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Sierpiński graphs with pendant vertices

Ehsan Estaji
Department of Mathematics and Computer Sciences, Hakim Sabzevari University,

Sabzevar, Iran

Juan Alberto Rodrı́guez-Velázquez
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Abstract

Let G be a connected graph of order n having ε(G) end-vertices. Given a positive
integer t, we denote by S(G, t) the t-th generalized Sierpiński graph of G. In this note we
show that if every internal vertex of G is a cut vertex, then the strong metric dimension of
S(G, t) is given by

dims(S(G, t)) =
ε(G)

(
nt − 2nt−1 + 1

)
− n+ 1

n− 1
.
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1 Introduction
For two vertices u and v in a connected graph G, the interval IG[u, v] between u and v is
defined as the collection of all vertices that belong to some shortest u− v path. A vertex w
strongly resolves two vertices u and v if v ∈ IG[u,w] or u ∈ IG[v, w]. A set S of vertices
in a connected graph G is a strong metric generator for G if every two vertices of G are
strongly resolved by some vertex of S. The smallest cardinality of a strong metric generator
ofG is called strong metric dimension and is denoted by dims(G). After the publication of
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the first paper [16], the strong metric dimension has been extensively studied. The reader
is invited to read, for instance, the following works [10, 11, 12, 13, 15] and the references
cited therein. For some basic graph classes, the strong metric dimension is easy to compute.
For instance, dims(G) = n − 1 if and only if G is the complete graph of order n. For the
cycle Cn of order n the strong dimension is dims(Cn) = dn/2e and if T is a tree with l(T )
leaves, its strong metric dimension equals l(T )− 1 (see [16]).

Given a connected graph G and two vertices x, y ∈ V (G), we denote by dG(x, y) the
distance from x to y. A vertex u of G is maximally distant from v if for every vertex w in
the open neighborhood of u, dG(v, w) ≤ dG(u, v). If u is maximally distant from v and v
is maximally distant from u, then we say that u and v are mutually maximally distant. The
boundary of G = (V,E) is defined as ∂(G) = {u ∈ V : there exists v ∈ V such that u, v
are mutually maximally distant}. For some basic graph classes, such as complete graphs
Kn, complete bipartite graphs Kr,s, cycles Cn and hypercube graphs Qk, the boundary
is simply the whole vertex set. It is not difficult to see that this property holds for all 2-
antipodal1 graphs and also for all distance-regular graphs. Notice that the boundary of a
tree consists exactly of the set of its leaves. A vertex of a graph is a simplicial vertex if the
subgraph induced by its neighbors is a complete graph. Given a graph G, we denote by
σ(G) the set of simplicial vertices of G. Notice that σ(G) ⊆ ∂(G).

We use the notion of strong resolving graph introduced in [13]. The strong resolving
graph2 of G is a graph GSR with vertex set V (GSR) = ∂(G) where two vertices u, v are
adjacent in GSR if and only if u and v are mutually maximally distant in G. There are
some families of graph for which its resolving graph can be obtained relatively easily. For
instance, we emphasize the following cases.

• If ∂(G) = σ(G), then GSR
∼= K|∂(G)|. In particular, (Kn)SR

∼= Kn and for any
tree T with l(T ) leaves, (T )SR

∼= Kl(T ).

• For any 2-antipodal graph G of order n, GSR
∼=
⋃n

2
i=1K2. In particular, (C2k)SR

∼=⋃k
i=1K2.

• (C2k+1)SR
∼= C2k+1.

A set S of vertices of G is a vertex cover of G if every edge of G is incident with at
least one vertex of S. The vertex cover number of G, denoted by α(G), is the smallest
cardinality of a vertex cover of G. Oellermann and Peters-Fransen [13] showed that the
problem of finding the strong metric dimension of a connected graphG can be transformed
to the problem of finding the vertex cover number of GSR.

Theorem 1.1. [13] For any connected graph G, dims(G) = α(GSR).

It was shown in [13] that the problem of computing dims(G) is NP-hard. This suggests
finding the strong metric dimension for special classes of graphs or obtaining good bounds
on this invariant. In this note we study the problem of finding exact values or sharp bounds
for the strong metric dimension of Sierpiński graphs with pendant vertices.

