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Abstract

Let G be a connected graph of order n having £(G) end-vertices. Given a positive
integer ¢, we denote by S(G, t) the t-th generalized Sierpinski graph of G. In this note we
show that if every internal vertex of G is a cut vertex, then the strong metric dimension of
S(G,t) is given by

e(G)(n' =207t 4+ 1) —n+1
n—1 '

dim, (S(G, ) =
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1 Introduction

For two vertices « and v in a connected graph G, the interval I [u, v] between u and v is
defined as the collection of all vertices that belong to some shortest © — v path. A vertex w
strongly resolves two vertices u and v if v € I[u, w] or u € Ig[v, w]. A set S of vertices
in a connected graph G is a strong metric generator for G if every two vertices of G are
strongly resolved by some vertex of S. The smallest cardinality of a strong metric generator
of G is called strong metric dimension and is denoted by dim(G). After the publication of
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the first paper [16], the strong metric dimension has been extensively studied. The reader
is invited to read, for instance, the following works [10, 11, 12, 13, 15] and the references
cited therein. For some basic graph classes, the strong metric dimension is easy to compute.
For instance, dim,(G) = n — 1 if and only if G is the complete graph of order n. For the
cycle C,, of order n the strong dimension is dim,(C,,) = [n/2] and if T is a tree with [(T)
leaves, its strong metric dimension equals {(7") — 1 (see [16]).

Given a connected graph G and two vertices z,y € V(G), we denote by d¢(z,y) the
distance from x to y. A vertex u of G is maximally distant from v if for every vertex w in
the open neighborhood of u, dg (v, w) < dg(u, v). If u is maximally distant from v and v
is maximally distant from u, then we say that u and v are mutually maximally distant. The
boundary of G = (V, E) is defined as 0(G) = {u € V : there exists v € V such that u, v
are mutually maximally distant}. For some basic graph classes, such as complete graphs
K,,, complete bipartite graphs K, s, cycles C), and hypercube graphs @)y, the boundary
is simply the whole vertex set. It is not difficult to see that this property holds for all 2-
antipodal! graphs and also for all distance-regular graphs. Notice that the boundary of a
tree consists exactly of the set of its leaves. A vertex of a graph is a simplicial vertex if the
subgraph induced by its neighbors is a complete graph. Given a graph G, we denote by
o(G) the set of simplicial vertices of G. Notice that o(G) C 9(G).

We use the notion of strong resolving graph introduced in [13]. The strong resolving
graph?® of G is a graph G g with vertex set V(Ggr) = 9(G) where two vertices u, v are
adjacent in Ggp if and only if v and v are mutually maximally distant in G. There are
some families of graph for which its resolving graph can be obtained relatively easily. For
instance, we emphasize the following cases.

e If 9(G) = o(G), then Gsp = K|y()|- In particular, (K, )sg = K, and for any
tree T with [(T') leaves, (T')sr = Kyr).

e For any 2-antipodal graph G of order n, Ggr = i%:I K. In particular, (Coy)sr =
k
Uiy Ko.
o (Cort1)sr = Copyr.

A set S of vertices of G is a vertex cover of G if every edge of G is incident with at
least one vertex of S. The vertex cover number of G, denoted by «(G), is the smallest
cardinality of a vertex cover of G. Oellermann and Peters-Fransen [13] showed that the
problem of finding the strong metric dimension of a connected graph G can be transformed
to the problem of finding the vertex cover number of Ggp.

Theorem 1.1. [13] For any connected graph G, dim,(G) = a(GgsRr).-

It was shown in [13] that the problem of computing dim;(G) is NP-hard. This suggests
finding the strong metric dimension for special classes of graphs or obtaining good bounds
on this invariant. In this note we study the problem of finding exact values or sharp bounds
for the strong metric dimension of Sierpifiski graphs with pendant vertices.

