugars (fructose, glucose, and galactose) in the preterm group corresponded 

with a greater capacity to form short-chain fatty acids (Fukiya et al., 2009; Wang et al., 2011b; Koeth 

et al., 2013; Tang et al., 2013; Ussher et al., 2013; Staley et al., 2017; Heinken et al., 2019; Wirbel et 

al., 2019). 

 

In addition, de novo MAGs were assembled from the same sequences using our MAGO tool (see 

above). No significant differences were found at the level of MAGs, which corresponds to the same 

result at the level of taxonomic data obtained with Metaphlan. This is consistent with our observation 

that there are no significant taxonomic differences between the microbiota of the preterm and the 

control groups. By introducing a controlled diet, a controlled water intake, and a controlled circadian 

rhythm as previously described (Sket et al., 2017a; Sket et al., 2017b; Sket et al., 2018; Šket et al., 

2020), it should be possible in future experiments with sufficient sample size to first establish the 

existence of significant differences in the microbiome (or the lack thereof) and then focus on the 

assembly of MAGs. The metabolic responses and predicted metabolites indicated that the microbiome 

of preterm group has greater metabolic flux compared with the full-term group, suggesting the 

existence of minor, yet unmeasured, but apparently significant environmental differences in the 

preterm gut relative to controls. 

 

With the results described above (Figure 17), we can confirm two alternative hypotheses from section 

1.4.1 and table 2. The first confirmed hypothesis states that there are significant differences between 

the preterm and full-term groups of participants in faecal and urine metabolomes that can be linked 
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to their physical performance in experiments and physiological data at exercise and rest. The second 

hypothesis states that there are significant differences at the level of metagenomics makeup of both 

groups, giving rise to identification of specific metabolic pathways differing between two groups and 

their gut environment characteristics. In the frame of taxonomic descriptions, we could not reject the 

null hypothesis of no difference between the groups as no significant differences were observed. 

 

 

 
 

Figure 17:   A summary of observed changes in PreTerm study.  

A summary of observed changes at various information levels showing that significant differences exist between the 

preterm and full-term adult urine metabolomes, faecal metabolomes, and microbial metabolic reactions and pathways. 

Taken together, these results show that host and its microbiome behave measurably different in healthy physically fit 

young males in comparison to matched full-term controls. 

 

Slika 17:   Povzetek opaženih razlik v študiji PreTerm. 

Povzetek opaženih razlik na različnih nivojih informacij, ki kažejo na signifikantne razlike med predčasno in pravočasno 

rojenimi odraslimi na podlagi metabolomov urina in fekalnih vzorcev ter mikrobnih metabolnih reakcij in poti. Če 

povzamemo, ti rezultati nakazujejo, da se gostitelj in mikrobiom različno odzivata med predčasno in pravočasno rojenimi 

odraslimi.  

 

3.1.7 Data integration 

 

We summarized more than 1200 collected samples in the creation of the Slovenian urine 1H-NMR 

database. Metabolomics data from all projects (PlanHab, spinal muscular atrophy, X-Adapt, PreTerm, 

healthy women and men) were integrated. All measured spectra were analysed with the same 

procedure to obtain the same metabolites in all projects. We showed that at this level of physiological 
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data characteristics distinction is possible between the different activity levels based on the 

metabolites in urine. All samples were processed in the same way and can be reprocessed again 

utilizing future database updates using our in-house processing pipeline (Sket et al., 2017a; Sket et 

al., 2017b; Sket et al., 2018; Šket et al., 2020; Deutsch et al. 2021a; Deutsch et al., 2021b; Deutsch et 

al., 2022a; Deutsch et al., 2022b) alongside commercially available software for targeted 1H-NMR 

spectral deconvolution. For instance, the same spectra can be rerun with future database updates of 

the Human Metabolome Database (HMDB) as it grew from a few thousand metabolites in the first 

edition (Wishart et al., 2007) to 217,000 metabolites in the latest edition in 2021 (Wishart et al., 2021). 

The standardized analytical protocols established in our laboratory enabled minimizing systematic 

errors that usually occur due to batch effects or contributions by various NMR experts. The Box-Cox 

normalization and the sPLSDA approach utilized to integrate all metabolomes in our study showed 

competitive performance in removing batch effects, but still preserved variations due to lifestyle or 

other biological reasons (Wang and Lê Cao, 2020). This approach also allowed us to partly confirm 

the alternative hypothesis from section 1.4.3 and table 2 confirming significant differences in urinary 

metabolomes that allow the identification of biomarker pools and metabolic pathways that delineate 

different groups under study. The identification of biomarker pools should be confirmed on larger 

dataset.  

 

We showed that urinary metabolic fingerprinting has the potential provide a snapshot of metabolic 

status relevant and related to health and activity status (Azad and Shulaev, 2019; Mussap et al., 2021). 

In general, metabolomics involves the systematic identification of metabolites in the human body 

(Ashrafian et al., 2021). The development of a national database should improve the understanding 

of the Slovenian metabolome in comparison to studies from other European countries and the 

identification of metabolites specific to various diseases or physical conditions. With an enlarged 

database, we avoid problems with small sample sizes as observed in individual studies described 

above. We would need cohorts at least two orders of magnitude larger to confirm the final results of 

these studies. 1H-NMR metabolomics has the potential to capture a wide range of conventional 

clinical variables in epidemiological studies, including missing variables for patient metadata, and 

makes it possible to generate predictors of discrimination between different diseases based on 

machine learning. Top-down interpretation of metabolomic datasets, particularly urine that can be 

collected noninvasively, can provide sufficient data to draw conclusions about how samples should 

be classified into different groups. We hope to generate interest from other researchers to incorporate 

NMR metabolomics into their research to expand our established database to approximately 10,000 

samples on a national scale. The modelling of such data collection represents unique avenue to create 

ML models that can be used in medical practice at least tentatively to distinguish between healthy 

and unhealthy metabolic states next to between different diseases. Thus, this approach represents a 

step closer to data-driven precision medicine that has the potential to inform health on a national 

scale. The publication of the Slovenian urine NMR database is in preparation. 
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3.1.8 What about the future? 

 

The beauty of ‘omics research is that it generates thousands of different variables in different data 

matrices. All of the datasets obtained in this work were analysed in different ways, but there is always 

room for improvement of the use of different methods on the wet lab side or on the computational 

side. For instance, efforts are being directed towards inclusion of ongoing projects focusing on urine 

metabolomics as part of Slovenian urine 1H-NMR database. In line with these, (i) a total of 320 

samples from the PreAlti project (extension of the PreTerm project) were collected and measured, 

(ii) extension of SMA is currently in the phase of ongoing sample collection, (iii) samples are also 

being collected from two clinical cohorts from the University Clinical Centre of Ljubljana including 

the Children’s Hospital (tics, anorexia), while (iv) clinical cohorts associated with Million 

Microbiomes from Humans Project are aiming at collecting more than 1000 faecal and urine samples 

for metagenomics and metabolomics analyses. All these projects are on the way to generate thousands 

of gigabytes of molecular data accompanied by participants metadata in accordance with GDPR and 

ethical considerations as governed by the Ethics Commission of the Republic of Slovenia in ongoing 

efforts to improve the understanding of the Slovenian microbiome, metabolome, and physiology by 

creating better and more appropriate models and networks that will be characteristic of different 

diseases and/or physical conditions. Maintaining systemic homeostasis and responding to nutritional 

and environmental challenges requires the coordination of a variety of organs and tissues. To respond 

to diverse metabolic demands, the human body integrates a system of interorgan communication 

through which one tissue can influence metabolic pathways in a distant tissue. Dysregulation of these 

communication pathways through lack of exercise (sedentary lifestyle) and high-energy diets 

contributes to diseases such as obesity, diabetes, liver disease, and atherosclerosis. For timely 

interventions, we should think about using body fluids (such as urine) that allow for non-invasive 

sampling but are sensitive enough to differentiate between a range of biomarkers (Figure 18). 

 

The ability to effectively conduct quality control of incoming datasets, the pre-processing of 

sequencing or metabolomics raw data files to organized data matrices, the pre-processing of missing 

values, standardization and normalization procedures, in addition to the batch corrections established 

in this study coupled with data integration approaches enable the syncing of metagenomics, 

metabolomics and metadata for the same participants in the future, integrating the information about 

different states in the complexity of human body. This enables a better understanding of inter-organ 

communication, which acts as a gatekeeper for metabolic health, as multidirectional interactions 

between metabolic organs and the central nervous system mediate crosstalk between the gut, brain, 

and other peripheral metabolic organs to maintain energy homeostasis. This enables the search for 

new therapeutic strategies and promotes a healthy lifestyle to counteract metabolic disorders and other 

diseases.
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Figure 18:   The continuation of the projects, described in this work. 

