IDS-SL13A Data Logging Control Strokovno društvo za mikroelektroniko elektronske sestavne dele in materiale Strokovna revija za mikroelektroniko, elektronske sestavne dele in materiale Journal of Microelectronics, Electronic Components and Materials Optional External Sensor 2010 2 ... making things unique Integrated Circuits for RFID-based Solutions INFORMACIJE MIDEM, LETNIK 40, ŠT. 2(134), LJUBLJANA, junij 2010 UDK 621,3:(53+54+621 +66)(05)(497.1 )=00 ISSN 0352-9045 INFORMACIJE MIDEM 2 « 2010 INFORMACIJE MIDEM LETNIK 40, ŠT. 2(134), LJUBLJANA, JUNIJ 2010 INFORMACIJE MIDEM VOLUME 40, NO. 2(134), LJUBLJANA, JUNE 2010 Revija izhaja trimesečno (marec, junij, september, december). Izdaja strokovno društvo za mikroelektroniko, elektronske sestavne dele in materiale - MIDEM. Published quarterly (march, june, september, december) by Society for Microelectronics, Electronic Components and Materials - MIDEM. Glavni in odgovorni urednik Editor in Chief Dr. Iztok Sorli, univ. dipl.inž.fiz., MIKROIKS, d.o.o., Ljubljana Tehnični urednik Executive Editor Urednik elektronske izdaje Editor of Electronic Edition Dr. Iztok Šorli, univ. dipl.inž.fiz., MIKROIKS, d.o.o., Ljubljana Dr. Kristijan Brecl, univ.dipl.inž.el., Fakulteta za elektrotehniko, Ljubljana Uredniški odbor Editorial Board Časopisni svet International Advisory Board Dr. Barbara Malic, univ. dipl.inž. kern., Institut "Jožef Stefan", Ljubljana Prof. dr. Slavko Amon, univ. dipl.inž. el., Fakulteta za elektrotehniko, Ljubljana Prof. dr. Marko Topič, univ. dipl.inž. el., Fakulteta za elektrotehniko, Ljubljana Prof. dr. Rudi Babič, univ. dipl.inž. el., Fakulteta za elektrotehniko, računalništvo in informatiko Maribor Dr. Marko Hrovat, univ. dipl.inž, kem., Institut "Jožef Stefan", Ljubljana Dr. Wolfgang Pribyl, Austria Mikro Systeme Intl. AG, Unterpremstaetten Prof. dr. JanezTrontelj, univ. dipl.inž. el., Fakulteta za elektrotehniko, Ljubljana, PREDSEDNIK- PRESIDENT Prof. dr. CorClaeys, IMEC, Leuven Dr. Jean-Marie Haussonne, EIC-LUSAC, Octeville Darko Belavič, univ. dipl.inž. el., Institut "Jožef Stefan", Ljubljana Prof. dr. Zvonko Fazarinc, univ. dipl.inž., CIS, Stanford University, Stanford Prof. dr. Giorgio Pignatel, University of Padova Prof. dr. Stane Pejovnik, univ. dipl.inž., Fakulteta za kemijo in kemijsko tehnologijo, Ljubljana Dr. Giovanni Soncini, University of Trento, Trento 1" Prof. dr. Anton Zalar, univ. dipl.inž.met., Institut Jožef Stefan, Ljubljana Dr. Peter Weissglas, Swedish Institute of Microelectronics, Stockholm Prof. dr, Leszek J. Golonka, Technical University Wroclaw Naslov uredništva Headquarters Uredništvo Informacije MIDEM MIDEM pri MIKROIKS Stegne 11,1521 Ljubljana, Slovenija tel.: + 386(0)1 51 33 768 faks: + 386 (0)1 51 33 771 e-pošta: Iztok.Sorli@guest.arnes.si http://www.midem-drustvo.si/ Letna naročnina je 100 EUR, cena posamezne številke pa 25 EUR. Člani in sponzorji MIDEM prejemajo Informacije MIDEM brezplačno. Annual subscription rate is EUR 100, separate issue is EUR 25. MIDEM members and Society sponsors receive Informacije MIDEM for free. Znanstveni svet za tehnične vede je podal pozitivno mnenje o reviji kot znanstveno-strokovni reviji za mikroelektroniko, elektronske sestavne dele in materiale. Izdajo revije sofinancirajo JAKRS in sponzorji društva. Scientific Council for Technical Sciences of Slovene Research Agency has recognized Informacije MIDEM as scientific Journal for microelectronics, electronic components and materials. Publishing of the Journal is financed by Slovenian Book Agency and by Society sponsors. Znanstveno-strokovne prispevke objavljene v Informacijah MIDEM zajemamo v podatkovne baze COBISS in INSPEC. Prispevke iz revije zajema ISI® v naslednje svoje produkte: Sci Search®, Research Alert® in Materials Science Citation Index™ Scientific and professional papers published in Informacije MIDEM are assessed into COBISS and INSPEC databases. The Journal is indexed by ISI® for Sci Search®, Research Alert® and Material Science Citation Index™ Po mnenju Ministrstva za informiranje št.23/300-92 šteje glasilo Informacije MIDEM med proizvode informativnega značaja. Grafična priprava in tisk BIRO M, Ljubljana Printed by Naklada 1000 izvodov Circulation 1000 issues Poštnina plačana pri pošti 1102 Ljubljana Slovenia Taxe Perçue UDK621,3:(53+54+621 +66), ISSN0352-9045 Informacije MIDEM 40(2010)1, Ljubljana SPUTTERED DEPOSITED TUNGSTEN SILICIDE FILMS FOR MICROELECTRONICS APPLICATIONS Jian-Wei Hoon, Kah-Yoong Chan Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya, Selangor, Malaysia Key words: Tungsten Silioide films; DC plasma magnetron sputtering; pressure; substrate temperature Abstract: This paper addresses the effect of substrate temperature and deposition pressure on the electrical properties of Direct Current (DC) plasma magnetron sputter-deposited Tungsten Silicide (WSi) films on silicon substrates. Results from experiments show that, substrate temperature and deposition pressure has exerted significant influence on the electrical properties of the WSi films. The electrical properties of the WSi films are inferior at high deposition pressure and high substrate temperature. Nanašanje silicidnih filmov WSi za uporabo v mikroelektroniki Kjučne besede: filmi voframovega siliclda, magnetronsko naprševanje v DC plazmi , pritisk, temperatura substrata Izvleček: Prispevek obravnava vpliv temperature podlage in pritiska pri magnetronskem naprševanju v DC v plazmi na električne lastnosti napršenega volframovega siliclda na silicijevih substratih. Rezultati eksperimentov so pokazali, da imata temperatura podlage In pritisk pri naprševanju velik vpliv na električne lastnosti WSi filmov. Le-te so slabše pri visokih pritiskih In temperaturah. 1. Introduction Polycrystalline silicon (Poly-Si) has been intensively used in the manufacture of integrated circuits in MOS technology, where it is employed as a gate or interconnection material. The achievement of maximal signal transmission in emerging chip and system architectures requires the minimization of high resistance in Poly-Si. High resistance is a major limitation in circuit performance for Ultra Large Scale Integrated Circuits (ULSI)/1/. In order to tackle this problem, alternative materials other than Poly-Si are needed. Several types of silicides of refractory metals have been investigated as a replacement for Poly-Si such as Tantalum Silicide (TaSi), Tungsten Silicide (WSi) and Molybdenum Silicide (MoSi) / 1-4/. Under optimum deposition conditions, WSi has the lowest resistivity of approximately 50 cm, comparing to others, for example, 70 fiQ cm for TaSi and 80 |J.Q cm for MoSi /5/. Furthermore, WSi has high melting point of 2160°C, excellent step coverage of 85% over a vertical step, high thermal stability, low stress and chemical resistance /6/. These properties make WSi an appropriate alternative to Poly-Si as gate or interconnection material. Furthermore, WSi can be applied as barrier liner in copper interconnection, to prevent the diffusion of copper (Cu) into silicon substrate. Cu interconnection is an emerging interconnection scheme employed in microelectronic industries as Cu exhibit better electrical properties than existing aluminum metallization scheme /7/. In the present study, experiments were carried out to investigate the electrical properties of the Direct Current (DC) plasma magnetron sputter-deposited WSi films on Si sub- strates as a function of the deposition pressure and the substrate temperature. 2. Experimental Figure 1 shows the schematic diagram of the magnetron sputtering deposition system. All WSi films were deposited in a DC plasma magnetron (balanced planar magnet- Gas 2—[ Chamber Power Supply Fig. 1. The schematic diagram of the employed magnetron sputtering deposition system. 85 J.-W. Hoon, K.-Y. Chan: Sputtered Deposited Informaoije MIDEM 40(2010)2, str. 85-87 Tungsten Silioide Films for Microelectronics Applications ran) sputtering deposition chamber with the base pressure maintained below 10~5 Torr. The circular 50.8 mm diameter WSi target was of 99.5% purity. High purity argon (Ar) gas with 99.995% purity was used as working gas in all the sputtering deposition processes. The flow rate of the Ar gas fed into the chamber was controlled by using SEV-ENSTAR (D07-7A/ZM) mass flow controllers. The magnetron cathode was placed at a distance of about 8 cm from the substrate holder and the substrate. The substrate was grounded during the deposition process in order to improve the efficiency of sputtering. Pressure in the sputtering chamber was measured using Pirani and Penning gauges. The geometry of Si substrates was approximately 6 mmx 12 mm. The electrical measurements of the WSi films were performed with Karl Suss four-point probe at room temperature. The deposition conditions of the WSi films presented in this study are summarized in Table 1. Table 1. Deposition details of experiments R = V/ I, (1) Target WSi Substrate p-type Si Target-substrate distance 8 cm Ar Flow Rate 18-20 (seem) Deposition duration 30 minutes Deposition Power 50 Watt Deposition pressure 12 mTorr to 25 mTorr Substrate temperature 27 °C to 200 °C 3. Results and discussion Figure 2 shows the measured l-V curves of the WSi films deposited with different pressures ranging from 12 mTorr to 25 mTorr. From the l-V curves, the voltage to current ratio (V/l) is higher when the deposition pressure is increased. a O) ro ö > 0.3 0.2 0.1 0 25 mTorr 20mTorr v---w 15mTorr q —-a 12mTorr 0 0.02 0.08 0.10 0.04 0.06 Current (A) Fig. 2. WSi films at difference deposition pressures. Referring to figure 2, the resistance, R, of the WSi films can be expressed as /8/: where V and I represent the voltage and current, respectively. Increase in the deposition pressure causes the film resistance to increase. The sheet resistance, Rs, can be correlated to film resistance, R. The Rs can be estimated using following equation /9/: Rs = C.F. (V/l), (2) where C.F. is the correction factor, depending on sample geometry, which accounts for the sample size, shape and l-V probe tip spacing /10/. In this investigation, all samples geometry was kept constant. The measured film resistance of the WSi films is proportional to the sheet resistance, Rs, of the WSi films. The film resistivity, n, can be correlated to sheet resistance, Rs. The film resistivity can be expressed as /11/: p = Rst, (3) where t represents the thickness of the deposited WSi films. Change in the deposition pressure has no significant effect on the thickness of the deposited WSi films /12/. Therefore, the film resistivity of the WSi films can be suggested as proportional to the sheet resistance. Therefore, it can be suggested that the electrical resistivity of the deposited WSi films increases when the deposition pressure is increased. The reason for the electrical properties of the WSi films become inferior at high deposition pressure can be explained in the following. Hara et al. /13/ have pointed out that the composition of WSi (Si/W ratio) increases when the deposition pressure is increased, because the atomic mass of the W is larger than Si. The electrical conductivity of W is higher than Si. Godbole et al. /14/ reported that film resistivity increases when the composition of WSi (Si/ W ratio) increases. Si is a lighter element, so it tends to scatter more than W in the sputtering process /14/. Therefore, with the increase in the deposition pressure, resistance and resistivity of the WSi films grown on Si substrates also increase. Figure 3 shows the electrical properties of the WSi films deposited with difference substrate temperatures ranging from 27 °C to 200 °C. The result from experiments show that the l-V curve is higher when the substrate temperature is increased; indicating a higher WSi films resistivity is obtained when a higher substrate temperature is used. This is true as the film thickness does not depend on the substrate temperature. This result is corroborated by the research work carried out by Liang etal. /15/ on WSi films. According to Liang et al., the Si/W ratio increase when annealing temperature for the WSi films is increased up to 400 °C. Additionally, Horiuchi et al. /16/ also discussed about the film resistivity increases with the increases of the annealing tempera- 86 J.-W. Hoon, K.-Y. Chan: Sputtered Deposited Tungsten Silioide Films for Microelectronics Applications Informacije MIDEM 40(2010)2, str. 85-87 0.08 0.06 CD O) 0.04 iS "o > 0.02 0 -75- ." / / v 0 / ¿r /X' V jz 0 0.01 0.02 0.03 0.04 0.05 Current (A) Fig. 3. WSi films at difference substrate temperatures. ture up to around 575 °C for Titanium Silicide (TiSi) thin films. Karmed et al. reported that higher value of film resistivity is related to the change in the crystalline phase of the deposited WSi films with increasing temperature. Therefore, with the increase in the substrate temperature, resistance and resistivity of the WSi films had grown on Si substrates also increase. 4. Conclusions In this work, the effects of the deposition pressure and substrate temperature on the electrical properties of the DC plasma magnetron sputter deposited WSi films were demonstrated. The experiment results show that the deposition pressure and substrate temperature significantly influence the electrical properties of the WSi films. The lower deposition pressure and lower substrate temperature favor the growth of WSi films with low resistivity. /4./ B. Sell , A. Sanger, G. Schuize-lcking , K. Pomplun , W. Kraut-schneider, Chemical Vapor Deposition of Tungsten Silicide (WSix) for High Aspect Ratio Applications, Thin Solid Films 443 (2003) 97-107. /5./ C.G. Sridhara, R. Chowa and G. Nocerino, Sputter Deposition of Refractory Metal Silicides from Cold-pressed Vacuum-sintered Targets, Thin Solid Films Volume 140, Issue 1, (1986) 51-58. /6./ D. L. Brors, Low Resistivity Tungsten Silicon Composite Film, US Patent 4851295, July 25, 1989. /7./ K.Y. Chan, J. Krishnasamy, T.Y. Tou, SEM and XRD Characterizations of Nanogranular Copper Metal Films, "Informacije MIDEM" Journal of Microelectronics, Electronic Components and Materials, In Print (2010). /8./ Electrical resistance. (2010). Retrieved January 10, 2010, from http://en.wikipedia.org/wiki/Electrical_resistance /9./ Sheet Resistance. Retrieved January 10, 2010, from http:// www.ece.gatech.edu/research/labs/vc/theory/sheetRes. html /10./ D. K. Schroder, Semiconductor Material and Device Characterization, Arizona State University, Tempe, Arizona. /11./ Resistivity. (2010). Retrieved January 10, 2010, from http:// en.wikipedia.org/wiki/Resistivity /12./ K. Y. Chan, T. Y. Tou, B. S. Teo, Thickness Dependence of the Structural and Electrical Properties of Copper Films Deposited by DC Magnetron Sputtering Technique, Microelectronics Journal 37(2006)608-612. /13./ T. Hara and S. Takahashi, Properties of Sputtered Tungsten Silicide Films Deposited with Different Argon Pressures, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms Volume 39, Issues 1-4, 2 March 1989, 302-305. /14./ M. Godbole, Silicon to Tungsten Ratio Determination in Tungsten Silicide Using XRF, IEEE, 2001. /15./ J. H. Liang, D. S. Chao, Formation of Tungsten Silicide Films by Ion Beam Synthesis, Surface and Coatings Technology, 140 (2001)116-121. /16./ T. Horiuchi, I. Takashi, N. Hiroyuki, M. Tohru, W. Hitoshi, K. Takemitsu, O. Koichiro, Method of Fabricating Semiconductor Device Having Refractory Metal Silicide Layer on Impurity Region Using Damage Implant and Single Step Anneal, US Patent 5593923, January 14, 1997. Acknowledgements The authors would like to acknowledge the technical assistance and discussion from Mr. Cham Chin Leei, Mr. Gan Yeow Jin, Mr. Kee Yeh Yee, Mr. Lee Wai Keat, and Ms. Tan Sek Sean. References /1. / H. Karmed and A. Khellaf, Tungsten Silicide Thin Films Preparation by Magnetron Sputtering, Asian Journal of Information Technology 5 (12) (2006) 1383-1385. /2./ E. Ivanov, Evaluation of Tantalum Silicide Sputtering Target Materials for Amorphous, Thin Solid Films 332 (1998) 325-328. /3./ S. Luby, E. Majkova , M. Jergel , E. D'Anna , G. Leggieri, A. Luches, Intermixing in Immiscible Molybdenum/Copper Multi-layered Metallization under Excimer Laser Irradiation, Applied Surface Science 106 (1996) 243-246. Jian-Wei Hoon and 1Kah-Yoong Chan Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia Corresponding author. Tel.: +60-3-8312 5438; fax: +60-3-8318 3029 E-mail addresses: kychan@mmu.edu.mya Prispelo (Arrived): 02.03.2010 Sprejeto (Accepted): 09.06.2010 87 UDK621,3:(53+54+621 +66), ISSN0352-9045 Informacije MIDEM 40(2010)1, Ljubljana DISTRIBUTION OF DROPLETS ON RUTHENIUM THIN FILMS PREPARED BY PULSE ND:YAG LASER Wai-Keat Lee, Hin-Yong Wong, Kah-Yoong Chan, Teck-Yong Tou Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya, Selangor, Malaysia. Keywords: Droplet, Pulsed laser deposition, Ruthenium Abstract: Ruthenium (Ru) has been suggested as a potential material used for various applications in microelectronic industry. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this report, a thin layer of Ru has been grown on silicon (Si) substrates by pulsed laser deposition technique. When using the PLD technique, the grown layers very often exhibit some micrometer sized droplets. Although the droplets on the surface of the deposited Ru film can be dramatically reduced, there is still much effort being aimed at completely eliminating their presence, which could clearly restrict its applications. In this study, we report on the droplet formation on the deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment with a pulsed laser Nd:YAG laser of 355 nm laser wavelength, employing various laser fluences ranging from 2 J/cm2 to 8 J/cm2. Therefore in this paper, we studied the droplets formation under the influence of pulsed laser deposition parameters on the ruthenium. The effect of the laser fluence on the droplets formation on the deposited Ru films was observed by field effect scanning electron microscopy (FESEM). Porazdelitev kapljic na tankem filmu rutenija pripravljenega s pulznim laserjem Nd:YAG Kjučne besede: kapljica, nanašanje s pulznim laserjem, rutenij Izvleček: Rutenijum je bil predlagan kot možen material za različne uporabe v mikroelektronski industriji. Pulzno lasersko nanašanje (PLD) omogoča rast tankih filmov iz rutenija pri nizkih temperaturah. V prispevku popisujemo rast tanke plasti rutenija na silicijevem substratu s pomočjo tehnike PLD. Pri uporabi te tehnike se na rastočih plasteh razvijejo mikrometrske kapljice. Čeprav njihovo število lahko zmanjšamo, je bilo veliko truda vloženega, da bi njihov nastanek popolnoma onemogočili. V tem prispevku poročamo o tvorbi kapljic na rutenijevih tankih filmih. Nanašanje je potekalo pri sobni temperaturi v vakuumu s pomočjo pulznega laserja Nd:YAG pri valovni dolžini 355nm in pri različnih energijah, med 2 J/cm2 in 8 J/cm2. V prispevku torej obravnavamo nastanek kapljic pri različnih pogojih nanašanja rutenija. Vpliv parametrov nanašanja smo opazovali s pomočjo elektronske mikroskopije (FESEM). 1. Introduction Pulsed laser deposition (PLD) has been a popular thin film deposition technique to grow a large variety of thin film materials covering inorganic, organic and high melting metal from solid targets/1,2/. This method is known to have the following advantages: (a) stoichiometric agreement with the target material /3/, (b) crystallinity enhancement due to the highly energetic species /4/ and (c) clean deposition due to particle ejection only by laser irradiation /5/. In view of these advantages, the development of new materials using PLD has advanced rapidly in comparison to other thin film deposition techniques. However, the formation of droplets using PLD which is detrimental to the quality of the thin film, is a major concern that needs to be properly addressed and studied /6/. These undesirable droplets deposition is main drawback for electronic device quality semiconductor films and optical films where droplets can introduce the formation of defects and scattering centers that lower the charge carrier mobility, shorten the carrier lifetime, and downgrade the damage threshold of optical films. To date, several methods /7/ have been attempted to eliminate the undesirable droplets,. However, it has been extremely challenging to eliminate the droplets without comprising the advantages of PLD. The droplets do not grow from the precipitation on film as a grain of irregular growth, but are ejected from the surface of the target. In this paper, we investigate and study the formation of droplets on ruthenium (Ru) thin films grown by PLD, and its dependence on the laser fluence. For these experiments, Ru was used as the material for deposition due to its increasing popularity and widely acceptance in various applications in the microelectronic industry/8-12/. In order to obtain the relevant droplet distribution information, field effect scanning electron microscopy (FESEM) was employed to study the droplet formation on the surface of the Ru target and the deposited Ru thin films. 2. Experimental The schematic diagram of the film preparation chamber is shown in Fig.1. Ruthenium thin films were deposited on silicon (Si) substrates at room temperature by pulsed laser deposition using a circular 2-inch diameter Ru target of 99.95 % purity. The substrates were set parallel to the target at a distance of 50 mm from the target. The pulsed laser beam with energy ranging from 17 mJ to 64 mJ was 88 W.-K. Lee, H.-Y. Wong, K.-Y. Chan, T.-Y. Tou: Distribution of Droplets on Ruthenium Thin Films Prepared by Pulse ... Informacije MIDEM 40(2010)2, str. 88-92 De—SOimuf Substrate- Laser betmilf Ru-target^ p..-.|0-«.To„U Fig. 1 Schematic diagram of the pulsed laser film deposition chamber focused with a spherical lens onto a target with an area of 0.8 mm2. The laser fluence was ranged from 2 J/cm2to 8 J/cm2 with a repetition rate of 10 Hz. The laser beam struck on the target at an angle of 45° to the normal. The base pressure was lower than 2 x 10~6 Torr, achieved with a rotary pump coupled with a diffusion pump. The pulsed laser deposition processes were carried out in high vacuum environment with a pulsed Nd:YAG 355-nm laser source. The film deposition was run for a total number of irradiated laser pulses of 36,000. The thickness of the pulsed laser deposited Ru films was characterized by Mahr surface profilometer after the deposition processes by measuring the step height between masked and unmasked regions on the substrate. The droplet formation on the surface of the Ru target and the deposited Ru thin films were observed by means of field emission scanning electron microscopy (FESEM) (LEO Electron Microscopy, LEO 1560). Detailed deposition conditions of the Ru films presented in this work are summarized in Table 1. amounts to more than a few hundred laser pulses, high surface roughness of Ru target with ripple-mark was observed as shown in Fig. 2b. During PLD deposition, laser beam was directed onto the target, as the target was ablated until a certain depth in which the laser energy was rose above the threshold value where the surface evaporation happened and the molten pool was formed. The melting period was very short, and the melting zone was in minutes; as a result, the molten pool was compressed from inside of the target, and hence the formation of ripples. The ripples seem to organize and follow a certain growth direction with a small tilting angle from the surface. The seemingly organized and same growth direction of the ripples might well attribute to the incident laser beam that was angled at 45° to the normal of the target during the deposition. As laser irradiation continues, droplets will form subsequently from the top of the ripples in the molten pool as shown in Fig 2c. The number of droplets continues to Table 1 Parameters for the pulsed laser deposited Ru Laser Nd:YAG laser (wavelength 355 nm) Laser fluence 2 to 8 J/cm2 Laser repetition rate 10 Hz Targets Substrates Deposition time Target-substrate distance Base pressure Ruthenium (purity: 99.95 %) (100) Si 60 min 50 mm < 2 x 10~6 Torr 3. Result and Discussion Fig.2a shows the surface morphology of the Ru target before irradiation. After a few minutes of ablation which WSÈ Mag = 2.00 K X Photo No = 4528 Fig. 2 The morphology of target surface before (upper), after few tens pulses (middle), and after 36,000 pulses (lower) of laser ablation. 