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Abstract

Summation is closely related to solving linear recurrence equations,
since an indefinite sum satisfies a first-order linear recurrence with con-
stant coefficients, and a definite proper-hypergeometric sum satisfies a
linear recurrence with polynomial coefficients. Conversely, d’Alembertian
solutions of linear recurrences can be expressed as nested indefinite sums
with hypergeometric summands. We sketch the simplest algorithms for
finding polynomial, rational, hypergeometric, d’Alembertian, and Liou-
villian solutions of linear recurrences with polynomial coefficients, and
refer to the relevant literature for state-of-the-art algorithms for these
tasks. We outline an algorithm for finding the minimal annihilator
of a given P-recursive sequence, prove the salient closure properties of
d’Alembertian sequences, and present an alternative proof of a recent
result of Reutenauer’s that Liouvillian sequences are precisely the inter-
lacings of d’Alembertian ones.

1 Introduction

Summation is related to solving linear recurrence equations in several ways. An
indefinite sum

s(n) =
n−1∑
k=0

t(k)
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satisfies the nonhomogeneous first-order recurrence equation

s(n+ 1)− s(n) = t(n); s(0) = 0,

and also the homogeneous second-order recurrence equation

t(n)s(n+ 2)−(t(n)+t(n+1))s(n+ 1)+t(n+1)s(n) = 0; s(0) = 0, s(1) = t(0).

A definite sum

s(n) =
n∑
k=0

F (n, k)

where the summand F (n, k) is a proper hypergeometric term:

F (n, k) = P (n, k)

∏A
j=1(αj)ajn+ãjk∏B
j=1(βj)bjn+b̃jk

zk

with P (n, k) a polynomial in both variables, (z)k the Pochhammer symbol,
αj , βj , z commuting indeterminates, aj , bj ∈ N, and ãj , b̃j ∈ Z, satisfies a linear
recurrence equation with polynomial coefficients in n which can be computed
with Zeilberger’s algorithm (cf. [41], [42], [29], [11]). So the sum of interest may
sometimes be found by solving a suitable recurrence equation.

The unknown object in a recurrence equation is a sequence, by which we
mean a function mapping the nonnegative integers N to some algebraically closed
field K of characteristic zero. Sequences can be represented in several different
ways, among the most common of which are the following:

• explicit where a sequence a : N→ K is represented by an expression e(x)
such that a(n) = e(n) for all n ≥ 0,

• recursive where a sequence a : N→ K is represented by a function F and
by some initial values a(0), a(1), . . . , a(d− 1) such that

a(n) = F (n, a(n− 1), a(n− 2), . . . , a(0)) (1)

for all n ≥ d,

• by generating function where a sequence a : N→ K is represented by the
(formal) power series

Ga(z) =
∞∑
n=0

a(n)zn.

Each of these representations has several variants and special cases. In particu-
lar, if a(n) = F (n, a(n− 1), a(n− 2), . . . , a(n− d)) for all n ≥ d, the recursive
representation (1) is said to be of order at most d.

Example 1 (Fibonacci numbers)
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• explicit representation: a(n) = 1√
5

((
1+
√

5
2

)n+1

−
(

1−
√

5
2

)n+1
)

• recursive representation: a(n) = a(n − 1) + a(n − 2) (n ≥ 2), a(0) =
a(1) = 1

• generating function: Ga(z) =
1

1− z − z2

From the viewpoint of representation of sequences, solving recurrence equations
can be seen as the process of converting one (namely recursive) representation
to another (explicit) representation.

In this paper we survey the properties of several important classes of se-
quences which satisfy linear recurrence equations with polynomial coefficients,
and sketch algorithms for finding such solutions when they exist. In Sections 2
and 3 we review the main results about C-recursive and P-recursive sequences,
then we describe algorithms for finding polynomial, rational and hypergeomet-
ric solutions in Sections 4 and 5. Difference rings and the Ore algebra of linear
difference operators with rational coefficients, together with the outline of a fac-
torization algorithm, are introduced in Sections 6 and 7. In Section 8 we define
d’Alembertian sequences and prove their closure properties. Finally, in Section
9, we give an alternative proof of the recent result of Reutenauer [31] that Li-
ouvillian sequences are precisely the interlacings of d’Alembertian sequences by
showing that the latter enjoy all the closure properties of the former.

2 C-recursive sequences

C-recursive sequences satisfy homogeneous linear recurrences with constant co-
efficients. Typical examples are geometric sequences of the form a(n) = c qn

with c, q ∈ K∗, polynomial sequences, their products, and their linear combina-
tions (such as the Fibonacci numbers of Example 1).

Definition 1 A sequence a ∈ KN is C-recursive or C-finite1 if there are d ∈ N
and constants c1, c2, . . . , cd ∈ K, cd 6= 0, such that

a(n) = c1 a(n− 1) + c2 a(n− 2) + · · ·+ cd a(n− d)

for all n ≥ d.

The following theorem describes the explicit and generating-function repre-
sentations of C-recursive sequences. For a proof, see, e.g., [38].

Theorem 1 Let a ∈ KN and Ga(z) =
∑∞
n=0 a(n)zn. The following are equiv-

alent:

1C-recursive sequences are also called linear recurrent (or: recurrence) sequences. This
neglects sequences satisfying linear recurrences with non-constant coefficients, and may lead
to confusion.
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1. a is C-recursive,

2. a(n) =
r∑
i=1

Pi(n)αni for all n ∈ N where Pi ∈ K[x] and αi ∈ K,

3. Ga(z) =
P (z)
Q(z)

where P,Q ∈ K[x], degP < degQ and Q(0) 6= 0.

The next two theorems are easy corollaries of Theorem 1.

Theorem 2 The set of C-recursive sequences is closed under the following bi-
nary operations (a, b) 7→ c:

1. addition: c(n) = a(n) + b(n)

2. (Hadamard or termwise) multiplication: c(n) = a(n)b(n)

3. convolution (Cauchy multiplication): c(n) =
∑n
i=0 a(i)b(n− i)

4. interlacing: 〈c(0), c(1), c(2), c(3), . . .〉 = 〈a(0), b(0), a(1), b(1), . . .〉

Remark 1 These operations extend naturally to any nonzero number of
operands.

