The strong metric dimension of generalized Sierpiński graphs with pendant vertices

Ehsan Estaji
Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran
Juan Alberto Rodríguez-Velázquez
Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain

Received 17 February 2015, accepted 10 February 2016, published online 2 November 2016

Abstract

Let G be a connected graph of order n having $\varepsilon(G)$ end-vertices. Given a positive integer t, we denote by $S(G, t)$ the t-th generalized Sierpiński graph of G. In this note we show that if every internal vertex of G is a cut vertex, then the strong metric dimension of $S(G, t)$ is given by

$$
\operatorname{dim}_{s}(S(G, t))=\frac{\varepsilon(G)\left(n^{t}-2 n^{t-1}+1\right)-n+1}{n-1} .
$$

Keywords: Strong metric dimension, Sierpiński graphs.
Math. Subj. Class.: 05C12, 05C76

1 Introduction

For two vertices u and v in a connected graph G, the interval $I_{G}[u, v]$ between u and v is defined as the collection of all vertices that belong to some shortest $u-v$ path. A vertex w strongly resolves two vertices u and v if $v \in I_{G}[u, w]$ or $u \in I_{G}[v, w]$. A set S of vertices in a connected graph G is a strong metric generator for G if every two vertices of G are strongly resolved by some vertex of S. The smallest cardinality of a strong metric generator of G is called strong metric dimension and is denoted by $\operatorname{dim}_{s}(G)$. After the publication of

[^0]the first paper [16], the strong metric dimension has been extensively studied. The reader is invited to read, for instance, the following works [$10,11,12,13,15$] and the references cited therein. For some basic graph classes, the strong metric dimension is easy to compute. For instance, $\operatorname{dim}_{s}(G)=n-1$ if and only if G is the complete graph of order n. For the cycle C_{n} of order n the strong dimension is $\operatorname{dim}_{s}\left(C_{n}\right)=\lceil n / 2\rceil$ and if T is a tree with $l(T)$ leaves, its strong metric dimension equals $l(T)-1$ (see [16]).

Given a connected graph G and two vertices $x, y \in V(G)$, we denote by $d_{G}(x, y)$ the distance from x to y. A vertex u of G is maximally distant from v if for every vertex w in the open neighborhood of $u, d_{G}(v, w) \leq d_{G}(u, v)$. If u is maximally distant from v and v is maximally distant from u, then we say that u and v are mutually maximally distant. The boundary of $G=(V, E)$ is defined as $\partial(G)=\{u \in V$: there exists $v \in V$ such that u, v are mutually maximally distant $\}$. For some basic graph classes, such as complete graphs K_{n}, complete bipartite graphs $K_{r, s}$, cycles C_{n} and hypercube graphs Q_{k}, the boundary is simply the whole vertex set. It is not difficult to see that this property holds for all 2antipodal ${ }^{1}$ graphs and also for all distance-regular graphs. Notice that the boundary of a tree consists exactly of the set of its leaves. A vertex of a graph is a simplicial vertex if the subgraph induced by its neighbors is a complete graph. Given a graph G, we denote by $\sigma(G)$ the set of simplicial vertices of G. Notice that $\sigma(G) \subseteq \partial(G)$.

We use the notion of strong resolving graph introduced in [13]. The strong resolving graph ${ }^{2}$ of G is a graph $G_{S R}$ with vertex set $V\left(G_{S R}\right)=\partial(G)$ where two vertices u, v are adjacent in $G_{S R}$ if and only if u and v are mutually maximally distant in G. There are some families of graph for which its resolving graph can be obtained relatively easily. For instance, we emphasize the following cases.

- If $\partial(G)=\sigma(G)$, then $G_{S R} \cong K_{|\partial(G)|}$. In particular, $\left(K_{n}\right)_{S R} \cong K_{n}$ and for any tree T with $l(T)$ leaves, $(T)_{S R} \cong K_{l(T)}$.
- For any 2-antipodal graph G of order $n, G_{S R} \cong \bigcup_{i=1}^{\frac{n}{2}} K_{2}$. In particular, $\left(C_{2 k}\right)_{S R} \cong$ $\bigcup_{i=1}^{k} K_{2}$.
- $\left(C_{2 k+1}\right)_{S R} \cong C_{2 k+1}$.