89 W.-K. Lee, H.-Y. Wong, K.-Y. Chan, T.-Y. Tou: Informacije MIDEM 40(2010)2, str. 88-92 Distribution of Droplets on Ruthenium Thin Films Prepared by Pulse ... increases as a result of continuous laser irradiation which lead to rougher surface morphology of the target and deepened laser /13/. The thickness of Ru films deposited with laser fluence of 2 J/cm2, 4 J/cm2, 6 J/cm2 and 8 J/cm2 for duration of an hour were about 60 nm, 85 nm, 140 nm, and 180 nm as shown in Fig. 3 a, b, c, d, respectively. On the deposited Ru film surface, droplets are found as shown in Fig. 3. The presence of droplets which are rather spherical in shape on the surface of the PLD deposited Ru surface (Fig, 3) suggests that they are resulted from target splashing during laser target interaction and indicated that these droplets were (at least partially) molten before hitting the substrate. These observation of ripples on ablated target surface were also reported to contribute to the droplet formation /14/, which were formed as a result of Kevin-Helm-holtz /15/ instability occurring in the interface between the molten layer and the plume. From Fig. 3, we can observe that the number of droplets and its size increase with increasing laser fluence. In order to quantitatively study the droplet formation, droplets with different sizes and diameters on FESEM images of 350 x 225 |j.m at the centre of the film were counted. In our research, it is still not clearly understood for the mechanisms of the droplets formation. It is perhaps due to two mechanisms. First, it is due to the mechanically dislodged from the target due to laser-induced thermal and mechanical shock. Second, it is due to the rapid expansion of trapped gas bubbles beneath the surface during laser irradiation, causing forcible ejection of surface matter. In our experiment, different droplet sizes ranging from 1 (im to 10 |a.m were observed as shown in Fig. 3. The number of droplets increased, and larger droplets were found with increasing laser fluence. The number of droplets and its diameter for different laser fluences are summarized in Fig. 4. From Fig. 4, it is worth noting that the droplets size falls mainly in the range between 2 to 6 |jm. For Ru ablation with laser fluence of 4 to 8 J/cm2, the size distribution of droplets follow a normal distribution curve with a peak number of droplets of 13, 38, and 65 respectively. Those droplets size which falls at the two ends of the normal distribution, increased the laser fluence seems to have less significant effect on increment of droplets count. In general, there exists threshold laser fluence, below which the droplets are negligible In size and number. Above the threshold laser fluence, the droplets number density increases rapidly with increasing laser fluence as shown in Fig 4b, c, and d. Through this experiment, we come to a simple approach to reduce the number of droplets by reducing the laser fluence to below the threshold level that causes the splashing of the molten layer. Under the Ru thin film deposition conditions in our study, we observed that the threshold laser fluence to be about 4 J/ cm2. Fig. 4 also shows that the total number of droplet increases rapidly from 22 to 73 and 147 with increasing ..............................S&ani May - i GO K X ;........... -hi' 'v !! : : --^i i'i -i'.'j No. : ] ,12 Fig. 3 The morphology of the deposited Ru film surface at laser fluence (a) 2 J/cm2, (b) 4 J/cm2, (c) 6 J/cm2, and (d) 8 J/cm2. 90 W.-K. Lee, H.-Y. Wong, K.-Y. Chan, T.-Y. Tou: Distribution of Droplets on Ruthenium Thin Films Prepared by Pulse ... Informacije MIDEM 40(2010)2, str. 88-92 /o 60 50 o 40 O ° 30 d> .a E 20 10 I 2 J/cm 0-2 2-4 4-6 6-8 Droplets diameter [ (J.m] 10 2-4 4-6 6-8 Droplets diameter [ (j.m] 0-2 2-4 4-6 Droplets diameter [ |J.m] 2-4 4-6 6-8 8-10 Droplets diameter [ |am] Fig. 4 Number of droplets for various droplet sizes at laser fluenoe (a) 2 J/cm , (b) 4 J/cm2, (c) 6 J/cm2, and (d) 8 J/cm2. fluence from 4 J/cm to 6 J/cm and 8 J/cm respectively. This trend is in line with the observation made by van de Riet et al. /14/ and Dupendant et al. /16/ by comparing with different kinds of metals deposited using laser ablation. The relationship of the number of droplets and laser fluence is shown in Fig. 5. It shows a general trend that the number of droplets increases with laser fluence. For droplets size of 2 to 4 pm and 4 to 6 pm, the increment of droplets is 61 and 50, respectively, when the laser fluence is Increased from 2 to 8 J/cm2. With compare to the droplets size of 0 to 2 prn and 6 to 8 pm, the droplets increasing is lesser with increment of 14 and 18, as the laser fluence increases from 2 to 8 J/cm2. In addition, for droplets size of 8 to 10 pm, increasing the laser fluence from 2 to 8 J/cm2, the droplets only increase by 1, therefore laser fluence seems to have less significant on the increment of the droplets in this region. This droplet distribution on deposition substrate can be described with a power-law for- 70 60 50 (0 03 Q. p 40 Q H— O 30 l_ Cl> -Q E 20 D 7 10 0 l 1 l 1 l ' l -■-0-2 um 1 i 1 i 1 i -»-2-4 trm / ......4 - 6 um / —T— 6 - 8 |xm 8 - 10 um ] s i . i . i , i i . i . i Laser Fluence [J/cm ] Fig. 5 Number of droplets as a function of laser fluence ranging from 2 J/cm2 to 8 J/cm2. 91 W.-K. Lee, H.-Y. Wong, K.-Y. Chan, T.-Y. Tou: Informacije MIDEM 40(2010)2, str. 88-92 Distribution of Droplets on Ruthenium Thin Films Prepared by Pulse ... mula of the type N(d) = ax dn, where N(d) is the density of droplets with diameter d (in pm) per square centimeter and laser pulse, a is a constant and n is the exponent of the power law /17/. 4. Conclusions Droplets were formed from the top of the ripples that formed by the melt from laser beam on ruthenium target surface during the deposition. The initial morphology of the target was affected by the droplets formation on the target itself, which later are co-deposited to the surface of the growing substrate to form a thin Ru film with some micrometer size droplets on it. In this paper, droplets size between up to 10 pm was observed. The number of the droplets increases with increasing laser fluence. Droplets with size of 2 to 6 em were mainly seen on the deposited Ru films for all laser fluences. Therefore, it is observed that for Ru, as in our experiment, the threshold laser fluence is 4 J/cm2 for 355 nm wavelength pulsed Nd:YAG laser. Below this threshold value, droplets formed on the deposited Ru films are less significant. Therefore, with the proper choice of laser fluence, droplets formation can be minimized. Acknowledgements We express our sincere thanks to Mr. Ban-Hong Kang from 5.E.H. (M) Sdn Bhd for help in producing the FESEM pictures. This work was supported by Ministry of Science, Technology and Innovation (MOSTI) under contract EP20070412008. Reference /1/ S.G. Hansen, and T.E. Robitaille, Formation of polymer films by pulsed laser evaporation, Applied Physics Letters 52/1 (1988) p. 81-83. /2/ D. Dijkkamp.T. Venkatesan, X.D. Wu, S.A. Shaheen, N. Jisrawi, Y.H. Min-Lee, W.L. McLean, and M. Croft, Preparation ofY-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high T/sub c/ bulk material, Applied Physics Letters 51/8 (1987) p. 619-621. /3/ R.-X.L. H. Nagano, M. Yoshinori, S. Masakazu, I. Mitsuru, and N. Tetsuro, Evidence of Sr-Deficiency in Bi2Sr2-aCaiCu20s and Preparation of Stoichiometric Semiconducting Bi2Sr2CaiCu20s, Japanese Journal of Applied Physics 28/Part 2, No. 3(1989) p. L364-L367. /4/ Y. Tsuyoshi, Emission Studies of the Plume Produced by KrF Laser Ablation of Fe in Ambient Nitrogen Gas, Japanese Journal of Applied Physics 36/Part2, No. 5A(1997)p. L566-L568. /5/ M.Y. T. Yoshitake, M. Itakura, N. Kuwano, Y. Tomokiyo, and K. Nagayama, Semiconducting nanocrystalline iron disilicide thin films prepared by pulsed-laser ablation, Applied Physics Letters 83/15 (2003) p. 3057-3059. /6/ X.D.W. T. Venkatesan, R. Muenchausen, and A. Pique, vol. 17, Materials Research Society, 1992, p. 54. /7/ D.B. Chrisey, and G.K. Hubler, Pulsed Laser Deposition of Thin Films, Wiley Interscience Publication New York, 1994. /8/ S.-Y. Kang, C.-S. Hwang, and H.-J. Kim, Improvements in Growth Behavior of CVD Ru Films on Film Substrates for Memory Capacitor Integration, Journal ofThe Electrochemical Society 152/ 1 (2005) p. C15-C19. /9/ N. Inoue, N. Furutake, A. Toda, M. Tada, and Y. Hayashi, PZT MIM capacitor with oxygen-doped Ru-electrodes for embedded FeRAM devices, IEEE Transaction On Electron Devices, IEEE, 2005, p. 2227-2235. /10/ H.C. Wen, P. Lysaght, H.N. Alshareef, C. Huffman, H.R. Harris, K. Choi, Y. Senzaki, H. Luan, P. Majhi, B.H. Lee, M.J. Campin, B. Foran, G.D. Lian, and D.L. Kwong, Thermal Response of Ru Electrodes in Contact with Si02 and Hf-based High-k Gate Dielectrics, Journal of Applied Physics 98/4 (2005) p. 043520-043526. /11/ R. Chan, T.N. Arunagiri, Y. Zhang, O. Chyan, R.M. Wallace, M.J. Kim, and T.Q. Hurd, Diffusion Studies of Copper on Ruthenium Thin Film, Electrochemical and Solid-State Letters 7/8 (2004) p. G154-G157. /12/ H. Kim, The Application of Atomic Layer Deposition for Metallization of 65 nm and Beyond, Surface and Coatings Technology 200/10 (2006) p. 3104-3111. /13/ S.M. T. Hino, M. Nishida, and T. Araki, Reduction of droplet of tantalum oxide using double slit in pulsed laser deposition, Vacuum 70/1 (2003) p. 47-52. /14/ E. van de Riet, C.J.C.M. Nillesen, and J. Dieleman, Reduction of droplet emission and target roughening in laser ablation and deposition of metals, Journal of Applied Physics 74/3 (1993) p. 2008-2012. /15/ D. Bauerle, Laser Processing and Chemistry, Springer Berlin Heidelberg, 2000. /16/ J.P.G. H. Dupendant, D. Givord, A. Lienard, J.P. Rebouillat, and Y. Souche, Velocity distribution of micron-size particles in thin film laser ablation deposition (LAD) of metals and oxide superconductors, Applied Surface Science 43/1-4 (1989) p. 369-376. /17/ Z. Andreic, L. Aschke, and H.J. Kunze, The presence of droplets in pulsed laser deposition of aluminum with capillary ablation targets, Applied Surface Science 153/4 (2000) p. 235-239. Wai-Keat Lee', Hin-Yong Wong, Kah-Yoong Chan, Teck-Yong Tou Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia. * Corresponding author. Tel.: +60-3-8312 5368; fax: +60-3-8318 3029. E-mail address: wklee@mmu.edu.my (W.-K. Lee). Prispelo (Arrived): 07.11.2009 Sprejeto (Accepted): 09.06.2010 92 UDK621,3:(53+54+621 +66), ISSN0352-9045 Informacije MIDEM 40(2010)1, Ljubljana KONTAKTNI MATERIALI ZA NIZKONAPETOSTNA STIKALA V ELETROENERGETIKI Martin Bizjak Iskra MIS d. d., Kranj, Slovenija Kjučne besede: kontaktni pojavi, nizkonapetostna stikala za energetiko, kontaktni materiali za elektroenergetiko, zlitine AgMe, kompoziti Ag/Me, kom-poziti Ag/MeO, kompoziti Ag/C, uporaba kontaktnih materialov Izvleček: Učinke kontaktnih pojavov, ki delujejo na električne kontakte v stikalih za nizkonapetostne energetske tokokroge, upoštevamo pri presoji ustreznosti kontaktnega materiala za predvidene specifične pogoje uporabe. Izbiramo pretežno materiale na osnovi bakra in srebra, od teh pa se največ uporabljajo zlitine AgCu in AgNi 0,15, kompoziti Ag s kovinskimi granulati (Ag/Me), z granulati kovinskih oksidov (Ag/MeO) iz z grafitnimi vlakni. Značilni predstavniki Ag/Me materialov so Ag/Ni in Ag/VV, od Ag/MeO materialov pa Ag/CdO, pridobljen s postopkom notranje oksidacije in Ag/CdO, Ag/SnC>2 ter Ag/ZnO, pridobljen s postopkom metalurgije prahov. Za odklopnike je zanimiv kompozit Ag/C z pravokotno in vzporedno usmeritvijo grafitnih vlaken. Za te materiale so opisane njihove osnovne električne lastnosti s poudarkom na uporabi v stikalni tehniki, prikazana je njihova metalografska struktura in kratek opis postopkov izdelave. V sklepu je podana ugotovitev, da do sedaj še ni uspelo izdelati univerzalnega kontaktnega materiala za vse pogoje, pri katerih morajo stikalni aparati v energetskih tokokrogih nizke napetosti dolgo in zanesljivo delovati. Contact materials for low-voltage power switching devices Key words: electric contact phenomena, low-voltage switching devices, contact materials for low-voltage power conditions, AgMe alloys, composites Ag/Me, composites Ag/MeO, composites Ag/C, application of contact materials Abstract: Electrical contact phenomena affecting contacts of low-voltage switching devices in power circuits shall be taken into consideration for selection of the suitable contact material regarding the presumed specific conditions of switching operation. The candidates for contact materials are found among copper-base and silver-base materials. Most frequently used are AgCu and AgNi 0,15 alloys, as well as composite materials of Ag with metal granulates (Ag/Me), with metal-oxide granulates (Ag/MeO) and with graphite filaments (Ag/C). Typical materials of Ag/Me composites are Ag/Ni and Ag/ W, while among Ag/MeO materials widely used Ag/CdO produced by internal oxidation, as well as Ag/CdO, Ag/SnÛ2 and Ag/ZnO produced by powder metallurgy. In circuit breakers frequently used are Ag/C materials having graphite filaments oriented in parallel or perpendicularly to the contact surface. Basic electrical characteristics concerning the application for electrical contacts are described and the metallographlc structure is shown as well for the above listed materials. Brief descriptions of manufacturing methods are also given. In the conclusion it is stated that up to now not any contact material has been manufactured yet having universal contact characteristics which provide durable and reliable switching operations of contacts at majority of operating conditions in low-voltage power circuits. 1. Uvod Če v električnem tokokrogu želimo vključevati in prekinjati električni tok skozi porabnik, lahko to opravimo to enostavno tako, da fizično stikamo in razmikamo med seboj dva električna vodnika. Vendar so se elektrotehniki več desetletij ukvarjali z vprašanjem, kako zagotoviti dolgotrajen zanesljiv stik, zakaj tudi na priključku transformatorja stik lahko odpove, zakaj v stikalu pri kakem od vklopov mehanizma tok ni stekel, zakaj pri izklopu stikala včasih toka ne moremo prekiniti in teče skozenj do uničenja stikala ali komponente tokokroga, ter podobnim, ki so še danes ne tako redka vprašanja vsakdanje prakse v stikalni tehniki. Zato je treba opisati nekatere značilne pojave pri vklopu, prevajanju in izklopu toka z mehansko upravljanimi kontakti. Dva električna vodnika, ki ju staknemo med seboj, da med njima teče električni tok, tvorita kontaktni par. Na stičnih delih, ki so najpogosteje na izpostavljenih delih obeh električnih vodnikov, nastane kontaktno mesto, kjer je električni kontakt med deloma kontaktnega para. V stiku ju drži zunanja sila Fk [N], ki nanju izvaja kontaktni stisk (SI. 1). Ta povzroča na kontaktnem mestu deformacijo stičnih površin, tako daje kontaktni par v fizičnem stiku na majhnem delu naležne površine, ki jo določa deformirano po- Slika 1: Shematični prikaz kontaktnega para v sklenjenem stanju dročje. Vendar je eksperimentalno ugotovljeno, da v realnih pogojih le majhen del stične površine s ploščino a tudi prevaja električni tok /1/. Pri prehodu skozi električno prevodno ploskev a se tokovnice električnega toka zelo zgostijo (SI. 2), kar se na kontaktnem mestu odraža kot upor zožitve ftk [£2]. Ker kontaktna sila Fk neposredno vpliva na velikost ploskve a, je tudi upor zožitve v neposredni zvezi z Rk■ Empirično je ugotovljena splošna relacija (1), ki 93 Informacije MIDEM 40(2010)2, str. 93-100 M. Bizjak: Kontaktni materiali za nizkonapetostna stikala v eletroenergetiki Slika 2: Simulacija razmer na električno prevodnem delu kontaktnega mesta - tokovnice električnega toka (hiperbole), ekvipotenciali (elipse) in izoterme (Cassinijeve jajčnice) velja dovolj dobro za kontaktni par iz različnih materialov v različnih okoljih in raznih geometrij: Rk=aFk -p (1) kjer so v vrednosti konstante a in eksponenta /3 upoštevani zgoraj našteti vplivi. Za vrednost eksponenta se najpogosteje navaja vrednosti 0,3 < /3 < 1 /2/. Okoli zožitve se znatno poveča tudi gradient električnega potenciala, zato pretežni del električne napetosti Uw med deloma kontaktnega para pripade razliki potenciala ob stičnem mestu. Zaradi električne upornosti materiala kontaktnega para se sprošča toplota, ki se odvaja po kontaktnih delih in preko okoliškega medija v okolico. Izoterme na stičnem mestu kažejo, da najbolj vroče področje leži na robu električno prevodne ploskve /3/, kar pri vplivu okoliškega medija in tujih plasti na stičnih površinah omejuje dolgoročno stabilnost stika. Zožitev toka skozi stično mesto povzroča tudi magnetne učinke. Če se snop tokovnic toka / pri prehodu iz preseka s ploščino A zoži na presek s ploščino a (SI. 3), nastane na zožitvi med vodnikoma odbojna sila Ft>, določena z (2) /4/: Fh - C I2 ln (2) \a y kjer je empirično ugotovljeno, da za primere običajne prakse velja približna ocena iz (2a): í;[n]=0,5 /2[kA]2 (2a) Če odbojna sila Fb pri toku / preseže silo kontaktnega stiska Fk, se kontaktni par razpre in prekine tok I (samo pri dovolj majhnem toku in/ali napetosti!), nakar sila Fk ponovno sklene kontakt. Če pa so pogoji v tokokrogu / > 1 A, Uw > 125 V /5/, kar v je elektroenergetskih tokokrogih zelo pogosto (npr. Ue = 230 V, /n = 6 A), potem v trenutku raz-maknitve stičnih površin nastane električni oblok z napetostjo Ua> 12 V pri toku/'(f), ki ga določajo pogoji v tokokrogu (SI. 4). Integral produkta Ua i po t v času trajanja obloka ta določa količino sproščene toplote, ki na stičnem mestu ustvari bazen staljenega kontaktnega materiala, v katerem se kontaktni par po kratkotrajnem odskoku spet stakne in takoj po ohladitvi nastane kontaktni zvar. Velikost kontaktnega zvara je odvisno od sproščene energije v času odskoka kontaktov in s tem tudi sila, ki jo je treba za prekin-tev zvara. Na preklopnih kontaktih stikal so tudi v običajnih razmerah mikrozvari na kontaktnem paru dokaj pogost pojav (SI. 5). PM3384B ch2 ch3 ch4 fch2: i min 2 L T \ :-67.4mV -CH2 CH3 :Shl4 20mV= j.............-[-_ 0.5 V= ! MGN 1 V= CHR MTBZOOms- 4.00dv ch2- Slika 3: Zoženje tokovnic električnega toka na čelnem stiku dveh valjastih vodnikov pri prehodu skozi majhno električno prevodno ploskev na osi cilindra, simetrijska os polja tokovnic poteka po zgornjem robu slike Slika 4: Odskok gibljivega kontaktnega dela v kontaktnem paru (sled »ch3«: ~ 0,5 mm/del) zaradi tokovnega sunka i (sled »ch2«: 500 A/del) in napetost na kontaktnem paru u/< (sled »ch4«: 10 V/del). Opazen je takojšnji skok uk na vrednost minimalne obločne napetosti v trenutku razmaknitve kontaktnih površin. Zaradi dobrega električnega stika morajo biti kontaktne površine primerno čiste. Vsaka tehnično čista kovinska površina, ki je v okoliški atmosferi, je vedno pokrita vsaj s tanko tujo plastjo adsorbiranih, kondenziranih ali kemijsko vezanih komponent plinov in par, ki povzroča dodatni prehodni upor kontaktnega para /6/. Če je vpliv tuje plasti nezaznaven, ima prehodni upor kontakta značilnosti ohm-skega upora. Prehodni upor kontakta pa se lahko z velikostjo prevajanega toka spreminja bodisi zaradi širjenja ele- 94 M. Bizjak: Kontaktni materiali za nizkonapetostna stikala v eletroenergetiki Informacije MIDEM 40(2010)2, str. 93-100 i Slika 5: Mikrozvar na kontaktnem mestu po vklopu toka, stanje po razmaknitvi kontaktnih površin, SEM - dolžina markerja 100 ¡im 100 mA Slika 6: Nelinearnost u/< (\) kontaktnega para glede na razmere na kontaktnem mestu ktrično prevodne ploskve a, zaradi tanjšanja vmesne slabo prevodne plasti, zaradi taljenja stičnega mesta ali zaradi električnega preboja tuje plasti. Ti pojavi se odražajo na grafih SI. 6 in jih pripisujemo učinku »cvrtja« (fritting) kontaktnega mesta /7/. Intenzivnost cvrtja je odvisna od vrste kontaktnega materiala, okoliškega medija in od tuje plasti na kontaktni površini. Glede na namen uporabe kontaktnega para (napetost, tok, okoliški medij, kontaktna sila, ...) se izbere tudi ustrezni kontaktni materiali, za katerega so ti vplivi zanemarljivi /8/. Zaradi potrebne kontaktne sile in zaradi dinamičnih mehanskih obremenitev pri vklopu (deformacija pri naletu kontaktnih površin) mora biti material kontaktnih oblog (t. j. kontaktni material) na stičnem mestu mehansko dovolj odporen, da ne pride do nedopustne spremembe oblike ali celo hladnega zvara kontaktov. Zaradi elastične deformacije kontaktov pri vklopu nastane nekaj odskokov gibljivega kontaktnega dela v paru, kar lahko povzroči do kontaktni zvar /9/ zaradi istih pojavov, kot pri elektromagnetni odbojni sili na kontaktnem paru zaradi zožitve toka. Pri izklopu toka pri pogojih / > 1 A, U^ > 125 V nastane na stičnem mestu med razmikajočimi se površinami kontaktnega para električni oblok. Sproščena toplota, ki se absorbira v kontaktne površine, na njih tali in uparja kontaktni material. Ta delno izpari v okolico, večidel pa se izbrizga po kontaktnih delih, tako se ga z vsakim izklopom nekaj izgubi s kontaktnih oblog /10/. Ko so te na kontaktnem mestu večidel izžgane, nastane kontaktni zvar ali prevelika prehodna upornost kontakta ali pa fizični stik kontaktnega para sploh ni več mogoč. Ti pojavi določajo električno trajnost kontaktov v stikalih za energetiko. 2. Splošne zahteve za kontaktne materiale v energetiki Za zanesljivo opravljanje stikalne naloge moramo kontaktnemu paru zagotoviti silo kontaktnega stiska, ki ustreza izbranemu kontaktnemu materialu, tega pa izberemo med materiali z dobro električno prevodnostjo, ki omejuje prekomerno segrevanje kontaktnih delov, ter z ustrezno mehansko trdnostjo, ki zagotavlja omejene deformacije kontaktov. Tvorba izolacijskih ali slabo prevodnih tujih plasti na kontaktnih površinah v okoliškem mediju ne sme omejevati dobrega kontakta, zato mora biti material kontaktnih oblog kemijsko dovolj odporen na vplive okolice, da je tuja plast dovolj tanka in/ali mehansko in termično dovolj razgradljiva. Zaradi velikega termičnega učinka obloka na kontaktno površino naj bo material kontaktnih oblog dovolj odporen na obločno izžiganje, ali pa oblok čim hitreje speljemo s kontaktnega mesta, zato naj material omogoča dobro gibljivost obloka po kontaktni površini /11/. Kjer je možnost kontaktnega zvara velika ali pa predstavlja ta nevarno napako delovanja stikalnega aparata, izberemo kontaktni material z visokim tališčem ali pa z mehansko krhkim zvarom. Veliko teh zahtev si medsebojno bolj ali manj nasprotuje, zato so za posamezne aplikacije potrebni kompromisi. Širšim zahtevam za kontakte v energetiki nizke napetosti v splošnem dokaj dobro ustreza srebro (Ag) in materiali z osnovo srebra /12/, delno tudi baker (Cu) in materiali z osnovo bakra. Kot pomožne materiale z omejeno uporabnostjo in za dodatke k Ag in Cu pogosto najdemo tudi Sn, Cd, Ni, Fe, Mo, Win C (grafit). 