IThe diameter of G = (V, E) is defined as D(G) = maxy, yeyv {d(u,v)}. We recall that G = (V, E) is
2-antipodal if for each vertex = € V there exists exactly one vertex y € V such that dg (z,y) = D(G).

%In fact, according to [13] the strong resolving graph G’ ; of a graph G has vertex set V(G'g ;) = V(G) and
two vertices u, v are adjacent in G’ 5, if and only if u and v are mutually maximally distant in G. So, the strong
resolving graph defined here is a subgraph of the strong resolving graph defined in [13] and can be obtained from
the latter graph by deleting its isolated vertices.
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2 Preliminaries on generalized Sierpinski graphs

Let G be a non-empty graph of order n and vertex set V(G). We denote by V(G) the set
of words of size ¢t on alphabet V' (G). The letters of a word u of length ¢ are denoted by
U1Us . .. Ug. The concatenation of two words v and v is denoted by uv. Klavzar and Mi-
lutinovi¢ introduced in [6] the graph S(K,,t) whose vertex set is V¢(K,,), where {u, v}
is an edge if and only if there exists ¢ € {1,...,¢} such that:

(i) uj = vy, if j < i; (i) us # vy; (i) v; = vy and v; = u; if j > 4.

When n = 3, those graphs are exactly Tower of Hanoi graphs. Later, those graphs
have been called Sierpifiski graphs in [7] and they were studied by now from numerous
points of view. The reader is invited to read, for instance, the following recent papers
[2,5, 4,7, 8, 9] and references therein. This construction was generalized in [3] for any
graph G, by defining the ¢-th generalized Sierpiriski graph of G, denoted by S(G, t), as the
graph with vertex set V*(G) and edge set defined as follows. {u, v} is an edge if and only
if there exists ¢ € {1,...,t} such that:

(1) uj =wvj;,if j <5
(il) u; # v; and {u;,v;} € E(G);

(ii1) U; = and Vj = Ui lf] > 1.

Figure 1: A graph G and the generalized Sierpiriski graph S(G, 2)

Figure 1 shows a graph G and the Sierpiriski graph S(G, 2), while Figure 2 shows the
Sierpiriski graph S(G, 3).

Notice that if {u, v} is an edge of S(G,t), there is an edge {z,y} of G and a word
w such that w = wayy ...y and v = wyzx ...x. In general, S(G,t) can be constructed
recursively from G with the following process: S(G,1) = G and, for t > 2, we copy
n times S(G,t — 1) and add the letter = at the beginning of each label of the vertices
belonging to the copy of S(G,t — 1) corresponding to . Then for every edge {z,y} of
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G, add an edge between vertex xyy . ..y and vertex yxz . .. x. See, for instance, Figure 2.
Vertices of the form xzx ...z are called extreme vertices. Notice that for any graph G of
order n and any integer ¢t > 2, S(G, t) has n extreme vertices and, if  has degree d(z) in
G, then the extreme vertex zz . .. of S(G, t) also has degree d(x). Moreover, the degrees
of two vertices yzx . .. x and zyy . . . y, which connect two copies of S(G,t — 1), are equal
to d(z) + 1 and d(y) + 1, respectively.
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Figure 2: The generalized Sierpifiski graph S(G, 3) with the base graph G shown in Figure
1.

To the best of our knowledge, [14] is the first published paper studying the generalized
Sierpiniski graphs. In that article, the authors obtained closed formulae for the Randi¢ index
of polymeric networks modelled by generalized Sierpifiski graphs. In this note we consider
the case where every internal vertex of (G is a cut vertex and we obtain a closed formula for
the strong metric dimension of S(G, t).

3 The strong metric dimension of S(G, t)
The following basic lemma will become an important tool to prove our main results.

Lemma 3.1. Let G be a connected graph. If v is a cut vertex of G, thenv & 0(G).