Theorem 3 The set of C-recursive sequences is closed under the following
unary operations a 7→ c:

1. scalar multiplication: c(n) = λa(n) (λ ∈ K)

2. (left) shift: c(n) = a(n+ 1)

3. indefinite summation: c(n) =
∑n
k=0 a(k)

4. multisection: c(n) = a(mn+ r) (m, r ∈ N, 0 ≤ r < m)

That (nonzero) C-recursive sequences are not closed under taking reciprocals
is demonstrated, e.g., by a(n) = n+ 1 which is C-recursive while its reciprocal
b(n) = 1/(n + 1) is not, since its generating function Gb(x) = − ln(1 − x)/x
is not a rational function. Of course, there are C-recursive sequences whose
reciprocals are C-recursive as well, such as all the geometric sequences.

Question 1. When are a and 1/a both C-recursive?

Theorem 4 The sequences a and 1/a are both C-recursive iff a is the interlac-
ing of one or more geometric sequences.

For a proof, see [26].

4

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
18

5,
 F

eb
ru

ar
y 

21
, 2

01
3



3 P-recursive sequences

P-recursive sequences satisfy homogeneous linear recurrences with polynomial
coefficients. While most of them lack a simple explicit representation, their gen-
erating functions do have a nice characterization in terms of differential equa-
tions. There exist also several important subclasses of P-recursive sequences
such as polynomial, rational, hypergeometric (Sec. 4), d’Alembertian (Sec. 8),
and Liouvillian (Sec. 9) sequences which have nice explicit representations. Fig-
ure 1 shows a hierarchy of these subclasses together with some examples. In
the rest of the paper, we investigate their properties and sketch algorithms for
finding such special solutions of linear recurrence equations with polynomial
coefficients, whenever they exist.

polynomial: n+ 1 geometric: 2n

rational: 1
n+1 C-recursive: n2n + 1

hypergeometric: n! quasirational: 2n

n+1 + 1

d’Alembertian: n!
n∑
k=0

(−1)k

k!

Liouvillian: n!!

P-recursive:
n∑
k=0

(
n
k

)2(n+k
k

)2

   
   

   
  

H
HH

H
HH

H
HH

H
HH

   
   

   
  

!!
!!
!

aa
aa

a

Figure 1: A hierarchy of P-recursive sequences (with examples)

Definition 2 A sequence a ∈ KN is P-recursive if there are d ∈ N and polyno-
mials p0, p1, . . . , pd ∈ K[x], pd 6= 0, such that

pd(n)a(n+ d) + pd−1(n)a(n+ d− 1) + · · ·+ p0(n)a(n) = 0

for all n ≥ 0.

Definition 3 A formal power series f(z) =
∑∞
n=0 a(n)zn ∈ K[[z]] is D-finite

if there exist d ∈ N and polynomials q0, q1, . . . , qd ∈ K[x], qd 6= 0, such that

qd(z)f (d)(z) + qd−1(z)f (d−1)(z) + · · ·+ q0(z)f(z) = 0.

Theorem 5 Let a ∈ KN and Ga(z) =
∑∞
n=0 a(n)zn. The following are equiv-

alent:

5

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
18

5,
 F

eb
ru

ar
y 

21
, 2

01
3



1. a is P-recursive,

2. Ga(z) is D-finite.

For a proof, see [39] or [40].

Theorem 6 P-recursive sequences are closed under the following operations:

1. addition,

2. multiplication,

3. convolution,

4. interlacing,

5. scalar multiplication,

6. shift,

7. indefinite summation,

8. multisection.

For a proof, see [40].

Question 2. When are a and 1/a are both P-recursive?
The answer is given in Theorem 7.

Example 2 The sequences a(n) = n! and b(n) = 1/n! are both P-recursive
since a(n+ 1)− (n+ 1)a(n) = 0 and (n+ 1)b(n+ 1)− b(n) = 0.

Example 3 The sequence a(n) = 2n+1 is P-recursive (even C-recursive) while
its reciprocal b(n) = 1/(2n + 1) is not P-recursive.

Proof: We use the fact that a D-finite function can have at most finitely many
singularities in the complex plane (see, e.g., [40]). The generating function

Gb(z) =
∞∑
n=0

b(n)zn =
∞∑
n=0

zn

2n + 1

obviously has radius of convergence equal to two. We can rewrite

Gb(2z) =
∞∑
n=0

2n

2n + 1
zn =

∞∑
n=0

(
1− 1

2n + 1

)
zn

=
1

1− z
−Gb(z). (2)

At z = 1 the function 1/(1 − z) is singular, Gb is regular, so Gb is singular at
z = 2. At z = 2 the function 1/(1−z) is regular, Gb is singular, so Gb is singular
at z = 4. At z = 4 the function 1/(1 − z) is regular, Gb is singular, so Gb is
singular at z = 8, and so on. By induction on k it follows that Gb(z) is singular
at z = 2k for all k ∈ N, k ≥ 1, hence Gb is not D-finite, and b is not P-recursive.
�
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4 Hypergeometric sequences

Hypergeometric sequences are P-recursive sequences which satisfy homogeneous
linear recurrence equations with polynomial coefficients of order one. They
can be represented explicitly as products of rational functions, Pochhammer
symbols, and geometric sequences. The algorithm for finding hypergeomet-
ric solutions of linear recurrence equations with polynomial coefficients plays
an important role in other, more involved computational tasks such as finding
d’Alembertian or Liouvillian solutions, and factoring linear recurrence opera-
tors.

Definition 4 A sequence a ∈ KN is hypergeometric2 if there is an N ∈ N such
that a(n) 6= 0 for all n ≥ N , and there are polynomials p, q ∈ K[n] \ {0} such
that

p(n) a(n+ 1) = q(n) a(n) (3)

for all n ≥ 0. We denote by H(K) the set of all hypergeometric sequences in
KN.

Clearly, each hypergeometric sequence is P-recursive.

Proposition 1 The set H(K) is closed under the following operations:

1. multiplication,

2. reciprocation,

3. nonzero scalar multiplication,

4. shift,

5. multisection.