 

Slika 18:   Nadaljevanje projektov, opisanih v tem delu.  
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3.9 CONCLUSIONS  

 

• The GUMPP and MAGO tools were developed, and the metaBakery tool is under development 

for high-throughput amplicon and shotgun sequencing analysis. All tools are available as 

Singularity image containers prepared for deployment on the HPC cluster and can be further 

developed by all users. All tools were developed under the open-source license CC-BY 4.0. 

• By utilizing the newly developed MP approach on faecal samples, we showed that measuring 

some physicochemical parameters and using ‘omics methods can lead to a completely new 

understanding of complex biological systems. The MP approach was a less-biased and fine-scale 

approach to measure faecal hardness compared to the previously used BSS approach, including 

the interior of samples. 

• Participants of the bed rest group (NBR and HBR) from the PlanHab study had a specific 

metabolic composition compared with the HAmb group. We concluded that the host decision to 

minimize physical activity under hypoxic conditions can be detected within a few days at the level 

of the urine metabolome measured by NMR. 

• When urine, serum, and liquor samples from SMA patients were compared before and after the 

4th application of drug nusinersen, no differences were observed. However, urine creatinine was 

observed as a possible biomarker to distinguish healthy individuals from SMA patients. 

• SMA study allowed us to observe some differences between healthy male and female urine 

metabolomes, which shows the importance of including women in biomedical and physiological 

studies. 

• Urinary metabolomes of untrained individuals differed from metabolomes collected from trained 

participants in the X-Adapt study. After 10 days of training, these differences disappeared, 

demonstrating the importance of physical activity for humans. 

• It was shown that consecutive 3-day urine collection can enable better understanding of morning 

metabolomes representing a systemic description of the state of human body. 

• Urinary and faecal metabolomes of preterm and full-term born individuals of the PreTerm study 

were different. Microbial functionality observed on shotgun sequencing of stool samples was also 

different in the two groups. However, no significant taxonomic differences could be observed due 

to unequal variance at this information level. 

• The integration of urine metabolomes from five different projects enabled creating a Slovenian 

NMR database that has the potential for the future to include more samples from different 

specimens and to create classification models to discriminate between different diseases or 

activity levels. 
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4 SUMMARY (POVZETEK) 

4.1 SUMMARY 

 

Modern human are increasingly threatened by the daily sedentary lifestyle and by serious diseases. 

The effects of short-term inactivity lead to maladaptations in body physiology, gut microbiota, and 

metabolic profiles, resulting in increased inflammation, depression, insulin resistance similar to 

metabolic syndrome, and type 2 diabetes symptoms. However, the effects of long-term physical 

inactivity, lack of oxygenation, and large muscle signalling are not well understood, although they 

have direct and widespread biomedical significance for preterm birth and/or genetic disorders, such 

as SMA, obesity, cardiovascular deconditioning, and chronic obstructive pulmonary disease. To 

address these issues, three projects analysed a variety of samples: i) physiological responses in 

adulthood as a consequence of preterm birth (PreTerm project; ARRS J3-7536; EU project 

https://recap-preterm.eu/); ii) spinal muscular atrophy (project within the University Clinical Centre 

of Ljubljana) as an extreme case of physical inactivity; and iii) cross-adaptation between heat and 

hypoxia: a novel strategy for performance and work-ability enhancement in various environments 

(X-Adapt; research project ARRS J5-9350). The SMA and PreTerm projects addressed lifelong 

exposure to systemic effects of reduced physical activity: i) intermittent episodes of systemic hypoxia 

at rest/sleep (PreTerm) and ii) continuous systemic hypoxia due to reduced host physical activity and 

relief of hypoxia after therapy. The X-Adapt project addressed the impact of regular 10-day training 

on the physiology of healthy trained and untrained individuals. In addition, little is known about the 

existence of differences in the human-gut microbiome relationship due to lifelong exposure to 

hypoxic episodes in preterm versus full-term born adolescents (The PreTerm project), which could 

impact the functionalities and metabolism of the microbiome in these hosts. 

 

For a better understanding, especially of the microbiome, the appropriate tools for high-throughput 

big data analysis were developed on our side. The GUMPP workflow was developed for amplicon 

sequencing at three different levels (i) genus, (ii) OTU, or (iii) ASV. The GUMPP workflow consists 

of the most commonly cited tools for amplicon sequence analysis (Mothur) and microbial 

functionality prediction (PICRUSt2 and piphilin). The metaBakery workflow is prepared for shotgun 

sequence analysis and also consists of BioBakery tools (MetaPhlaAn (taxonomic analysis), 

HUMANn3 (analysis of functional genes, enzymatic reactions, and metabolic pathways) and 

MelonnPan (prediction of microbial metabolites). The manuscript of the metaBakery tool is currently 

in the preparation phase. The third tool developed is a MAGO tool that uses the most advanced 

methods for microbiome analysis and consists of the main quality control tools (FastQC, fastp), 

assemblers (IDBA-UD, metaSPAdes, megahit) and binners (maxBin, MetaBAT, CONCOT, 

BinSanity and DAStool). CheckM tools were integrated throughout the pipeline to select assembled 

MAGs based on completeness and contamination according to the MIMAG standard. All tools were 

prepared as a skeleton framework consisting of 10,000 lines of code written in Python and packaged 

as a singularity image ready for use on HPC clusters. All tools were developed under the CC-BY 4.0 

license and are released for development by other researchers. 
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In the context of the microbial world in the human gut, physicochemical parameters are important for 

both microbial homeostasis and human homeostasis. The BSS was previously used to assess gut 

health based on a visual assessment. One problem with this assessment was personal bias. In this 

work, we developed a new method for high-throughput assessment of faecal consistency, which we 

called minimal pressure (MP), which is expressed as the force per unit area required to cause 

permanent deformation of faeces. MP showed correlation with BSS, but provides the true assessment 

on a continuous scale. The correlation between MP and faecal methionine and acetate showed with 

different MP values. Both metabolites were previously associated with Western diet and inactivity, 

such as the sedentary lifestyle. With MP, a new approach for measuring physicochemical parameters 

was introduced, which, together with the ‘omics method, provides another level of understanding of 

the microbial world in the human gut. 

 

The PlanHab study was the first study by our group to investigate the problems of inactivity and 

hypoxia from the perspective of 1H-NMR metabolomics. It was a crossover study with three different 

21-day experiments (i) hypoxic bed rest, (ii) normoxic bed rest, and (iii) hypoxic ambulation. In both 

bed rest studies, detectable metabolic changes were observed based on morning urine. The identified 

metabolites were previously associated with various chronic diseases (chronic obstructive pulmonary 

disease, cardiovascular disease, etc.). Overall, inactivity alone or in combination with hypoxia 

resulted in decreased systemic metabolic diversity, increased the number of metabolic pathways 

affected, and accelerated metabolic deconditioning, leading to the development of negative 

physiological symptoms associated with these chronic diseases. 

 

The results of the PlanHab project allowed us to join the spinal muscular atrophy project. In this 

project, we were able to analyse the metabolomes of atrophic patients in three different samples 

(serum, liquor, and urine) before treatment and after the 4th application of nusinersen, the first 

treatment approved by the EMA and FDA for the treatment of SMA. We found no significant 

differences between metabolomes. In parallel, we also collected urine samples from healthy 

Slovenian patients who matched the SMA patients in age and sex. Using machine-learning methods, 

we were able to determine urine creatinine to be a potential biomarker for the diagnosis of SMA. 

 

The SMA project studied complete disease-related inactivity. The X-Adapt project allowed us to 

understand the impact of a 10-day exercise regimen on the metabolome of trained and untrained 

participants in the study. It was showed before that minimal activity can reduce the likelihood of 

metabolic syndrome due to a sedentary lifestyle. Participants were tested before and after the 10 days 

of training. Urine samples were collected at four different time points. Urine samples were collected 

over three days to reduce day-to-day variation. Briefly, some metabolites were found to be important 

in discriminating between trained and untrained subjects, but the significant differences disappeared 

after 10 days of training when trained and untrained subjects became more metabolically 

synchronised. In general, we showed that there is little difference between the two groups and that a 

lifelong active lifestyle is necessary to maintain a healthy metabolome. 
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In the PreTerm project, adult preterm and full-term adults participated to observe differences in 

metabolome (faecal and urine) and microbial metagenome when exposed to hypoxic or normoxic 

conditions (cycling on an ergometer). No significant differences were observed based on 25 measured 

physicochemical parameters in faeces (including the MP approach). In addition, some metabolic 

differences were observed in faecal and urine samples, some of which were previously associated 

with the development of noncommunicable diseases, particularly in preterm born adults. In addition, 

shotgun sequencing of the faecal samples was performed. We demonstrated that the taxonomic 

composition of preterm and full-term groups was the same, based on analysis of sequences and de 

novo MAGs, but microbial functions were different, once again demonstrating the importance of 

studying microbial functionality. Metabolic responses and predicted metabolites indicated that the 

microbiome of the preterm group had greater metabolic flux than that of the full-term group, 

suggesting minor, previously unmeasured, but apparently significant environmental differences in the 

preterm gut compared with controls. 