1The diameter of G = (V,E) is defined as D(G) = maxu,v∈V {d(u, v)}. We recall that G = (V,E) is
2-antipodal if for each vertex x ∈ V there exists exactly one vertex y ∈ V such that dG(x, y) = D(G).

2In fact, according to [13] the strong resolving graph G′
SR of a graph G has vertex set V (G′

SR) = V (G) and
two vertices u, v are adjacent in G′

SR if and only if u and v are mutually maximally distant in G. So, the strong
resolving graph defined here is a subgraph of the strong resolving graph defined in [13] and can be obtained from
the latter graph by deleting its isolated vertices.
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2 Preliminaries on generalized Sierpiński graphs
Let G be a non-empty graph of order n and vertex set V (G). We denote by V t(G) the set
of words of size t on alphabet V (G). The letters of a word u of length t are denoted by
u1u2 . . . ut. The concatenation of two words u and v is denoted by uv. Klav̌zar and Mi-
lutinović introduced in [6] the graph S(Kn, t) whose vertex set is V t(Kn), where {u, v}
is an edge if and only if there exists i ∈ {1, . . . , t} such that:

(i) uj = vj , if j < i; (ii) ui 6= vi; (iii) uj = vi and vj = ui if j > i.

When n = 3, those graphs are exactly Tower of Hanoi graphs. Later, those graphs
have been called Sierpiński graphs in [7] and they were studied by now from numerous
points of view. The reader is invited to read, for instance, the following recent papers
[2, 5, 4, 7, 8, 9] and references therein. This construction was generalized in [3] for any
graph G, by defining the t-th generalized Sierpiński graph of G, denoted by S(G, t), as the
graph with vertex set V t(G) and edge set defined as follows. {u, v} is an edge if and only
if there exists i ∈ {1, . . . , t} such that:

(i) uj = vj , if j < i;

(ii) ui 6= vi and {ui, vi} ∈ E(G);

(iii) uj = vi and vj = ui if j > i.
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Figure 1: A graph G and the generalized Sierpiński graph S(G, 2)

Figure 1 shows a graph G and the Sierpiński graph S(G, 2), while Figure 2 shows the
Sierpiński graph S(G, 3).

Notice that if {u, v} is an edge of S(G, t), there is an edge {x, y} of G and a word
w such that u = wxyy . . . y and v = wyxx . . . x. In general, S(G, t) can be constructed
recursively from G with the following process: S(G, 1) = G and, for t ≥ 2, we copy
n times S(G, t − 1) and add the letter x at the beginning of each label of the vertices
belonging to the copy of S(G, t − 1) corresponding to x. Then for every edge {x, y} of



130 Ars Math. Contemp. 12 (2017) 127–134

G, add an edge between vertex xyy . . . y and vertex yxx . . . x. See, for instance, Figure 2.
Vertices of the form xx . . . x are called extreme vertices. Notice that for any graph G of
order n and any integer t ≥ 2, S(G, t) has n extreme vertices and, if x has degree d(x) in
G, then the extreme vertex xx . . . x of S(G, t) also has degree d(x). Moreover, the degrees
of two vertices yxx . . . x and xyy . . . y, which connect two copies of S(G, t−1), are equal
to d(x) + 1 and d(y) + 1, respectively.
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Figure 2: The generalized Sierpiński graph S(G, 3) with the base graph G shown in Figure
1.

To the best of our knowledge, [14] is the first published paper studying the generalized
Sierpiński graphs. In that article, the authors obtained closed formulae for the Randić index
of polymeric networks modelled by generalized Sierpiński graphs. In this note we consider
the case where every internal vertex of G is a cut vertex and we obtain a closed formula for
the strong metric dimension of S(G, t).

3 The strong metric dimension of S(G, t)

The following basic lemma will become an important tool to prove our main results.

Lemma 3.1. Let G be a connected graph. If v is a cut vertex of G, then v 6∈ ∂(G).

Proof. Let v ∈ V (G) be a cut vertex and x ∈ V (G)−{v}. LetG1 be the connected compo-
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nent ofG−{v} containing x and letG2 be a connected component ofG−{v} different from
G1. Since there exists y ∈ V (G2) which is adjacent to v in G and dG(x, v) < dG(x, y),
we conclude that x and v are not mutually maximally distant in G.