3. Baker, srebro in srebrove zlitine Obe kovini imata zaradi svoje kristalne strukture veliko električno prevodnost in omogočata dobro preoblikovanje v hladnem (SI. 7). Baker (Cu) je podvržen oksidaciji in v vročem tvori debele plasti CuO /13/, zaradi česar ga upo- 95 Informacije MIDEM 40(2010)2, str. 93-100 M. Bizjak: Kontaktni materiali za nizkonapetostna stikala v eletroenergetiki blja za kontakte z majhnimi kontaktnimi silami, t. j. za preklapljanje majhnih tokov reda 1 A. Zaradi večje mehanske odpornosti je srebro legirano s 3 ... 5 ut. % Cu (materiali AgCu 3 ... AgCu 5), pri čemer se mu nekoliko zmanjša električna prevodnost. Tudi legiranje z Ni do meje topnosti 0,2% /14/ ima podoben učinek, kot s Cu, zato uporabljamo za kontaktni material tudi zlitino AgNi 0,15 z 0,15 ut. % Ni. Zmesi srebra s kovinskimi granulati Slika 7: Značilna metalografska struktura nelegiranega Cu, Ag in večine drugih nelegiranih kovin za električne vodnike v energetiki, vidne so meje med posameznimi kristali rabljamo največ kot nosilni material za kontaktne obloge in električno prevodne dele. Kot kontaktni material nastopa v nesimetričnem kontaktnem paru, kadar je drugi partner kemijsko obstojnejši srebrni material z zelo nehomogeno sestavo kontaktne površine, na kateri je gibljivost obloka zelo omejena. Kontaktna površina Cu omogoča obloku dobro gibljivost, tako da je s tem kompenzirana ta slabost prvega partnerja v kontaktnem paru. Srebro (Ag) ima bakru podobne električne lastnosti, odporno je na oksidacijo, eventualni oksidi so termično razgradljivi pri = 200° C /13/. V atmosferi s spojinami žvepla pa tvori površinski Ag2S, ki je glede na debeline plasti modre do črne barve. Plast Ag2S se mehansko delno razgradi že z mehanskim stikanjem kontaktnega para in ima pol-prevodne lastnosti /13/, zato nima katastrofalnega vpliva na kontaktne lastnosti. Srebro je mehko in zato neodporno na mehanske deformacije pri preklopih, zato se upora- Slika 8: Metalografska struktura kompozita Ag/Ni -prerez v smeri ekstrudiranja. Razpotegnjene temnejše lise so zrna Ni v svetlejšem Ag. Med kontaktnimi materiali na osnovi srebra najdemo tudi zmesi, kjer so srebru dodana drobno razpršena zrna v Ag slabo topne kovine z višjim tališčem od Ag, v velikosti reda 1 jim /8/. Kot primes se dodaja granulat niklja (Ni) ali železa (Fe). Značilni predstavnik teh materialov z vsebnostjo od 10 ut.% do 30 ut.% Ni je kontaktni material Ag/Ni 10 ... Ag/Ni 30, kjer so ohranjene pretežno vse dobre električne in mehanske lastnosti Ag, tudi zmožnost dobrega preoblikovanja v hladnem. Zato je kot polproizvod vlečen v žico ali profil pravokotnega preseka, kjer se mu metalografska struktura uredi v smeri deformacije (SI. 8). Material je primeren za kontaktne obloge, ki so izpostavljene intenzivnemu izžiganju z oblokom pri izklopu in kjer naj stikalni aparat v svoji delovni dobi opravi veliko število preklopov. Talina Ag s primešanim trdnim granulaton Ni ima večjo viskoznost od čistega Ag, ker trdni granulat zgosti talino, zato se ga manj materiala izbrizga v okolico. Stopnja erozije Ag/Ni je zato manjša in električna trajnost kontaktov večja. Ker ima nehomogeni material v notranji zgradbi dodatne mejne površine, je manj odporen na nateg, zato je tudi kontaktni zvar manj trden: material Ag/Ni je zato primeren za pogoje, kjer obstaja nevarnost kontaktnega zvara. Iz zdravstvenih razlogov se namesto Ni uporablja tudi granulat Fe. Material se da dobro preoblikovati v hladnem, zato lahko izdelamo kontaktne obloge neposredno iz žice, ki jo po koščkih nanašamo na kontaktne dele, uporovno ali ultrazvočno privarimo na podlago in pregnetemo v obliko kovice. Lahko pa je izdelan v obliki predfabriciranih kontaktnih kovic, ki jih vstavimo v kontaktni del. Kovice so lahko sestavljene iz dveh ali treh delov (bimetalne, trimetalne) kot kombinacija Cu in Ag/Ni, ki so spojeni z udarnim varjenjem v hladnem. Zmesni kontaktni material je tudi kompozit volframa (W) in srebra - Ag/VV, kjer je osnova kontaktne obloge iz poroznega sintranega W, ki je prepojen z Ag. Vendar je vloga W v Ag bistveno drugačna od vloge Ni ali Fe. V sestavi materiala Ag/W je dominantna komponenta W (50 ut. % do 80 ut. %) /8/, ki je zaradi visokega tališča zelo odporen na izžiganje z izklopnim oblokom, Ag pa zagotavlja dobro električno prevodnost. Zato se kontaktni materiali Ag /W50 ... 80 uporabljajo za dele kontaktnih oblog na mestih, ki so izpostavljeni intenzivnemu obločnemu izžiganju. Material se zaradi sintrane osnove iz W ne da preoblikovati, pač pa je treba uporabiti predfabricirano končno obliko kontaktne obloge. 96 M. Bizjak: Kontaktni materiali za nizkonapetostna stikala v eletroenergetiki Informacije MIDEM 40(2010)2, str. 93-100 Slika 9: Značilna metalografska struktura Ag/MeO: Ag/ CdO 10 - temnejše pegice so zrna CdO v svetlejšem Ag, ob zgornjem robu slike je plast Ag brez oksidnih zrn uporabljena kot varilna plast za spajanje kontaktne obloge na nosilec. 5. Zmesi srebra z granulati kovinskih oksidov (MeO) Kovinski oksid je primešan srebru v obliki drobno razpršenega granulata z zrni reda velikosti 1 |0.m /15/, metalograf-sko strukturo kaže SI. 9. Predvsem so to oksidi kadmija CdO, cinka ZnO in kositra Sn02 z vsebnostjo do 15 ut.% oksida vAg. Primes oksida nebistveno poslabša dobre električne lastnosti Ag, bolj pa mehanske. Material z vsebnostjo več kot nekaj ut. % oksida se zaradi povečane krhkosti ne da več zadovoljivo preoblikovati v hladnem. Zaradi izrazito nehomogene mikrostrukture je odporen na varjenje, ker nastane krhek kontaktni zvar, ki ga mehanizem za upravljanje kontaktov stikalnega aparata zlahka raztrga. Kovinski oksid pri stiku z izklopnim oblokom zmanjša obtočno napetost, vendar nekoliko podaljša čas gorenja obtoka, lahko tudi razpada (CdO pri približno 1300° C disoci-ira na kadmij in kisik /16/). Struktura materiala se v področju delovanja obtoka lahko tudi precej spremeni zaradi koagulacije drobno razpršenih oksidnih zrn v večje kose. Vendar je stopnja izžiganja zaradi obtoka pri teh materialih zadovoljivo majhna, da se uporabljajo za pogosto preklapljanje tokov reda velikosti nekaj 100 A in za vklop tokov nekaj 1000 A, kjer obstaja velika možnost kontaktnega zvara. Ag/CdO 10 ... 15, Ag/ZnO 6 ... 10 in Ag/Sn02 8 ... 12. Zaradi navedenih lastnosti imajo kontaktni materiali z MeO večjo stikalno zmogljivost, kot kontakti iz Ag/Ni. Ti materiali se odlikujejo tudi po veliki in od toka skoraj neodvisni takojšnji napetosti povratnega vžiga. Po ugasnitvi izklopnega obtoka se med razprtim kontaktnim parom takoj (to pomeni v časovnem merilu 1 jas) vzpostavi napetost 200 .. .300 V tudi pri izklopih tokov reda do nekaj 100 A /17/ (SI.10), V tokokrogih z obratovalno napetostjo do 230 V kontakti s tem kontaktnim materialom zanesljivo, brez povratnega vžiga obtoka, pri veliki pogostostjo preklapljanja izklapljajo toke reda nekaj 100 A. Slika 10:Takojšnja napetost povratnega vžiga Utpn kot funkcija toka izklopa za nekatere največ uporabljene kontaktne materiale. Prednost kompozitov Ag/Me in Ag/MeO pred Ag in Cu je izrazita pri večjih tokovih. Zaradi omenjenih mehanskih lastnosti se te materiale z več kot kak ut. % kovinskega oksida oblikuje z ekstruzijo, zato pri izdelavi kontaktnih delov lahko uporabljamo le predfab-ricirane kontaktne obloge v obliki kovic za vstavljanje ali profiliran trak ustrezne oblike, iz katerega režemo ploščice in jih elektrouporovno ali ultrazvočno navarimo na kontaktni del. Odpornost proti kontaktnemu zvaru pomeni tudi slabo varljivost na nosilno podlago, zato je kontaktna oblogo na strani spajanja na podlago obtožena s tanko plastjo za varjenje, npr. Ag ali trde spajke za spajkanje, kot kaže prečni presek kontaktne obloge na SI. 11. Slika 11 ¡Zgradba ploščice za kontaktno oblogo (pravokotnik na zgornji polovici slike) iz Ag/MeO, odpornega na kontaktni zvar, kije privarjena na nosilec. Med Ag/MeO materialom (večje sivo polje) in Cu nosilcem je vidna plast Ag (svetel pas) in plast trde spajke Agphor 15 (tenak siv pas) Vnos kovinskega oksida (MeO) v Ag je mogoč s procesom notranje oksidacije zlitine AgMe, kjer zlitino pri visoki tem- 97 Informacije MIDEM 40(2010)2, str. 93-100 M. Bizjak: Kontaktni materiali za nizkonapetostna stikala v eletroenergetiki mmmmmmmm «111 Ml um m MIMi mriPflbm ifHMHMMMMH mmmimi jMf' IlSilltlllp fl» 9IR IMMI S///ca 12:Delna notranja oksidacija Me-komponente v AgMe zlitini po mejah kristalnih zrn Slika 14a: Material Ag/MeO, izdelan z metalurgijo prahov - metalografska struktura Ag/SnC>2 12 peraturi izpostavimo kisikovi atmosferi. Zaradi difuzije kisika s površine kovinskega kosa v notranjost se Me globinsko oksidira in izloča v obliki oksidnih zrnc. Proces je najhitrejši po kristalnih mejah (SI. 12), z dovršeno tehnologijo pa je MeO razporejen enakomerno po vsem volumnu (SI. 13). j Slika 13:Notranja oksidacija Cd v zlitini AgCd, zrna CdO so razporejena enakomerno po kristalni strukturi materiala. Kontaktna površina je ob spodnjem robu slike Tehnologija notranje oksidacije se uporablja pri Ag/CdO in Ag/SnC>2, Ag/ZnO in nekatere različice materiala Ag/ CdO pa se izdelujejo z metalurgijo prahov iz zmesi granu-lata Ag in MeO s sintranjem in ekstruzijo v profilirane trakove (SI. 14) in kovice. Zaradi direktive ROHS se Cd opušča, zato bo opuščen tudi Ag/CdO. 6. Zmesi srebra z grafitnim granulatom Kontaktni materiali z grafitnim prahom od 3 ut. % do 5 ut. % v Ag (Ag/C 3 ... 5) imajo veliko odpornost na kontaktni 98 Slika 14b: Material Ag/MeO, izdelan z metalurgijo prahov - metalografska struktura Ag/ZnO 12, ob spodnjem robu plast Ag kot varilna plast za spajanje na nosilec. Slika 15:Struktura Ag/C s pravokotno na kontaktno površino usmerjenimi grafitnimi vlakni (temne lise), prikazan je predel pod kontaktno površino M. Bizjak: Kontaktni materiali za nizkonapetostna stikala v eletroenergetiki Informacije MIDEM 40(2010)2, str. 93-100 Slika 16:Tvorba gobaste plasti na staljeni kontaktni p ovršiniAg/C zaradi termičnega učinka podnožja izklopnega obtoka. zvar. To jim omogoča posebna struktura porazdelitve C: grafitna vlakna so postavljena pravokotno na stično ploskev (SI. 15). V površinski plasti na stičnem mestu pri nastanku obloka nastane talina Ag, v kateri grafit zgori v CO in CO2, katerih mehurji oblikujejo gobasto površinsko strukturo (SI. 16). Zvar s tako strukturo je zelo krhek, zato je Ag/C odporen na kontaktni zvar /18/. Zaradi velike stopnje obločne erozije material ni primeren za kontakte z veliko pogostostjo preklapljanja. Na električno zelo nehomogeni površinski strukturi Ag/C je tudi gibljivost obloka majhna, ker se njegovo podnožje zasidra na grafitna vlakna. Da izboljšamo to slabost kontaktne obloge Ag/C, ima za nasprotnega partnerja v paru kontakt iz Cu. V tej vlogi stična površina Cu ni zelo izpostavljena oksi-daciji v vročem, ker stično mesto na Cu obdajata CO in CO2 kot zaščitni plin, izkoriščena pa je velika gibljivost obloka na Cu, ki kompenzira slabo gibljivost na Ag/C. Slika 17: Struktura Ag/C DFz grafitnimi vlakni in grafitnimi paličicami, usmerjenost grafitnih delcev je vzporedna s kontaktno površino. Slika 18:Kontaktni zvar na Ag/C DF po pretrganju - na iztrganem delu so vidni odtisi grafitnih paličic, SEM - dolžina markerja 100 jim Kontaktne obloge Ag/C so v obliki ploščic, ki jih dobijo iz ekstrudirane palice z C-vlakni v smeri vlečenja palice. Palico narežejo v prizme, ki jim na površine Izžgejo grafit, prizme pa razrežejo na pol. Ploskev razreza postane stična ploskev s pravokotno postavljenimi grafitnimi vlakni. Ta postopek je dokaj zamuden v primerjavi s tehnologijo izdelave miniprofila z ekstruzijo, vendar pa so zato v strukturi miniprofila grafitna vlakna postavljena vzporedno s kontaktno površino, kar je glede stopnje erozije in možnosti kontaktnega zvara slabša izbira. Za izboljšanje odpornosti na kontaktni zvar so grafitnim vlaknom dodane drobne, do 100 |j.m dolge palčke grafita /8/ (SI. 17), ki naredijo strukturo Ag/C dovolj mehansko nehomogeno, da se kontaktni zvar pretrga na palčkah (SI. 18). 7. Sklep Vsaka vrsta kontaktnega materiala ima v podanih pogojih nekaj za izbrane pogoje uporabe ustreznih in nekaj neugodnih lastnosti. Univerzalni kontaktni material, ki bi ustrezal vsem pogojem preklapljanja toka, ne obstaja. Izbira kontaktnega materiala za vnaprej določene pogoje upo- 99 Informacije MIDEM 40(2010)2, str. 93-100 M. Bizjak: Kontaktni materiali za nizkonapetostna stikala v eletroenergetiki rabe je stvar kompromisa med ugodnostjo njegovih ustreznih lastnosti in sprejemljivostjo neugodnih. Primer kompromisa je nesimetrični kontaktni parAg/C - Cu zaodklop-nike, v katerem z enim samim materialom ne odpravimo motečih pomanjkljivosti, ampak slabosti enega materiala kompenziramo z prednostmi drugega v nesimetriji kontakta. 8. Literatura /1 / R. Holm: Electric contacts: theory and applications, 4th ed., Springer-Verlag Berlin Heidelberg 2000 /2/ M. Lindmayer: Schaltgeräte, Springer-Verlag Berlin Heidelberg, 1987 /3/ H. Fehling: Über die Kontaktbeanspruchung an Schnellschaltern bei hohen Spitzströmen, AEG-Mitt. 48, 1958, pp. 191-196 /4/ P. G. Slade: ElectricaI Contacts. Principles and Applications, Marcel Dekker New York Inc., 1999 /5/ E. Vinaricky: Elektrische Kontakte, Werkstoffe undAnvendung, 2. Aufl., Springer-Verlag Berlin Heidelberg, 2002 /6/ K. Millian, W. Rieder: Kontaktwidestand und Kontaktoberfläche, Z. Angew. Phys. 8, 1956, pp.28-34, Electrical Contacts, Zürich, Switzerland, 2002, pp. 268-275 /7/ C. Huber, A. Murr: Fritting behaviour of telephone switching contacts material as a result of exposure to industrial atmos-phere, Proc. 10. Int. Conf. On Electr. Contact Phenom, Budapest, 1980, pp.979-988 /8/ Kontaktwerkstoffe aur Silber-Basis, AMI DODUCO - tehnični podatki /9/ E. Walczuk: Über das Schweissverhalten einschaltender Kontakte währen des Prellens, E. u. M. 87 (1970), pp.111-119 /10/ D. Amft: Der Elektrodenabbrand durch Schaltlichtbogen in Luft und in verschiedenen Gasen, Proc. SIELA, Plovdiv 1971, pp. 68-81 /11/ H. Burkhard: Schaltgeräte der Elektroenergietechnik, Verlag Technik, Berlin 1985 /12/ A. Keil, W. A. Merl, E. Vinaricky: Elektrische Kontakte und ihre Werkstoffe, Springer-Verlag Berlin Heidelberg New York Tokyo, 1984 /13/ H.- J. Dräger: Destruction of sulphide layers on high current contacts, Proc. 7th ICEC, Paris, 1974, pp.410-414 /14/ M. Hansen, K. Anderko: Constitution of binary alloys, McGraw-Hill, New York, 1958 /15/ F. Hauner, D. Jeannot, K. McNeilly, AdvancedAgSn02 contact materials with high total oxide content, Proc. 21. Int. Conf. On Electric Contacts, Zurich 2002, pp.452-456 /16/ V. Behrens, Kontaktwerkstoffe für Niederspannungs-Schaltkontakte - eine Einführung, 20. Albert-Keil-Kontaktsem-inar, Karlsruhe, 2009, pp.155-159 /17/ M. Schmelzle: Grenzen der Selbstlöschung kurzer Lichtbogenstrecken bei Wechselstrombelastung, Diss. TH Braunschweig, 1969 /18/ E. Vinaricky: Das Abbrand und Schweissverhalten verschiedener Silber-Graphit-Kontaktwekstoffe in unterschiedlichen Atmosphären, Diss. Technische Universitä Wien, 1994 dr. Martin Bizjak, univ. dipl .ing fizike R&R, Iskra MIS, d. d, Ljubljanska cesta 24a, 4000 Kranj, e-mail: martin. bizjak@iskra-mis. si Prispelo (Arrived): 12.10.2009 Sprejeto (Accepted): 09.06.2010 100 UDK621,3:(53+54+621 +66), ISSN0352-9045 Informacije MIDEM 40(2010)1, Ljubljana SINGLE ELECTRON FAULT MODELING IN QCA DEVICES 1Mojdeh Mahdavi, 2Mohammad Amin Amiri, 2Sattar Mirzakuchaki, 1 Mohammad Naser Moghaddasi 11slamic Azad University, Science and Research Branch, Tehran, Iran 2lran University of Science and Technology,Tehran, Iran Key words: Quantum Cellular Automata, Single Electron Fault Abstract: Quantum Cellular Automata (QCA) represents an emerging technology at the nanotechnology level. There are various faults which may occur in QCA cells. One of these faults is the Single Electron Fault (SEF) that can happen during manufacturing or operation of QCA circuits. The behavior of single electron fault in QCA devices is not similar to either previously investigated faults or conventional CMOS logic. A detailed simulation based logic level modeling of Single Electron Fault for QCA basic logic devices is represented in this paper. Modeliranje napake SEF pri delovanju component QCA Kjučne besede: QCA, napaka SEF Izvleček: QCA ( Quantum Cellular Automata ) predstavlja prihajajočo tehnologijo na nanotehnološkem nivoju. Obstaja veliko različnih napak, ki se lahko pojavijo v QCA celicah. Ena izmed teh je napaka enega elektrona (Single Electron Fault-SEF), ki se lahko pripeti med izdelavo ali delovanjem QCA vezij. Obnašanje SEF v QCA vezjih ni enako nobeni preje obravnavani napaki v konvencionalni CMOS logiki. V prispevku obravnavamo natančno logično simulacijo pojava SEF v QCA vezjih. 1. Introduction The microelectronics industry has improved the integration, the power consumption, and the speed of integrated circuits during past several decades by means of reducing the feature size of transistors. But it seems that even by decreasing the transistor sizes, some problems such as power consumption can't be ignored. Utilizing the QCA technology for implementing logic circuits is one of the approaches which in addition to decreasing the size of logic circuits and increasing the clock frequency of these circuits, reduces the power consumption of these circuits. QCA, which was first introduced by Lent et al. /1 /, represents an emerging technology at the nanotechnology level. QCA cells have quantum dots, in which the position of electrons will determine the binary levels of 0 and 1. Various types of cell misplacement faults may occur during fabrication and manufacturing of QCA devices and circuits. Some of them which have been characterized are cell displacement, cell misalignment, cell omission and cell rotation 12-1/. A cell displacement is a defect in which the defective cell is misplaced from its original direction. A cell misalignment is a defect in which the direction of the defective cell is not properly aligned. A cell omission is a defect in which a particular cell is missing compared to the original. A cell rotation is a defect in which the defective cell is rotated in its location. There are some other faults, such as missing or extra dots or/and electrons which may occur in QCA devices and circuits /2, 3/. Single event effects (SEE) are an example of such phenomena which can affect QCA devices and circuits. These types of effects can cause electrons to tunnel outside or inside QCA cells, and therefore some remaining QCA cells may contain zero, one, two, three, four or more electrons. This is the main defect caused by SEEs which may occur for QCA devices and circuits. Considering the QCA structure with two electrons in each cell, we can conclude that defected cells may lead to circuit malfunctioning /8/. The main goal of this paper is to model and characterize the single electron fault in QCA devices. We will investigate the effects of faulty cell in binary wire, inverter chain, inverter gate, and majority gate. The remainder of this paper is as follows. In Section II, a brief review of QCA is presented. In Section III, the effects of single electron fault on QCA devices are investigated. Finally, Section IV will conclude this paper. 2. QCA Review In Quantum Cellular Automata (QCA), a cell contains four quantum dots, as schematically shown in Fig. 1. The quantum dots are shown as the open circles which represent the confining electronic potential. Each cell is occupied by two electrons which are schematically shown as the solid dots. In a cell, the electrons are allowed to jump between the individual quantum dots by the mechanism of quantum mechanical tunneling but they are not allowed to tunnel between cells. The barriers between cells are assumed sufficient to completely suppress intercellular tunneling. 101 M. Mahdavi, M. A. Amiri, S. Mirzakuchaki, M, N. Moghaddasi: Informacije MIDEM 40(2010)2, str. 101-106 Single Electron Fault Modeling in QCA Devices 4 3 • o 1 4 O • 1 o • 2 3 • O 2 • o »o m o |o » o® o • p=-l p=+l Fig. 1. QCA cell and its ground states If they are left alone, they will meet the configuration corresponding to the physical ground state of the cell. It is in an obvious manner that the two electrons will tend to occupy different dots because of the Coulombic force associated with bringing them together in close proximity on the same dot. By these concepts, it's concluded that the ground state of the system will be an equal superposition of the two basic configurations with electrons at opposite corners, as shown in Fig. 1. The positions of the electrons are also shown in this figure. LOT 0.5 1 « o « o Cu 0.0 r i i o • 0 # -0.5 -1.0 •1.0 -0.5 0.0 P 0.5 1.0 Fig. 2. Coupling of QCA cells Coupling between the two cells is provided by the Coulomb interaction between electrons in different cells. Fig. 2 shows how one cell is affected by the state of its neighbor/10/. This figure shows the two cells where the polarization of cell 1 (P1) is determined by the polarization of its neighbor (P2). P2 is assumed to be fixed at a given value, corresponding to a specific arrangement of charges in cell 2 and this charge distribution exerts its influence on cell 1, thus determining its polarization. The result which can be drawn here is the strongly non-linear nature of the cell-cell coupling. Cell 1 is almost completely polarized even though cell 2 might only be partially and not completely polarized /9, 10/. The physical interactions between cells may be used to realize elementary Boolean logic functions. The basic logic gates in QCA are the Majority logic function and the Inverter which are illustrated in Fig. 4(a) and Fig. 3, respectively. The Majority logic function can be realized by only 5 QCA cells/11/. . »o Ajo el • o • o p® o • o • lo • 1® 0 • 0 F • o • o • o o • o • o ® ®o • o o® o • o • • 0 (a) (b) Fig. 3. (a) Redundant inverter gate, (b) Inverter gate A • o o • O • • o o • • o o • • o o • • o o • • o • o O 0 • o O • • O o • C • O O • Î ib) (a) Fig. 4. (a) Majority logic gate, (b) Binary wire, (c) Inverter chain The logic AND function can be implemented by a Majority logic function by setting one of its inputs permanently to 0 and the logic OR function can be implemented by a Majority logic function by setting one of its inputs permanently to 1. QCA clocking provides a mechanism for synchronizing information flow through the circuit. It should be considered that the clock also controls the direction of information flow in a QCA circuit. The QCA clock also provides the power required for circuit operation. More precisely, the QCA clock is used to control the tunneling barrier height in cells. When the clock is low, the electrons are trapped in their associated positions and can't tunnel to other dots, therefore latching the cell (Hold phase). This is caused by the intracellular barriers which are held at their maximum height. When the clock signal is high, the cell goes to the null polarization state (Relax phase). This is caused by the intracellular barriers which are held at their minimum height. Between these two cases, the cells are either releasing or switching. Fig. 5 shows the barrier height in four phases of clock. Each cell in a particular clocking zone is connected to one of the four available phases of the QCA clock shown in Fig. 6. Each cell In the zone is latched and unlatched in synchronization with the changing clock signal and therefore the information is propagated through cells /12-15/. 