 

The final step was completed with data integration. More than 1200 metabolomes from all projects 

(PlanHab, X-Adapt, SMA, PreTerm and healthy comparison group) were integrated with the 

miXomics package. We have shown that there is a possibility that we can use urine NMR 

metabolomes to differentiate between different groups (diseased vs healthy, active vs inactive) in the 

future. Top-down interpretation of metabolomic datasets, especially urine that can be collected 

noninvasively, may provide sufficient data to draw conclusions about how samples should be 

classified into different groups. We hope to stimulate the interest of other researchers to incorporate 

NMR metabolomics into their research in order to expand our established database to approximately 

10,000 samples on a national scale. The manuscript of the Slovenian NMR database is currently under 

preparation. 

 

In addition, the expansion of our NMR database continues: 320 samples from the Prealti project 

(continuation of the PreTerm project) were already collected and measured, the SMA project was 

extended and sample collection continues, two additional clinical cohorts are being collected (tics, 

anorexia), and more than 1000 faecal and urine samples will be collected as part of the Million 

Microbiomes from Humans project. All of these projects are on track to generate thousands of 

gigabytes of molecular data accompanied by participant metadata. This is being done in compliance 

with the General Data Protection Regulation (GDPR) and ethical considerations as defined by the 

Ethics Committee of the Republic of Slovenia to improve the understanding of the Slovenian 

microbiome, metabolome, and human physiological states. To respond to diverse metabolic demands, 

the human body integrates a system of interorgan communication through which one tissue can 

influence metabolic pathways in a distant tissue. Dysregulation of these communication pathways 

through lack of exercise (sedentary lifestyle) and high-energy diets contributes to human diseases 

such as obesity, diabetes, liver disease, and atherosclerosis. For timely interventions, body fluids 

(such as urine) represent logical choice and allow for non-invasive sampling but are sensitive enough 

to differentiate between a range of biomarkers. 
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4.2 POVZETEK 

 

V človeškem prebavnem traktu živi 1013 mikrobni celic, ki proizvajajo, spreminjajo in porabljajo na 

tisoče kemijskih spojin, ki vplivajo na mikrobno sestavo in zdravje ljudi. Tehnologije sekvenciranja 

(metagenomika) in druge ‘omske metode (metabolomika, proteomika, lipomika) so nam poleg 

sodobnih biostatističnih in strojnih metod učenja omogočile globlje razumevanje in nova spoznanja 

o kompleksnosti in vzročnosti med mikrobioto in njenim gostiteljem pri raziskavah bolnih in zdravih 

kohort preiskovancev skozi čas. Pomembna povezava med tema dvema skupinama je stanje 

metabolnega okolja, ki odraža medsebojni vpliv fiziologije gostitelja in mikrobioma (Schmidt, 2021).  

 

V prejšnjih študijah smo v okviru projekta PlanHab raziskovali posledice zmanjšane fizične 

aktivnosti in zmanjšane vadbe pri gostitelju (človeku) (Debevec in sod., 2014; Sket in sod., 2017a; 

Sket in sod., 2017b; Sket, 2018; Sket in sod., 2018). Posledice kratkotrajne neaktivnosti so povzročile 

nepravilnosti v telesni fiziologiji, črevesni mikrobioti in metabolomskih profilih, kar je povzročilo 

povečano sistemsko vnetje, depresijo, inzulinsko rezistenco, pojave, ki so podobni začetkom pri 

metabolnem sindromu in diabetesu tipa 2. Po drugi strani pa učinki dolgotrajne telesne neaktivnosti, 

pomanjkanja kisika in signalov velikih mišic v primeru posledic prezgodnjega poroda in/ali genetskih 

motenj, kot so spinalna mišična atrofija (SMA), debelost, srčno popuščanje in kronična obstruktivna 

pljučna bolezen, kljub neposrednemu in velikemu biomedicinskem pomenu niso dobro razumljeni. 

 

Da bi raziskali ta problem, smo zbrali raznovrstno paleto vzorcev v okviru treh kontroliranih in 

natančno vodenih projektov: i) fiziološki odzivi v odraslosti kot posledica prezgodnjih porodov 

(projekt PreTerm; ARRS J3-7536; projekt EU https: //recap-preterm.eu/); ii) spinalna mišična atrofija 

(SMA KCLJ) in iii) navzkrižna adaptacija na vročino in hipoksijo – nova strategija za pripravljenost 

in povečanje netreniranosti v različnih okoljih (X-Adapt; projekt ARRS projekt J5-9350). Vsi projekti 

obravnavajo vseživljenjsko izpostavljenost sistemskim učinkom zmanjšane telesne aktivnosti: i) 

prekinjajoče epizode sistemske hipoksije v mirovanju / spanju (PreTerm), ii) kontinuirano sistemsko 

hipoksijo zaradi zmanjšane telesne aktivnosti gostitelja zaradi genetskega defekta in lajšanje 

hipoksije po genetski terapiji, ali iii) primerjavo treniranih in netreniranih zdravih, mladih moških. 

Opravili smo biokemijsko karakterizacijo telesnih tekočin, zbranih v okviru vseh projektov in jih 

uporabili za raziskovanje biokemijske sestave (metaboliti) in njihovih interakcij (metabolne poti).  

 

Mikrobne vrste igrajo pomembno vlogo v raznolikih okoljih, za katera je značilen širok spekter 

kompleksnosti organizmov (Murovec in sod., 2019). Mikrobi, ki živijo v črevesju, so v stalni 

interakciji z gostiteljem in večsmerni interakciji s svojimi mikrobnimi sorodniki s proizvodnjo 

različnih molekul, ki lahko izboljšajo zdravstveno stanje gostitelja ali po drugi strani vodijo v razvoj 

nenalezljive (kronične) bolezni ali njeno napredovanje (Murovec in sod., 2020). Napredovanje 

bolezni se lahko kaže kot blagi gastrointestinalni simptomi na eni strani ali resne bolezni, kot so 

vnetna črevesna bolezen, rak debelega črevesa ali rak jeter na drugi strani. Številne bolezni so bile 

povezane s presnovnimi neravnovesji, ki so delno ali v celoti povezana s črevesnim mikrobiomom 

(od metabolnega sindroma in debelosti do avtoimunskih bolezni, okužb in duševnih motenj (Murovec 
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in sod., 2021)). Po razvoju in izboljšavah tehnologij sekvenciranja je hitro postalo jasno, da večine 

mikrobov (npr. 99 %) ni mogoče gojiti v laboratorijskem okolju, da ločevanje sevov na podlagi 

biološko relevantnih lastnosti ni enostavno izvedljivo, vseeno pa lahko na podlagi njihovega 

genetskega materiala vidimo, kateri mikrobi so prisotni v vzorcu. Na podlagi njihovega genetskega 

materiala lahko tudi sklepamo o mikrobni funkcionalnosti vzorca (kaj lahko ti mikrobi naredijo 

(funkcionalni geni, encimske reakcije, ali metabolne poti  (Murovec in sod., 2020))). 

 

Za zanesljivo in ponovljivo analizo obsežnih mikrobnih podatkov smo razvili tri orodja. Prvo je  

orodje General Unified Microbiome Profiling Pipeline (GUMPP), ki je namenjeno obsežni, 

poenostavljeni in ponovljivi analizi bakterijskih amplikonskih podatkov (na nivoju rodu, operacijskih 

taksonomskih enot in razlik v sekvenčni variantah) in napovedovanje njihovega funkcionalnega 

potenciala (Murovec in sod., 2021), ki ga sestavljajo Mothur (Schloss in sod., 2009), PICRUSt2 

(Douglas in sod., 2020) in piphillin (Narayan in sod., 2020).  

 

Sekvenciranje celotnega zaporedja genomov vključuje netarčno sekvenciranje naključne podmnožice 

vseh zaporedij do določene globine sekvenciranja, ne kot pri tarčnem (amplikonskem) sekevnciranju, 

kjer je posekvenciran le majhen del specifičnega gena. BioBakery je orodje za analizo zaporedja 

celotnega metagenoma, ki združuje različna orodja za analizo kakovosti, taksonomsko analizo 

(MetaPhlAn), funkcionalne gene, encimske reakcije in presnovne poti, ki so prisotne v mikrobni 

združbi (HUMAn3 (Beghini et al., 2021)). Poleg tega omogoča napovedovanje mikrobnih 

metabolitov samo na podlagi metagenomskih informacij in s tem vpogled v potencialno sestavo 

mikrobnih metabolomov, ki bi lahko bili prisotni v tej združbi (MelonnPan (Mallick in sod., 2019)). 