An end-vertex is a vertex of a graph that has exactly one edge incident to it, while a
support vertex is a vertex adjacent to an end-vertex.

Theorem 3.2. Let G be a connected graph and let ε(G) be the number of end-vertices of
G. Then,

dims(G) ≥ ε(G)− 1.

Moreover, if every vertex of degree greater than one is a cut vertex, then the bound is
achieved.

Proof. Let G be a connected graph. Since the set Ω(G) of end-vertices of G is a subset of
∂(G) and the subgraph of GSR induced by Ω(G) is a clique, we conclude that α(GSR) ≥
ε(G)− 1. Hence, by Theorem 1.1 we obtain the lower bound.

Now, if every vertex of degree greater than one is a cut vertex, by Lemma 3.1 we have
that ∂(G) is equal to the set of end-vertices of G. Then GSR

∼= K|ε(G)| and so Theorem
1.1 leads to dims(G) = ε(G)− 1.

From now on, we will say that a vertex of degree greater than one in a graph G is an
internal vertex of G. We shall show that if every internal vertex of G is a cut vertex, then
the bound above is achieved for S(G, t). To begin with, we state the following lemma.

Lemma 3.3. Let G be a graph of order n having ε(G) end-vertices. For any positive
integer t, the number of end-vertices of S(G, t) is

ε(S(G, t)) =
ε(G)

(
nt − 2nt−1 + 1

)
n− 1

.

Proof. In this proof, we denote by Sup(G) the set of support vertices of G. Also, if x ∈
Sup(G), then εG(x) will denote the number of end-vertices of G which are adjacent to x.

Let t ≥ 2. For any x ∈ V (G), we denote by Sx(G, t − 1) the copy of S(G, t − 1)
corresponding to x in S(G, t), i.e., Sx(G, t − 1) is the subgraph of S(G, t) induced by
the set {xw : w ∈ V t−1(G)}, which is isomorphic to S(G, t − 1). To obtain the result,
we only need to determine the contribution of Sx(G, t − 1) to the number of end-vertices
of S(G, t), for all x ∈ V (G). By definition of S(G, t), there exists an edge of S(G, t)
connecting the vertex xy . . . y of Sx(G, t − 1) with the vertex yx . . . x of Sy(G, t − 1) if
and only if x and y are adjacent in G. Hence, an end-vertex xy . . . y of Sx(S(G, t − 1) is
adjacent in S(G, t) to a vertex yx . . . x of Sy(G, t− 1) if and only if y is an end-vertex of
G and x is its support vertex. Thus, if x ∈ Sup(G), then the contribution of Sx(G, t−1) to
the number of end-vertices of S(G, t) is ε(S(G, t− 1))− εG(x) and, if x 6∈ Sup(G), then
the contribution of Sx(G, t−1) to the number of end-vertices of S(G, t) is ε(S(G, t−1)).
Then we obtain,

ε(S(G, t)) = (n− | Sup(G)|)ε(S(G, t− 1)) +
∑

x∈Sup(G)

(ε(S(G, t− 1))− εG(x))

= nε(S(G, t− 1))− ε(G).
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Now, since ε(S(G, 1)) = ε(G), we have that

ε(S(G, t)) = ε(G)
(
nt−1 − nt−2 − · · · − n− 1

)
= ε(G)

(
nt−1 −

(
nt−1 − 1

)
n− 1

)
.

Therefore, the result follows.

The following result is a direct consequence of Theorem 3.2 and Lemma 3.3.

Theorem 3.4. Let G be a connected graph of order n having ε(G) end-vertices and let t
be a positive integer. Then

dims(S(G, t)) ≥
ε(G)

(
nt − 2nt−1 + 1

)
− n+ 1

n− 1
.

As we will show in Theorem 3.6, the bound above is tight.

Lemma 3.5. Let G be a connected graph and let t be a positive integer. If every internal
vertex of G is a cut vertex, then every internal vertex of S(G, t) is a cut vertex.