Proof: For 1 – 4, see [29]. For multisection, let a ∈ H(K) satisfy (3) and let
b(n) = a(mn+ r) where m ∈ N, m ≥ 2, and 0 ≤ r < m. For i = 0, 1, . . . ,m− 1,
substituting mn+ r + i for n in (3) yields

p(mn+ r + i) a(mn+ r + i+ 1) = q(mn+ r + i) a(mn+ r + i). (4)

Multiply (4) by
∏i−1
j=0 p(mn+r+j)

∏m−1
j=i+1 q(mn+r+j) on both sides to obtain

lhsi = rhsi for i = 0, 1, . . . ,m− 1, where

lhsi =
i∏

j=0

p(mn+ r + j)
m−1∏
j=i+1

q(mn+ r + j) a(mn+ r + i+ 1),

rhsi =
i−1∏
j=0

p(mn+ r + j)
m−1∏
j=i

q(mn+ r + j) a(mn+ r + i).

2A hypergeometric sequence is also called a hypergeometric term, because the nth term of
a hypergeometric series, considered as a function of n, is a hypergeometric sequence in our
sense.
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Note that lhsi = rhsi+1 for i = 0, 1, . . . ,m− 2, hence, by induction on i,

rhs0 = lhsi for i = 0, 1, . . . ,m− 1.

In particular, lhsm−1 = rhs0, so
m−1∏
j=0

p(mn+ r + j)b(n+ 1) =
m−1∏
j=0

q(mn+ r + j)b(n),

hence b ∈ H(K). �

Theorem 7 The sequences a and 1/a are both P-recursive iff a is the interlac-
ing of one or more hypergeometric sequences.

For a proof, see [30].

5 Closed-form solutions

In this section, we sketch algorithms for finding polynomial, rational, and hyper-
geometric solutions of linear recurrence equations with polynomial coefficients.

5.1 Recurrence operators

Let E : KN → KN be the (left) shift operator acting on sequences by (Ea)(n) =
a(n + 1), so that (Eka)(n) = a(n + k) for k ∈ N. For a given d ∈ N and
polynomials p0, p1, . . . , pd ∈ K[n] such that pd 6= 0, the operator L : KN → KN

defined by

L =
d∑
k=0

pk(n)Ek

is a linear recurrence operator of order d with polynomial coefficients, acting on
a sequence a by (La)(n) =

∑d
k=0 pk(n) a(n + k). We denote by K[n]〈E〉 the

algebra of linear recurrence operators with polynomial coefficients. The commu-
tation rule E · p(n) = p(n+ 1)E induces the rule for composition of operators:

d∑
k=0

pk(n)Ek ·
e∑
j=0

qj(n)Ej =
d∑
k=0

e∑
j=0

pk(n)qj(n+ k)Ej+k.

5.2 Polynomial solutions

Given: L ∈ K[n]〈E〉, L 6= 0
Find: a basis of the space {y ∈ K[n]; Ly = 0}

Outline of algorithm

1. Find an upper bound for deg y.

2. Use the method of undetermined coefficients.

For more details, see [3], [9], [29].
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5.3 Rational solutions

Given: L ∈ K[n]〈E〉, L 6= 0
Find: a basis of the space {y ∈ K(n); Ly = 0}

Outline of algorithm

1. Find a universal denominator for y.

2. Find polynomial solutions of the equation satisfied by the numerator of y.

For more details, see [4], [6], [22], and [7].

5.4 Hypergeometric solutions

Given: L =
∑d
k=0 pk E

k ∈ K[n]〈E〉, L 6= 0
Find: a generating set for the linear hull of {y ∈ H(K); Ly = 0}

Outline of algorithm

1. Construct the “Riccati equation” for r = Ey
y ∈ K(n):

d∑
k=0

pk

k−1∏
j=0

Ejr = 0 (5)

2. Use the ansatz
r = z

a

b

Ec

c

with z ∈ K∗, a, b, c ∈ K[n] monic, a, c coprime, b, Ec coprime, a,Ekb
coprime for all k ∈ N to obtain

d∑
k=0

zkpk

k−1∏
j=0

Eja

d−1∏
j=k

Ejb

Ekc = 0. (6)

3. Construct a finite set of candidates for (a, b, z) using the following conse-
quences of (6):

• a | p0,

• b |E1−dpd,

•
∑

0≤k≤d
deg Pk=m

lc(Pk)zk = 0

where Pk = pk

(∏k−1
j=0 E

ja
)(∏d−1

j=k E
jb
)

, m = max0≤k≤d degPk.
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4. For each candidate triple (a, b, z), find polynomial solutions c of the equa-
tion

d∑
k=0

zkPk E
kc = 0.

For more details, see [28] or [29]. A much more efficient algorithm (although
still exponential in deg p0 + deg pd in the worst case) is given in [23] and [16].

Example 4 (Amer. Math. Monthly problem no. 10375) Solve

y(n+ 2)− 2(2n+ 3)2y(n+ 1) + 4(n+ 1)2(2n+ 1)(2n+ 3)y(n) = 0. (7)

Denote p2(n) = 1, p1(n) = −2(2n+ 3)2, and p0(n) = 4(n+ 1)2(2n+ 1)(2n+ 3).
In search of hypergeometric solutions we follow the four steps described above:

1. Riccati equation:

p2(n) r(n+ 1)r(n) + p1(n) r(n) + p0(n) = 0

2. plug in the ansatz:

z2 p2(n) a(n+ 1) a(n) c(n+ 2)
+ z p1(n) a(n) b(n+ 1) c(n+ 1)
+ p0(n) b(n+ 1) b(n) c(n) = 0

3. candidates for (a, b, z):

• a(n) | 4(n+ 1)2(2n+ 1)(2n+ 3)

• b(n) | 1

• z2 − 8z + 16 = (z − 4)2 = 0

Take, e.g., a(n) = (n+ 1)(n+ 1
2 ), b(n) = 1, z = 4.