Pozitiven vidik sekvenciranja celotnega genoma je tudi ta, da lahko pridobimo informacije o genskem 

materialu iz različnih taksonomskih skupin (arheje, bakterije, protozoji, glive, virusi, tudi človeška 

DNA), kar lahko izboljša razumevanje kompleksnosti in interakcij med različnimi taksonomskimi 

nivoji. To nas pripelje do drugega orodja, ki je bilo razvito iz naše strani (metaBakery - v pripravi), 

ki je reimplementacija  orodja BioBakery, z dodatkom, ki omogočajo kvalitativne analize in 

razširjeno z algoritmi za izračun mikrobne pestrosti.  

 

Naslednji korak pri analizi celotnega metagenoma je možnost de-novo sestavljanja metagenoma 

(MAG). To je postopek, pri katerem se sekvenčni odčitki pregledajo glede kakovosti, sestavijo in 

združijo skupaj, da dobimo sestavljene metagenome. To je proces, ki lahko vodi do odkritja 

popolnoma novih mikrobnih vrst, saj 99 % mikrobnih vrst ne moremo gojiti v laboratorijskih pogojih. 

Za namene obsežnih, poenostavljenih in ponovljivih analiz smo razvili orodje MAGO (Murovec in 

sod., 2020). To sestoji iz zelo uspešnih orodij za analizo kakovosti (FastQC, fastp (Chen in sod., 

2018)), orodij za sestavljanje (IDBA-UD (Peng in sod., 2012), metaSPAdes (Nurk in sod., 2017) in 

megaHIT (Li in sod., 2015) in združevanje (maxBin (Wu in sod., 2016), MetaBAT (Kang in sod., 

2015), CONCOT (Alneberg in sod., 2016), BinSanity (Graham in sod., 2017) in DAStool (Sieber in 

sod., 2018)). V nadaljevanju se uporablja orodje CheckM (Parks in sod., 2015) za filtriranje, kateri 

MAG so visokokakovostni v skladu s standardi MIMAG (Bowers in sod., 2019) (glede na popolnost 
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in kontaminacijo). Orodje MAGO uporabniku omogoča tudi evolucijsko analizo z orodji ezTree (Wu, 

2018),  Prokka (Seeman, 2014), Roary (Page in sod., 2015) in FastANI (Jain in sod., 2018).  

 

Vsa razvita orodja so bila pripravljena v programskem jeziku Python in sestavljena iz več kot 10.000 

vrstic kode. Parametri za izvedbo poteka analiz so v celoti v rokah uporabnika. Vsa orodja so bila 

razvita kot slike Singularity (Kurtzer in sod., 2017), pripravljene za preprosto uporabo na visoko 

zmogljivih računalniških grozdih (HPC) za obsežne in preproste analize 10.000 vzorcev na eni strani 

in za izobraževalne namene na drugi strani (Murovec in sod., 2020; Murovec in sod., 2021). Obe 

orodji sta pod odprtokodno licenco CC-BY 4.0 in sta odprti za vse razširitve, s čimer nudita priložnost 

za nadaljnji razvoj in postaneta standardizirani za mikrobno analizo v svetovnem merilu.  

 

Peristaltični valovi, ki ustvarjajo kontraktilne vzorce tankega črevesa, in s tem ustvarjajo nenehno se 

spreminjajoče se okolje. Konstantno mešanje fekalnega materiala povzroča prostorske in kemijske  

spremembe okoljskih pogojev skozi čas za mikrobe, ki živijo v črevesju, kar lahko vpliva na njihovo 

aktivnost, ekspresijo genov, rast in številčnost posameznih skupin mikrobov (Ehrlein and Schemann, 

2005; Johnson in sod., 2012; Cremer in sod., 2016; Glover in sod., 2016; Cremer in sod., 2017; Sket 

in sod., 2017a). Številne študije v preteklosti so povezale konsistenco blata z bogastvom črevesne 

mikrobiote, njeno sestavo, enterotipi, povišanimi nivoji vnetja, lipopolisaharidi in hitrostjo rasti 

bakterij (Tigchelaar in sod., 2016; Vandeputte in sod., 2016). Konsistenca blata je bila v preteklosti 

ocenjena z bristolsko lestvico (ang. Bristol Stool Scale (BSS)) (Heaton in sod., 1992; Lewis and 

Heaton, 1997). Ena od pomanjkljivosti metode BSS je, da prihaja do visokega odstopanja  med 

ocenjevalci zaradi pristranskosti in vizualne ocene (Derrien in sod., 2010; Chumpitazi in sod., 2016). 

Zato lahko le dobro usposobljen strokovnjak pripravi medicinsko pomembne zaključke na podlagi 

ocene BSS (Matsuda in sod., 2021). 

 

Fekalni materiali so po fiziki materialov poltrdni materiali (tj. paste) (Grillet in sod., 2012), ki jih 

umeščamo med viskoelastične materiale (poltrajna deformacija kot odziv na zunanje sile) na eni strani 

in plastične materiale (trajna deformacija) na drugi strani. Ta način razmišljanja nas je pripeljal do 

vrednotenja s pomočjo minimalnega tlaka (MP) kot metode za manj pristransko in visoko zmogljivo 

ocenjevanje konsistence fekalnega materiala (Deutsch in Stres, 2021). Minimalni tlak, izražen kot 

sila na enoto površine, je tlak, ki je potreben, da povzroči trajno deformacijo fekalnega materiala. 

Pokazali smo, da MP narašča eksponentno v primerjavi z linearno padajočimi vrednostmi BSS, ne 

glede na spol (Deutsch in Stres, 2021). Pokazali smo tudi, da obstaja nelinearna (asimptomatska) in 

kompleksna povezava med suho snovjo in MP. Vzdolžno kartiranje površinskega MP po celotni 

dolžini posameznega vzorca blata je pokazalo, da obstajajo različne drobnozrnate notranje, lokalne 

razlike. Poleg tega je kljub enotnemu točkovanju BSS pri nižjih vrednostih BSS naša analiza 

pokazala, da so bolj odpornim površinskim plastem blata sledile mehkejše notranje strukture, kar ima 

za posledico nižje vrednosti MP, povezane s približno zdravo konsistenco blata (Deutsch in Stres, 

2021). Te lastnosti z uporabo BSS ne moremo ovrednotiti. Določili smo mejo, ki lahko razlikuje med 

zdravim stanjem (MP < 75) ali zaprtjem (MP > 75) (Blake in sod., 2016; Sket in sod., 2017b; Sket in 

sod., 2018). MP < 30 je ustrezalo vzorcem tekočega blata (driska). MP smo izmerili na vzorcih, 
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zbranih v okviru študij PlanHab (Sket in sod., 2017a; Sket in sod., 2017b; Sket in sod., 2018) in 

PreTerm (Deutsch in sod., 2022b). Predvsem prva je pokazala, da sta bili blokada por na fekalni 

površini in zadrževanje sluzi povezana s selektivnim pritiskom na mikrobiom črevesja, njegovo 

gensko ekspresijo in presnovno aktivnost, kar lahko vodi do lokalnega vnetja (Vandeputte in sod., 

2016;  Sket in sod., 2017a; Sket in sod., 2017b; Sket in sod., 2018; Aron-Wisnewsky in sod., 2019). 

S tem smo pokazali, da lahko pristop MP natančno opiše klinični pomen konsistence blata (Deutsch 

in Stres, 2021). Poleg tega pristop MP ne zahteva predhodne obdelave vzorcev in omogoča enostavno 

merjenje brez drage opreme, pa tudi ponovljivost teh meritev med različnimi vzorci (sveži proti 

zamrznjeni; moški proti ženski). Ugotovili smo tudi, da MP korelira s fekalnim metioninom in 

acetatom na podlagi meritev 1H-NMR. Na podlagi teh dveh metabolitov lahko ločimo tri različne 

skupine fekalne konsistence (MP < 30, 30<MP<75, MP>75 ). Metionin je bil prej povezan z 

oksidativnim stresom in je bil povišan pri neaktivnih posameznikih, medtem ko je acetat negativno 

koreliral z občutljivostjo na inzulin (Martínez in sod., 2017; Müller in sod., 2019), kar kaže, da lahko 

različna konsistenca blata vpliva na biološki sistem gostitelja. Opažene razlike v metioninu in acetatu, 

povezanem z MP, so bile tako očitno posledica neaktivnosti v okviru projekta PlanHab v kombinaciji 

z zahodno prehrano. Pristop MP nam je omogočil, da smo z merjenjem nekaterih fizikalno-kemijskih 

parametrov na eni strani in z omskimi metodami na drugi strani lahko začeli in raziskali povsem novo 

raven razumevanja kompleksnih bioloških sistemov (Deutsch in Stres, 2021). 

 

Študija PlanHab je bila prva študija naše skupine, ki je vključevala metabolomiko človeškega urina. 