Proof. Letv € V(G) beacutvertex and z € V(G)—{v}. Let G; be the connected compo-
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nent of G—{v} containing x and let G5 be a connected component of G—{v} different from
G1. Since there exists y € V' (G3) which is adjacent to v in G and dg(z,v) < dg(zx,y),
we conclude that = and v are not mutually maximally distant in G. O

An end-vertex is a vertex of a graph that has exactly one edge incident to it, while a
support vertex is a vertex adjacent to an end-vertex.

Theorem 3.2. Let G be a connected graph and let £(G) be the number of end-vertices of
G. Then,
dims(G) > ¢(G) — 1.

Moreover, if every vertex of degree greater than one is a cut vertex, then the bound is
achieved.

Proof. Let G be a connected graph. Since the set 2(G) of end-vertices of G is a subset of
0(G) and the subgraph of Gs induced by Q(G) is a clique, we conclude that «(Ggr) >
e(G) — 1. Hence, by Theorem 1.1 we obtain the lower bound.

Now, if every vertex of degree greater than one is a cut vertex, by Lemma 3.1 we have
that 9(G) is equal to the set of end-vertices of G. Then G'sr = K|.()| and so Theorem
1.1 leads to dim4(G) = ¢(G) — 1. O

From now on, we will say that a vertex of degree greater than one in a graph G is an
internal vertex of G. We shall show that if every internal vertex of G is a cut vertex, then
the bound above is achieved for S(G, t). To begin with, we state the following lemma.

Lemma 3.3. Let G be a graph of order n having £(G) end-vertices. For any positive
integer t, the number of end-vertices of S(G,t) is

£(G) (n* —2nt~t 41)
n—1 ’

e(S(G,1) =

Proof. In this proof, we denote by Sup(G) the set of support vertices of G. Also, if z €
Sup(@G), then e (x) will denote the number of end-vertices of G which are adjacent to x.

Let ¢ > 2. For any x € V(G), we denote by S, (G,t — 1) the copy of S(G,t — 1)
corresponding to x in S(G,t), i.e., Sz(G,t — 1) is the subgraph of S(G,t) induced by
the set {zw : w € V'~1(G)}, which is isomorphic to S(G,t — 1). To obtain the result,
we only need to determine the contribution of S, (G,t — 1) to the number of end-vertices
of S(G,t), for all z € V(G). By definition of S(G,t), there exists an edge of S(G,t)
connecting the vertex zy ...y of S;(G,t — 1) with the vertex yx ...z of Sy (G,t — 1) if
and only if 2 and y are adjacent in G. Hence, an end-vertex xy ...y of S, (S(G,t — 1) is
adjacent in S(G, t) to a vertex yx ... x of S, (G, t — 1) if and only if y is an end-vertex of
G and z is its support vertex. Thus, if x € Sup(G), then the contribution of S, (G,t—1) to
the number of end-vertices of S(G, ) is e(S(G,t — 1)) — e¢ () and, if z &€ Sup(G), then
the contribution of S, (G,t— 1) to the number of end-vertices of S(G, t) ise(S(G,t —1)).
Then we obtain,

(S(G.t)) = (n—[Sup(@))e(S(G,t = 1)+ Y (e(S(G.t = 1)) — ea(x))
z€Sup(G)

=ne(S(G,t—1)) —e(G).
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Now, since €(S(G, 1)) = £(G), we have that
t—1 1
e(S(G,1)=¢e(@) (n' ' —n'?— .. —n—1) =2(G) (ntl - (nl)> .

Therefore, the result follows. O]
The following result is a direct consequence of Theorem 3.2 and Lemma 3.3.

Theorem 3.4. Let G be a connected graph of order n having €(G) end-vertices and let t
be a positive integer. Then

e(@) (n* —2n*"14+1) —n+1
n—1 '

dlms(S(G7 t)) >

As we will show in Theorem 3.6, the bound above is tight.

Lemma 3.5. Let G be a connected graph and let t be a positive integer. If every internal
vertex of G is a cut vertex, then every internal vertex of S(G,t) is a cut vertex.