3. Single Electron Fault Modeling In this Section, fault modeling will be accomplished for QCA wires, inverter, and majority gates. All cells are assumed to have a length and width of 18 nm and quantum dots are 5 nm In diameter. The center to center distance of two neighbor cells is 20 nm. Thus, the cell size can be defined as 20 nm. As an assumption, a 20 nm cell size was used in /16/ and a 25 nm cell size was used in /5/. Thus, the 20 102 M. Mahdavi, M. A. Amin, S. Mirzakuchaki, M. N. Moghaddasi: Single Electron Fault Modeling in QCA Devices Informacije MIDEM 40(2010)2, str. 101-106 E field barrier Time S vitchl Hold Release Relax Fig. 5. Barrier height in four phases of clock r !ock Zone 0 Clock Zon Clock Zona 2 Clock Zone 3 ) / -v. Fig. 6. QCA clock zones nm assumption is valid for QCA cells. The center to center distance of two neighbor quantum dot in a QCA cell is 9 nm (For example, dot1 and dot2 in Fig. 1). According to previous definitions, other geometric distances are calculated. As an example, considering two neighbor cells, the distance between dot4 in the left cell and dot1 in the right cell is 29 nm and so on. Also it is assumed that each cell is assigned to an individual clock zone and there are no neighbor cells with the same clock zone. Positions of electrons and polarization of cells are obtained from the fact of the least Kink energy. It means that all possible configurations are considered and the Kink energy is calculated for each configuration. Configuration with the least Kink energy is the most stable configuration. The Kink energy can be computed by the following equation. Eij = mi 4ti£0£,.|r, - rj\ (1) All following simulations i.e. calculating the Kink energy (elec-tron-volt) are accomplished by MATLAB software /17/. 3.1. Fault Modeling for QCA Wires There are two types of wires in QCA technology, binary wire and inverter chain (Fig. 4(b, c)). We have investigated the single electron fault for these two types of wire and modeled the fault for them. Binary wire will be discussed in this subsection and inverter chain will be discussed in the next. Two major questions should be answered for a binary wire which contains a faulty cell: Considering the faulty cell, where should its single electron go if the previous cell has the polarization of zero or one? Considering the faulty cell, which polarization shall be dictated to its next cell? For the first case, simulation results show that if a cell is faulty and its previous cell has the polarization of zero, the single electron will go to position number 1 and if its previous cell has the polarization of one, the single electron will go to position number 2. The Kink energy is computed for each position and the position with the least Kink energy is considered to be the target position. The kink energy of each position is illustrated in Table 1. Table 1 Kink energy for positions of electron in a faulty cell in binary wire according to its previous cell polarization Prev. Cell Pol. Position 1 Position 2 Position 3 Position 4 Zero 0.0089309 0.0092492 0.015224 0.013423 One 0.0092492 0.0089309 0.013423 0.015224 For the second case, simulation results show that if a cell is faulty and its electron is in positions of 1, 2, 3 or 4, the next cell will obtain the polarization of one, zero, zero and one correspondingly. The Kink energy is computed for each polarization and the polarization with the least Kink energy is considered to be the target polarization. The kink energy of each polarization is illustrated in Table II. It can be concluded from Table I that positions of 3 and 4 cannot be occupied by single electron in a faulty cell. But in order to have a complete simulation result, they are considered as occupied positions in Table 2. Table 2 Kink energy for polarization of next cell in binary wire according to the position of electron in faulty cell Faulty Cell Next Cell Polarization Next Cell Polarization Position Zero One Position 1 0.015224 0.013423 Position 2 0.013423 0.015224 Position 3 0.0089309 0.0092492 Position 4 0.0092492 0.0089309 Fig. 7 illustrates the faulty cell effect on a binary wire. As illustrated in Fig. 7(a), if the leftside cell has the logic value of zero, the faulty cell will have its electron in position 1 and the right side cell will obtain the logic value of one and as illustrated in the Fig. 7(b), if the left side cell has the logic value of one, the faulty cell will have its electron in position 2 and the right side cell will obtain the logic value of zero. According to simulation results, if a single electron fault occurs in a binary wire, the logic value of that wire will be inverted. 103 M. Mahdavi, M. A. Amiri, S. Mirzakuchaki, M. N. Moghaddasi: Informacije MIDEM 40(2010)2, str. 101-106 Single Electron Fault Modeling in QCA Devices • OHO «HO O • m L (a! O m o o • o o • (b) • o Fig. 7. Faulty cell effect on binary wire 3.2. Fault Modeling for QCA Inverter Gate In this section we will discuss the inverter gate or inverter chain and also redundant inverter gate of Fig. 3(a) which has two inverters in parallel. Two previous questions for an inverter chain containing a faulty cell should be addressed. For the first case, simulation results show that if a cell is faulty and its previous cell has the polarization of zero, the single electron will go to position number 2 and if its previous cell has the polarization of one, again the single electron will go to position number 2. The Kink energy is computed for each position and the position with the least Kink energy is figured out to be the target position. The kink energy of each position is illustrated in Table 3. Table 3 Kink energy for positions of electron in a faulty cell in inverter chain according to its previous cell polarization Prev. Cell Pol. Position 1 Position 2 Position 3 Position 4 Zero 0.0080519 0.0066624 0.0080519 0.011112 One 0.0075388 0.0063317 0.0075388 0.0097721 For the second case, simulation results show that if a cell is faulty and its electron is in positions of 1, 2, 3 or 4, the next cell will obtain the polarization of one. It means that the output is stuck at one. The Kink energy is computed for each polarization and the polarization with the least Kink energy is figured out to be the target polarization. The kink energy of each polarization is illustrated in Table 4. Table 4 Kink energy for polarization of next cell in inverter chain according to the position of electron in faulty cell Faulty Cell Next Cell Polarization Next Cell Polarization Position Zero One Position 1 0.0080519 0.0075388 Position 2 0.011112 0.0097721 Position 3 0.0080519 0.0075388 Position 4 0.0066624 0.0063317 /w\ /CX <£) c \§/ (a) /OX /0\ /'«K <0 mxD 9Xo ci> 'XX'' XQX %\StX (b) Fig. 8 illustrates the faulty cell effect on inverter chain. As illustrated in Fig. 8 (a), if the left side cell has the logic value of one, the faulty cell will have its electron in position 2 and the right side cell will obtain the logic value of one and as illustrated in Fig. 8 (b), if the left side cell has the logic value of zero, the faulty cell will have its electron in position 2 and the right side cell will obtain the logic value of one. According to simulation results, if a single electron fault occurs in an inverter chain, the logic value of that wire will be stuck at one. Considering the redundant inverter gate, the fault may occur on 3 cells which are two right most cells on up and down input wires and a cell which is at the diagonal neighborhood of these two cells. Occurrence of the fault on other cells of redundant inverter gate may be treated as binary wire fault. Also two previously mentioned questions for the redundant inverter gate should be answered. Table 5 Kink energy for positions of electron in a faulty cell in redundant inverter gate according to its previous cells polarization Prev. Cell Pol. Position 1 Position 2 Position 3 Position 4 Zero 0.014384 0.014201 0.017824 0.018651 One 0.014201 0.014384 0.018651 0.017824 First, the single diagonal neighbor cell will be investigated. For the first case, simulation results show that if this cell is faulty and its previous up and down cells have the polarization of zero, the single electron will go to position number 2 and if its previous cells have the polarization of one, the single electron will go to position number 1. The Kink energy is computed for each position and the position with the least Kink energy is figured out to be the target position. The kink energy of each position is illustrated in Table 5. Second case of fault modeling for this cell is similar to binary wire. Fig. 9 illustrates the output faulty cell effect on redundant inverter gate. Simulation results show that the redundant inverter gate will act as a wire in presence of single electron fault in the output cell, i.e. the single diagonal neighbor cell. \m ^ lo • ; m o « u m m o o m c O iS i v-' M i O! (b) Fig. 8. Faulty cell effect on inverter chain Fig. 9. Output faulty cell effect on redundant inverter gate There are also two cases for two right most cells on up and down wires. The first case is like binary wire but for the sec- 104 M. Mahdavi, M. A. Amiri, S. Mirzakuchaki, M. N. Moghaddasi: Single Electron Fault Modeling in QCA Devices Informaclje MIDEM 40(2010)2, str. 101-106 ond case, simulation results show that if the cell in the up position Is faulty, the next cell, i.e. the diagonal neighbor cell, will be stuck at zero and if the cell in the down position is faulty, the next cell, i.e. the diagonal neighbor cell, will be stuck at one. The Kink energy is computed for each polarization and the polarization with the least Kink energy is figured out to be the target polarization. The kink energy of each polarization is illustrated In Table 6. Fig. 10 illustrates the up Input faulty cell effect on redundant inverter gate. Table 6 Kink energy for polarization of next cell in redundant inverter gate according to the faulty cell in up or down input position Input Next Cell Polarization Next Cell Polarization Polarization Zero One and Faulty Input Zero and Up 0.02313 0.023643 One and Up 0.027216 0.027547 Zero and Down 0.027547 0.027216 One and Down 0.023643 0.02313 Table 7 Kink energy for positions of electron in faulty central cell of majority gate Input ABC Position 1 Position 2 Position 3 Position 4 000 0.033086 0.031922 0.039379 0.036096 001 0.033404 0.033722 0.037578 0.035777 010 0.033404 0.031603 0.037578 0.037896 011 0.033722 0.033404 0.035777 0.037578 100 0.031285 0.031603 0.039697 0.037896 101 0.031603 0.033404 0.037896 0.037578 no 0.031603 0.031285 0.037896 0.039697 111 0.031922 0.033086 0.036096 0.039379 Output Simulation results are shown In Table 8. Like other gates, here we computed the Kink energy for finding the output of the majority gate. Table 8 Desired output of the majority gate and computed output in presence of single electron fault • • • • • • • • • • • •......• • • • • • (a) lb) Fig. 10. Up input faulty cell effect on redundant inverter gate 3.3. Fault Modeling for QCA Majority Gate To model the single electron fault in majority gate, we have exhaustively simulated this gate and the fault effect of each of its four cells, i.e. input A, input B, input C, and central cell was investigated for every input vector. If the fault occurs on output cell, it can be treated as a wire between central cell and output cell. As an example of simulation, the computed Kink energy and the position of electron in faulty central cell of majority gate are listed in Table 7. Again the least Kink energy will introduce the target position. All faulty states in presence of the faulty central cell are illustrated in Fig. 11. »■'..». ■■ »■ (M if! » : Id) (hi Input Output Output Output Output for Desired ABC for for for Faulty Output Faulty A Faulty B Faulty C Cent. 000 0 0 0 0 0 001 1 1 0 1 0 010 1 0 1 0 0 011 1 0 0 0 1 100 0 1 1 1 0 101 0 1 0 1 1 110 0 0 1 0 1 111 1 1 1 1 1 Fig. 11. Faulty states of majority gate in presence of the faulty central cell Looking more precisely at the simulation results, we can conclude that If a fault occurs on an input, the output will change its functionality to majority of other inputs and inverse of faulty input. Occurrence of the fault on central input is equivalent to occurrence of the fault on B input. 4. Conclusion A detailed modeling and characterization of single electron fault for QCA basic logic devices has been represented in this paper. As stated before, the behavior of single electron fault in QCA devices is not similar to either previously investigated faults or conventional CMOS logic. For example, stuck at zero or stuck at one fault model in redundant inverter gate is based on the input on which the fault occurs. Our results show that if a single electron fault occurs in a binary wire, the logic value of that wire will be Inverted. If the mentioned fault occurs in an inverter chain or a Not gate, the output will be stuck at one. If this fault occurs on the output of redundant inverter gate, the function of this gate will be inverted and it acts as a wire. Occurrence of the single electron fault on the right most cells of up and down wires of redundant inverter gate will lead to the output getting stuck at zero and one respectively. Single electron fault on the central cell of majority gate will change the 105 Informacije MIDEM 40(2010)2, str. 101-106 M. Mahdavi, M. A. Amiri, S. Mirzakuchaki, M. N. Moghaddasi: Single Electron Fault Modeling in QCA Devices majority output to majority of vertical inputs and inversed horizontal input. Occurrence of this fault on each input of majority gate will change the output to be the majority of other inputs and the inverse of this faulty input. References /1/ C. s. Lent, P. D. Tougaw, W. Porod, G. H. Bernstein, Quantum Cellular Automata, Nanotechnology, vol. 4, n. 1, 1993, pp. 49-57. /2/ M. B. Tahoori, J. Huang, M. Momenzadeh, F. Lombardi, Testing of Quantum Cellular Automata, IEEE Trans, on Nanotechnology, vol. 3, n. 4, December 2004, pp. 432-442. /3/ M. Momenzadeh, M. B. Tahoori, J. Huang, F. Lombardi, Quantum Cellular Automata: New Defects and Faults for New Devices, The 18th International Parallel and Distributed Processing Symposium, 2004. /4/ M. Momenzadeh, J. Huang, F. Lombardi, Defect Characterization and Tolerance of QCA Sequential Devices and Circuits, The 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2005. /5/ M. Momenzadeh, J. Huang, M. B. Tahoori, F. Lombardi, Characterization, Test, and Logic Synthesis of And-Or-lnverter (AOI) Gate Design for QCA Implementation, IEEE Trans, on Compu-ter-Aided Design of Integrated Circuits and Systems, vol. 24, n. 12, December 2005, pp. 1881-1893. /6/ J. Huang, M. Momenzadeh, M. B. Tahoori, F. Lombardi, Defect Characterization for Scaling of QCA Devices, The 19th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2004. /7/ P. Gupta, N. K. Jha, L. Lingappan, A Test Generation Framework for Quantum Cellular Automata Circuits, IEEE Trans, on VLSI Systems, vol. 15, n. 1, January 2007, pp. 24-36. /8/ M. Mahdavi, M. A. Amiri, S. Mirzakuchaki, SEU Effects on QCA Circuits, The IEEE International Conference on Test and Diagnosis, April 28-29, 2009, Chengdu, China. /9/ P. D. Tougaw, C. S. Lent, Dynamic Behavior of Quantum Cellular Automata, J. Appl. Phys.,vol. 80, n. 8, October 1996, pp. 4722-4735. /10/ P. D. Tougaw, C. S. Lent, W. Porod, Bistable Saturation in Coupled Quantum-dot Cells, J. Appl. Phys., vol. 74, n. 5, September 1993, pp. 3558-3565. /11/ P.D. Tougaw, C.S. Lent, Logical Devices Implemented Using Quantum Cellular Automata, J. Appl. Phys., vol. 75(3), 1994, pp. 1818-1825. /12/ M. A. Amiri, M. Mahdavi, S. Mirzakuchaki, QCA Implementation of a Mux-Based FPGA CLB, The International Conference On Nanoscience and Nanotechnology, February 25-29, 2008, Melbourne, Australia. /13/ K. Hennessy, C. S. Lent, Clocking of Molecular Quantum-dot Cellular Automata, J. Vac. Sci. Technol., vol. 19, n. 5, September 2001, pp. 1752-1755. /14/ K. Kim, K. Wu, R. Karri, The Robust QCA Adder Designs Using Composable QCA Building Blocks, IEEE Trans. On Computer-Aided Design of Integrated Circuits and Systems, vol. 26, n. 1, January 2007. /15/ V. Vankamamidi, M. Ottavi, F. Lombardi, Two-Dimensional Schemes for Clocking/Timing of QCA Circuits, IEEE Trans, on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, n. 1, January 2008, pp. 34-44. /16/ Heumpil Cho, Earl E. Swartzlander, Adder Designs and Analyses for Quantum-Dot Cellular Automata, IEEE Trans, on Nanotechnology}, vol. 6, n. 3, May 2007, pp. 374-383. /17/ http://www.mathworks.com Mojdeh Mahdavi, Islamic Azad University, Science and Research Branch, Tehran, Iran m.mahdavi@ieee.org Mohammad Amin Amiri Iran University of Science and Technology, Tehran, Iran amiri@ee. iust. ac. ir Sattar Mirzakuchaki Iran University of Science and Technology, Tehran, Iran m_kuchaki@iust.ac.ir Mohammad Naser Moghaddasi Islamic Azad University, Science and Research Branch, Tehran, Iran nasermoghadasi@shahed.ac.ir Prispelo (Arrived): 17.11.2009 Sprejeto (Accepted): 09.06.2010 106 UDK621,3:(53+54+621 +66), ISSN0352-9045 Informacije MIDEM 40(2010)1, Ljubljana A FLASH INTERPOLATOR ASIC WITH BUILD-IN AMPLITUDE MEASUREMENT CIRCUIT 1,2Anton Pleteršek, 2Roman Benkovič department of LMFE (Laboratory for Microelectronics), Faculty for Electrical Engineering, Ljubljana, Slovenia 2 IDS d.o.o., Design head-quarter, Tehnološki park, Ljubljana, Slovenia Keywords: Interpolation, amplitude measurement, orthogonal signals, flash interpolator, automatic gain control, encoder. Abstract: A flash interpolation circuit converts a pair of periodic and orthogonal sine-signals into a stream of periodic - phase shifted sinusoidal signals, the amplitudes of which can be combined to produce useful information about the peak amplitude of the input sine-signals, independently of the signal's frequency. An interpolation factor of 4 is shown to be sufficient for measuring amplitudes with an accuracy of 5.8 %. The interpolator architecture, combined with an amplitude measuring system, has been designed, integrated as a part of the interpolator ASIC, evaluated and analyzed. The ASIC is designed and processed in 0.35 em CMOS technology. Bliskovni interpolator z vgrajenim merilnikom amplitude Kjučne besede: interpolator, merjenje amplitude, pravokotni signali, bliskovni interpolator, avtomatična kontrola ojačanja, kodirnik. Izvleček: V članku je opisano bliskovno interpolacijsko vezje za pretvorbo analognih sinusnih in ortogonlnih signalov v množico prav tako sinusnih - fazno zamaklnjenih signalov, ki predstavljajo osnovno informacijo za nov algoritem merjenja amplitude. Merjenje je neodvino od frekvence signalov, interpolacijsko število 4 pa zadošča za preciznost merjenja 5.8%. Algoritem je podan in preizkušen v interpolacijskem vezju, ki je bilo procesirano v 0,35um tehnologiji CMOS. 1. Introduction Atypical application in the motion control field is in magnetic or optical linear and rotary encoders, the major part of which comprises integrated electronics. In general, the electronics comprise an opto-sensing area or hall sensors structure, analog front-end and signal conditioning, and a fast interpolator and digital signal processing unit. The front-end performs sensors supply, sensors excitation and signal magnification functions. The operation speed of the encoders, based on magnetic sensors, is usually much slower than one based on light modulation. This holds true mainly for magnetic rotary encoders, the speed of the magnetic linear encoders being faster, but usually never exceeding the speed of optical encoders /1/, /4/, /16/, /21/, /24/, /31/and /35/. An analog signal generated from a sensors array is amplified and digitized to provide incremental orthogonal digital signals named track A and track B. Before digitizing the analog signals they can be further interpolated to achieve better measurement resolution /2-3/, /6-7/, /11/, /13/, /18/, /22/, /25/, /28/, /29/ and /35/.Thesame is true for an absolute type encoder which can perform absolute position detection /9/, /14/, /20/, /32/. In the case where more than 7-bit resolution is required, analog signals conditioning need to be implemented. This includes equalization of the sine and cosine signal amplitudes, their offset equalization and phase difference adjustment to 90 degrees. The most common practice is adjusting analogue front-end parameters via a serial interface or reprogramming them with access to internal EEP-ROM /12/. Automatic offset measurement and cancellation are relatively simple /17/, the phase measurement and correction and the amplitude regulation and measurement being more complicated /5-6/, /11/, /25/, /28/, /38/ and /42/. A magnitude and phase estimation algorithm has been published /5/ for a signal with time-varying frequency. The method is slow and requires modest computations. Squaring algorithm using analog multipliers is a well known method for obtaining/extracting DC information from sine-cosine signals /36/. The main disadvantages are the limited linear Input voltage range and Its temperature behavior. Also the flash interpolator circuits that comprise the signal generating circuit, of which the out-of-phase signals are generated by gain stages having different magnifications, are much slower /37/. The appropriate comparators circuit /37/ compares signals at different common mode levels, which may additionally cause different delays and offsets. The Cordic-based Loeffler discrete cosine transform (DCT) architecture is presented in /41/. It requires high level of digital complexity and is very suitable for low-power and high-quality codecs. Anything that can affect the accuracy of the final application is related to the overall decoder system's components /9/, /19-20/, /40/, /43/, /44/ and to the applied algorithms /27/, /28/. Therefore, the question of calibration is system related. 