Vzorce jutranjega urina smo zbirali skozi celoten eksperiment, ki je bil zamišljen kot navzkrižno 

oblikovan eksperiment (angl. Cross-over design). Vsi udeleženci študije so šli skozi vse tri oblike 

poskusa (21-dnevno ležanje v hipoksiji ali normoksiji ali pa gibanje v hipoksiji (Sket in sod., 2017a; 

Sket in sod., 2017b; Sket in sod., 2018, Šket in sod., 2020)). Edinstvena zasnova nam je omogočila, 

da smo upoštevali odzive istih udeležencev v vseh treh eksperimentalnih različicah pod 

nadzorovanimi prehranskimi, okoljskimi in eksperimentalnimi pogoji. Zbrali smo 523 vzorcev urina 

in jih pripravili za meritve 1H-NMR. Udeleženci, ki so ležali (NBR in HBR), so imeli specifične 

metabolne značilnosti v primerjavi s skupino HAmb. Pokazalo se je, da je odločitev gostitelja, da 

zmanjša telesno aktivnost v hipoksičnih pogojih, mogoče zaznati v nekaj dneh na ravni urinskega 1H-

NMR metaboloma. V normoksičnih pogojih ležanja v postelji smo te metabolne spremembe zaznali 

šele v prvih desetih dneh. Metaboliti, opaženi v tej študiji, so bili povezani s številnimi različnimi 

boleznimi: (i) kronično obstruktivno pljučno boleznijo (Adamko, 2015; Zabek, 2015) in (ii) srčno-

žilno boleznijo, povezano s tkivno hipoksijo, ki lahko vodi tudi do sladkorne bolezni tipa 2, depresijo 

in osteoporozo (Jones, 2014; Wang in sod., 2011; Senn in sod., 2012). Študija PlanHab z uporabo 

metabolomov 1H-NMR v urinu nas je pripeljala do zaključka, da ni enostavnega metabolnega 

biomarkerja, ki bi lahko razlikoval med različnimi stanji (zdravo proti bolnemu, aktivno proti 

neaktivnemu; aktivno proti sedečemu). Za zajetje skupnih značilnosti človeške fiziologije, 

medosebne in časovne variabilnosti so bili potrebni kompleksni multivariatni opisi metaboloma. Ta 

koncept je bil uporabljen v vseh drugih nadaljnjih študijah. Na splošno je neaktivnost sama ali v 

kombinaciji s hipoksijo povzročila zmanjšano sistemsko metabolno raznolikost in povečano število 

prizadetih metabolnih poti, kar je povzročilo razvoj negativnih fizioloških simptomov, kot so 



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.  

   Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022 

 

172 

 

inzulinska rezistenca, nizka stopnja sistemskega vnetja, zaprtje, depresija  in presnovni sindrom (Sket 

in sod., 2017a; Sket in sod., 2017b; Sket in sod., 2018, Šket in sod., 2020). Rezultati študije PlanHab 

so nas spodbudili, da nadaljujemo z raziskavami v drugih študijah, ki vključujejo različne stopnje 

neaktivnosti, kot so X-Adapt (razlike med treniranimi in netreniranimi posamezniki), spinalna 

mišična atrofija in projekt PreTerm, ki primerja različne čase izpostavljenosti hipoksiji, telesno 

aktivnost in čas izpostavljenosti različnim pogojem. Poleg tega smo dodatno zbrali več kot 200 

vzorcev zdravih moških in žensk ter njihovih sinov in hčera (Schmidt, 2021). 

 

Spinalna mišična atrofija je živčno-mišična bolezen, ki se kaže kot progresivna atrofija in oslabitev 

skeletnih mišic zaradi progresivne izgube motoričnih nevronov in prizadene številne druge organske 

sisteme (Melki, 2017; Yeo in Darras, 2020). Z incidenco 1 na 11.000 rojstev še vedno velja za 

najpogostejši genetski vzrok smrti otrok (Sugarman in sod., 2012). Pri bolnikih s SMA mutacije v 

centromernem genu SMN2 vodijo do tvorbe nestabilnih proteinov, hkrati pa je zaradi delecije motena 

tudi ekspresija telomernega gena SMN1 (Lefebvre in sod., 1995; Lorson in Androphy, 2000; Lunn 

in Wang, 2008; Smeriglio in sod., 2020). V zadnjih letih so se pojavile nove terapije za zdravljenje 

SMA. Te terapije spremenijo naravni potek bolezni s spremembo izražanja ali zamenjavo mutiranih 

genov, ki sodelujejo pri razvoju SMA (Chiriboga in sod., 2016). Nusinersen je bilo prvo zdravilo za 

zdravljenje SMA, ki sta ga odobrila Uprava za hrano in zdravila v Združenih državah Amerike in 

Evropska agencija za zdravila. Nusinersen je protismiselni oligonukleotid, ki vpliva na spajanje 

mRNA, kar ima za posledico aktiven protein SMN 2 in s tem boljše rezultate SMA (Chiriboga in 

sod., 2016; Corey, 2017; Ramdas in Servais, 2020). Nusinersen zahteva intratekalno aplikacijo, ker 

ne more prečkati krvno-možganske pregrade (Faber in sod., 2007; Rigo in sod., 2012). 

 

Vzorci urina, likvorja in seruma bolnikov s SMA so bili zbrani pred zdravljenjem in po 4. aplikaciji 

zdravila nusinersen. Zdravniški pregled ob četrti aplikaciji zdravila je pokazal izboljšanje gibljivosti. 

Bolniki so pokazali izboljšanje nadzora nad invalidskim vozičkom, premikanja, utrujenosti, higiene, 

govora in spanja po 4. aplikaciji nusinersena (Deutsch in sod., 2021a, Osredkar in sod., 2021). 

 

V nasprotju s fizičnimi pregledi, razlik nismo uspeli potrditi, na podlagi metabolomov urina, likvorja 

in seruma pred in po aplikaciji zdravila. V tem kontekstu ne moremo ovreči ničelne hipoteze iz 

poglavja 1.4.2, ki pravi, da ni bistvenih razlik pred in po zdravljenju. Morda bi te razlike lahko potrdili 

po 10 aplikacijah nusinersena, vendar bi to trajalo preveč dodatnega časa za zbiranje vzorcev in 

dokončanje v časovnem okviru tega doktorata. Ti rezultati kažejo, da je učinkovitost nusinersena 

mogoče ugotoviti z zdravniškimi pregledi in testi gibljivosti. Morda bi uporaba drugih 

metabolomskih metod, kot je masna spektrometrija, ki je bolj občutljiva (nM) v primerjavi z NMR 

(mM), privedla do odkrivanja biomarkerjev, ki bi jih lahko uporabili kot biomarkerje za spremljanje 

zdravljenja z nusinersenom. Lahko pa, da so signali iz izboljšanega metabolizma na račun večje 

fizične aktivnosti še premalo vidni in se pokažejo šele pri kasnejših aplikacijah (Deutsch in sod., 

2020a). 
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Poleg vzorcev iz projekta SMA smo zbrali vzorce urina iz ujemajoče se zdrave kohorte, da bi 

primerjali metabolome bolnikov s SMA z metabolomi zdravih posameznikov. Ta primerjava je 

privedla do opazovanja pomembnih metabolnih razlik med ženskami in moškimi na eni strani 

(p=0,0001) in zdravo kohorto in bolniki s SMA na drugi. Vpliv spola in prisotnost bolezni je v obeh 

primerih bila statistično signifikantna. Obe metodi, PLSDA in Random Forest, sta pokazali 

pomembne razlike med ženskimi in moškimi metabolomi. Pri bolnikih s SMA smo opazili znatno 

zmanjšanje kumulativne koncentracije metabolitov (p < 0,05). Zmanjšanje števila metabolitov smo 

opazili tudi pri zdravih ženskah v primerjavi z zdravimi moškimi. Zaradi razlik med ženskami in 

moškimi je pomembno, da prihodnje študije vključijo večje število žensk v študije, kot je ta, da bi 

ugotovili pomembne razlike med ženskimi in moškimi metaboliti in njihovimi biokemijskimi potmi. 

Opazili smo nekaj vzporednic s predhodnimi študijami vadbe, ki kažejo, da se lahko število 

metabolitov poveča po vadbi (Nieman in sod., 2013; Schranner in sod., 2020) ali študijah ležanja v 

postelji (npr. PlanHab), ki so prav tako pokazale 30-odstotno zmanjšanje števila presnovkov po 3 

tednih ležanja v postelji (Sket in sod., 2017a; Sket in sod., 2017b; Sket in sod., 2018). Simptomi, kot 

so inzulinska rezistenca, izguba kosti in mišic, spremembe v presnovi lipidov, so bili odkriti v študijah 

ležanja in vse te simptome je mogoče opaziti tudi na seznamu stanj, povezanih s SMA (Osredkar in 

sod., 2021). 