Proof. As above, for any x ∈ V (G), we denote by Sx(G, t − 1) the copy of S(G, t −
1) corresponding to x in S(G, t). We proceed by induction on t. Let S(G, 1) = G be
a connected graph such that every internal vertex is a cut vertex and assume that every
internal vertex of S(G, t − 1) is a cut vertex. We differentiate two cases for any internal
vertex xw of S(G, t), where x ∈ V (G) and w ∈ V t−1(G).

Case 1. w has degree one in S(G, t− 1). In this case xw has degree two in S(G, t).
Hence, xw is adjacent to x1w′, for some x1∈ V (G)−{x}, and thenw = x1x1. . . x1,
w′ = xx . . . x, x1 is an end-vertex of G and x is the support of x1. As a result,
{xw, x1w′} is the only edge connecting vertices in Sx1

(G, t− 1) to vertices outside
the subgraph Sx1(G, t− 1). Therefore, xw is a cut vertex of S(G, t).

Case 2. w is a cut vertex of S(G, t− 1). In this case, we take two connected compo-
nents C1 and C2 obtained by removing w from S(G, t − 1). Suppose, for con-
tradiction purposes, that xw is not a cut vertex of S(G, t). Then there exist two
neighbours x1, xk of x and a sequence of subgraphs Sx1(G, t − 1), Sx2(G, t −
1), . . . , Sxk

(G, t − 1) such that x1 . . . x1 ∈ V (C1), xk . . . xk ∈ V (C2) and there
exists an edge of S(G, t) connecting Sxi

(G, t − 1) to Sxi+1
(G, t − 1), for all i ∈

{1, 2, . . . , k}. Note that the only vertices connecting Sxi
(G, t− 1) and Sxi+1

(G, t−
1) are xixi+1xi+1 . . . xi+1 and xi+1xixi . . . xi, where xi and xi+1 are adjacent inG.
Hence, x, x1, x2, . . . , xk, x is a cycle in G, and so there is a cycle in S(G, t − 1) of
the form Pxx1

,Px1x2
,Px2x3

, . . . , Pxk−1xk
, Pxkx, where Pxixi+1

is the path of order
2t−1 from xixi . . . xi to xi+1 xi+1 . . . xi+1 composed by binary words on alphabet
{xi, xi+1} (the paths Pxx1

and Pxkx are defined by analogy) and we identify the
vertex xixi . . . xi of two consecutive paths Pxi−1xi and Pxixi+1 to form the cycle.
As a result, there are two disjoint paths from x1x1 . . . x1 to xkxk. . . . xk, which con-
tradicts the fact that x1x1 . . . x1 ∈ V (C1) and xkxk. . . . xk ∈ C2. Therefore, xw is
a cut vertex of S(G, t).

According to the two cases above, we conclude the proof by induction.
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Our next result is obtained from Theorem 3.2 and Lemma 3.5.

Theorem 3.6. Let G be a connected graph of order n having ε(G) end-vertices and let t
be a positive integer. If every internal vertex of G is a cut vertex, then

dims(S(G, t)) =
ε(G)

(
nt − 2nt−1 + 1

)
− n+ 1

n− 1
.

Obviously, if the base graph is a tree, then we can apply the formula above. In particular,
we would emphasize the following particular case of this result, where K1,r denotes the
star graph of r leaves and Pr denotes the path graph of order r.

Corollary 3.7. For any integers r, t ≥ 2,

• dims(S(K1,r, t)) = (r + 1)t−1(r − 1).

• dims(S(Pr, t)) =
2rt − 4rt−1 − r + 3

r − 1
.

Let G be a graph of order n and letH = {H1, H2, . . . ,Hn} be a family of graphs. The
corona product graph G�H is defined as the graph obtained from G andH by taking one
copy of G and joining by an edge each vertex of Hi with the ith-vertex of G. These graphs
were defined by Frucht and Harary in [1].

Corollary 3.8. Let G be a graph of order n and letH = {H1, H2, . . . ,Hn} be a family of
empty graphs of order ni, respectively. Then for any positive integer t,

dims(S(G�H, t)) =
n′(n+ n′)t−1(n+ n′ − 2)− n+ 1

n+ n′ − 1
,

where n′ =

n∑
i=1

ni.
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