107 A. Pleteršek, R. Benkovič: Informacije MIDEM 40(2010)2, str. 107-114 A Flash Interpolator ASIC With Build-in Amplitude Measurement Circuit The aim of this work is to present a less precise, but cost-effective and robust amplitude measurement algorithm, based on a flash interpolating circuit, suitable for VLSI integration on "system on chip SoC". Amplitude measurement is a basic pre-processing step for automatic signal-amplitude correction and for the AGC function. The major advantage of the proposed method is that there is no need for an extra system clock. Due to the lower silicon area consumption, low power consumption and signal frequency independent measurement method, the present solution is suitable for use in all integrated automatic signal conditioning systems. This paper is organized as follows. The typical application - encoder - that uses AMM, and the design considerations are described in Section 2. A detailed description of the proposed flash interpolation method using sine wave input signals with an interpolator-inherent principle of amplitude measurement are described in the third and in fourth Section. The results of measurements are presented in Section 5. 2. Encoders - Basic Principles An optical encoder translates an angular or linear position into an electrical signal. It Is typically composed of a light source (LED), a main scale with a built-in optical grating with measuring period MP, and an optical scanner that is composed of an opto-sensor array and a reading scale with a built-in optical grating with a reading period, RP. The scanning head is usually composed of reverse polarized photodiodes that produce the quadrature signals, together with an additional photodiode (DF) that generates the index signal that is used for absolute position encoding. In short, as the scanner moves along the main scale the amount of light from the light source is modulated. The electrical signal that is produced by the opto-sensor in the optical array is also modulated. As we have seen, the encoder produces two ninety-degree shifted (quadrature) signals A+, A-and B+, B-(Figure 1 b). The signals in Figure 1 b are periodic; this periodicity corresponds to the movement of the scanner head with constant velocity along the main scale One period of the signal corresponds to a movement of the scanner head equal to the grating period (MP, RP). In general, the signals are not periodic in time, but are periodic in relation to the displacement along the main scale. The signals A+, A-, and B+, B- in Figure 1 b are also not pure sine-cosine, but, in reality, are distorted and contain harmonic components. The incoming signals are also imbalanced in phase, offset and amplitude. The encoder system therefore requires signal conditioning prior to interpolation. The two pairs of signals from optical array are usually transformed into voltages with a fully-differential voltage amplifier to remove the large DC component and suppress even harmonics to produce the signals to be further interpolat- ed. The voltage amplifier should have a low output impedance to drive the resistive interpolation network. The two quadrature signals enable the position of the scanner head to be detected at all times, just by measuring the values of these two signals. To achieve high interpolation accuracy, the amplitude of the incoming sine signals should be regulated to the acceptable maximum level. The signals can be digitized directly by an analog comparator. The two resulting digital signals (signal F4 and F8 in Figure 1 b) will still be in quadrature and all information be in the low-high and high-low transitions of the signals. There are four such transitions per grating period (MP, RP). Therefore the intrinsic resolution of the encoder is one fourth of the grating period. Alternatively, interpolation can be used to increase the resolution. An incremental type encoder outputs a pair of digital square waves Ao and Bo (Figure 1 b) that are 90 degrees apart and convey, for instance, the change in the shaft's position, and direction of rotation. An absolute type encoder, on the other hand, detects an absolute position. Optical or magnetic encoders are widely used transducers that have applications in robotics, manufacturing, motors, and the hi-tech industry/1 /, /14/, /23/, /24/ and /26/. All these may have incremental or absolute encoders. 3. Flash Interpolator - Theory and Fundamentals The basic architecture of the proposed flash interpolation converter consists of four matched resistive chains, connected in a symmetric bridge (Figure 1 a). The resistivity of each chain isR^The differential channel signals CH-Aand CH-B, ordinary and inverted (A+, A-, B+, B-), are connected to opposite sites of the bridge, the voltages of which are of equal amplitude, but phase shifted by 0 and 180 degrees (CH-A) and by 90 and -90 degrees (CH-B) as shown in Figure 1 b. An interpolation factor of IP=4 is chosen as an example. Thus interpolator circuit in Figure 1a consists of four resistive chains, each having IP resistors 4 (r1 to r4 with total resistivity of i?„ = It also consists of i twice as many voltage comparators, C1 to C8, connected to the taps of the bridge. Each comparator always compares tap voltages on the same common mode (CM) level, as shown from simulations in Figure 2 (s1, s2, to s16). Each comparator compares two voltages, shifted in phase by exactly 180 degrees. Although all comparators operate at the same CM level, they differ in performance, which causes INL and DNL errors of the output code (variations of the separation time). Interpolator linearity is also limited by the resistors' matching requirements. Resistance values in the chain are calculated according to the shape of the incoming orthogonal and differential signals connected to the bridge corners (A+, A-, B+, and B-). Angle resolution K is defined by interpolation resolution set by IP within a single chain interval of 90 angle degrees. K is a constant: 108 A. Pletersek, R. Benkovic: A Flash Interpolator ASIC With Build-in Amplitude Measurement Circuit Informacije MIDEM 40(2010)2, str. 107-114 ^ 90 —, where IP is defined in (6). (1) From the present example of orthogonal sine signals, calculation of the resistivity of the chain resistors in a resistor bridge is: NVdda ■o Uenv signal-angle calculation on individual resistor tap: a, =I-K; /= 1, 2, ...,/P, (2) where maximal angle is amax = 90 deg, and resistors are: cos(aj) Rjia^R, sin(a/)+cos(a/)' 45 deg < a, < 90 deg (3) 180 225 270 315 360 ^ (X [degrees] Fl F2 F3 F4 F5 F6 F7 F8 Bo< J» lis ^ ^ Gl G2 en G4 G5 G6 G7 GS (b) Fig. 1. The linear optical encoder system - principle of operation. The interpolation factor of four is taken as an example, the realization of which is shown in (a). Signals A+, A- and B+, B- are the interpolator's input signals. The interpolator's output signals Fi and Gi are differential-digital signals, generated by the flash A/D converter/ interpolator. An XOR in the Digital Processing Unit (b) operates on them to produce a quadrature output signal Ao and Bo. Signals generated at the chain taps P1, P2, P3, P5, P6, P7 and N1, N2, N3, N5, N6, N7 are phase shifted. The all-followers common circuit (at the top (a) consists of the single load device teal, the level-shift circuit, constructed from diode device tdc and the biasing device tcs. Topology at the bottom (a) shows a distributed amplitude measurement structure within Ic1, Ic3, Ic5 and Ic7. Vdda is positive supply voltage, vf is feedback connection and cs a common source terminal for all distributed follower pairs, each consisting of two differential amplifiers Dif and a follower device ml and m2. 109 A. Pletersek, R, Benkovic: Informacije MiDEM 40(2010)2, str. 107-114 A Flash Interpolator ASIC With Build-in Amplitude Measurement Circuit Tsin is the sine-wave period and corresponds to the grating period RP; Tab is the processor tracks output period and Ts the separation time between the two neighboring edges of tracks Ao and Bo (b). r, / \ „ sin(W) Ri(ai) = R-v gjjj(otj)■+■ cos(ot' 0deg/ x y A(X x Xxi V V / \ / V ^' \ t \ • V S9A s10V s11 / s12Al3As14x s!5 / s18A XYYx.X v \X XAx * A K AX WAX VM/V/ //,/\w //V vV\ /A-- NS / / \ A fjJ/ v Fig. 2. Simulated waveforms of the phase shifted signals Pi and Ni on the symmetrical resistive bridge of an interpolator from Figure 1a. The shadow area Vr is an envelope range (envelope ripple), showing also local minima and maxima. Signals P2, N2, P6, and N6, as well as input signals from CH-A (A+, A-) and from CH-B (B+, B-), do not contribute to minimization of the envelope ripple. All signals have the same period and offset as input signals, but differ in amplitude and phase shift. The tracking accuracy depends on differential amplifier gain and offset voltage. All signals within one segment of the bridge cross at the same points (y1, y2, y3 and y4) which are multiples of 45 degrees. The ripple extremes exist at multiples of a=45/2 degree: a = K = j^L = 22.5 deg. 4 • IP (8) from which it follows that IP=4 is sufficient to realize amplitude measuring (AMM) and automatic-gain control (AGC) functions. The extremes of the Uenv envelope are: global minima that are at even multiples of a, where a is 22.5 angle degrees, and are defined as: f^min = Vp = Vp-0.707106 . . . cos(a)-sin(a) . . sin(a)+ ---cos(a) cos(a)+sin(a) sin(90 - a) > (9) Vp is the peak amplitude of the input sine signal. maxima that are at odd multiples of a and are defined as: Vpm&x = Vp = Vp-0.76536 sin(g) + C0S(K) ~~s'n(a). cos(a) cos(cc) +sin(a) (10) As the interpolation factor IP increases, the signal amplitudes on the resistor bridge taps closer to input signals Increase, while the ripple extremes remain at multiple of the 22,5 degrees (Figure 2). An interpolation factor IP of 4 is therefore optimum for the proposed algorithm. Because the minima are global, a ripple of 5,825% of the peak input amplitude Vp is a minimum and is defined as: rippleM= Vrip[%| = ^matt-^min ^ The ripple function Vr;p(a) can also be described using a general modulo function, valid over the whole signal period: Vrip(fx) = Vp- sinl a| mod— • 1-sin— 4 J I 4 + cosj a mod— -sin — I 4jJ 4 (12) and the extreme functions are: Fnp_max(«)=Fn^(2« + l)Aj. and is: 0.76536. Vp, (13) where maxima are positioned at all odd multiples of ; Vrip _ min (p )= Vrip [in ■ ^ j - and is: 0.707106 .Vp, (14) minima are positioned at all even multiples of , where n ranges from.....-2, -1, 0, 1, 2.....and where radians is equal to 22.5 angle degrees. Any other search for maxima in terms of "searching for minima above global minima" is much more complex and requires much higher 111 A. Pleteršek, R. Benkovič: Informacije MIDEM 40(2010)2, str. 107-114 A Flash Interpolator ASIC With Build-in Amplitude Measurement Circuit speed lei circuits, the tracks of which have to be controlled by extra - fast comparators. 4.1 Identifying the Non-ideality Sources Resistor r1 mismatch of 1% and 2% (Figure 1a) is taken as an example for analysis shown in Figure 3. The larger r1 resistivity then required slightly reduces the maximum at the corresponding angle position, as is shown in detail on top of the picture (curves r1_1%_mis and r1_2%_mis). It is evident that the comparator offset cannot affect the sine signals on resistors' taps. On the other hand, the offset voltage of the differential stages Dif drastically affects the envelope extremes. As the Dif is in a source follower configuration, its offset contributes directly with a unity gain to the envelope change as is shown, as an example, for 10mV offset (curve Dif_ 10mV_offset) and for-1 OmV offset (curve Dif_-10mV_offset). It is also clear that each Dif stage contributes only at an appropriate angle position area (we put offset voltage to Dif stage in the Ic1 block only - Figure 1a). EXTERS iL -i ki v h o ri 1 o 0 v . 0 d o t e:tu p a 0 i i i prožimo z kot Fig. 2: A part of the organisation block for entry of the coefficients and input variables of 3rd order IIR filter in the first and second cascaded structure 117 A. Dodič, B. Jarc, R. Babič: Informacije MIDEM 40(2010)2, sfr. 115-123 Realization of 4th Order Recursive Digital Filter With PLC Controller A general realization form for the 3rd order IIR filters is shown in figure 1. Since it is a general form for two cascade structure, it can be also used for 4th order IIR filter. Table 2: The coefficients of both cascaded structures for 3rd order eliptic filter b2a = 1,00 bla = 1,00 bOa = 0,00 ala = -0,818337350 aOa = 0,00 b2b = 1,00 bib = -1,132649302 bOb = 1,00 alb = -1,715348626 aOb = 0,8456226513 X(n) ^ Fig. 1: General cascade realization for two structures recursive digital filter The figure 2 shows a mask for input of coefficients in each cascade structure of digital filter. In the proceeding example, the output from the first structure is 32 bits marker double word (MD828), and is the input into the second structure. The output from the filter is MD832. Comparison the impulse response of the 3rd order digital filter, carried out with PLC in the cascade structure and with simulation results, (got from MATLAB), shows us that is in case of long format coefficients, deviation could be neglected, as we already concluded in case of 2nd order 100 20 iûl 0 S 10 15 20 25 30 35 40 No. of samples Fig. 3: Impulse response of 3th order IIR digital filter Table 3: The comparision of first 20 values of impulse response of of 3rd order digital filter I Practical sample Results of simulation realisation Deviation no. (MATLAB) with PLC % 0 13,642650301273000 13,6426 0,000368706 1 32,756503712783000 32,7564 0,000316617 2 50,497821912436000 50,4977 0,000241421 3 77,347995718632000 77,3478 0,000253036 4 105,0555793178170 105,055 0,000551439 5 127,13935612429400 127,139 0,000280105 6 139,34892221216300 139,349 -5,58223E-05 7 139,83616962670000 139,783 0,0380228 8 128,70340523262500 128,703 0,000314858 9 108,10092058526500 108,101 -7,34635E-05 10 81,12485120469300 81,1248 6,31184E-05 11 51,45073780478000 51,4507 7,34776E-05 12 22,68763570368100 22,6877 -0,000283398 13 -2,10893694285100 -2,10885 0,004122591 14 -20,77181759385600 -20,7717 0,000566122 15 -32,18556365668600 -32,1855 0,00019778 16 -36,28428240826100 -36,2843 -4,84831E-05 17 -33,91036398052200 -33,9104 -0,00010622 18 -26,57448525769500 -26,5746 -0,000431776 19 -16,16379328939600 -16,164 -0,00127885 20 -4,64461306675500 -4,64483 -0,004670642 filter. The First 20 samples of impulse response are illustrated in table 3. A complete impulse response of digital filter made with PLC is shown in figure 3. According to impulse response we calculated appropriate magnitude frequency characteristic with MATLAB (gain response) as it is shown in figure 4. 0 -20 rn "D c m m 40 -50 -so L i ■ i, 1 i i i ; i 1 l Î t [""ï i i î 1 ! ! i — ......I......j"""t"" -.....\------ _ ____ i i i i i! 1 i Î 3 S 10 IS 20 2 30 35 4 > 45 Ž« Frequency (Hz) Fig. 4: The magnitude frequency response of 3th order IIR digital filter with cut off frequency 3 Hz The amplitude frequency characteristic correspond with requirements. Attenuation of 40 dB is obtained at 7 Hz, almost at double sampling frequency. 4.2 The fourth order recursive digital filter in direct form Similar to the 3rd order filter, when using a mentioned filter block, we can extend it to the 4th order filter. We are going 118 A. Dodič, B. Jarc, R. Babič: Realization of 4th Order Recursive Digital Filter With PLC Controller Informacije MIDEM 40(2010)2, str. 115-123 to analyse a behaviour of the eliptic recursive digital filter with following characteristics: Fs= 50 Hz Fm=3 Hz Ap=1 dB As=40 dB Elliptic (Cauer) filter Lowpass filter We will analyse a deviation of the values of impulse response and frequency amplitude characteristic with shortened coefficients. Block diagram of the filter is shown in the figure 5: pulse response obtained with MATLAB simulation and response of real PLC for the 4rd order digital filter with coefficients in a shortened mode. A deviation is noticed in the input of the coefficients with 3 decimal places. Table 5: Comparison of the first 20 values of impulse response for 4th order digital filter sample no. MATLAB From PLC Deviation % 0 12,81503050 12,0 6,359 1 14,01314165 12,0 14,366 : 2 29,84427179 26,15 12,378 3 44,81855444 39,737 : 11,338 ! 4 60,29166857 ; 53,957 10,506 5 76,30091953 68,731 ; 9,921 6 91,83710540 , 83,006 9,616 ; 7 105,23871650 95,126 : 9,609 ; 8 114,63757670 : 103,264 9,921 : 9 118,38576890 : 115,5098 10,608 10 115,40354470 101,792 11,794 11 105,40486000 90,919 : 13,743 I 12 88,97838699 : 73,833 17,021 : 13 67,5241582 51,965 : 23,042 14 43,06632776 27,369 ! 36,449 15 17,9783246 : 2,454 i 86,350 i 16 -5,333836469 -20,332 -281,189 17 -24,74190315 ; -38,816 ; -56,883 ! 18 -38,655628 -51,363 -32,873 i 19 -46,19925186 : -57,072 -23,534 it is evident from the table 5 that a deviation of impulse response values are large in case of cutting off the coefficients. A graph in the figure 6 shows an impulse response for double precision and shortened mode coefficients. ¿ Fig, 5: Block diagram of the 4th order recursive filter realized in the direct form We can get the coefficient of the filter with partially modif-icated MATLAB script, the same we used for the 2nd order filter, or with FDA toolbox , which is also a part of the same program package. Table 4: The coefficients of 4rd order elliptic filter /- \ i Doubis précision cdeff : // \ V ; fShortensii mode peff. ! It / ......r"......i......" ..... ; i..... i : / "T-l........I/:: \\ ; t \ i ... £ Al/ L i ~ j ; i i i i 0 5 10 15 20 25 30 35 40 Number of samples b4= 0,0128 150 304 a4= 1,00 b3=-0,0308 830 053 a3=-3,5033 975 914 b2= 0,0416 358 137 a2= 4,7510 732 531 bl=-0,0308 830 053 al=-2,9436 272 013 b0= 0,0128 150 304 a0= 0,7021 224 885 If we cut off a certain number of decimal places of coefficients, we will get a deviation of the impulse response values and a deviation of the shape of magnitude frequency response. For analyse, we cut number of decimal places to 3. The table 3 shows the results of comparison of im- Fig. 6: Impulse response of the 4th order digital filter for the exact and shortened coefficients Although a deviation of impulse response values is large, a frequency characteristic is not deformated to a great extent. In the figure 7, a frequency characteristic of digital filter for shortened and long (original) coefficients are shown. From this figure it is transparent that characteristic is more degraded in passband, above ail in a bigger ripple in passband than it is designed. Figure 8 shows a detail of passband ripple. In the stopband there is a filter with shortened coefficients is even better than originally designed 119 A. Dodič, B. Jarc, R. Babič: Informacije MIDEM 40(2010)2, sfr. 115-123 Realization of 4th Order Recursive Digital Filter With PLC Controller filter (at this design stage, we determine maximal allowed ripple in passband and minimal allowed attenuation in stop-band). 10 o -10 -20 £D -30 I -50 -60 -70 z Double precision cce&. ; \y i i \X i i \ ¡r\ L^T" t......\V"""?7........ ; f.....\yf ................ M i 1__________\Ml_____________i_____________ I i i 10 15 Frequency (Hz) Fig. 7: The magnitude frequency response of 4th order recursive filter for shortened and long format coefficient Following coefficients are: The first structure : b21=b2a= +1,00 1,00 bll=bla= -0,7544 77 551 all=ala= -1,7130 35 557 b01=b0a= +1,00 a01=a0a= +0,7587 40 607 The second structure : b22=b2b= +1,00 1,00 bl2=blb= -1,6555 42 739 al2=alb= -1,7903 62 034 b02=b0b= +1,00 a02=a0b= +0,9253 78 821 and gain g= 0,0128 150 304. Regarding equation 4, we got following (gain and coefficients are shown shortened, for the sake of clarity): H(z)=! K+K bn+K ■ 1 + c -1 , -2 •z + a0a-z 1 + fl, j ^^OoLtbSe piecisior! cceff. i | j i : i i : i \ i M M M I i i 1 i i i ! \ 2 2 5 3 Frequency (Hz) Fig. 8: The magnitude frequency response of the 4th order recursive digital filter for shortened and long format coefficient -detail of passband -ripple 4.3 The fourth order recursive digital filter in cascade form Having in mind that a direct form of realization is the most sensitive influence of quantization of the coefficients (in our case cutting off the decimal places), we will continue analysis of the behaviour of the digital filter in a cascade form. All requirements will remain unchanged. With FDA tools, we will calculate coefficients of two cascade structures (SOS matrix). Equations (1 ) and (2) are given in detail. H{z) = 0.0128- M N2_ 8 D\ D2 1 — 1.713 z + 0.7587z 1--1.7903z"1 +0.9253 z~ HI-H2 where N1, N2; D1 and D2 are nominator and denominator of both functions and g is gain. In function H1 is already included gain g. If we use instruction zp2sos instead FDA toolbox for calculation of coefficients, than the gain g is already included in coefficients of the transfer function, i.e. g=1, so it can be omitted. (Regularity of calculation cascade structure, is possible to check with MATLAB instruction conv with following script: N1 = /1 -0.7544 1/ N2= /1 -1.655 1/ g=0.0128150 N= conv (N1,N2); Ng=g*N In this equation, "Ng" is a nominator of the filter in a direct realisation^ Similar goes also for a denominator) With MATLAB, we can represent magnitude response for each structure separately. In the figure 9, there are shown magnitude responses of the first, second and direct realisation of the filter. From the picture is visible that the characteristic of direct realisation is a result of multiplication of the characteristic of the first and second structure (in log. scale , it will be the summ, i.e. H=H1 + H2) 120 A. Dodic, B. Jarc, R. Babic: Realization of 4th Order Recursive Digital Filter With PLC Controller Informacije MIDEM 40(2010)2, str. 115-123 20 10 0 -10 -20 ' -30 -40 -50 -60 -70 /\ H1 ; ; \ : ; —....................- X \\ i /H2 ! i I / ! ! i......\ f..... i ........ — '! M i I i ! 