 

Za namene sestavljanja klasifikacijskih modelov za razlikovanje med bolnimi in zdravimi, smo 

uporabili metabolome urina pri bolnikih s SMA in zdravih posameznikih. S pomočjo avtomatskega 

strojnega učenja smo kreirali model, ki uspešno ločuje med tema skupinama  (AUC 0,958). Kreatinin 

je bil ključni metabolit, ki je ločil zdrave od pacientov s SMA, kot so poročali tudi nekaj mesecev 

pred našo objavo v drugi študiji, ki je spremljala napredovanje denervacije SMA s povišanimi ravnmi 

serumskega kreatinina pri hujših oblikah bolezni SMA (Alves in sod., 2020). Koncentracije kreatinina 

se pri bolnikih s SMA niso bistveno spremenile pred in po 4. aplikaciji nusinersena. Spremenjeno 

raven kreatinina so opazili tudi v vzorcih urina iz naših preteklih študij (PlanHab (Šket in sod., 2020)). 

Ponovna uvedba vadbe je v teh študijah popolnoma obrnila neželene učinke. Imobilizirani bolniki, ki 

so v preteklosti prejemali vibracijsko terapijo pri drugih boleznih, so imeli koristi v primerjavi s 

kontrolami in lahko predstavljajo potencialni korak pri fizični aktivaciji bolnikov s SMA po terapiji 

z nusinersenom (Deutsch in sod., 2021a). 

 

V okviru projekta SMA smo raziskali stanje popolne neaktivnosti. Vendar pa je v 21. stoletju vse bolj 

jasno, da je telesna neaktivnost, ki je posledica sedečega načina življenja, tudi globalni problem, ki 

predstavlja tveganje za razvoj kroničnih nenalezljivih bolezni in povečano globalno smrtnost (Kelly 

in sod., 2020b). Pokazalo se je že, da lahko minimiziranje časa sedenja zmanjša tveganje za kronične 

bolezni, kot so koronarna bolezen srca, sladkorna bolezen tipa 2, metabolni sindrom itd. (Sallis in 

sod., 2016). Cilj projekta X-Adapt je bil preučiti razlike med fizično aktivnimi (treniranimi 

udeleženci) in neaktivnimi (netreniranimi) posamezniki (Sotiridis in sod., 2018; Sotiridis, 2019b; 

Sotiridis in sod., 2019; Sotiridis in sod., 2020). Projekt je vključeval 10 treniranih in  10 netreniranih 

moških v 10-dnevnem protokolu vadbe, ki je obsegal vsakodnevno vadbo na kolesarskem ergometru 

pri 50 % največje moči pedaliranja v normoksičnih in normobaričnih (~1000 hPA) pogojih pri 24°C. 
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Pred udeležbo in po 10 dneh vadbe so vsi udeleženci (aktivni in neaktivni) opravili tridnevno 

testiranje v termonevtralnih normoksičnih in hipoksičnih pogojih ter vročih normoksičnih pogojih. 

Udeleženci študije so bili razvrščeni kot trenirani ali netrenirani glede na njihovo maksimalno 

aerobno kapaciteto (netrenirani VO2max < 45 mL-kg-1-min-1, trenirani VO2max > 55 mL-kg-1-min-

1) (Jay in sod., 2011;Montero in Lundby, 2017).  

 

Meritve, usmerjene v človeško fiziologijo, so pokazale, da je obstajalo nekaj pomembnih razlik med 

treniranimi in netreniranimi preiskovanci. Razlike med stanjem pred in po treningu so bile večje v 

netreniranih skupinah. Na podlagi meritev VO2max pred treningom in njegove spremembe v 10 dneh 

treninga je stopnja prilagajanja na trening največja pri netreniranih posameznikih (Sotiridis in sod., 

2018; Sotiridis, 2019b; Sotiridis in sod., 2019; Sotiridis in sod., 2020). 

 

Glede na metabolome urina ni bilo mogoče zaznati pomembnih razlik pred in po 10 dneh treninga. 

Vendar pa so bile opažene razlike pri primerjavi med urinskimi metabolomi med treniranimi in 

netreniranimi udeleženci. Poleg tega so se med tema dvema skupinama bistveno razlikovale tudi 

fizikalno-kemijske lastnosti urina (pH, skupne raztopljene trdne snovi, slanost in prevodnost). Na 

primer, pH se je znižal pri netreniranih posameznikih, kar je bilo prej povezano s presnovnim 

sindromom in kroničnim srčnim popuščanjem (Maalouf in sod., 2007; Otaki in sod., 2013; Kraut in 

Madias, 2016; Shimodaira in sod., 2017). 

 

Metaboliti (holat, tartrat, kadaverin, lizin, N6-acetilizin, metanol, N-acetilglukozamin, butanon in 

kaprat) so bili identificirani s pomočjo multivariatne statistike in strojnega učenja kot metaboliti, ki 

so odgovorni za razlikovanje med trenirano in netrenirano skupino. Vse metabolite so predhodno 

opazili v študijah, povezanih s poškodbami mišic, ravnmi hormonskih receptorjev, okrevanjem po 

treningu z odpornostjo, nižjim kardiovaskularnim tveganjem (tartrat) (Abramowicz in Galloway, 

2005; Spiering in sod., 2008) ali atrofičnim stanjem, debelostjo, razvojem raka, metabolnim 

sindromom (holat) (Li in sod., 2020; Abrigo in sod., 2021; Alamoudi in sod., 2021; Mercer in sod., 

2021; Pushpass in sod., 2021; Zheng in sod., 2021). 

 

S tem pristopom smo pokazali, da se celoten sistem pri aktivnih osebah bistveno razlikuje od tistega 

pri neaktivnih (p=0,003). Po 10 dneh treniranja so se celokupne razlike med treniranimi in 

netreniranimi zmanjšale (p=0,226). Naša študija je pokazala, da je vadba od 75-150 minut na teden, 

ki jih priporoča Svetovna zdravstvena organizacij, premalo učinkovita in da bi bila potrebna 5-krat 

večja vadba. Poleg tega je ta poskus pokazal, da 3-dnevni jutranji vzorci urina zagotavljajo dobro 

biološko matriko za razlikovanje aktivnih od neaktivnih posameznikov, ki jih ni mogoče opaziti pri 

dnevnem vzorčenju zaradi dnevnih variabilnosti posameznika. Sistemska homeostaza je odvisna od 

številnih različnih parametrov in vključuje komunikacijo med različnimi organi, prek katere lahko 

metabolne poti, na katere vplivajo metaboliti v enem organu, vplivajo na druge metabolne poti v 

drugem organu. Sedeči način življenja z odsotnostjo signalov velikih mišic in oksigenacije sistema 

ter porabe hranil lahko moti to komunikacijo med organi, kar vodi v manifestacijo različnih bolezni. 
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Višje ravni vadbe lahko obnovijo medorgansko komunikacijo do zdravih in fizično aktivnih 

posameznikov (Deutsch in sod., 2022a). 

 

Prezgodnji porod je opredeljen kot rojstvo pred 37. tednom gestacije. Po vsem svetu je približno 10 

% prezgodnjih porodov in je še vedno eden vodilnih vzrokov smrti pri otrocih, mlajših od 5 let. 

Prezgodnji porod povečuje tveganje za razvoj različnih kroničnih bolezni, kot so srčno-žilne, 

endokrine/metabolične, ledvične, nevrološke in psihiatrične motnje. Eden glavnih vzrokov za te 

motnje je povečan oksidativni stres v prvih tednih življenja (Moutquin, 2003; Magalhães in sod., 

2004; Pialoux in sod., 2009; Blencowe in sod., 2012; Lushchak, 2014; Liu in sod., 2015; Manley in 

sod., 2015; Debevec in sod., 2017; Crump, 2020; Tingleff in sod., 2021). Obstaja velika verjetnost, 

da so nekateri klinični parametri, kot so telesna masa, arterijski krvni tlak, glukoza na tešče in 

holesterol, lahko povišani pri prezgodaj rojenih odraslih (Kerkhof in sod., 2012; Markopoulou in sod., 

2019; Crump, 2020). Različne študije so pokazale, da se vse te značilnosti razlikujejo med prezgodaj  

in pravočasno rojenimi odraslimi in da so te razlike, zlasti povezane s proizvodnjo reaktivnih 

kisikovih vrst, in jih je mogoče opaziti v povezavi z različnimi stopnjami vadbe ali telesne dejavnosti 

(Magalhães in sod., 2004; Powers in sod., 2011; Filippone in sod., 2012; Debevec in sod., 2017; 

Martin in sod., 2018). 