A set S of vertices of G is a vertex cover of G if every edge of G is incident with at least one vertex of S. The vertex cover number of G, denoted by $\alpha(G)$, is the smallest cardinality of a vertex cover of G. Oellermann and Peters-Fransen [13] showed that the problem of finding the strong metric dimension of a connected graph G can be transformed to the problem of finding the vertex cover number of $G_{S R}$.

Theorem 1.1. [13] For any connected graph $G, \operatorname{dim}_{s}(G)=\alpha\left(G_{S R}\right)$.
It was shown in [13] that the problem of computing $\operatorname{dim}_{s}(G)$ is NP-hard. This suggests finding the strong metric dimension for special classes of graphs or obtaining good bounds on this invariant. In this note we study the problem of finding exact values or sharp bounds for the strong metric dimension of Sierpiński graphs with pendant vertices.

[^1]
2 Preliminaries on generalized Sierpiński graphs

Let G be a non-empty graph of order n and vertex set $V(G)$. We denote by $V^{t}(G)$ the set of words of size t on alphabet $V(G)$. The letters of a word u of length t are denoted by $u_{1} u_{2} \ldots u_{t}$. The concatenation of two words u and v is denoted by $u v$. Klav̌zar and Milutinović introduced in [6] the graph $S\left(K_{n}, t\right)$ whose vertex set is $V^{t}\left(K_{n}\right)$, where $\{u, v\}$ is an edge if and only if there exists $i \in\{1, \ldots, t\}$ such that:

$$
\text { (i) } u_{j}=v_{j} \text {, if } j<i \text {; (ii) } u_{i} \neq v_{i} \text {; (iii) } u_{j}=v_{i} \text { and } v_{j}=u_{i} \text { if } j>i \text {. }
$$

When $n=3$, those graphs are exactly Tower of Hanoi graphs. Later, those graphs have been called Sierpiński graphs in [7] and they were studied by now from numerous points of view. The reader is invited to read, for instance, the following recent papers [2, 5, 4, 7, 8, 9] and references therein. This construction was generalized in [3] for any graph G, by defining the t-th generalized Sierpiński graph of G, denoted by $S(G, t)$, as the graph with vertex set $V^{t}(G)$ and edge set defined as follows. $\{u, v\}$ is an edge if and only if there exists $i \in\{1, \ldots, t\}$ such that:
(i) $u_{j}=v_{j}$, if $j<i$;
(ii) $u_{i} \neq v_{i}$ and $\left\{u_{i}, v_{i}\right\} \in E(G)$;
(iii) $u_{j}=v_{i}$ and $v_{j}=u_{i}$ if $j>i$.

Figure 1: A graph G and the generalized Sierpiński graph $S(G, 2)$
Figure 1 shows a graph G and the Sierpiński graph $S(G, 2)$, while Figure 2 shows the Sierpiński graph $S(G, 3)$.

Notice that if $\{u, v\}$ is an edge of $S(G, t)$, there is an edge $\{x, y\}$ of G and a word w such that $u=w x y y \ldots y$ and $v=w y x x \ldots x$. In general, $S(G, t)$ can be constructed recursively from G with the following process: $S(G, 1)=G$ and, for $t \geq 2$, we copy n times $S(G, t-1)$ and add the letter x at the beginning of each label of the vertices belonging to the copy of $S(G, t-1)$ corresponding to x. Then for every edge $\{x, y\}$ of
G, add an edge between vertex $x y y \ldots y$ and vertex $y x x \ldots x$. See, for instance, Figure 2. Vertices of the form $x x \ldots x$ are called extreme vertices. Notice that for any graph G of order n and any integer $t \geq 2, S(G, t)$ has n extreme vertices and, if x has degree $d(x)$ in G, then the extreme vertex $x x \ldots x$ of $S(G, t)$ also has degree $d(x)$. Moreover, the degrees of two vertices $y x x \ldots x$ and $x y y \ldots y$, which connect two copies of $S(G, t-1)$, are equal to $d(x)+1$ and $d(y)+1$, respectively.

Figure 2: The generalized Sierpiński graph $S(G, 3)$ with the base graph G shown in Figure 1.