Proof. As above, for any x € V(G), we denote by S, (G,t — 1) the copy of S(G,t —
1) corresponding to x in S(G,t). We proceed by induction on ¢. Let S(G,1) = G be
a connected graph such that every internal vertex is a cut vertex and assume that every
internal vertex of S(G,t — 1) is a cut vertex. We differentiate two cases for any internal
vertex zw of S(G,t), where z € V(G) and w € VI~1(G).

Case 1. w has degree one in S(G,¢ — 1). In this case zw has degree two in S(G,1).
Hence, zw is adjacent to zyw’, for some 1 € V(G)—{z}, and then w = x121. .. 21,
w' = zx...x, 71 is an end-vertex of G and z is the support of x1. As a result,
{zw, x1w'} is the only edge connecting vertices in .S, (G, ¢ — 1) to vertices outside

the subgraph S,, (G,t — 1). Therefore, zw is a cut vertex of S(G, t).

Case 2. w is a cut vertex of S(G,t — 1). In this case, we take two connected compo-
nents C; and C3 obtained by removing w from S(G,¢ — 1). Suppose, for con-
tradiction purposes, that zw is not a cut vertex of S(G,t). Then there exist two
neighbours z1,x of x and a sequence of subgraphs S, (G,t — 1), S.,(G,t —
1),...,82,(G,t — 1) such that z; ...x; € V(C1), x) ... 2 € V(C3) and there
exists an edge of S(G,t) connecting S,,(G,t — 1) to S, (G,t — 1), forall i €
{1,2,...,k}. Note that the only vertices connecting S, (G,t—1) and S, (G, t —
1)are ;x;41%i41 . . . Tiy1 and x; 412,75 . . . x5, where x; and x4 are adjacent in G.
Hence, x, x1, 22, ..., T, x is a cycle in G, and so there is a cycle in S(G,t — 1) of
the form Ppy\,PriwosPrsass - -+ Poyw_vas Powzs Where Py o, is the path of order
2t~ from z;z; . .. x; to Tiy1 Tit1 ---Ti+1 composed by binary words on alphabet
{i,x;y1} (the paths P,,, and P,,, are defined by analogy) and we identify the
vertex x;x; ... x; of two consecutive paths P, ., and P, ., to form the cycle.
As a result, there are two disjoint paths from z1x; . .. z; to xT. . . . 1, Which con-
tradicts the fact that 121 ... 21 € V(Cy) and apzy. ...z € Co. Therefore, zw is
a cut vertex of S(G, t).

According to the two cases above, we conclude the proof by induction. O



J. A. Rodrigues-Veldzquez and E. Estaji: Strong metric dimension of Sierpiniski graphs 133

Our next result is obtained from Theorem 3.2 and Lemma 3.5.

Theorem 3.6. Let G be a connected graph of order n having (G) end-vertices and let t
be a positive integer. If every internal vertex of G is a cut vertex, then

e(G)(nt =207t 4+ 1) —n+1
n—1 '

dim, (S(G, ) =

Obviously, if the base graph is a tree, then we can apply the formula above. In particular,
we would emphasize the following particular case of this result, where K , denotes the
star graph of r leaves and P, denotes the path graph of order r.

Corollary 3.7. For any integers r,t > 2,

o dim(S(Ky 1)) = (r+ 1) (r —1).
2rt — 4t~ — 43
r—1 '
Let G be a graph of order n and let H = {Hy, Ha, ..., H,} be a family of graphs. The
corona product graph G ® H is defined as the graph obtained from G and H by taking one

copy of G and joining by an edge each vertex of H; with the i*"-vertex of G. These graphs
were defined by Frucht and Harary in [1].

o dim,(S(P,, 1)) =

Corollary 3.8. Let G be a graph of order n and let H = {H1, Ho, . .., H, } be a family of
empty graphs of order n;, respectively. Then for any positive integer t,

nn+n)"tn+n —2)—n+1

dim,(S(G O H,t)) = nt+n —1

b

n
where n/ = E ;.
i=1
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