 

Namen projekta PreTerm je bil raziskati, ali obstajajo razlike med prezgodaj in pravočasno rojenimi 

mladimi moškimi v ventilacijskem odzivu (HVR) pri telesni aktivnosti ali mirovanju v hipoksičnih 

in normoksičnih okoljskih pogojih (Debevec in sod., 2019; Debevec in sod., 2022). Poleg tega je bil 

za opis kompleksnosti človeškega telesa in črevesnega mikrobioma pri njegovem odzivu na povečane 

ravni oksidativnega stresa v mirovanju in med vadbo pri normoksiji in hipoksiji uporabljen analitični 

pristop, ki je sestavljen iz metabolomike urina in fecesov ter fekalne metagenomike (Deutsch in sod., 

2022b). 

 

Pokazalo se je, da kolesarjenje pri normoksiji in hipoksiji zviša ravni oksidativnega stresa v obeh 

skupinah takoj po vadbi (Martin in sod., 2020). Udeleženci v skupini prezgodaj rojenih so pokazali 

nižjo vadbeno zmogljivost pri normoksiji v primerjavi s kontrolno skupino, in so imeli nižji HVR, 

medtem ko takšne razlike niso opazili pri hipoksiji (Vrijlandt in sod., 2006; Lovering in sod., 2013; 

Svedenkrans in sod., 2013; Bates in sod., 2014; Clemm in sod., 2014; Farrell in sod., 2015; Debevec 

in sod., 2019). Ti rezultati kažejo, da imajo lahko prezgodaj rojeni povečan oksidativni stres med 

akutno vadbo v normoksiji, medtem ko takšnega odziva pri hipoksiji niso opazili (Martin in sod., 

2020). 

 

V vzorcih blata smo izmerili 25 fizikalno-kemijskih spremenljivk (vključno z zgoraj opisanim 

pristopom MP), pri čemer med obema skupinama nismo ugotovili bistvenih razlik. Vzorci blata in 

urina so bili zbrani tri dni pred hipoksičnim in normoksičnim testom in tri dni po njem (Deutsch in 

sod., 2022b).  
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Aceton, tartrat in trans-akonitat so bili urinski metaboliti, ki so se glede na rezultate MetaboAnalyst 

zmanjšali v skupini prezgodaj rojenih in korelirajo z vadbo, postom ali diabetes melitusom (Paradis 

in sod., 2015; Crump in sod., 2019; Perrone in sod., 2021). Zdi se, da so razlike posledica oslabljene 

avtonomne funkcije, ker se srčni utrip pri prezgodaj rojenih odraslih obnavlja počasneje, kar bi lahko 

povzročilo anoksijo in povečalo srčno-žilno tveganje, kot je bilo že objavljeno (Qiu in sod., 2017; 

Haraldsdottir in sod., 2019). 

 

Laktat, serotonin in tirozin so bili glavni fekalni metaboliti, ki so predstavljali razliko med prezgodaj 

in pravočasno rojeno skupino. Prva dva metabolita sta bila povečana v skupini prezgodaj rojenih, kar 

skupaj z obogateno metabolno potjo (Warburgov učinek) kaže, da lahko pri njih opazimo nekatere 

metabolne spremembe, ki ji lahko povezujemo z mitohondrijsko disfunkcijo (Sonntag in sod., 2007; 

Ten, 2017). Te ugotovitve lahko predstavljajo prvi dokaz, da sistemske razlike zaradi vseživljenjske 

izpostavljenosti oksidativnemu stresu res obstajajo in postavljajo vprašanje, ali so te razlike povezane 

z majhnimi razlikami, ki nastanejo na strani prezgodaj rojenega gostitelja ali na delu mikrobioma, ki 

se odziva zaradi teh okoljskih signalov drugače kot pri pravočasno rojenih (Deutsch in sod., 2022b). 

 

Zbrani fekalni vzorci so bili uporabljeni za sekvenciranje, da bi raziskali, ali opažene razlike v 

fekalnih metabolomih korelirajo z razlikami na mikrobni ravni. Na taksonomski ravni nismo opazili 

bistvenih razlik, čeprav je bila relativna številčnost arhej in virusov višja v skupini prezgodaj rojenih. 

V zadnjem desetletju je postalo jasno, da je pri preučevanju mikrobioma pomembnejše vprašanje, kaj 

mikrobi v našem črevesju počnejo. Zato smo naredil analizo funkcionalnosti preučevanega 

mikrobioma z našim orodjem metaBakery. Strojno učenje je bilo uporabljeno za izdelavo 

klasifikacijskih modelov in identifikacijo potencialnih biomarkerjev (Deutsch in sod., 2022b). 

 

Na podlagi genskih družin ni bilo odkritih bistvenih razlik, vendar smo zaznali nekaj razlik na podlagi 

encimskih reakcij, metabolnih poti in predvidenih metabolitov. Predhodno opisana encimska reakcija 

sukcinat dehidrogenaze (RXN-15378) je bila povečana v skupini prezgodaj rojenih. Sukcinat je sam 

po sebi mikrobni metabolit in se lahko kopiči v črevesnem traktu med vnetjem ali mikrobnim 

neravnovesjem. Ima tkivno specifične, a tudi protivnetne lastnosti in je tudi vir produkcije propionata 

s strani Bacteroides spp. in Prevotella sp. Pokazalo se je, da se sukcinat kopiči v celicah v pogojih z 

nizko vsebnostjo kisika in predstavlja metabolni podpis hipoksije. Pokazalo se je, da prekomerni 

privzem mikrobno proizvedenega sukcinata vodi do višjih ravni znotrajceličnega sukcinata, ki na 

koncu poveča odziv na samo hipoksijo in hkrati poveča LPS- inducirano ekspresijo proinflamatornih 

citokinov v človeških celicah (Rubic in sod., 2008; Ariza in sod., 2012; Tannahill in sod., 2013; 

Akram, 2014; Littlewood-Evans in sod., 2016; Connors in sod., 2018; Deutsch in sod., 2022b). 

 

PWY-7456 (razgradnja β-(1,4)-manana), PWY-7323 (superpot biosinteze gradnikov O-antigena iz 

GDP-manoze) in GLYCOLY-SIS-TCA-GLYOX-BYPASS (superpot glikolize, piruvat 

dehidrogenaza, TCA in glioksilatni obvod), P221-PWY (oksidacija oktana), PWY-5173 

(nerazvrščen) so bile poti, ki so bile povečane v skupini prezgodaj rojenih. Nekateri od njih so lahko 

koristne in si prizadevajo za celovitost sluznice in prehranjevanje gostitelja (razgradnja β-(1,4)-
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manana) ali pa znatno povečajo proizvodnjo energije, kar bi bilo pomembno v primeru oksidativnega 

stresa kot pri prezgodaj rojenih posameznikih (superpot glikolize, piruvat dehidrogenaza, TCA in 

glioksilatni obvod). Biosinteza acetil-CoA lahko povzroči tudi povečano proizvodnjo butirata s 

proizvodnjo acetil-CoA. Po drugi strani pa imajo nekatere poti bolj negativen učinek in so bile 

povečane tudi v skupini prezgodaj rojenih. Izkazalo se je, da so te poti vključene v proizvodnjo 

lipopolisaharidov LPS (biosinteza gradnikov O-antigena iz GDP-manoze), povezane s po gramu 

negativnimi bakterijami in povzročitelji različnih stopenj vnetja (Samuel and Reeves, 2003; Wolfs in 

sod., 2010; Shah in sod., 2015; Kim in sod., 2016; La Rosa in sod., 2019; Lindstad in sod., 2021). Po 

drugi strani pa je bila opažena tudi oktanska oksidacija, ki je bila prej opisana v kontekstu 

zahodnjaškega načina prehranjevanja in povezana z boleznijo jeter. Vse te razlike je mogoče povezati 

s fiziološko pomembnimi primanjkljaji, opaženimi med obema skupinama (Martin in sod., 2018; 

Martin in sod., 2020; Schmidt, 2021). 

 

S pristopom  napovedovanja mikrobnih metabolitov je bilo odkritih tudi sedemnajst metabolitov, ki 

ločujejo med obema skupinama, vendar nobeden od njih ni bil zaznan v primeru fekalne 

metabolomike (Deutsch in sod., 2022b) s pomočjo strojnega učenja. Poleg metabolnih poti, ki 

izhajajo iz metagenomsko predvidenih metabolitov, so bile odkrite pomembne razlike v metabolitih 

v urinu in blatu, kar kaže, da obstajajo sistemske razlike med obema skupinama. Povišani metaboliti 

so bili prej povezani s srčno-žilnimi boleznimi (karnitin), povečano prepustnostjo črevesja, zvišanimi 

ravnmi vnetnih citokinov, metabolnim sindromom ali razvojem raka (putrescin in diacetilspermin). 