To the best of our knowledge, [14] is the first published paper studying the generalized Sierpiński graphs. In that article, the authors obtained closed formulae for the Randić index of polymeric networks modelled by generalized Sierpiński graphs. In this note we consider the case where every internal vertex of G is a cut vertex and we obtain a closed formula for the strong metric dimension of $S(G, t)$.

3 The strong metric dimension of $S(G, t)$

The following basic lemma will become an important tool to prove our main results.
Lemma 3.1. Let G be a connected graph. If v is a cut vertex of G, then $v \notin \partial(G)$.
Proof. Let $v \in V(G)$ be a cut vertex and $x \in V(G)-\{v\}$. Let G_{1} be the connected compo-
nent of $G-\{v\}$ containing x and let G_{2} be a connected component of $G-\{v\}$ different from G_{1}. Since there exists $y \in V\left(G_{2}\right)$ which is adjacent to v in G and $d_{G}(x, v)<d_{G}(x, y)$, we conclude that x and v are not mutually maximally distant in G.

An end-vertex is a vertex of a graph that has exactly one edge incident to it, while a support vertex is a vertex adjacent to an end-vertex.

Theorem 3.2. Let G be a connected graph and let $\varepsilon(G)$ be the number of end-vertices of G. Then,

$$
\operatorname{dim}_{s}(G) \geq \varepsilon(G)-1
$$

Moreover, if every vertex of degree greater than one is a cut vertex, then the bound is achieved.

Proof. Let G be a connected graph. Since the set $\Omega(G)$ of end-vertices of G is a subset of $\partial(G)$ and the subgraph of $G_{S R}$ induced by $\Omega(G)$ is a clique, we conclude that $\alpha\left(G_{S R}\right) \geq$ $\varepsilon(G)-1$. Hence, by Theorem 1.1 we obtain the lower bound.

Now, if every vertex of degree greater than one is a cut vertex, by Lemma 3.1 we have that $\partial(G)$ is equal to the set of end-vertices of G. Then $G_{S R} \cong K_{|\varepsilon(G)|}$ and so Theorem 1.1 leads to $\operatorname{dim}_{s}(G)=\varepsilon(G)-1$.

From now on, we will say that a vertex of degree greater than one in a graph G is an internal vertex of G. We shall show that if every internal vertex of G is a cut vertex, then the bound above is achieved for $S(G, t)$. To begin with, we state the following lemma.

Lemma 3.3. Let G be a graph of order n having $\varepsilon(G)$ end-vertices. For any positive integer t, the number of end-vertices of $S(G, t)$ is

$$
\varepsilon(S(G, t))=\frac{\varepsilon(G)\left(n^{t}-2 n^{t-1}+1\right)}{n-1}
$$

Proof. In this proof, we denote by $\operatorname{Sup}(G)$ the set of support vertices of G. Also, if $x \in$ $\operatorname{Sup}(G)$, then $\varepsilon_{G}(x)$ will denote the number of end-vertices of G which are adjacent to x.

Let $t \geq 2$. For any $x \in V(G)$, we denote by $S_{x}(G, t-1)$ the copy of $S(G, t-1)$ corresponding to x in $S(G, t)$, i.e., $S_{x}(G, t-1)$ is the subgraph of $S(G, t)$ induced by the set $\left\{x w: w \in V^{t-1}(G)\right\}$, which is isomorphic to $S(G, t-1)$. To obtain the result, we only need to determine the contribution of $S_{x}(G, t-1)$ to the number of end-vertices of $S(G, t)$, for all $x \in V(G)$. By definition of $S(G, t)$, there exists an edge of $S(G, t)$ connecting the vertex $x y \ldots y$ of $S_{x}(G, t-1)$ with the vertex $y x \ldots x$ of $S_{y}(G, t-1)$ if and only if x and y are adjacent in G. Hence, an end-vertex $x y \ldots y$ of $S_{x}(S(G, t-1)$ is adjacent in $S(G, t)$ to a vertex $y x \ldots x$ of $S_{y}(G, t-1)$ if and only if y is an end-vertex of G and x is its support vertex. Thus, if $x \in \operatorname{Sup}(G)$, then the contribution of $S_{x}(G, t-1)$ to the number of end-vertices of $S(G, t)$ is $\varepsilon(S(G, t-1))-\varepsilon_{G}(x)$ and, if $x \notin \operatorname{Sup}(G)$, then the contribution of $S_{x}(G, t-1)$ to the number of end-vertices of $S(G, t)$ is $\varepsilon(S(G, t-1))$. Then we obtain,