4. equation for c:

(n+ 2)c(n+ 2)− (2n+ 3)c(n+ 1) + (n+ 1)c(n) = 0

Polynomial solution: c(n) = 1

We have found

y(n+ 1)
y(n)

= r(n) = z
a(n)
b(n)

c(n+ 1)
c(n)

= (2n+ 1)(2n+ 2),

therefore y(n) = (2n)! is a hypergeometric solution of equation (7).
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6 Difference rings

Definition 5 A difference ring is a pair (K,σ) where K is a commutative ring
with multiplicative identity and σ : K → K is a ring automorphism. If, in
addition, K is a field, then (K,σ) is a difference field.

Example 5

• (K[x], σ) with σx = x+ 1, σ|K = idK is a difference ring.

• (K(x), σ) with σx = x+ 1, σ|K = idK is a difference field.

• (KN, E) is not a difference ring since the shift operator E is not injective
on KN.

For a, b ∈ KN define a ∼ b if there is an N ∈ N such that a(n) = b(n)
for all n ≥ N . The ring S(K) = KN/ ∼ of equivalence classes is the ring
of germs of sequences . Let ϕ : KN → S(K) be the canonical projection, and
σ : S(K) → S(K) the unique automorphism of S(K) s.t. σ ◦ ϕ = ϕ ◦ E. Then
(S(K), σ) is a difference ring.

To avoid problems with sequences with some undefined terms (such as those
given by rational functions with nonnegative integer poles), and to have the
advantage of working in a difference ring, we will henceforth work in (S(K), σ)
rather than in KN (but will still call its elements just “sequences” for short).
Consequently we identify sequences which agree from some point on, and our
statements may have a finite set of exceptions. The sets K[n], K(n), H(K)
all naturally embed into S(K) (e.g., by mapping f ∈ K(n) to the germ of
〈0, 0, . . . , 0, f(N), f(N + 1), . . .〉 where N is an integer larger than any integer
pole of f).

7 An Ore algebra of operators

Instead of linear recurrence operators with polynomial coefficients from
K[n]〈E〉, we will henceforth use linear difference operators with rational coeffi-
cients from the algebra K(n)〈σ〉. The rule for composition of these operators
follows from the commutation rule σ · r(n) = r(n+ 1)σ for all r ∈ K(n).

The identity

r(n)σk =
(

r(n)
s(n+ k − j)

σk−j
)
· s(n)σj

describes how to perform right division of r(n)σk by s(n)σj . Hence there is an
algorithm for right division in K(n)〈σ〉:

Theorem 8 For L1, L2 ∈ K(n)〈σ〉, L2 6= 0, there are Q,R ∈ K(n)〈σ〉 such
that

• L1 = QL2 +R,
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• ordR < ordL2.

As a consequence, the right extended Euclidean algorithm (REEA) can be used
to compute a greatest common right divisor (gcrd) and a least common left
multiple (lclm) of operators in K(n)〈σ〉, which is therefore a left Ore algebra.
In particular, given L1, L2 ∈ K(n)〈σ〉, REEA yields S, T, U, V ∈ K(n)〈σ〉 such
that

• SL1 + TL2 = gcrd(L1, L2),

• UL1 = V L2 = lclm(L1, L2).

Definition 6 Let a be P-recursive. The unique monic operator Ma ∈ K(n)〈σ〉\
{0} of least order such that Maa = 0 is the minimal operator of a.

Example 6 Let h ∈ H(K) where σh/h = r ∈ K(n)∗. Then Mh = σ − r.

Question 3. How to compute Ma for a given P-recursive a?
The outline of an algorithm for solving this problem is given on page 13.

Proposition 2 Let a be P-recursive, and L ∈ K(n)〈σ〉 such that La = 0. Then
L is right-divisible by Ma.

Proof: Divide L by Ma. Then:

L = QMa +R =⇒ La = QMaa+Ra =⇒ 0 = Ra =⇒ R = 0

�

Corollary 1 Let L ∈ K(n)〈σ〉 and h ∈ H(K) be such that Lh = 0. Then there
is Q ∈ K(n)〈σ〉 such that L = Q(σ − r) where r = σh/h ∈ K(n)∗.

Hence there is a one-to-one correspondence between hypergeometric solutions
of Ly = 0 and first-order right factors of L having the form σ − r with r 6= 0.

Example 7 (Amer. Math. Monthly problem no. 10375 – continued from Ex-
ample 4)

L = σ2 − 2(2n+ 3)2σ + 4(n+ 1)2(2n+ 1)(2n+ 3)

We saw in Example 4 that Ly = 0 is satisfied by y(n) = (2n)!. Hence L = QL1

where

L1 = σ − (2n+ 1)(2n+ 2),
Q = σ − (2n+ 2)(2n+ 3).
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Operator factorization problem Given: L ∈ K(n)〈σ〉 and r ∈ N
Find: all L1 ∈ K(n)〈σ〉 s.t.

• ord L1 = r,

• L = QL1 for some Q ∈ K(n)〈σ〉
Suppose such L1 exists, and let y(1), y(2), . . . , y(r) be linearly independent so-
lutions of L1y = 0 in S(K). The Casoratian Cas(y(1), y(2), . . . , y(r)) is defined
as

det


y(1) y(2) · · · y(r)

σy(1) σy(2) · · · σy(r)

...
...

...
σr−1y(1) σr−1y(2) · · · σr−1y(r)

 .
Then:

1. Cas(y(1), y(2), . . . , y(r)) ∈ H(K),

2. Cas(y(1), y(2), . . . , y(r)) = Cas(L1),

3. from L and r one can construct a linear recurrence with polynomial coef-
ficients satisfied by Cas(L1),

4. from L and r one can construct linear recurrences with polynomial coef-
ficients satisfied by the coefficients of L1, multiplied by Cas(L1).

Outline of an algorithm to solve the operator factorization problem:

1. Construct a recurrence satisfied by Cas(L1).

2. Find all hypergeometric solutions of this recurrence.

3. Construct recurrences satisfied by the coefficients of L1.

4. Find all rational solutions of these recurrences.

5. Select candidates for L1 which right-divide L.

Outline of an algorithm to find the minimal operator of a P-recursive
sequence:

Given: L ∈ K(n)〈σ〉 and a ∈ S(K) s.t. La = 0
Find: minimal operator Ma of a

for r = 1, 2, . . . , ord L do:

find all monic L1 ∈ K(n)〈σ〉 of order r s.t. ∃Q ∈ K(n)〈σ〉: L = QL1

for every such L1 do:

if (L1 a)(n) = 0 for ordQ consecutive values of n

then return L1.