10 15 Frequency (Hz) 20 25 Fig. 9: Decomposition of frequency characteristic of the 4th order digital filter into two second order functions We continued the analysis with quantized coefficients especially those in shortened mode. For analysis, we cut coefficients to 3 decimal places. Table 6 shows results of comparison of impulse response of MATLAB simulation and a real digital filter 4th order, realised with PLC controller, with coefficients in a shortened mode. Deviation (error) is shown for coefficients cut down to 3 decimal places. Table 6: Comparison of the first 20 values of the impulse response, for the 4th order digital filter, realised in cascade realisation, with coefficients in long and shortened mode sample no. MATLAB From PLC Deviation % 0 12,81503050 12,8150304 7.6859E-07 1 14,01314165 14,01964326 -0,04639651 2 29,84427179 ; 29,87032369 -0,0872928 3 44,81855444 44,87469011 -0,12525094 4 60,29166857 60,40018669 -0,17998858 5 76,30091953 , 76,48888885 -0,24635262 6 91,83710540 92,13215093 -0,32127049 7 105,23871650 105,6664377 -0,40642949 8 114,63757670 115,2196907 -0,50778637 9 118,38576890 119,138391 -0,63573696 10 115,40354470 ; 116,3353537 -0,80743537 11 105,40486000 106,5151964 -1,05340152 12 88,97838699 90,25555199 -1,43536543 13 67,5241582 68,94430001 -2,10316107 14 43,06632776 44,59330464 -3,54563986 15 17,9783246 19,56483705 -8,8245845 16 -5,333836469 -3,743727912 29,8117231 17 -24,74190315 -23,20897484 6,19567662 18 -38,655628 -37,24072413 3,66027909 19 -46,19925186 -44,95804954 2,68662861 From results shown in table 6, it is evident, that deviation is significantly smaller than in a direct realization structure. Magnitude frequency characteristic are practically equal for coefficients given in long and short mode, as shown in the figure 10a. A small deviation is still present in pass-band, in the figure 1 b is a detail of characteristic in pass-band. 10 o -10 -20 CD" -30 I -40 -50 -60 -70 -80, Double prec sion coeff. H/! \ j ...........rr........"" ...........A :______________ l .............' Shortened rrçode coeff. î \/ \ :.' ; î ! î I 10 15 Frequency (Hz) 20 25 Shortened ¡mode c oeff. ; ; > i ! \ ' A ^ ^ M \ ! ; Double precis î i on coeff. ¡j ......j......il..... ; il .. : J i 1 I i i 11 i i 0.5 2 2.5 3 Frequency (Hz) 4.5 Fig. 10: a) Frequency characteristic of the 4th order digital filter in cascade realization with coefficients in a shortened mode b) detail of characteristic in passband Comparison of deviation of impulse response for entering coefficients in long and shortened mode, for direct realisation, and shortened mode for direct realisation as it is shown in table 7. In this comparison, values calculated with MATLAB, are referent. From the results we have shown so far, we can conclude that entering of shortened coefficients for the 4th order digital filter in a direct realisation, is very important for behaviour of such filter. We can not neglect a deviation of impulse response from teoreticaly calculated and actual magnitude response. For a direct realisation of the higher order filter, realised in a direct form, is it necessary to enter coefficients in exact (long) form. A graphic representation of deviation for the 4th order IIR filter in cascade realisation, for the extact and shortened mode of the coefficients and for a direct realisation is shown in the figure 11. Figure shows absolute values of deviation. 121 A. Dodič, B. Jarc, R. Babič: Informacije MIDEM 40(2010)2, sfr. 115-123 Realization of 4th Order Recursive Digital Filter With PLC Controller Table 7: Comparison of the first 20 values of impulse response for the 4th order digital filter for direct and cascade realisation with coefficients in a long and shortened form. MATLAB X 1000 PLC impulse response Direct form shortened coefficients Cascaded realisation Long coefficients Shortened coefficients 12,81503050 6,35995754 3.88992E-06 7.6859E-07 14,01314165 14,36609791 -5.95899E-05 -0,04639651 29,84427179 12,37849533 -9.45304E-05 -0,0872928 44,81855444 11,33805967 -0,000101644 -0,12525094 60,29166857 10,50670635 -0,000217991 -0,17998858 76,30091953 9,921138016 -0,000236518 -0,24635262 91,83710540 9,616053733 -0,000320783 -0,32127049 105,23871650 9,609311903 -0,000364398 -0,40642949 114,63757670 9,921333834 -0,000456498 -0,50778637 118,38576890 10,60834337 0,014924823 -0,63573696 115,40354470 11,7947371 -0,000654489 -0,80743537 105,40486000 13,7430665 -0,001081544 -1,05340152 88,97838699 17,02142228 -0,000913721 -1,43536543 67,52415820 23,0423579 -0,001246658 -2,10316107 43,06632776 36,4491903 -0,002025343 -3,54563986 17,97832460 86,35022977 -0,004312944 -8,8245845 -5,333836469 ■281,1890394 0,013432533 29,8117231 -24,74190315 -56,883647 0,002518605 6,19567662 -38,65562800 -32,87327787 0,0013659 3,66027909 300 -, 250 200 150 100 50 0 I Cascade Cascade Direct form, long shortened shortened Fig. 11: Error of impulse response of 4th order IIR filter for different realization and lenght of coefficient (in %) 5. Conclusion This article challenges a possibility of realization of the recursive digital filter of the third and fourth order with pic controller. Although sensors and transducters, (we usually have at automation fields with pic controllers), do not distinguish useful signals from unwanted signals (noise and interference) the system does. Therefore, there is a need for additional equipment, SW or HW, which helps to eliminate the disturbances, so the controlled process would continued faultlessly. As the application of automation of industrial processes gets more demanding, appears the demand for aigitai elimination of unwanted input signals. Regarding this in our applications, the influence of nonlinear phase is not critical for filtering of disturbanced signals, we chose recursive filter applying the coefficients of elliptic filter. We chose elliptic filter, because a useful slope of frequency characteristic in passband has lowest order. Also a ripple of amplitude characteristic was not critical if we consider limit values of the system. A description goes furher for a function of the PLC controller and importance of cycle time and interupt, especially with controller Siemens S7 . The coefficients of filter with MATLAB are calculated directly specifically with the aid of FDA toolbox. For digital filter of the 3rd and 4th order, we analysed a detailed influence of cutting the coefficients length to the characteristic of the filter. For realization of the filter, we used structures of 2nd order, which we applied in cascade realization of filter. For recalculation of the 3rd order filter in cascade structure, we used MATLAB, which enabled determination of the second order structures as a matrix structure (SOS matrix). With shown SOS matrix, cascade realization of the 3rd and 4th order filter is simple defined. The figure 2 shows a part of the organization block of PLC controller with the mask for input of coefficients and input variables in each structure. Comparison of Impulse responses of the 3rd order digital filter made by PLC In cascade form with simulation results from MATLAB, also specifies a negligible deviation in case of exact values of coefficients (format long). Larger deviations appear just at calculation with shortened coefficients. Deviations are result of recursive mode of calculation. A direct form realization of the 4th order filter with shortened coefficients, reveal large deviations, even though deviation of the amplitude characteristic is not significant. In stop-band, such filter is considered a better option, because it has less ripple than a designed one. With cascade realization of the 4th order filter, we indicate that deviation using coefficients values in long format, can be truncated, they match MATLAB results. For the filter in cascade form realization with shortened coefficients, we proved that deviation of values of impulse response is not neglectful, but is still lower than in a direct realisation. Deviation of amplitude characteristic appears in passband and is really small (<0.5 dB). Comparation of impulse response for different realizations are illustrated in table 7 and figure 11. The obtained amplitude characteristic matches with requirements. Attenuation of 40 dB Is obtained at double cut-off frequency, which is essentially better to the 2nd order filter. 122 A. Dodič, B, Jarc, R. Babič: Realization of 4th Order Recursive Digital Filter With PLC Controller Informacije MIDEM 40(2010)2, str. 115-123 6. References /1./ L. Milic, Z. Dobrosavljevič, Uvod u digitalnu obradu signala, Ele-ktrotehnički fakultet Beograd, 1999. /2./ R. Babič, Dinamika izhodnega signala pri kaskadni obliki izvedbe nerekurzivnih digitalnih sit Informacije MIDEM. - ISSN 0352-9045. - Letn. 31, št. 3 (2001), str. 152-158. /3./ SIEMENS S7-300 manual, programmable controller, hardware and instaiation SIEMENS AG, 1998, EWA4NEB 710 6084-002 01 /5./ Aleksandar Dodič, Izvedba rekurzivnih digitalnih sit s PLC krmilnikom, magistrska naloga, Univerzav Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko, Maribor, 2007. /6./ Sanjit K.Mitra, Digital Signal Processing-A computer Based Ap-proach, Mc.Graw Hill, 2002. Mag. Aleksandar Dodič, univ. dipl. inž., Lučka uprava Rijeka, Riva 1, 51 000 Rijeka, Hrvatska, e-mail: sandro.dodic@portauthority.hr Doc. dr. Bojan Jarc, Univerza v Mariboru, Fakulteta za elektrotehniko računalništvo in informatiko, 2000 Maribor, Smetanova 17, Slovenija Izr. prof. dr. Rudolf Babič, Univerza v Mariboru, Fakulteta za elektrotehniko računalništvo in informatiko, 2000 Maribor, Smetanova 17, Slovenija Prispelo (Arrived): 21.01.2010 Sprejeto (Accepted): 09.06.2010 123 UDK621,3:(53+54+621 +66), ISSN0352-9045 Informacije MIDEM 40(2010)2, Ljubljana RATI O M ETRI C MEASUREMENT FOR LONG TERM PRECISION, REASONING AND CASE STUDY Marjan Jenko Laboratory for Digital Systems and Electrical Engineering, Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia Key words: Circuit-aging effects, current reference, measurement precision, offset voltage, pasteurized soft-boiled eggs, ratiometric measurement, RTD, temperature measurement, temperature sensor, thermistor, thermocouple Abstract: A survey of modern temperature sensor types is presented. A canonical circuit for temperature measurement is analyzed with emphasis on age-induced measurement error. The circuit requires periodic calibration, which is accepted for instruments, but not for most machines that are used in different industrial processes. A ratiometric method for temperature measurement and its implementation are introduced. The number of circuit components is minimized as much as possible. What remains, are only the effects of age-Induced resistance drift. A stable precision resistor gives confidence in measurement accuracy over a period of 15 years, without periodic calibrations, which is the life time of many apparatuses. Razmerna meritev za doseganje trajne preciznosti, argumenti in implementacija Kjučne besede: staranje elektronskih vezij, tokovna referenca, precizna meritev, napetosni premik, pasterizirana mehko kuhana jajca, razmerna meritev, temperaturna meritev, temperaturno zaznavalo, termistor, termočlen izvleček: Podan je pregled polprevodniških in kovinskih temperaturnih zaznaval. Analizirana je časovna stabilnost meritve temperature z napetostno ali tokovno referenco in z meritvijo toka ali napetosti na temperaturno odvisni upornosti. Vkolikor je potrebna točnost tekom več let in so pogoji delovanja zahtevni, je spremembo napetostnega premika operacijskih ojačevalnikov v takšnem vezju potrebno kompenzirati s kalibracijo. To je uveljavljena praksa pri merilnih inštrumentih, ne pa pri napravah za robustne industrijske procese, npr. za Industrijsko pripravljanja hrane. V nadaljevanju prispevka predstavimo ratiometrično oziroma razmemo izvedbo merjenja temperature. Vplivi spreminjanja parametrov merilnega vezja so v največji možni meri izločeni. Motilni veličini meritve v predstavljeni implementaciji sta samo še vpliv staranja referenčnega upora in staranja temperaturno odvisnega upora. Po znanih podatkih o staranju uporov meritev ostane stabilna brez vmesnih kalibracij vsaj petnajst let, kar je življenjska doba strojev za industrijske procese. 1 Introduction The contribution of this paper is in the development of a component that encapsulates the ratiometric measurement principle to achieve long-term precision. It has been developed as part of the design of a new type of an industrial kitchen appliance that produces pasteurized soft-boiled eggs. The constraints are: a) temperature error of the thermal process is to be within +-0.25 °C; and b) apparatus life lime is at least 15 years, without periodic calibrations. The apparatus is a novelty on the market of industrial kitchen appliances. Until now, pasteurized soft-boiled eggs were not industrially produced. Domestic cooking of soft-boiled eggs does not kill salmonella, if present. Killing the bacteria, at higher temperatures, results in hard-boiled eggs. The pasteurization and cooking of soft-boiled eggs have contradictory requirements. For the former, salmonellae, if present in the center of eggs' mass need to be unfailingly killed. For the latter, the yolk is to remain soft, i.e., coagulation is not to take place. A soft yolk requires a relatively small amount of delivered thermal energy, and the opposite is true for the destruction of salmonella in the center of the yolk. Since the two requirements are in contradiction, there have been until now no soft-boiled eggs offered in places where infection by bacteria, especially salmonella, would present a catastrophic event that could even lead to death of an elderly customer and potential law suits. A short calculation shows that pasteurized soft-boiled eggs have selling potential in breakfast restaurants of hotels, in hospitals, in homes for elderly people, as a replacement or supplement to salami and cheese. The patented thermal process /1.2/ requires implementing a specific thermal function with temperature error less than +-0.25 °C. When regulating within +-0.25 °C, measurement imprecision is to be at most within +-0.1 °C. It is commonly understood that the market of professional kitchen appliances does not tolerate much servicing during the lifetime of a product, which is no less than 15 years. Calibration of the temperature measurement circuit every few years of operation is out of question The problem of precise and stable temperature measurement divides into two details. One is choice of a temperature sensor; the other is design of an electronic component that converts temperature into some electrical quantity. Temperature can be measured by contact or by infrared emission, which is not addressed in this paper. 124 M. Jenko: Ratiometric Measurement for Long Term Precision, Reasoning and Case Study Informacije MIDEM 40(2010)2, str. 124-130 2 Contact temperature sensors For a contact temperature sensor, one chooses amongst thermocouples, Resistance Temperature Detectors (RTDs), thermistors, and semiconductor transducers /3/. These types of sensors are built into temperature measurement devices that are built for different purposes. When one assembles e.g. a production line he chooses among pre-built measurement devices. It is irrelevant to the designer of a new production line, which type of sensor is used in the device. The important factors are technical specification, quality, and cost. When designing a new apparatus with common constraints on temperature measurement, it is about ease of integration and cost of the temperature measurement device. When designing a mass-produced high-tech product where long-term measurement precision and accuracy are critical, careful selection of sensor and circuit is needed. Issues besides precision and accuracy are: responsiveness, indifference to environment disturbances, simple calibration in production, and measurement accuracy within years of product life time, if only feasible without recallbrations. Such are the constraints of the apparatus in the case study. 2.1. Thermocouple Two wires of different metals or alloys, being connected at one side to a voltmeter, and being soldered or welded at the other side, are laid out in a temperature field with gradient, produce voltage that is proportional to the temperature difference between both wire ends, i.e., between the voltmeter and the joint. Voltage readout is a function of temperature difference between locations of the voltmeter and the joint. Different combinations of materials produce different voltages. They are used for different temperature ranges, with different accuracies. The American Society for Testing and Materials defines a number of commercially available thermocouple classifications in terms of performance. Types E, J, K, N, and T are base metal thermocouples, and can be used to measure temperatures from about-270 to 1372 °C. Types S, R, and B are noble-metal thermocouples, and can be used to measure temperatures from about -50 to 1820 °C /4/. Characteristic data of most used thermocouples (types E, J, K, R, S and T) can be found in /3/. One reads that thermocouple type S (platinum with 10% rhodium vs. platinum) is used for the highest temperature range (0 °C to 1750 °C), and thermocouple type J (iron vs. constantan) has the highest accuracy (+0.1 °C). Typical values of temperature-induced voltages are in a range of some ten microvolts per degree Celsius. A thermocouple measures temperature difference between two locations in space, one being at the joint of the two different wires, and the other being at the connector of the measuring device. In order to measure the actual temperature at the joint of the wires, one must know, and add the temperature at the location of the measuring device. This temperature is to be measured by some other means, as an absolute value and not as a temperature difference -which is the case with thermocouples. A logical question arises at this point: if one is able to measure temperature by other means, with the same or better precision and accuracy, why add the temperature difference instead of directly measuring the temperature at the point of interest? The single most important answer is that other means of measurement can only be used over a smaller temperature range. Thermocouples, on the other hand, can be used over a wide range of temperatures. They are quite rugged. As such, they are often fastened under a screw. They can be manufactured on a spot, by either soldering or welding. If the measurement system performs the entire task of reference temperature measurement and conversion of voltage to temperature in software, using a thermocouple becomes easy: to measure temperature, one connects only a pair of wires. Thermocouple measurement is convenient when it is required to monitor many temperatures at once. If one builds a thermocouple-based temperature transducer from scratch, he will face two challenges: a) it is challenging to linearly amplify signals in order of only some 10 microvolts because of low signal to noise ratio; and b) a solution is needed to measure the temperature at a reference location. Typical accuracy of a thermocouple is +-0.5 °C /5/. 2.2. Resistance Temperature Detector (RTD) RTD is a synonym for a metal resistor used for temperature measurement. Metal resistance increases with temperature. Already about 1870 platinum was considered as a metal for sensing temperature. Platinum RTD (PRTD) is considered as one of most stable, linear, and accurate temperature sensors. Platinum, being a noble metal, does not react with elements of the environment, even at elevated temperatures - consequentially, it is a stable base for design of a precise and accurate temperature measurement system. Before development of microelectronic technology, RTDs were wound up to a skeleton that was mounted within a cylinder. A seal was added at the end. Theses sensors suffered a delay /6/. Modern RTDs are produced as the deposit of a platinum film on a ceramic substrate. Each individual sensor is calibrated, i.e., laser-trimmed and sealed in casing. All noble metals can be considered for RTDs, since they do not change internal structure at elevated temperatures. They do not react with the environment. For practical reasons, metals with higher resistance are preferred to minimize effects of parasitic resistances of wires and intercon- 125 Informacije M1DEM 40(2010)2, str. 124-130 M. Jenko: Ratiometric Measurement for Long Term Precision, Reasoning and Case Study nect. Gold and silver have low resistance, tungsten is fragile, and platinum presents an optimal choice. Commercial annotations for PRTDs are PT100 and PT1000. The former has resistance of one hundred Ohms at zero degrees Celsius, the latter one thousand Ohms at zero degrees Celsius. The function of resistance versus temperature is nearly linear. For higher accuracy, polynomial coefficients are available. A basic RTD circuit requires a constant current source for biasing and an analog instrumentation circuit (such as an instrumentation amplifier) to instrument the voltage drop across the RTD /4/. 2.3. Thermistor Thermistors are made using semiconductor materials and can have either a Positive or Negative Temperature Coefficient (PTC or NTC, respectively). The vast majority of thermistors have a NTC. Thermistors are more sensitive to temperature changes than metal-based sensors. In metals, resistance is proportional to temperature. In semiconductors, conductance (the amount of free electrons) is an exponential function of temperature. Small temperature changes result in high changes of resistance and the relation is nonlinear. Accuracy and long-term stability are substantially lower than for RTDs. As elevated temperatures gradually effect the distribution of dopants in a semiconductor, thermistors are not to be used above 150 °C /7/. 2.4. Monolithic linear temperature sensor Monolithic linear temperature sensor is an integrated circuit with a built-in sensor and circuitry for signal conditioning. Output is a linear function of temperature in the form of current or voltage source, usually with 1 uA/K or 10 mV/K. The temperature range is between -55 °C and 150 °C /4/. Some of these circuits transmit temperature data in a form of serial protocol; some have only a logic output that toggles at a preset temperature. Monolithic linear temperature sensors present an ideal design option when the simplicity of system design is crucial. Issues of a low signal-to-noise ratio and nonlinearity are solved by filtering, amplification, and linearization within the monolith. Outputs have excellent signal-to-noise ratio and values in a range that is easy to process. Temperature measurement is based on the exponential relation of free electrons in a semiconductor to temperature. The circuit makes a logarithm of the function. The result is a linear function of temperature. Calibration constants are added. As for thermistors, these circuits are not to be used above 150 °C. A monolithic linear temperature sensor Is designed primarily for ease of usage. It is not to be used in applications of high accuracy with required long-term stability. 3 Circuits for contact temperature measurement When measuring temperature with thermocouples, low voltages (tenths of microvolts) are to be linearly amplified by an instrumentation amplifier. When building such an amplifier, issues are low signal-to-noise ratio (low voltage on input), gain linearity, long-term stability, and robustness to environment variables (variation in power supply voltage, changes in ambient temperature). The need for accuracy requires calibration. Since thermocouples measure temperature differences, a reference temperature needs to be measured by other means. Monolithic linear temperature sensor is usually used for the purpose /3/. Measuring temperature with a monolithic linear temperature sensor is most straightforward since the signal conditioning (amplification, filtering, linearization, and calibration) is performed within the monolithic circuit. The output can be directly connected to an A/D converter, comparator, or some serial interface. Regarding measuring temperature with an RTD or a thermistor, they are both temperature-dependent resistors. As such, they require current or voltage excitation to produce a temperature-dependent variable (voltage or current) by Ohms' law. When processing voltage as a measure of temperature, the sensor needs to be powered by a current reference source. Filtered and amplified voltage is a base for temperature readout. Some calculation, i.e., linearization and consideration of calibration factors is needed before the readout. Filtered and amplified voltage signal, proportional to temperature, is fed to an A/D converter (usually being an integral part of the microcontroller) and calculation is performed in the microcontroller software. A canonical circuit for mapping temperature to voltage, by usage of an RTD or a thermistor, is in Figure 1, which is the core of the proposed circuit in /8/. R4 Fig. 1: RTD is powered by a current reference, voltage drop on the RTD is being filtered and amplified, by/8/. 