$$
\begin{aligned}
\varepsilon(S(G, t)) & =(n-|\operatorname{Sup}(G)|) \varepsilon(S(G, t-1))+\sum_{x \in \operatorname{Sup}(G)}\left(\varepsilon(S(G, t-1))-\varepsilon_{G}(x)\right) \\
& =n \varepsilon(S(G, t-1))-\varepsilon(G)
\end{aligned}
$$

Now, since $\varepsilon(S(G, 1))=\varepsilon(G)$, we have that

$$
\varepsilon(S(G, t))=\varepsilon(G)\left(n^{t-1}-n^{t-2}-\cdots-n-1\right)=\varepsilon(G)\left(n^{t-1}-\frac{\left(n^{t-1}-1\right)}{n-1}\right)
$$

Therefore, the result follows.
The following result is a direct consequence of Theorem 3.2 and Lemma 3.3.
Theorem 3.4. Let G be a connected graph of order n having $\varepsilon(G)$ end-vertices and let t be a positive integer. Then

$$
\operatorname{dim}_{s}(S(G, t)) \geq \frac{\varepsilon(G)\left(n^{t}-2 n^{t-1}+1\right)-n+1}{n-1}
$$

As we will show in Theorem 3.6, the bound above is tight.
Lemma 3.5. Let G be a connected graph and let t be a positive integer. If every internal vertex of G is a cut vertex, then every internal vertex of $S(G, t)$ is a cut vertex.

Proof. As above, for any $x \in V(G)$, we denote by $S_{x}(G, t-1)$ the copy of $S(G, t-$ 1) corresponding to x in $S(G, t)$. We proceed by induction on t. Let $S(G, 1)=G$ be a connected graph such that every internal vertex is a cut vertex and assume that every internal vertex of $S(G, t-1)$ is a cut vertex. We differentiate two cases for any internal vertex $x w$ of $S(G, t)$, where $x \in V(G)$ and $w \in V^{t-1}(G)$.

Case 1. w has degree one in $S(G, t-1)$. In this case $x w$ has degree two in $S(G, t)$. Hence, $x w$ is adjacent to $x_{1} w^{\prime}$, for some $x_{1} \in V(G)-\{x\}$, and then $w=x_{1} x_{1} \ldots x_{1}$, $w^{\prime}=x x \ldots x, x_{1}$ is an end-vertex of G and x is the support of x_{1}. As a result, $\left\{x w, x_{1} w^{\prime}\right\}$ is the only edge connecting vertices in $S_{x_{1}}(G, t-1)$ to vertices outside the subgraph $S_{x_{1}}(G, t-1)$. Therefore, $x w$ is a cut vertex of $S(G, t)$.
Case 2. w is a cut vertex of $S(G, t-1)$. In this case, we take two connected components C_{1} and C_{2} obtained by removing w from $S(G, t-1)$. Suppose, for contradiction purposes, that $x w$ is not a cut vertex of $S(G, t)$. Then there exist two neighbours x_{1}, x_{k} of x and a sequence of subgraphs $S_{x_{1}}(G, t-1), S_{x_{2}}(G, t-$ $1), \ldots, S_{x_{k}}(G, t-1)$ such that $x_{1} \ldots x_{1} \in V\left(C_{1}\right), x_{k} \ldots x_{k} \in V\left(C_{2}\right)$ and there exists an edge of $S(G, t)$ connecting $S_{x_{i}}(G, t-1)$ to $S_{x_{i+1}}(G, t-1)$, for all $i \in$ $\{1,2, \ldots, k\}$. Note that the only vertices connecting $S_{x_{i}}(G, t-1)$ and $S_{x_{i+1}}(G, t-$ 1) are $x_{i} x_{i+1} x_{i+1} \ldots x_{i+1}$ and $x_{i+1} x_{i} x_{i} \ldots x_{i}$, where x_{i} and x_{i+1} are adjacent in G. Hence, $x, x_{1}, x_{2}, \ldots, x_{k}, x$ is a cycle in G, and so there is a cycle in $S(G, t-1)$ of the form $P_{x x_{1}}, P_{x_{1} x_{2}}, P_{x_{2} x_{3}}, \ldots, P_{x_{k-1} x_{k}}, P_{x_{k} x}$, where $P_{x_{i} x_{i+1}}$ is the path of order 2^{t-1} from $x_{i} x_{i} \ldots x_{i}$ to $x_{i+1} x_{i+1} \ldots x_{i+1}$ composed by binary words on alphabet $\left\{x_{i}, x_{i+1}\right\}$ (the paths $P_{x x_{1}}$ and $P_{x_{k} x}$ are defined by analogy) and we identify the vertex $x_{i} x_{i} \ldots x_{i}$ of two consecutive paths $P_{x_{i-1} x_{i}}$ and $P_{x_{i} x_{i+1}}$ to form the cycle. As a result, there are two disjoint paths from $x_{1} x_{1} \ldots x_{1}$ to $x_{k} x_{k} \ldots x_{k}$, which contradicts the fact that $x_{1} x_{1} \ldots x_{1} \in V\left(C_{1}\right)$ and $x_{k} x_{k} \ldots x_{k} \in C_{2}$. Therefore, $x w$ is a cut vertex of $S(G, t)$.