In the last line, the ordQ consecutive values of n must be greater than any
integer root of the leading coefficient of Q.
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8 D’Alembertian solutions

Write ∆ = σ − 1 for the forward difference operator as usual. If y = a satisfies
Ly = 0, then substituting y ← az where z is a new unknown sequence yields

L′∆z = 0

where ordL′ = ordL− 1. This is known as reduction of order or d’Alembert
substitution [5]. By using this substitution repeatedly we obtain a set of solutions
which can be written as nested indefinite sums with hypergeometric summands.
These so-called d’Alembertian sequences include harmonic numbers and their
generalizations, and play an important role in the theory of Padé approximations
(cf. [17], [18]), in combinatorics (cf. [27], [34]) and in particle physics (cf. [1],
[12], [2]).

8.1 Definition and representation

Definition 7 A sequence a ∈ S(K) is d’Alembertian if there are first-order
operators L1, L2, . . . , Ld ∈ K(n)〈σ〉 such that

Ld · · ·L2L1 a = 0. (8)

We denote by A(K) the set of all d’Alembertian elements of S(K), and write
nd(a) for the least d ∈ N for which (8) holds (the nesting depth of a).

Remark 2 Let a ∈ A(K). Then:

1. nd(a) = 0 if and only if a = 0,

2. nd(a) = 1 if and only if a ∈ H(K).

Example 8

• Harmonic numbers H(n) =
∑n
k=1

1
k are d’Alembertian because(

σ − n+ 1
n+ 2

)
(σ − 1)H(n) =

(
σ − n+ 1

n+ 2

)
1

n+ 1
= 0.

• Derangement numbers d(n) = n!
∑n
k=0

(−1)k

k! are d’Alembertian because

(σ+1)(σ−(n+1)) d(n) = (σ+1)(n+1)!
(−1)n+1

(n+ 1)!
= (σ+1)(−1)n+1 = 0.

Notation: For a ∈ S(K) and A ⊆ S(K) we write

Σa = {b ∈ S(K); ∆b = a} =
n−1∑
k=0

a(k) + C,

ΣA = {b ∈ S(K); ∆b ∈ A}

where C ∈ K is an arbitrary constant.

14

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
18

5,
 F

eb
ru

ar
y 

21
, 2

01
3



Remark 3

1. ∆ + 1 = σ,

2. ∆Σ = 1,

3. σΣ = Σ + 1,

4. Σ0 = K.

Proposition 3 Let r ∈ K(n), σh = rh, and f ∈ S(K). Then

{y ∈ S(K); (σ − r)y = f} = hΣ
f

σh
.

Proof: Assume that (σ − r)y = f and write y = h z. Then

f = (σ − r)y = (σ − r)h z = σhσz − r h z = σh∆z,

hence ∆z = f
σh , so z ∈ Σ f

σh and y = h z ∈ hΣ f
σh . – Conversely,

(σ − r)hΣ
f

σh
= σhσΣ

f

σh
− rhΣ

f

σh
= σh∆Σ

f

σh
= f.

�

Corollary 2

Ker (σ − rd) · · · (σ − r2)(σ − r1) = h1 Σ
h2

σh1
Σ
h3

σh2
· · ·Σ hd

σhd−1
Σ0 (9)

where σhi = rihi for i = 1, 2, . . . , d.

It turns out that for any L ∈ K(n)〈σ〉, the space of all d’Alembertian solu-
tions of Ly = 0 is of the form

h1 Σh2 Σh3 · · ·Σhd Σ0 (10)

for some d ≤ ordL and h1, h2, . . . , hd ∈ H(K).

Example 9 (Amer. Math. Monthly problem no. 10375 – continued from Ex-
ample 7)

L = σ2 − 2(2n+ 3)2σ + 4(n+ 1)2(2n+ 1)(2n+ 3),
L = L2L1,
L1 = σ − (2n+ 1)(2n+ 2),
L2 = σ − (2n+ 2)(2n+ 3).

Since L1(2n)! = 0 and L2(2n+ 1)! = 0, it follows from (9) that

KerL = (2n)! Σ
(2n+ 1)!
(2n+ 2)!

Σ 0 = (2n)! Σ
C

n+ 1

= (2n)!

(
n−1∑
k=0

C

k + 1
+D

)
= C (2n)!H(n) +D (2n)!

where C,D ∈ K are arbitrary constants.
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8.2 Closure properties of A(K)

Definition 8 For operators L,R ∈ K(n)〈σ〉, denote by L/R the right quotient
of lclm(L,R) by R.

Remark 4 Clearly, (L/R)R = lclm(L,R) = (R/L)L.

Example 10 Let L1 = σ − r1 and L2 = σ − r2 be first-order operators. If
r1 = r2 then L1/L2 = L2/L1 = 1. If r1 6= r2 it is straightforward to check that(

σ − σr1 − σr2
r1 − r2

r1

)
(σ − r2) =

(
σ − σr1 − σr2

r1 − r2
r2

)
(σ − r1) ,

hence

L1/L2 = σ − σr1 − σr2
r1 − r2

r1, L2/L1 = σ − σr1 − σr2
r1 − r2

r2.

Lemma 1 Let L1, L2, . . . , Lk, R ∈ K(n)〈σ〉 be monic first-order operators.
Then there are monic operators N1, N2, . . . , Nk,M ∈ K(n)〈σ〉 \ {0} of order
≤ 1 such that

MLkLk−1 · · ·L1 = NkNk−1 · · ·N1R.