126 M. Jenko: Ratiometric Measurement for Long Term Precision, Reasoning and Case Study Informacije MIDEM 40(2010)2, str. 124-130 The current reference is built from the operational amplifiers 01, 02, and from the resistors R1 to R4, and Rref. The two filters are made from the R7, C1, and from R8 and C2. The operational amplifier 03, and the resistors R5 and R6 form a gain stage. Resistors R1, R2, R3, and R4 are of a same value. Consequentially, functionality of the current source is governed by the equations: vz = 2Vy = vref + vz-vx = vref . _ Vref h'ef — ref Iref flows through the RTD to the ground. The corresponding voltage drop Vx on the RTD, being a function of temperature, is amplified by (1): Vout = sfis 6 (Ky v03 0ffSet - Fre/i) (1) The circuit in Figure 1 consists of three operational amplifiers, eight resistors, two capacitors and two reference voltages. Sensitivity analysis shows that the output voltage Vout is most sensitive to changes of Vo3^otfset at the operational amplifier 03. Vo3_offset is multiplied by (R5+R6)/ R5, which needs to be about 50 for proper circuit operation. A new circuit is calibrated, but years of usage do influence the electrical parameters of the circuit. Age induced drift of the 03 offset voltage, in 10 years of usage, can cause, based on manufacturers' data on time induced offset voltage drift, an error of one degree Celsius at a measurement range of one hundred degrees Celsius. Importance of time-induced one percent error depends on applications' nature. When a relatively expensive, accurate, and time-wise stable PRTD is chosen as a sensor, then measurement quality Is not to be deteriorated over years of operation by the signal conditioning circuit. 4 Ratiometric measurement The circuit in Figure 1 Is built from 13 circuit components. Each of them is prone to slight changes over years of operation. One cannot expect to build an artifact that would be completely insensitive to influence the environment. Even pyramids, which were built with all available technology of that time to last, changed over centuries. As one looks Into inner working of Nature, he notices that things are interrelated and objects are in certain relations to each other. Different organisms, from bacteria to most powerful predators, compete for their daily source of energy, for water and for space. An absolute amount of stamina is not as important as to be stronger than the competition. Outcome of fight and daily success depends on power imbalance. The power ratio counts the most In practical survival. In sociology, humans copied these mechanisms quite fast and successfully. For example, Justltia, the Roman goddess of justice, is most often depicted with a set of weighing scales typically suspended from her left hand, upon which she measures the strengths of a case's support and opposition. In the educational process, a teacher makes a ranking of students based on a comparison of their work, not by an absolute scale. Results of Nature observation were utilized also in some technical domains. For example, in control theory some 15 years ago principles of fuzzy regulation emerged. There, variables are exchanged for probability functions. In manufacturing, some 20 years ago emerged a blonic paradigm. There, manufacturing systems are to have capability of self-organization as different forms of life do. In integrated circuit design, required functionality depends more on ratios of dimensions and dopants than on their absolute values. Ratiometric measurement is about inducing the measurement result from the comparison of different values. For example, an object of blue color is about blue. When it is compared to another object of blue color, one immediately notices which one is darker and which one is brighter. 4.1. Why measuring by a ratiometric method? The answer is of a conceptual nature. A hypothesis is that the comparison system is simple enough and robust that it can effectively compare objects (variables) through Its lifetime. When it is so, comparison only depends on the properties of the two objects, which are the reference and the measured object. It is important for implementation that: a) the comparison system is designed to be most robust regarding environment disturbances and aging; and b) that the reference object changes minimally through its lifetime. An important detail of the answer to the question, why measuring by a ratiometric method, is that such a measuring system does only comparison. This is conceptually a much simpler category than an absolute measurement. 4.2. Implementation Usually, there are more possible implementations of a particular concept. Criterion on implementation efficiency is that equations of the implementation are to show minimal dependence on environment disturbances and on aging effects. When precision and accuracy are important in temperature measurement, one chooses the PRTD as a temperature sensor. Logical consequence is to choose a precision resistor for a reference object. A precision resistor Is to be least sensitive to temperature, moisture, and aging. Circuit theory is explored to find means for comparing the two resistors. A working solution compares resistors by 127 Informacije MIDEM 40(2010)2, str. 124-130 M. Jenko: Ratiometric Measurement for Long Term Precision, Reasoning and Case Study the time that is needed to discharge a capacitor via each of them. The time needed to discharge a capacitor from voltage Vco to Vc, is defined by -RCln Vc_ 'Vco (2) The time t is measured in a digital system by counting clock ticks: /V fcik (3) For precision, clock frequency fcik is to be high. Then N also becomes high, but the uncertainty of non-measured time within a clock period decreases. This adds to measurement precision. If one compares capacitor discharge times, discharging the capacitor separately via Rref and via R(T), from the two equations above follows equation (4): -RrefCln^ _ N Rref fclk -R(T)Cln^~ NR(Tjfclk vc o Then, R(T) NR(T) NRref Rr. ■ef (4) (5) fcik, Vco and Vc in (4) do cancel out. R(T) is calculated by (5) only from the value of a precision reference resistor and from the two discharge times. The implication is that the capacitor, the voltage comparator to Vc and the voltage reference Vco can drift over time (years of operation) without affecting the measurement accuracy. In Figure 1, there are 10 circuit elements (01, 02, 03, R1, R2, R3, R4, Rref, R5, and R6) and two voltage references (Vref, Vrefl) that influence the measurement result. In equation (5), it is only the inaccuracy of measuring the two times and temperature induced drift of Rref that affect the measurement.. 5 Case study, implementation of ratiometric temperature measurement in the golden egg apparatus When implementing (5) by the circuit in Figure 2, a new source of measurement uncertainty is introduced. It is resistance of the monolithic analog switches S2 and S3. As a result, equation (5) changes into (6): R(T) + RS3 = ~^(Rref + RS2) Rref (6) To nullify measurement uncertainty that is indicated by the analog switches one has freedom to introduce a second reference resistor. Equation (5) changes to (7); circuit in Figure 2 is modified to circuit in Figure 3. R(T) NR(T)-NRrefl NRref2~NRref\ {Rrefl ~~ Rrefl) + Rrefl (7) Rl SI Vco S2 CI R(T) + \ Out CI Vc V Fig. 2: The circuit to measure R(T) by the equation (5) RI SI Vco Xs2 AS3~~~TS4 CI Rrefl S3 R(T) Rref2 Vc V Fig. 3: The circuit that measures R(T) by the equation (7) Taking into account resistances of switches S2 to S4, equation (7) changes to (8): (8) R(T) + R = »*2: Ci v v ¿7" Q 0} Slika 1: Vplivi parazitnih kapacitivnosti in signala šuma na SC vezje V praktičnih realizacijah so operacijski ojačevalniki zaradi vzorčene narave SC vezij "predimenzionirani", zato lahko smatramo izhod ojačevalnika za dober približek idealnega napetostnega vira. Hkrati morajo biti tudi ostale komponente dimenzionirane tako, da so časovne konstante polnjenja kondenzatorjev veliko krajše od periode vzorčenja. Ob teh predpostavkah lahko brez večje napake zanemarimo vpliv parazitnih kapacitivnosti v določenih vozliščih, kot je prikazano na slikah 1-b in 1-c. Ugotovimo lahko, da bo odstopanje karakteristike SC vezja v pretežni meri odvisno od tistih parazitnih kapacitivnosti in virov šuma, ki se nave- zujejo na invertirajoče vozlišče ojačevalnika. Slika 2 tako prikazuje model FLB stopnje drugega reda z upoštevanimi neidealnostmi. Zaradi poenostavitve privzemimo, da smo z vgradnjo dodatnih stikal vplivali samo na invertirajoči vhod drugega operacijskega ojačevalnika. Vtem primeru so se parazitne kapacitivnosti in šum stikala v tem vozlišču povečali za ACp in AC£ oziroma Al/0ff. Vpliv sprememb na prenosno funkcijo splošne FLB SC stopnje lahko opišemo z izrazom: V., =-Fi- DI-(DI+DJ-AG)z~l +(DJ-AH)z~2 D(F+B)+ ' C1-(2DBi-DF-AC-AE+ 1 +{DB-AE+ l Qz "+A ValH0(z) (1) kjer so m= C,- C.z +C,z D(F+B) + —C2 -(2DB+DF-AC-AE+ 1 Cy' +(DB-AE+-—--Qz~: in C2 = D(B + F + I~ACp -ACc) --D(A + 2B + F + I+J-ACp -2ACJ C0=D(A + B + J-ACJ (2) (3) (4) (5) Iz enačbe (1) je razvidno, da bo vpliv parazitnih kapacitivnosti zmanjšan za faktor enosmernega ojačanja operacijskih ojačevalnikov. To pri praktičnih vrednostih Ao v območju od 1000 do 5000 in parazitnih kapacitivnostih, ki so za velikostni razred manjše od vrednosti komponent, pomeni, da lahko vplive ACp in ACe zanemarimo brez večje napake. Pri velikem Ao lahko izraz (2) dodatno poenostavimo v: C2 C\Z "t- CQz D(F+ B) - (2DB+DF-AC- AE)z~x + (DB -AE)z~ (6) Očitno je, da v nasprotju s parazitnimi kapacitivnostmi, sama struktura FLB ne zmanjšuje vpliva šuma stikal oziroma enosmernih odmikov na vhodih operacijskih ojačevalnikov. V primerih, ko načrtujemo preizkusne postopke za SC filtre z visokim ojačanjem ali širokim dinamičnim območjem, je zato potrebno posebno pozornost posvetiti vnosu dodatnih motenj, ki bi v vezje med normalnim obratovanjem lahko vstopale preko vgrajene preizkusne infrastrukture. G C„(1-z') ™ ' \ * ■ C„,| | ... \l(z, i I Slika 2: z-model FLB stopnje drugega reda z neideainimi komponentami 3. Vpliv nelinearne povratne zanke na frekvenco oscilacij Oscilacijski preizkus SC stopnje drugega reda z zunanjo povratno zanko temelji na uporabi nelinearnega elementa z neinvertirajočo oziroma invertirajočo karakteristiko. V integriranih vezjih je takšen element mogoče realizirati na dokaj preprost način z uporabo napetostnega primerjalni-ka. Za njegovo osnovo lahko uporabimo strukturo Miller-jevega transkonduktančnega operacijskega ojačevalnika, iz katere odstranimo kompenzacijsko RC vezje, in na izhod 132 U. Kač: Vpliv nelinearnosti komponent na oscilacijsko preizkusno strukturo SC filtrov Informacije MIDEM 40(2010)2, str. 131-134 dodamo močnostno stopnjo z referenčno napajalno napetostjo (slika 3a). Če ojačevalnik v odprtozančni konfiguraciji povežemo z SC vezjem, dobimo na izhodu primerjalnika pravokotni signal, ki je v fazi s sinusnim signalom na izhodu SC stopnje. V praksi se je pri realizaciji zunanje povratne zanke s primer-jalnikom nemogoče izogniti zakasnitvam v poti signala. Po drugi strani je minimalna histereza v karakteristiki primerjalnika (slika 3b) celo zaželjena, saj preprečuje naključno preklapljanje izhoda zaradi šuma na vhodu primerjalnika. Ker je delovna točka oscilatorske strukture določena z izpolnitvijo Barkhausen-ovega pogoja, bo histereza z vnosom zakasnitve A f oziroma faznega zamika (j)» vplivala na frekvenco oscilacij preizkušanega SC vezja. Vo a) N(A) i +VrGf 'Vo -VH 1 . 1 iv" i ...J ~V„f __________^r -xt- --.................... / \ - / v,{t)\ / \ V„(t) / \ To / \ / \ /_____ b) Slika 3. Realizacija nelinearne povratne zanke Če izrazimo signal na vhodu primerjalnika z v,. = A sin(co0f) = A sin je zakasnitev zaradi histereze primerjalnika enaka ®ht0 A t = - 2n kjer je 3>w = arcsin(— A' (7) (8) (9) Pogoj mejne stabilnosti sistema bo sedaj izpolnjen pri Z/i (z) + ZN(A) = 0 (10) Če uporabimo izraz za fazo prenosne funkcije H(z) Mh(z)] naM 'i--) M' ZHEJ "i'^l___ GMEvj Bate! CDj i-ite' »slim mms. fifftíSÍ, uí -I» fllPB IfaSi îfSHI Rdcü.724137931c-! f ,l :2.608950694e-7 See Help ' Fig. 2: (a) Designed RFID Planar Inductor (b) Metal Properties It is a planar inductor with 6 turns, each 0.5 mm wide and separated by 0.5 mm. The coil has the dimensions are 78 mm x 41mm. Metal losses are taken into consideration during the design process. Since this analysis uses the Sonnet ABS interpolation, accurate data at 300 frequencies is calculated from electromagnetic analysis at only four frequencies. By using the Sonnet Option Analysis, a lumped equivalent Pl-model sub-circuit is generated. The output, shown here, is in PSPICE codes. * Analysis frequencies: 12.1, 13.3 MHz .subekt SON9_2 1 GND C_C1 1 GND 1.185049pf L_L1 1 2 4495.387nh * Analysis frequencies: 13.3, 14.65 MHz .subekt SON9_3 1 GND C_C1 1 GND 1.198058pf L_L1 1 2 4493.561 nh R_RL1 2 GND 1.859145 .ends SON9_3 R_RL1 2 GND 1.770104 .ends SON9_2 It shows that models are generated between two frequency bands. The first SPICE netlist is generated from data at 12.1 and 13.3MHz. The second SPICE netlist is generated from data at 13.3 and 14.65MHz. These PSPICE models are used to design the RFID antenna circuit. Sonnet Model Equivalent Model Fig. 4: (a) Sonnet Mode (b) Equivalent Model Figure 4(a) is the direct Sonnet SPICE model and Figure 4(b) is its equivalent model. The generated lumped equivalent component for Pl-model at 13.56 MHz frequency, the value of the capacitance is 1.2 pF and the inductance is 4523 nH. The series resistance of Rs =1.8 is equivalent to parallel resistance /5/ Rp = 82.4 kfi as shown Figure 4. In this design we assumed that a typical 13.56 MHz RFID integrated circuit has capacitance 23.5 pF and internal resistance 25 kfi. The simulated equivalent circuit is shown In Figure 5. The RFID IC that has been used in this design has a total internal capacitance 23.5 pF. The distributed capacitance of the inductor is calculated by the Sonnet SPICE model is 1.2 pF. To make resonate an antenna coil of inductance 4523 nH with a frequency 13.56 MHz, total capacitance must be 30.6 pF /6/. So for the best matching between the tag (or reader) coil and the RF IC, an external capacitor 5.9 pF is calculated to tune the inductor at the frequency 13.56 MHz. The total Impedance of the resonant circuit at resonance is the parallel combination of the internal resistance of the IC and the equivalent parallel resistance of the coil is 19.2 Kil This is the impedance that the RFID 136 S. M. A. Motakanner, N. Amin, M. A. M. Ali: Magnetic Field Sensitive Antenna Design for HF Band RFID System Informacije MIDEM 40(2010)2, str. 135-138 IC Model Inductor Model ¡«i : = 23.5pF Cext = 5.S Rp = 25kOhm C = 1,2pF L = 4523nH Rp = 82,4 kOhrri Fig. 5: Equivalent Model for IC and External Capacitor to Tune the Circuit tag/reader IC will "see" at resonance. The nodal circuit analysis is accomplished for the complete RFID design by using Sonnet software. a - > ' *' CAP 1 C=23.5 RES 1 R=25000.0 CAP 1 C=5.9 PRJ 1 0 rfid_1.son Use sweep from rfid_1.son DEF1P 1 Net Main Network Use cutions or menus mcJif netlis! nste/crt- 'lone Une'ttens iffiBISHiMI. Freqs: 201 Complete Timc/Ffcq: 0.250 s View: & SParamcters v Details Fig. 8: Frequency Analysis Ends at 20 MHz ¿3 • < sBIMiliiï] i itîii_1_Tict.son i-jeqs: 20t Complete Tlmefr'req: 0-250 sec. Analys s successfully completed. Status Onty« : View: v Warnings ( Response Data : ,»1,1=-,,. le;,I. I ; j EffOfs/Warnmgs I F Timmq Info I | Batch List I I I « .....................................i » Fig. 6: Nodal Analysis for Complete RFID Circuit In the Figure 6 the first two lines are showing the internal capacitance and resistance of the RFID chip respectively. The external capacitance is included in the third line. The fourth line begins with "PRJ". This includes the Sonnet project file for this inductor. 3. Simulated Result ,.• .Sgi-.; ~ .y. iMSEBlg]_____ rliit 1 nel.snn Jrcqs: Z01 Complete Time/i'req: 0.250 sec. Slalus Only << \ Anaiysis successfully completed. ......................................| View: V S-Parameters V Details > Response Data : j- ' * fcrrors/Warnings I ' fijninq Info Batch List ..... ' Fig. 7: Frequency Analysis Starts at 10 MHz Fig. 9: Analysis Using 'Adaptive Band Synthesis' at a Rate of 0.25 Second 4. Result and Discussion Figure 10 shows the graphical representation of the simulated result for the nodal analysis of RFID tag/reader. From this graph, it is clearly seen that the magnitude Z-,n is maximum at the resonance frequency 13.56 MHz and same as the calculated value i.e. 19.2 kO. It is also seen from the graph that the imaginary part of the impedance at resonance frequency is close to zero. For matching the antenna circuit with the RFID chip an external capacitor, Cext=5.9 pF is calculated and its position is shown in the Figure 5. 5. Conclusions To verify the PSPICE results, lumped components value between two netlists near the frequency band of interest are compared and found the same result. In other words, the PSPICE model generated by Sonnet is working well for this circuit. Ones the data in the Sonnet project file is ready, it just reads the data and proceeds with the nodal analysis. If the layout has been changed the old data is no 137 S. M. A. Motakanner, N. Amin, M. A. M. Ali: Informacije MIDEM 40(2010)2, str. 135-138 Magnetic Field Sensitive Antenna Design for HF Band RFID System Zmagnt-.ude Frequency (MHz) /2/ K. Finkenzeller, RFID Handbook, 2nd edition, John Wiley & Sons, England, (2003). /3/ STUTZMAN, W.L., and THIELE, G.A.: Antenna Theory and Design' (John Wiley & Sons Inc., New York, 1981) /4/ Chawla, V., Dong Sam Ha, An overview of passive RFID; Communications Magazine, IEEE Volume 45, Issue 9, September 2007, pp. 11 - 17 /5/ Pan, S.-G.; Becks, T.; Heberling, D.; Nevermann, P.; Rosmann, H. ; Wolff, I. ; Design of loop antennas and matching networks for low-noise RF receivers: analytic formula approach, Microwaves, Antennas and Propagation, IEE Proceedings -Vol. 144, Issue 4, August. 1997, pp. 274-280 /6/ G. Zhou and G. S. Smith, "The multi-turn loop antenna," IEEE Trans. Antennas and Propagation., vol. AP-42, May 1994, pp. 750-754 Fig. 10: Frequency Analysis Plotted in both Real and Imaginary longer valid, in this case Sonnet calculates a new electromagnetic data automatically.To find the optimized parameter values of the RFID antenna matched to the conjugate of the RFID chip impedance, a design automation tool is very useful. The one of RFID antenna is successively optimized with this design optimization process. This method can be applied to any other applications with different simulation tools. S. M. A. Motakanner, Nowshad Amin, Mohd Alauddin Mohd Ali Dept. of Electrical, Electronic & Systems Engineering, Faculty of Engineering & Built Environment, UKM, Malaysia Email: motakabber@yahoo.com, nowshad@vlsi. eng. ukm. my, mama@vlsi. eng. ukm.my 6. References /1 / H. Stockman, "Communication by Means of Reflected Power," Proc. Institute of Radio Engineers, Oct. 1948, pp. 1196-204. Prispelo (Arrived): 30.10,2009 Sprejeto (Accepted): 09.06.2010 138 UDK621,3:(53+54+621 +66), ISSN0352-9045 Informacije MIDEM 40(2010)2, Ljubljana DEKODIRANJE SIGNALOV V INTEGRIRANIH VEZJIH ZA RFID Slavko Starašinič IDS, Tehnološki park, Ljubljana, Slovenija Kjučne besede: RFID, izpraševalnik, kartica, dekoder Izvleček: predstavljen je pregled dekoderjev, uporabljenih v integriranih vezjih pri radijski frekvenčni identifikaciji (RFID) na HF (13.56 MHz) kakor tudi na UHF (860 MHz - 960 MHz) frekvenčnem področju. Pri istem standardu se za prenos podatkov med kartico (tag, transponder, target) in izpraševalnikom (reader, interrogator, initiator) ter v obratni smeri uporabljajo različni načini kodiranja. V prispevku je opis nekaterih dekoderjev, ki se uporabljajo v integriranih vezjih za kartice in izpraševalnike. Predstavljeni so načini kodiranja za različne standarde in nekateri osnovni principi dekodiranja signalov. Signal Decoding in RFID ASICs Key words: RFID, interrogator, reader, initiator, transponder, tag, target, decoder Abstract: Review of decoders used for RFID is presented in this article. Described are methods how to decode signals which takes into consideration different ISO protocols on RF (13.56 MHz) and UHF (860 MHz - 960 MHz) frequency ranges. Data coding from transponder(tag, target) to interrogator (reader, initiator) and from interrogator to transponder is usually different and described decoders are implemented on ASICs for transponders and interrogators. Different ISO protocols enables many coding methods and basic principles from this article can be used for decoding of these signals. 1. Uvod Radiofrekvenčna identifikacija (RFID) sestoji iz izpraševal-nika in kartice, pri čemer sta izpraševalnik in kartica kompleksna integrirana sistema na čipu (SoC). Tovrstni integrirani sistemi so običajno mešana analogno-digitalna vezja ASIC, ki vsebujejo vrsto analognih sklopov, kot na primer /1/, /2/, /3/, /4/ in /5/ter kompleksen digitalni kontrolni sistem na čipu, kamor štejemo tudi kodiranje in de-kodiranje signalov. Kodiranje signalov pri RFID tehnologijah je v večini primerov določeno z mednarodnimi standardi. Na ta način je zagotovljena kompatibilnost med RFID karticami in RFID izpraševalniki, ki jih proizvajajo različni svetovni proizvajalci. Ob upoštevanju zgoraj omenjenih standardov v podjetju IDS d.o.o. načrtujemo RFID integrirana vezja za kartice in izpraševalnike /6/, /7/, /8/. S tem pristopom zagotavljamo, da so naši produkti kompatibilnl z različnimi svetovnimi proizvajalci, ki standarde v celoti upoštevajo. V ogromni paleti ponudnikov integriranih vezij imajo nekatera vezja vgrajene kakšne specifične lastnosti, ki v posameznih aplikacijah olajšajo komunikacijo med karticami in izpraševalniki. Kadar je to ekonomsko upravičeno, tudi mi vgrajujemo takšne funkcije v naša integrirana vezja in s tem omogočimo proizvajalcem naprav, da z našimi integriranimi vezji sprogramirajo željene specifične lastnosti kartice ali izpraševalnika. Signali, ki se uporabljajo pri kodiranju signalov v RFID komunikacijah, so večinoma iz naslednjih delov: pilotski ton preambula ali SOF (start of frame) podatki konec podatkov ali EOF (end of frame) Pilotski ton se uporablja za sinhronizacijo vhodnega signala z referenčnim signalom. Le-ta omogoča delovanje de-koderja ob mirujočem vhodnem signalu in tudi takrat, ko so prisotne motnje. Po sinhronizaciji običajno sledi preambula za nastavitev začetka sprejemanja podatkov. V dekoderju se podatki dekodirajo in se v serijski obliki s pripadajočim urinim signalom pošiljajo v vezje, ki jih zloži v osembitne besede ter posreduje v ustrezne registre, kjer so na voljo kontrolerju. Le-ta upravlja s podatki in jih posreduje na ustrezna mesta. Na koncu podatkov je običajno dodana zaključna sekvenca. Takrat se niz podatkov zaključi In dekoder sporoči kontrolerju, da je dekodiranje sprejetih signalov končano. V primeru uspešnega sprejema je pri nekaterih standardih izvedeno še izračunavanje CRC (cyclic redundancy check) vrednosti in/ali paritete. 