According to the two cases above, we conclude the proof by induction.

Our next result is obtained from Theorem 3.2 and Lemma 3.5.
Theorem 3.6. Let G be a connected graph of order n having $\varepsilon(G)$ end-vertices and let t be a positive integer. If every internal vertex of G is a cut vertex, then

$$
\operatorname{dim}_{s}(S(G, t))=\frac{\varepsilon(G)\left(n^{t}-2 n^{t-1}+1\right)-n+1}{n-1} .
$$

Obviously, if the base graph is a tree, then we can apply the formula above. In particular, we would emphasize the following particular case of this result, where $K_{1, r}$ denotes the star graph of r leaves and P_{r} denotes the path graph of order r.

Corollary 3.7. For any integers $r, t \geq 2$,

- $\operatorname{dim}_{s}\left(S\left(K_{1, r}, t\right)\right)=(r+1)^{t-1}(r-1)$.
- $\operatorname{dim}_{s}\left(S\left(P_{r}, t\right)\right)=\frac{2 r^{t}-4 r^{t-1}-r+3}{r-1}$.

Let G be a graph of order n and let $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ be a family of graphs. The corona product graph $G \odot \mathcal{H}$ is defined as the graph obtained from G and \mathcal{H} by taking one copy of G and joining by an edge each vertex of H_{i} with the $i^{t h}$-vertex of G. These graphs were defined by Frucht and Harary in [1].

Corollary 3.8. Let G be a graph of order n and let $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ be a family of empty graphs of order n_{i}, respectively. Then for any positive integer t,

$$
\operatorname{dim}_{s}(S(G \odot \mathcal{H}, t))=\frac{n^{\prime}\left(n+n^{\prime}\right)^{t-1}\left(n+n^{\prime}-2\right)-n+1}{n+n^{\prime}-1}
$$

where $n^{\prime}=\sum_{i=1}^{n} n_{i}$.