Proof: By induction on k.
k = 1: Take N1 = L1/R, M = R/L1. Then ML1 = (R/L1)L1 =

(L1/R)R = N1R.
k > 1: By inductive hypothesis, there are monic operators

N1, N2, . . . , Nk−1, M̃ ∈ K(n)〈σ〉 \ {0} of order ≤ 1 such that

M̃Lk−1Lk−2 · · ·L1 = Nk−1Nk−2 · · ·N1R. (11)

Take Nk = Lk/M̃ , M = M̃/Lk. Then, using (11) in the last line, we obtain

MLkLk−1 · · ·L1 = (M̃/Lk)LkLk−1Lk−2 · · ·L1

= (Lk/M̃)M̃Lk−1Lk−2 · · ·L1

= NkM̃Lk−1Lk−2 · · ·L1 = NkNk−1Nk−2 · · ·N1R.

�

Lemma 2 Let L1, L2, . . . , Lk, R1, R2, . . . , Rm ∈ K(n)〈σ〉 be monic first-order
operators. Then there are monic operators M1,M2, . . . ,Mm, N1, N2, . . . , Nk ∈
K(n)〈σ〉 \ {0} of order ≤ 1 such that

MmMm−1 · · ·M1LkLk−1 · · ·L1 = NkNk−1 · · ·N1RmRm−1 · · ·R1.

Proof: By induction on m.
m = 1: By Lemma 1 applied to L1, L2, . . . , Lk, R1, there are N1, N2, . . . , Nk

and M1 such that M1LkLk−1 · · ·L1 = NkNk−1 · · ·N1R1.

16

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
18

5,
 F

eb
ru

ar
y 

21
, 2

01
3



m > 1: By inductive hypothesis applied to R1, R2, . . . , Rm−1, there are
monic operators M1,M2, . . . ,Mm−1, Ñ1, Ñ2, . . . , Ñk ∈ K(n)〈σ〉 \ {0} of order
≤ 1 such that

Mm−1Mm−2 · · ·M1LkLk−1 · · ·L1 = ÑkÑk−1 · · · Ñ1Rm−1Rm−2 · · ·R1. (12)

By Lemma 1 applied to Ñ1, Ñ2, . . . , Ñk, Rm, there are N1, N2, . . . , Nk and Mm

such that
MmÑkÑk−1 · · · Ñ1 = NkNk−1 · · ·N1Rm,

hence, by multiplying (12) with Mm from the left, we obtain

MmMm−1 · · ·M1LkLk−1 · · ·L1 = MmÑkÑk−1 · · · Ñ1Rm−1Rm−2 · · ·R1

= NkNk−1 · · ·N1RmRm−1 · · ·R1.

�

Proposition 4 A(K) is closed under addition.

Proof: Let a, b ∈ A(K). Then there are monic first-order operators
L1, L2, . . . , Lk, R1, R2, . . . , Rm ∈ K(n)〈σ〉 such that

LkLk−1 · · ·L1a = RmRm−1 · · ·R1b = 0.

By Lemma 2, there are monic operators M1, . . . ,Mm, N1, . . . , Nk ∈ K(n)〈σ〉 \
{0} of order ≤ 1 such that

L := MmMm−1 · · ·M1LkLk−1 · · ·L1 = NkNk−1 · · ·N1RmRm−1 · · ·R1.

Then La = Lb = 0, so L(a+ b) = 0 and a+ b ∈ A(K). �

Proposition 5 A(K) is closed under multiplication.

Proof: Let a, b ∈ A(K). We show that ab ∈ A(K) by induction on the sum
of their nesting depths nd(a) + nd(b).

a) nd(a) = 0 or nd(b) = 0: In this case one of a, b is 0, hence ab = 0 ∈ A(K).
b) nd(a),nd(b) ≥ 1: By (10) we can write a ∈ h1 Σh2 Σh3 · · ·Σhd Σ0 and

b ∈ g1 Σg2 Σg3 · · ·Σge Σ0 where hi, gj ∈ H(K), d = nd(a), and e = nd(b). Let
a1 = h2 Σh3 · · ·Σhd Σ0 and b1 = g2 Σg3 · · ·Σge Σ0, so that a ∈ h1 Σa1 and
b ∈ g1 Σb1 with a1, b1 ⊆ A(K), nd(a1) < nd(a) and nd(b1) < nd(b). Clearly
ha ∈ A(K) whenever h ∈ H(K) and a ∈ A(K), hence it suffices to show that
(
∑
a1)g1

∑
b1 ⊆ A(K). Using the product rule of difference calculus

∆uv = u∆v + ∆uσv

and Remark 3 repeatedly, we obtain

∆
(

(
∑

a1)g1
∑

b1

)
= (

∑
a1)g1∆

∑
b1 + ∆((

∑
a1)g1)σ

∑
b1

= (
∑
a1)g1b1 + ((

∑
a1)∆g1 + a1σg1)(

∑
b1 + b1)

= ∆g1(
∑
a1)
∑
b1 + (g1 + ∆g1)b1

∑
a1 + a1σg1(

∑
b1 + b1)

= ∆g1(
∑
a1)
∑
b1 + σg1(a1

∑
b1 + b1

∑
a1 + a1b1).
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Assume first that g1 = 1. Then ∆ ((
∑
a1)
∑
b1) = a1

∑
b1 +b1

∑
a1 +a1b1. By

inductive hypothesis and from Proposition 4 it follows that a1

∑
b1 + b1

∑
a1 +

a1b1 ⊆ A(K). Therefore there are first-order operators L1, L2, . . . , Lk ∈
K(n)〈σ〉 such that

LkLk−1 · · ·L1∆ ((
∑
a1)
∑
b1) = 0,

hence (
∑
a1)
∑
b1 ⊆ A(K). In the general case, ∆g1, σg1 ∈ H(K) now implies

∆ ((
∑
a1)g1

∑
b1) ⊆ A(K). Again we conclude that (

∑
a1)g1

∑
b1 ⊆ A(K). �

Proposition 6 A(K) is closed under σ and σ−1.

Proof: Let a ∈ A(K). Then there are monic first-order operators
L1, L2, . . . , Lk ∈ K(n)〈σ〉 such that LkLk−1 · · ·L1a = 0.

By Lemma 1 with R = σ, there are monic operators N1, N2, . . . , Nk,M ∈
K(n)〈σ〉 \ {0} of order ≤ 1 such that MLkLk−1 · · ·L1 = NkNk−1 · · ·N1σ.
Hence

NkNk−1 · · ·N1σa = MLkLk−1 · · ·L1a = 0,

so σa ∈ A(K).
From LkLk−1 · · ·L1a = 0 it follows that LkLk−1 · · ·L1σ(σ−1a) = 0, hence

σ−1a ∈ A(K) as well. �

Theorem 9 A(K) is a difference ring.