2. Osnove prenosa podatkov pri RFID Ko se pojavi kartica v elektromagnetnem polju, ki ga povzroča antena izpraševalnika, se v njenem antenskem navitju inducira napetost. To napetost kartica usmeri in uporabi Slikal: Osnovni princip RFID. 139 Informacije MIDEM 40(2010)2, str. 139-143 S. Starašinič: Dekodiranje signalov v integriranih vezjih za RFID za lastno napajanje, prav tako pa iz nosilne frekvence ekst-rahira svoj lasten urin signal, ki je nato osnova za frekvenco podnosilca. S tem podnosilcem so nato kodirani podatki in s tem kodiranim signalom moduliramo induktivni sklop med kartico in izpraševalnikom, le-ta pa detektira modulacijo na svojem nihajnem krogu. Nosilna frekvenca v večini opisanih standardov je 13.56 MHz, frekvenca podnosilca paje nekajkrat nižja in sinhro-na z nosilno frekvenco in je odvisna od hitrosti prenosa podatkov v različnih standardih. Na UHF področju (860 MHz do 960 MHz) pa so pogoji nekoliko drugačni. Komunikacija poteka podobno po veljavnem standardu. Razlika je v tem, da urin signal na kartici ni ekstrahiran, pač pa ima vsaka kartica lasten oscilator, ki deluje v določenih tolerancah. Izpraševalnik pošlje kartici nastavitvene podatke, ki omogočajo uspešno komunikacijo, čeprav ni sinhron-osti med nosilno frekvenco in podnosilcem. Znatne tolerance za frekvenco podnosilca in s tem povezane dolžine modulacijskih signalov so razlog za mnogo zahtevnejše načrtovanje dekoderjev za UHF kartice in izpraševalnike. 3. Dekoderji za različne standarde 3.1. NRZ decoder Kot najenostavnejša modulacija pri prenosu podatkov iz izpraševalnika do kartice se uporablja NRZ (non return to zero) kodiranje. V standardu 14443 tip B /9/ imamo enko takrat, kadar nosilec ni moduliran, ničlo pa, kadar imamo 10% modulacijo. V tem primeru startna sekvenca nastavi fazo takta za sprejem podatkov in demoduliran signal nam ob pravem taktu predstavlja logične ničle in enke. Standarda FELICA /10/ in NFC (near field communication) /11/ uporabljata tovrstno kodiranje na HF področju. Dekodiranje teh signalov poteka tako, da začetni pilotski ton sinhronizira fazo takta pri dekoderju in s tem nastavi okno za določitev vrednosti logičnega simbola. 3.3. Dekoder za modificirane Manchester simbole Izpraševalniki uporabljajo to vrsto simbolov, ko sprejemajo signal iz kartice po standardu ISO 15693 /12/, ISO 14443A /9/ ali EPC /13/ (electronic product code). _n_n_n_n_ _n_n_n_n_ Slika 4: Modificiran Manchester simbol za logično ničlo in logično enko. Tem standardom je skupno, da je logična ničla sestavljena iz določenega števila impulzov in prav toliko časa trajajočo pavzo, ki se na RF signalu manifestira kot nemodu-liran signal. Pri logični enki pavzi sledijo impulzi, ki modulirajo RF signal. Število impulzov in njihova dolžina je za prej omenjene standarde različna in znaša od 2 do 32 impulzov. Najbolj razširjena je komunikacija, kjer sta logična signala definirana z osmimi impulzi. Večje število impulzov pri določitvi logične enke oziroma ničle se uporablja v okoljih, kjer so večje radiofrekvenčne motnje in kjer je lahko hitrost prenosa manjša. Vedno večje hitrosti pri prenosu podatkov silijo snovalce mednarodnih standardov, da predpisujejo za logične simbole krajši čas trajanja in pri tovrstnih simbolih to dosežejo z manjšim številom impulzov. S tem pa se poveča vpliv motenj. Posamezni prej omenjeni standardi imajo različno definirane startne in zaključne sek-vence, ki jih dekoderji uporabijo za pravilno zajemanje podatkov. 0 o o Slika 2: NRZ moduliran signal. 3.2. Manchester decoder (FELICA, NFC) Zelo razširjen način za prenos logičnih simbolov je uporaba Manchester kode. Logična simbola sta definirana tako, da sprememba logičnega stanja v sredini časovnega okna iz ničle v enko oziroma iz enke v ničlo pomeni logični simbol. Ts Ts Slika 5: Blokovna shema dekoderja. Vhodni signal se v pomikalnem registru pomika in na njegovem izhodu dobimo trenutno število impulzov. Števec jih šteje in posreduje komparatorju. Le-ta ima nastavljeno histere-zo, ki omogoča pravilno dekodiranje tudi takrat, ko se na vhodu pojavijo motnje v obliki manjkajočih impulzov ali pa je med pavzo dodan kakšen impulz. Pri standardih, kjer logične simbole definira večje število impulzov, je lahko nastavljena večja histereza in s tem je narejena večja robustnost na motnje. Slika 3: Osnovna simbola v Manchester kodi. 140 S. Starašinič: Dekodiranje signalov v integriranih vezjih za RFID Informacije MIDEM 40(2010)2, str. 139-143 3.4. Dvofrekvenčni dekoder Tudi tu gre za modificirane Manchester simbole, kjer je na sliki 6 prikazana logična ničla, logična enka pa je obrnjena /12/, /14/. V prvem delu simbola je osem impulzov frekvence fc/32, v drugem delu pa devet impulzov frekvence fc/28. riJiJiJi^LriJijriJiJT^ I Ts/2___ j _ Ts/2_ i H*-■■ - ■R ■HM r » ■Hi * VI I Fig. 2: a) cap (bottom) and spike (up) separated; b) cap screwed on spike tor feeding arm takes the connectors and puts them into the screwing holder. Three screwing heads with motors are downloaded to screw the connectors onto the caps by using appropriate software driven algorithm. Once screwed, the holder opens and connectors with cap fall into the material box. Fig. 1: a) connection of APD line to solution bags; b)Part of an APD line with five connectors Automatic screwing guarantees controlled and repetitive screwing conditions, as well as higher throughput. The machine is fully automatic and needs to be occasionally refilled with material and reset to define new material lot. Process, as well as production, parameters are input through user friendly touch screen. 2. Machine design 2.1 General The idea was to construct a machine that could replace a human operator for screwing caps onto connectors of PDL lines. Torque should be controlled within the broad range of 1 Ndm to 10Ndm with central value of 5±1 Ndm. Machine capacity should be more than 8.000pcs/shift. Basically the machine consists of the cap feeding system which feeds the caps to the cap transport mechanism. When caps arrive close to the holder the cap feeding arm takes the caps and puts them Into the screwing holder. On the opposite side of the machine connectors are fed from connector feeding system which feeds connectors to the connector transport mechanism. When connectors arrive close to the holder the connec- m ■ & H ■MHMMj r - -A.. I HI ^ f, Ti Fig. 3: Machine 2.2 Machine hardware and software Heart of the machine are screwing heads with servo motors and microprocessor closed loop control of torque and rotation speed. These two parameters are inserted by operator through the control panel. The process consists of two steps: 1. screwing up to predefined torque of 3Ndm, rotation speed is variable and should be inputted via control panel 152 A. Cebular:Automatic Screwing of Caps to Spike Connectors on APD Peritoneal Dialysis Lines Informaclje MIDEM 40(2010)2, str. 151-156 3 ^ "3 Ml■ ■HBB ■■■■■■■■■ Fig. 4: Machine control panel 2. screwing with lower rotation speed of 10RPM, final torque is variable and should be inputted via control panel Fig. 5: Servo controllers and DA units 2.2.1 The program flowchart and explanation of the speed/torque control The flow chart of the screwing procedure is presented in figure 7. The process is intentionally divided into two phases, so that optimum between speed and accuracy can be reached without remarkable overshooting in torque. Fig. 6: Servo motors with screwing heads Control signals for adjusting the speed and torque from PLC to servo controllers are provided by analogue signals with 0 to +10V reference. The resolution of the system is 12 bit. Theoretically we can adjust the torque with accuracy better than 0,005 Ndm, which is more than enough in this particular application. When the routine starts the servo regulator works in a "speed control mode", in order to perform quick and reliable positioning of the screwing heads in home position. Just before the screwing procedure starts, the servo regulator switches into the "torque control mode" where it is able to provide the specified torque. In this particular mode the servo regulator follows torque and speed reference from superior PLC. However the speed reference can be followed and carried out, only if the torque reference value has not been exceeded. When load reaches predefined torque value the speed of servomotor begins to fall and eventually it reaches zero. The signal of motor zero speed is also the crucial signal In the control program and represents the condition for jumping to next programming sequence. The time graph of the screwing sequence in torque control mode can be seen on figure 8. The "ON" signal line represents the control signal from superior PLC to servo regulator, it has two states (HIGH state energizes the servomotor and LOW state deenergizes it). There is a clear point of speed drop when the torque reaches its maximum. This graph was recorded during the second phase of screwing procedure. 153 Informacije MIDEM 40(2010)2, str. 151-156 A. Cebular:Automatic Screwing of Caps to Spike Connectors on APD Peritoneal Dialysis Lines Fig. 7: Flow chart (simplified) Fig. 8: Screwing sequence time diagram (phase 2) 2.3 Check of system linearity and accuracy Before the servo system was installed into the machine, some basic tests were made in order to check the linearity and accuracy of the motor torque output as a function of torque reference. This was also a base for system calibration. On figure 9 schematic drawings represent the system calibration procedure. The procedure is considered as astatic measurement. The torque of servomotor was "weighted" with known masses on a light rope, which was connected to the light pulley of known perimeter. The pulley was directly connected to the servo motor axis. The servo controller is capable of providing feedback information of the servo motor's momentary torque output. The data was acquired when the outer torque with respect to mass gravity force and the servo motor torque were in equilibrium. The condition of a constant angular velocity must be met in order to use the equation's below: =0,co = 0 MFi +Msm= 0 Msm = -rxFg M„ Based on upper equation we were able to calculate the theoretical torque, which was compared to servo controller feedback. Mmot CQmot=l£dnst d a Fig. 9: Scheme of a torque measurement procedure a) front view; b) side view The graphical representation of the results can be seen on figure 10a. In general there is a constant 5% difference between calculated value and the feedback from servo controller. This difference can be successfully compensated in the software of the control PLC. In order to assure precise control of the torque on the connector screwing machine, the linearity measurement of the DA converter from the PLC was carried out. The graphical representation is on figure 10b. The R2 factor of the data has a value very near 1, which gives us a great confidence in DA converter linearity. 154 A. CebularAutomatic Screwing of Caps to Spike Connectors on APD Peritoneal Dialysis Lines Informacije MIDEM 40(2010)2, str. 151-156 ................^ *** orque read out from servo regulator 0,0 0,1 0,2 0,3 0,4 0,S 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 .................................................................JYftsML............................................................ t; RJ = 1 / 0 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000 27500 30000 "Integer" value of anlog output Fig. 10: Graphs of torque measurement and voltage output - a) Theoretical and servo controller feedback torque; b) Linearity of the DA converter 3. Results 3.1 Machine operation Machine has been in operation for several months and besides some minor mechanical and software changes it has been performing according to expectations. 3.2 Machine throughput Planned throughput of 8.000pcs/shift has been reached very soon. Today, the machine throughput is in the range of 9.500pcs/shift. 3.3 Determination of torque window Torque window within which the cap should be screwed on the connector was determined in the following way : a)if minimum torque is applied the line should still not leak through the connector cap By use of graph shown on figure 11 the minimum torque required before the line starts to leak was determined to be 2Ndm. As can be seen on figure 12, line leakage through the connector screwed with less than 2Ndm becomes substantial. ¡31 X 1,40 -1,20 -1,00 -0,80 7 T3 £ 0,60 2 0,40 - Q. 0,20 - 0,00 - LINE LEAKAGE after 10s at 450mm Hg torque. Ndm 0 Fig. 11: Line leakage versus torque Fig. 12: Cap to screw leakage b)if maximum torque is applied it becomes impossible to unscrew the cap manually without the appropriate tool. Several people were asked to unscrew the caps and subjectively classify the force they had to use. The results are shown in the Table 1. Obviously, torque above 8Ndm is already too high and it becomes impossible to unscrew the cap. Table 1, force needed to unscrew the cap, subjective rating torque, Ndm unscrewing, subjective rating 3 easy 4 easy 5 not so easy 6 difficult 7 almost impossible 8 impossible 20 impossible 155 Informacije MIDEM 40(2010)2, str. 151-156 A. CebularAutomatic Screwing of Caps to Spike Connectors on APD Peritoneal Dialysis Lines From above experiments the acceptable torque window was defined to be between 3Ndm and 8Ndm with central value around 5Ndm. 3.4 Screwing results Validation of screwing was executed by torque measurement needed to unscrew the cap. To do so we prepared a measurement accessory similar to the actual machine's screwing head used for automatic screwing but with added dynamometer. Histogram of measured torque (automatic CAP screwing) (n=336) ® Relative frequency (data) _ * Normal distribution (m = 5.2, stdv=0.9) Fig. 14: Histogram of torque measurements ger and handaches, as well as we obtained good control of screwing process. Long term results of torque measurements show almost 30 % better accuracy of automatic system over the manual assembly. Operator friendly user interface allows easy machine set up and control of main process parameters. Although main goals of machine operation and process control were met, there is still room for further development and research, especially in shortening cycle time and lowering standard deviation of the unscrewing torque. Fig. 13: Torque measurement To execute the measurement the subassembly must be positioned in the holder, the measurement head lowered and the dynamometer arm forced to open the cap. The force is read and the torque needed to unscrew the cap calculated. The data acquired for the torque needed to unscrew the caps and spikes is represented on figure 14. The calculated mean value of the torque is 5,2 Ndm with standard deviation of 0,9 Ndm (based on population of 336 samples). Shape of the histogram is very close to theoretical normal distribution N (5.2;0.9). 4. Conclusion 5. References /1/ I.Šorli, P.Šorli : Kidney and Kidney Desease - Peritoneal Dialysis, Internal Bioiks training manual, 2009 ( Ledvica in bolezni ledvic - peritonealna dializa, interni priročnik za šolanje, Bioiks 2009) /2/ MITSUBISHI ELECTRIC CORPORATION: General-Purpose AC Servo EZMOTION MR-E SuperGeneral-Purpose Interface MODEL MR-E-A-QW003 INSTRUCTION MANUAL, 2008 /3/ Siemens AG: S7-200 Programmable Controller System Manual, 2007 Andrej Čebuiar MIKROIKS d. o. o., Ljubljana, Slovenia The machine for automatic screwing of caps to spike connectors was constructed and built. Due to its high throughput it successfully replaced several manual operators with which we also avoided problems of long term operator fin- Prispelo (Arrived): 08.10.2009 Sprejeto (Accepted): 09.06.2010 156 UDK621,3:(53+54+621 +66), ISSN0352-9045 Informacije MIDEM 40(2010)2, Ljubljana Integrated and Discrete Systems - IDS d.o.o. Our Company Originated in 1996 as an IC design center, IDS has a vast creative pool of highly motivated engineers, offers substantial IP, and holds many patents. Our Partners To achieve the best results, IDS works in close cooperation with external partners and external resources. Our customers benefit from IDS's long-standing business relationships with strategic semiconductor and OEM partners. Product Overview R13MP » 13.56 MHz RFID reader chip reads/ writes multiple protocols. R14AB >» ISO 14443 Reader Chip Optimized for Battery-Powered RFID Readers. R900 Series » Highly integrated EPC Gen 2 reader ICs. R13MP 13.56 MHz RFID reader chip reads/writes multiple protocols The R13MP is a multi-protocol RFID reader chip covering a wide range of applications including complete RFID data logging systems complementing SL13A-based smart data loggers. The R13MP supports all commonly used standards. Proprietary protocols are supported through the direct mode. Adding a simple low-cost 8-bit microcontroller completes a universal reader system suitable for numerous applications, both in proximity and vicinity RFID systems, and approved in more than 70 countries worldwide. A complete development kit including a R13MP reader board and a SL13A smart data logger board is available. The kit comes with demo application and GUI software with source codes. Our Portfolio Our comprehensive portfolio comprises passive, semi-pas-sive and active RFID systems, as well as services and IPs. For example, our smart label chip makes it practical for the first time to track, monitor, time-stamp and record information about any goods in any supply chain or cold chain transport. And our reader chip reduces the specialized RFID knowledge required to design a UHF reader. We look forward to serving you with our unique RFID expertise as we lead the development and integration of RFID-based solutions for companies around the world. ASIC - IP » R14AB ISO 14443 Reader Chip Optimized for Battery-Powered RFID Readers The R14AB is an extremely low-power ISO 14443A/B RFID reader IC. It also supports NFCIP-1 106-kbps active communication and Mifare® Ultralight 4-bit ACK/NACK reply. Other standards and custom protocols are possible via the transparent mode. A complete development kit including a R14AB reader board is available. The kit comes with demo application and GUI software with source codes. R901G and R902DRM Highly integrated EPC Gen 2 reader les The R901G and R902DRM are EPC Gen2 RFID reader chips enabling battery-powered, small form-factor handheld and embedded UHF reader systems. The chips fully SL13A » Smart label chip with sensor identifies, monitors and logs. SL900A» EPC Class 3 chip with sensor. 157 Informacije MIDEM 40(2010)2, Ljubljana Glede na navedene podatke in kvaliteto vabljenih in rednih prispevkov smo organizatorji, upamo pa tudi da udeleženci support ISO 18000-6C, and ISO 18000-6A/B as well as proprietary protocols are supported through the direct mode. Adding a simple low-cost 8-bit microcontroller completes a portable UHF reader system. In embedded systems, the R901G / R902DRM can share a common CPU with the rest of the system. Hence reducing BOM and enabling cost-efficient solutions with minimum form factor. The R902DRM also includes dense reader mode function, which prevents reading conflicts in a multi-reader environment. Complete development kits including R901G reader boards are available. The kits come with demo application and GUI software with source codes. SL13A Smart label chip with sensor identifies, monitors and logs IDS significantly broadens the scope of affordable RFID automatic data logging applications with its unique SL13A smart label chip. Priced up to 10 times lower than existing RFID temperature-sensing modules, this sophisticated chip for the first time makes it practical and affordable to automatically track, monitor, time-stamp and record information about any goods in any supply chain or cold chain transport. The SL13A works in semi-passive (battery-assisted) as well as in fully passive modes. The chip is ideal for applications using thin and flexible batteries (1.5V or 3V) for autonomous logging from the integrated temperature sensor or an external sensor with time-stamp from on-chip real-time clock. The SPI port allows connection of other external circuits. konference, z letošnjo konferenco zelo zadovoljni. To nam je v motivacijo in izziv pri pripravi aktualnih znanstvenih in razvojnih tem ter organizacije konference MIDEM 2010. A complete development kit including an R13MP reader board and a SL13A smart data logger board is available. The kit comes with demo application and GUI software with source codes. SL900A EPC Class 3 Chip with Sensor The SL900A is an EPC Class 3 tag chip enabling affordable RFID automatic data logging applications with sensor functions. This sophisticated chip makes it practical and affordable to automatically track, monitor, time-stamp and record information about any goods in any supply chain or cold chain transport. Furthermore, the SL900A enables vast new applications in areas such as medical, healthcare and environmental supervision. A complete development kit including an R902DRM reader board and a SL900A smart data logger board will be available. The kit comes with demo application and GUI software with source codes. ASIC IP IDS has a vast pool of IP (intellectual properties) at its disposal. To a great extent, our IP is protected through patents providing USP (unique selling proposition) for our part-ners and customers. Our IP is mainly RFID-related with focus on integrated circuits for HF and UHF readers and smart labels and used in our application specific integrated circuits (ASIC) including both application specific standard products (ASSP) as well as customer specific integrated circuits (CSIC). 158 Informacije MIDEM 40(2010)2, Ljubljana MIDEM I D E DRUSTV0-S0CIETY fÄslovenia W Chapter Strokovno društvo za mikroelektroniko, elektronske sestavne dele in materiale MIDEM pri MIKROIKS Stegne 11, 1521 Ljubljana SLOVENIJA TEL.: +386 (0)1 5133 768 FAX: +386 (0)1 5133 771 Email / WWW iztok.sorli@guest.arnes.si http://paris.fe.uni4j.si/midem/ MIDEM SOCIETY REGISTRATION FORM 1. First Name................................................................Last Name Adress City. Country....................................................................Postal Code 2. Date of Birth............................................................ 3. Education (please, circle whichever appropriate) PhD MSc BSc High School 3. Profession (please, circle whichever appropriate) Electronics Physics Chemistry 4. Company............................................................................ Student Metallurgy Material Sc. Adress... City........ Country Tel.:........ Postal Code FAX:............ Email. 5. Your Primary Job Function Fabrication Engineering Management Purchasing Facilities Consulting QA/QC Other 6. Please, send mail to a) Company adress b) Home Adress 7.1 wil regularly pay MIDEM membership fee, 25,00 EUR/year MIDEM member recive Journal "Informaciie MIDEM" for free !!! Signature.......................................................................Date..................... 159 Informacije MIDEM 40(2010)2, Ljubljana MIDEM at MIKROIKS Stegne 11 1521 Ljubljana Slovenija 160