References

[1] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970), 322-325.
[2] S. Gravier, M. Kovše, M. Mollard, J. Moncel and A. Parreau, New results on variants of covering codes in Sierpiński graphs, Des. Codes Cryptogr. 69 (2013), 181-188, doi:10.1007/ s10623-012-9642-1, http://dx.doi.org/10.1007/s10623-012-9642-1.
[3] S. Gravier, M. Kovše and A. Parreau, Generalized Sierpiński graphs, 2011, http://www . renyi.hu/conferences/ec11/posters/parreau.pdf.
[4] A. M. Hinz and C. Holz auf der Heide, An efficient algorithm to determine all shortest paths in Sierpiński graphs, Discrete Appl. Math. 177 (2014), 111-120, doi:10.1016/j.dam.2014.05.049, http://dx.doi.org/10.1016/j.dam.2014.05.049.
[5] A. M. Hinz and D. Parisse, The average eccentricity of Sierpiński graphs, Graphs Combin. 28 (2012), 671-686, doi:10.1007/s00373-011-1076-4, http://dx.doi.org/10.1007/ s00373-011-1076-4.
[6] S. Klavžar and U. Milutinović, Graphs $S(n, k)$ and a variant of the Tower of Hanoi problem, Czechoslovak Math. J. 47(122) (1997), 95-104, doi:10.1023/A:1022444205860, http: / / dx.doi.org/10.1023/A:1022444205860.
[7] S. Klavžar, U. Milutinović and C. Petr, 1-perfect codes in Sierpiński graphs, Bull. Austral. Math. Soc. 66 (2002), 369-384, doi:10.1017/S0004972700040235, http: / /dx.doi.org/ 10.1017/S0004972700040235.
[8] S. Klavžar, I. Peterin and S. S. Zemljič, Hamming dimension of a graph-the case of Sierpiński graphs, European J. Combin. 34 (2013), 460-473, doi:10.1016/j.ejc.2012.09.006, http: / / dx.doi.org/10.1016/j.ejc.2012.09.006.
[9] S. Klavžar and S. S. Zemljič, On distances in Sierpiński graphs: almost-extreme vertices and metric dimension, Appl. Anal. Discrete Math. 7 (2013), 72-82, doi:10.2298/ AADM130109001K, http://dx.doi.org/10.2298/AADM130109001K.
[10] J. Kratica, V. Kovačević-Vujčić, M. Čangalović and N. Mladenović, Strong metric dimension: a survey, Yugosl. J. Oper. Res. 24 (2014), 187-198, doi:10.2298/YJOR130520042K, http: //dx.doi.org/10.2298/YJOR130520042K.
[11] J. Kratica, V. Kovačević-Vujčić, M. Čangalović and M. Stojanović, Minimal doubly resolving sets and the strong metric dimension of Hamming graphs, Appl. Anal. Discrete Math. 6 (2012), 63-71, doi:10.2298/AADM111116023K, http://dx.doi.org/10.2298/ AADM111116023K.
[12] D. Kuziak, Strong resolvability in product graphs, Ph.D. thesis, Universitat Rovira i Virgili, 2014.
[13] O. R. Oellermann and J. Peters-Fransen, The strong metric dimension of graphs and digraphs, Discrete Appl. Math. 155 (2007), 356-364, doi:10.1016/j.dam.2006.06.009, http://dx. doi.org/10.1016/j.dam.2006.06.009.
[14] J. A. Rodríguez-Velázquez and J. Tomás-Andreu, On the Randić index of polymeric networks modelled by generalized Sierpiński graphs, MATCH Commun. Math. Comput. Chem. 74 (2015), 145-160.
[15] J. A. Rodríguez-Velázquez, I. G. Yero, D. Kuziak and O. R. Oellermann, On the strong metric dimension of Cartesian and direct products of graphs, Discrete Math. 335 (2014), 8-19, doi:10. 1016/j.disc.2014.06.023, http://dx.doi.org/10.1016/j.disc.2014.06.023.
[16] A. Sebő and E. Tannier, On metric generators of graphs, Math. Oper. Res. 29 (2004), 383-393, doi:10.1287/moor.1030.0070, http://dx.doi.org/10.1287/moor. 1030.0070.

[^0]: E-mail addresses: ehsan.estaji@hsu.ac.ir (Ehsan Estaji), juanalberto.rodriguez@urv.cat (Juan Alberto Rodríguez-Velázquez)

[^1]: ${ }^{1}$ The diameter of $G=(V, E)$ is defined as $D(G)=\max _{u, v \in V}\{d(u, v)\}$. We recall that $G=(V, E)$ is 2-antipodal if for each vertex $x \in V$ there exists exactly one vertex $y \in V$ such that $d_{G}(x, y)=D(G)$.
 ${ }^{2}$ In fact, according to [13] the strong resolving graph $G_{S R}^{\prime}$ of a graph G has vertex set $V\left(G_{S R}^{\prime}\right)=V(G)$ and two vertices u, v are adjacent in $G_{S R}^{\prime}$ if and only if u and v are mutually maximally distant in G. So, the strong resolving graph defined here is a subgraph of the strong resolving graph defined in [13] and can be obtained from the latter graph by deleting its isolated vertices.