Proof: This follows from Propositions 4, 5 and 6. �

Corollary 3 A(K) is the least subring of S(K) which contains H(K) and is
closed under σ, σ−1, and Σ.

Proof: Denote by HS(K) the least subring of S(K) which contains H(K)
and is closed under σ, σ−1, and Σ.

By Corollary 2, every a ∈ A(K) is obtained from 0 by using Σ and multipli-
cation with elements from H(K). Hence A(K) ⊆ HS(K).

Conversely, A(K) is closed under σ and σ−1 by Proposition 6, and under Σ
by Corollary 2. Since A(K) is a subring of S(K) containing H(K), it follows
that HS(K) ⊆ A(K). �

Proposition 7 A(K) is closed under multisection.

Proof: Let a ∈ A(K). We show that any multisection of a belongs to A(K)
by induction on the nesting depth nd(a) of a.

a) nd(a) = 0: In this case a = 0, so the assertion holds.
b) nd(a) ≥ 1: By (10) we can write a ∈ h1 Σh2 Σh3 · · ·Σhd Σ0 where d =

nd(a) and h1, h2, . . . , hd ∈ H(K). Let h = h1 and b = h2 Σh3 · · ·Σhd Σ0, so
that a ∈ hΣb where b ⊆ A(K) and nd(b) < nd(a).
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Let c ∈ S(K), defined by c(n) = a(mn + r) for all n ∈ N, where m, r ∈ N,
m ≥ 2, 0 ≤ r < m, be a multisection of a. Then for all n ∈ N

c(n) = a(mn+ r) = h(mn+ r)
mn+r−1∑
k=0

b(k)

= h(mn+ r)

m−1∑
i=0

n−1∑
j=0

b(mj + i) +
r−1∑
i=0

b(mn+ i)


= hm,r(n)

m−1∑
i=0

n−1∑
j=0

bm,i(j) +
r−1∑
i=0

bm,i(n)


where hm,r(n) = h(mn+ r) and bm,i(n) = b(mn+ i) for 0 ≤ i < m. Hence

c = hm,r

(
m−1∑
i=0

Σbm,i +
r−1∑
i=0

bm,i

)

where hm,r ∈ H(K) ⊆ A(K) by Proposition 1, and bm,i ∈ A(K) by inductive
hypothesis as a multisection of b. Since A(K) is closed under Σ, addition and
multiplication, it follows that c ∈ A(K). �

8.3 Finding d’Alembertian solutions

The following theorem provides a way to find d’Alembertian solutions of Ly = 0.

Theorem 10 Ly = 0 has a nonzero d’Alembertian solution if and only if Ly =
0 has a hypergeometric solution.

For a proof, see [10].

Outline of an algorithm for finding the space of all d’Alembertian
solutions:

1. Find a hypergeometric solution h1 of Ly = 0.
If none exists then return 0 and stop.

2. Let L1 = σ − σh1
h1

. Right-divide L by L1 to obtain L = QL1.

3. Recursively use the algorithm on Qy = 0. Let the output be a.

4. Return h1 Σ a
σh1

and stop.

A much more general algorithm which finds solutions in ΠΣ∗-difference ex-
tension fields of (K(n), σ) is presented in [32]. For the relevant theory, see [33],
[35], [36], [37].
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9 Liouvillian solutions

Definition 9 L(K) is the least subring of S(K) containing H(K), closed under

• σ, σ−1,

• Σ,

• interlacing of an arbitrary number of sequences.

The elements of L(K) are Liouvillian sequences.

Example 11 The sequence

n!! =
{

2kk!, n = 2k,
(2k+1)!

2kk!
, n = 2k + 1

is Liouvillian (as an interlacing of two hypergeometric sequences ).

The following theorem provides a way to find Liouvillian solutions of Ly = 0.

Theorem 11 Ly = 0 has a nonzero Liouvillian solution if and only if Ly = 0
has a solution which is an interlacing of at most ordL hypergeometric sequences.

For a proof, see [21]. For algorithms to find Liouvillian solutions, see [13],
[25], [8], [14], [15], [24], [19], [20].

Theorem 12 A sequence in S(K) is Liouvillian if and only if it is an inter-
lacing of d’Alembertian sequences.

This is proved in [31] as a corollary of the results of [21] obtained by means
of Galois theory of difference equations. Here we give a self-contained proof
based on closure properties of interlacings of d’Alembertian sequences.

Let Λ(a0, a1, . . . , ak−1), or Λk−1
j=0aj , denote the interlacing of a0, a1, . . . , ak−1.

By definition of interlacing we have(
Λk−1
j=0aj

)
(n) = Λ(a0, a1, . . . , ak−1)(n) = an mod k(n div k)

for all n ∈ N, where

n div k =
⌊n
k

⌋
, n mod k = n−

⌊n
k

⌋
k.

Denote temporarily the set of all interlacings of (one or more) d’Alembertian
sequences by AL(K). The goal is to prove that AL(K) = L(K).

Proposition 8 AL(K) ⊆ L(K).

Proof: Since H(K) ⊆ L(K) and L(K) is a ring closed under Σ, we have
A(K) ⊆ L(K). Since L(K) is closed under interlacing, AL(K) ⊆ L(K). �
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Lemma 3 AL(K) is closed under addition and multiplication.

Proof: Let � denote either addition or multiplication in K and S(K). We
claim that, for k,m ∈ N and a0, a1, . . . , ak−1, b0, b1, . . . , bm−1 ∈ A(K), we have(

Λk−1
j=0aj

)
�
(
Λm−1
j=0 bj

)
= Λkm−1

`=0 (a`,k,m � b`,k,m) (13)

where for all n ∈ N,

a`,k,m(n) = a` mod k(mn+ ` div k),
b`,k,m(n) = b` mod m(kn+ ` div m).