Po drugi strani so se nekateri predvideni presnovki zmanjšali v skupini prezgodaj rojenih. Deoksiholat 

je sekundarna žolčna kislina in znan promotor raka debelega črevesa. Zmanjšane ravni te molekule 

so na splošno opazili zaradi povečanega izločanja holata z urinom, opaženega pri metabolomiki urina. 

Nižja vsebnost redukcijskih sladkorjev (fruktoze, glukoze in galaktoze) v skupini prezgodaj rojenih 

je ustrezala večji sposobnosti tvorbe kratkoverižnih maščobnih kislin (Fukiya in sod., 2009; Wang in 

sod., 2011b; Koeth in sod., 2013; Tang in sod., 2013; Ussher in sod., 2013; Staley in sod., 2017; 

Heinken in sod., 2019; Wirbel in sod., 2019). 

 

Na ravni  na novo sestavljenih metagenomov nismo ugotovili razlik, kar sovpada rezultatom na ravni 

taksonomskih podatkov, pridobljenih s programom Metaphlan. To je skladno z našim opažanjem, da 

med mikrobioto prezgodaj in pravočasno rojenih ni pomembnih taksonomskih razlik (Deutsch in 

sod., 2022b).  

 

Z zgoraj opisanimi rezultati lahko potrdimo dve alternativni hipotezi iz poglavja 1.4.1. Prva potrjena 

hipoteza navaja, da obstajajo pomembne razlike med prezgodaj rojenih in pravočasno rojenimi 

skupinami udeležencev v metabolitih fecesa in urina, ki jih je mogoče povezati z njihovo fizično 

zmogljivostjo v poskusih in fiziološkimi podatki med vadbo in mirovanjem. Druga hipoteza navaja, 

da obstajajo pomembne razlike na ravni metagenomske sestave obeh skupin, zaradi česar je mogoče 

identificirati specifične metabolne poti, ki se med skupinama razlikujejo, in značilnosti njihovega 

črevesnega okolja. Razlike med na novo sestavljenimi metagenomi med obema skupinama nismo 
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opazili, zato v tem primeru ne moremo ovreči ničelne hipoteze, ki pravi, da ni razlike med prezgodaj 

in pravočasno rojeno skupino.  

 

Več kot 1200 zbranih vzorcev smo združili pri izdelavi slovenske baze podatkov 1H-NMR urina. Vsi 

zbrani urinski vzorci iz 5 projektov (PlanHab, spinalna mišična atrofija, X-Adapt, PreTerm, zdrave 

ženske in moški) so bili integrirani. Vsi izmerjeni spektri so bili analizirani z enakim postopkom, da 

bi dobili enake metabolite v vseh skupinah. Pokazali smo, da je na tej ravni fizioloških podatkov 

mogoče razlikovati med različnimi stopnjami aktivnosti na podlagi metabolitov v urinu. Vsi vzorci 

so bili obdelani na enak način in jih je mogoče v prihodnosti ponovno obdelati z uporabo nadaljnjih 

posodobitev baze podatkov Human Metabolome Database  (Wishart in sod. 2007; Wishart in sod, 

2022) z uporabo naših lastnih orodij za obdelavo metabolomskih podatkov (Šket in sod., 2020; 

Murovec in sod., 2018; Deutsch in sod., 2021a; Deutsch in sod., 2021b; Deutsch in sod., 2022a; 

Deutsch in sod., 2022b) skupaj s komercialno dostopno programsko opremo za tarčno 1H-NMR 

analizo. Na primer, iste spektre je mogoče ponovno analizirati s prihodnjimi posodobitvami baze 

podatkov o človeški metabolomski bazi (HMDB), saj je ta narasla z nekaj tisoč metabolitov v prvi 

izdaji (Wishart in sod., 2007) na 217.000 metabolitov v zadnji izdaji v 2021 (Wishart in sod., 2021). 

Standardizirani analitični protokoli, vzpostavljeni v našem laboratoriju, so nam omogočili, da smo 

zmanjšali sistematične napake. Box-Cox normalizacija in pristop sPLSDA, uporabljena za integracijo 

vseh metabolomov v naši študiji, sta pokazala uspešnost pri odstranjevanju učinkov različnih serij 

vzorcev na eni strani, hkrati pa pokaže še vedno ohranjene razlike zaradi življenjskega sloga ali drugih 

bioloških razlogov (Wang in La Cao, 2020). Ta pristop nam je omogočil tudi potrditev alternativne 

hipoteze iz razdelka 1.4.3, da obstajajo pomembne razlike v urinskih metabolomih, ki omogočajo 

identifikacijo naborov biomarkerjev in presnovnih poti, ki razmejujejo različne skupine, ki jih 

preučujemo (Schmidt, 2021). 

 

Pokazali smo, da lahko metabolni prstni odtis v urinu omogoči posnetek metabolnega statusa 

celotnega sistema telesa, ki ga lahko povezujemo z zdravjem ali boleznijo (Azad in Shulaev, 2019; 

Mussap in sod., 2021). Metabolomika na splošno vključuje sistematično identifikacijo metabolitov v 

človeškem telesu (Ashrafian in sod., 2021). Razvoj nacionalne baze podatkov naj bi izboljšal 

razumevanje slovenskega metaboloma vzporedno s študijami iz drugih evropskih držav in 

identifikacijo metabolitov, specifičnih za različne bolezni ali fizična stanja. Metabolomika 1H-NMR 

ima potencial za zajemanje širokega spektra običajnih kliničnih spremenljivk v epidemioloških 

študijah, vključno z manjkajočimi spremenljivkami za metapodatke o pacientih in omogoča 

ustvarjanje biomarkerjev za razlikovanje med različnimi boleznimi na podlagi strojnega učenja. 

Celostna razlaga metabolomskih podatkovnih nizov, zlasti urina, ki ga je mogoče zbrati neinvazivno, 

lahko zagotovi dovolj podatkov za sklepanje o tem, kako je treba vzorce razvrstiti v različne skupine. 

Upamo, da bomo spodbudili zanimanje drugih raziskovalcev za vključitev NMR metabolomike v 

svoje raziskave, da bi razširili našo uveljavljeno bazo podatkov na približno 10.000 vzorcev na 

nacionalni ravni. Modeliranje takšnega zbiranja podatkov predstavlja edinstveno pot za ustvarjanje 

modelov strojnega učenja, ki jih je mogoče vsaj okvirno uporabiti v medicinski praksi za razlikovanje 

med zdravimi in nezdravimi metabolomskimi stanji poleg različnih bolezni. Tako ta pristop 
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predstavlja korak bližje personalizirani medicini, ki temelji na podatkih in ima potencial za 

informiranje o zdravju na nacionalni ravni. Raziskovalni članek o slovenski NMR bazi je v pripravi.  

 

Zgodba o Slovenski NMR bazi teče naprej.  V skladu s tem je bilo (i) zbranih in izmerjenih skupno 

320 vzorcev iz projekta PreAlti (razširitev projekta PreTerm), (ii) razširitev SMA je trenutno v fazi 

zbiranja vzorcev, (iii) vzorci se zbirajo tudi iz dveh kliničnih kohort iz Univerzitetnega kliničnega 

centra Ljubljana v sodelovanju s Pediatrično kliniko (tiki, anoreksija), medtem ko v okviru (iv) 

klinične kohorte, povezane s projektom Million Microbiomes from Humans Project, nameravamo 

zbrati več kot 1000 vzorcev blata in urina za metagenomiko in metabolomske analize. S temi projekti 

smo na poti, da ustvarimo na tisoče gigabajtov molekularnih podatkov, ki bodo v bodoče uporabni 

tudi v vsakodnevni diagnostiki in so primerljivi največjim evropskim študijam. Ohranjanje sistemske 

homeostaze ter odzivanje na prehranske in okoljske izzive zahteva usklajevanje različnih organov in 

tkiv. Da bi odgovorili na različne presnovne zahteve, človeško telo integrira sistem medorganske 

komunikacije, prek katerega lahko eno tkivo vpliva na presnovne poti v oddaljenem tkivu. Porušitev 

teh komunikacijskih poti zaradi pomanjkanja vadbe (sedeči življenjski slog) ali vnosa 

visokokalorične prehrane prispeva k človeškim boleznim, kot so debelost, sladkorna bolezen, bolezni 

jeter in ateroskleroza. Za pravočasne posege bi morali razmišljati o uporabi telesnih tekočin (kot je 

urin), ki omogočajo neinvazivno vzorčenje, hkrati pa so dovolj občutljive, da razlikujejo med vrstami 

biomarkerjev (Schmidt, 2021). 

 

To odpira prostor za boljše razumevanje medorganske komunikacije kot vratarja za metabolno 

zdravje, saj obstajajo večsmerne interakcije med organi in osrednjim živčnim sistemom, z namenom 

ohranjanja energijske homeostaze in omogočanja novih terapevtskih strategij in spodbujanja 

zdravega življenja za preprečevanje presnovnih motenj in drugih bolezni. 
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