Indeed,(
Λkm−1
`=0 (a`,k,m � b`,k,m)

)
(n)

= an mod km,k,m(n div km)� bn mod km,k,m(n div km) = u� v

where

u = a(n mod km) mod k(m(n div km) + (n mod km) div k),
v = b(n mod km) mod m(k(n div km) + (n mod km) div m).

From

(n mod km) mod k =
(
n−

⌊ n

km

⌋
km
)

mod k = n mod k,

(n mod km) mod m =
(
n−

⌊ n

km

⌋
km
)

mod m = n mod m,

m(n div km) + (n mod km) div k = m
⌊ n

km

⌋
+

⌊
n−

⌊
n
km

⌋
km

k

⌋
=
⌊n
k

⌋
= n div k,

k(n div km) + (n mod km) div m = k
⌊ n

km

⌋
+

⌊
n−

⌊
n
km

⌋
km

m

⌋
=
⌊ n
m

⌋
= n div m

it follows that

u� v = an mod k(n div k)� bn mod m(n div m)
=

(
Λk−1
j=0aj

)
(n)�

(
Λm−1
j=0 bj

)
(n) =

((
Λk−1
j=0aj

)
�
(
Λm−1
j=0 bj

))
(n),

proving (13). By Proposition 7, the sequences a`,k,m and b`,k,m belong to
A(K). Since A(K) is a ring, the right-hand side of (13) is an interlacing of
d’Alembertian sequences, and hence so is the left-hand side. �

Lemma 4 AL(K) is closed under σ and σ−1.
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Proof: Let a0, a1, . . . , ak−1 be d’Alembertian sequences. Then:(
σ
(
Λk−1
j=0aj

))
(n) =

(
Λk−1
j=0aj

)
(n+ 1)

= a(n+1) mod k((n+ 1) div k)

=
{
an mod k+1(n div k), n mod k 6= k − 1,
a0(n div k + 1), n mod k = k − 1

=
{
an mod k+1(n div k), n mod k 6= k − 1,
(σa0)(n div k), n mod k = k − 1

=
(
Λk−1
j=0 bj

)
(n)

where

bj =
{
aj+1, j 6= k − 1,
σa0, j = k − 1.

By Proposition 6, b0, b1, . . . , bk−1 are d’Alembertian. So σ
(
Λk−1
j=0aj

)
= Λk−1

j=0 bj
is an interlacing of d’Alembertian sequences.

Similarly,(
σ−1

(
Λk−1
j=0aj

))
(n) =

(
Λk−1
j=0aj

)
(n− 1)

= a(n−1) mod k((n− 1) div k)

=
{
an mod k−1(n div k), n mod k 6= 0,
ak−1(n div k − 1), n mod k = 0

=
{
an mod k−1(n div k), n mod k 6= 0,
(σ−1ak−1)(n div k), n mod k = 0

=
(
Λk−1
j=0 cj

)
(n)

where

cj =
{
aj−1, j 6= 0,
σ−1ak−1, j = 0.

By Proposition 6, c0, c1, . . . , ck−1 are d’Alembertian. So σ−1
(
Λk−1
j=0aj

)
= Λk−1

j=0 cj
is an interlacing of d’Alembertian sequences. �

Lemma 5 AL(K) is closed under Σ.

Proof: Let a0, a1, . . . , ak−1 be d’Alembertian sequences. We claim that

Σ
(
Λk−1
j=0aj

)
= Λk−1

j=0

j−1∑
i=0

σΣai +
k−1∑
i=j

Σai

 . (14)
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Indeed, for all n ∈ N,(
Σ
(
Λk−1
j=0aj

))
(n)

=
n−1∑
`=0

(
Λk−1
j=0aj

)
(`) =

n−1∑
`=0

a` mod k(` div k)

=
(n−1) mod k∑

i=0

bn−1
k c∑
j=0

ai(j) +
k−1∑

i=(n−1) mod k+1

bn−1
k c−1∑
j=0

ai(j) (15)

=
n mod k−1∑

i=0

bn
k c∑
j=0

ai(j) +
k−1∑

i=n mod k

bn
k c−1∑
j=0

ai(j) (16)

=
n mod k−1∑

i=0

(σΣai) (n div k) +
k−1∑

i=n mod k

(Σai) (n div k)

=

Λk−1
j=0

j−1∑
i=0

σΣai +
k−1∑
i=j

Σai

 (n),

proving (14). Here equality in (15) follows by mapping each ` ∈ {0, 1, . . . , n−1}
to the pair (i, j) = (` mod k, ` div k) and summing over all the resulting pairs,
and equality in (16) follows by noting that when n mod k 6= 0, we have

(n− 1) mod k = n mod k − 1,
(n− 1) div k = n div k,

while for n mod k = 0, both (15) and (16) are equal to
∑k−1
i=0

∑n
k−1
j=0 ai(j).

Since A(K) is closed under Σ, σ and addition, the right-hand side of (14) is
an interlacing of d’Alembertian sequences, and hence so is the left-hand side. �

Lemma 6 AL(K) is closed under interlacing.

Proof: An arbitrary interlacing can be obtained by using addition, shifts,
and interlacing of zero sequences with a single non-zero sequence by the formula

Λ(a0, a1, . . . , ak−1) =
k−1∑
i=0

σiΛ(0, 0, . . . , 0, ak−1−i).

Hence, by Propositions 3 and 4, it suffices to show that AL(K) is closed under
interlacing of zero sequences with a single non-zero sequence from AL(K). But
this is immediate: Let a0, a1, . . . , ak−1 be d’Alembertian sequences. Then the
interlacing of m zero sequences with Λ(a0, a1, . . . , ak−1)

Λ(0, 0, . . . , 0,Λ(a0, a1, . . . , ak−1))
= Λ(0, 0, . . . , 0, a0, 0, 0, . . . , 0, a1, . . . , 0, 0, . . . , 0, ak−1)
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is an interlacing of mk + k d’Alembertian sequences. �

Proof of Theorem 12. By Proposition 8, it suffices to show that L(K) ⊆ AL(K).
This is true since by Lemmas 3 – 6, AL(K) is a subring of S(K) containing
H(K) and closed under σ, σ−1, Σ and interlacing, while L(K) is the least such
ring. �
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