Scientific paper

Synthesis and Biological Evaluation of Triazole linked Thiazolidenone Glycosides

Avula Srinivas,^{1,*} Madavarapu Santhosh,¹ Malladi Sunitha,¹ Pulluri Karthik,¹ Kontham Srinivas and K.Vasumathi Reddy²

¹ Department of Chemistry, Vaagdevi Degree & PG College

² Department of Zoology, Vaagdevi Degree & PG College Kishanpura, Warangal, Telangana, India 506001

* Corresponding author: E-mail: avula.sathwikreddy@gmail.com

Received: 10-07-2016

Abstract

In a one pot procedure a series of novel triazole linked thiazolidinone derivatives **8a–g** and **9a–g** was prepared by condensation of (3aR,5S,6R,6aR)-6-((1-(4-chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)-2,2-dimethyltetrahydro[2,3-d] [1,3]dioxole-5-carbaldehyde**7**with mercapto acids and primary amines in the presence of ZnCl₂ under both microwave irradiation and conventional heating conditions. Compound**7**was prepared from diacetone D-glucose with oxidation followed by reduction, click reaction, primary acetonide deprotection and with oxidative cleavage. Characterization of new compounds has been done by means of IR, NMR, MS and elemental analysis. The nematicidal and antibacterial activity of the compounds has also been evaluated.

Keywords: Swern oxidation, click reaction, cyclisation, antibacterial and nematicidal activity.

1. Introduction

1,2,3-Triazoles are one of the most important classes of heterocyclic organic compounds, which are reported to be involved in a plethora of biological activities and important for diverse therapeutic areas.¹ The 1,2,3-triazole motif is associated with diverse pharmacological activities such as antibacterial, antifungal, hypoglycemic, antihypertensive and analgesic properties. Polysubstituted five-membered aza heterocyclices rank as the most potent glycosidase inhibitors.² Further, this nucleus in combination with or in linking with various other classes of compounds, such as amino acids, steroids, aromatic compounds, carbohydrates etc., becames prominent in having various pharmacological properties.³ 1,2,3-Triazole modified carbohydrates have became easily available after the discovery of the Cu(I) catalyzed azide-alkynes 1,3-dipolar cycloaddition reaction⁴ and quickly became a prominent class of non-natural sugars. The chemistry and biology of triazole modified sugars is dominated by triazole glycosides.⁵ Therefore, the synthesis and investigation of biological activity of 1,2,3-triazole glycosides is an important objective, which also received the considerable attention by the medicinal chemists.

Thiazolidenone and its derivatives are known to possess significant pharmacological⁶ and biological activities,⁷ like sedative,⁸ anti inflammatory,⁹ anti tubercular,¹⁰ anticancer,¹¹ antitumor,¹² anti-HIV,¹³ antibacterial,¹⁴ antifungal,¹⁵ analgesic, hypothermic,¹⁶ anesthetic,¹⁷ nematicidal¹⁸ and CNS stimulant.¹⁹ Furthermore, thiazolidenones have been used for the treatment of cardiac diseases,²⁰ diabetic complications, like cataract nephropathy, neuropathy,²¹ and as selective anti platelet activating factor.²²

Nematodes are tiny worms, some of them are plant parasites, and can play an important role in the predisposition of the host plant to the invansion by secondary pathogens.²³ Plants attacked by nematodes show retarded growth and development, as well as loss in the quality and quantity of the harvest. The use of nematicides is slated for reduction due to environmental problems, and human and animals health concerns. For example, effective namaticides such as dibromochloropropane (DBCD) and ethylene dibromide (EDB) have been withdrawn from the market due to their deleterious effects on humans and the environment. Methyl bromide, the most effective and widely used fumigant for soil borne pests including nematodes, has already been banned.

The use of nonfumigant nematicides, based on organophosphates and carbamates, is expected to increase after the withdrawal of methyl bromide, which will bring about new environmental concerns. In fact, the highly toxic Aldicarb used to control insects and nematodes has been already detected in ground water.²⁴ Therefore alternative nematode control methods or less toxic nematicides need to be developed. One way of searching for such nematicidal compounds is to screen naturally occurring compounds in plants. Several such compounds, e.g. alkaloids, phenols, sesquiterpenes, diterpenes, polyacetylenes, and thienyl derivatives have nematicidal activity.²⁵ For example, -terthienyl is a highly effective nematicidal compound.²⁶ Other compounds with nematicidal activity have been isolated from plants, mainly from the family Asteraceae.²⁵ However, compounds of plant origin and their analogs have not been developed into commercial nematicides; hence there is a need to develop commercial synthesis.

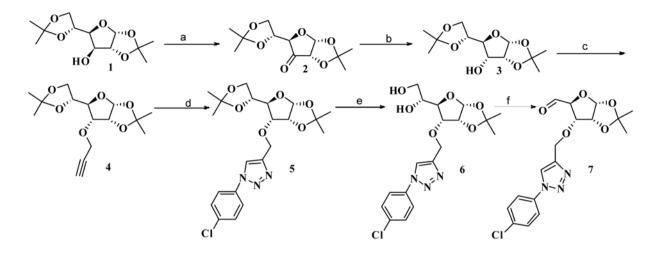
Following the successful introduction of antimicrobial and nematicidal agents, inspired by the biological profile of triazoles, thiazolidenones, and in the continuation of our work on biologically active heterocycles,^{27–39} we have developed a series of novel triazole linked thiazolidenone derivatives, and evaluated their nematicidal activity along with antibacterial activity.

2. Result and Discussion

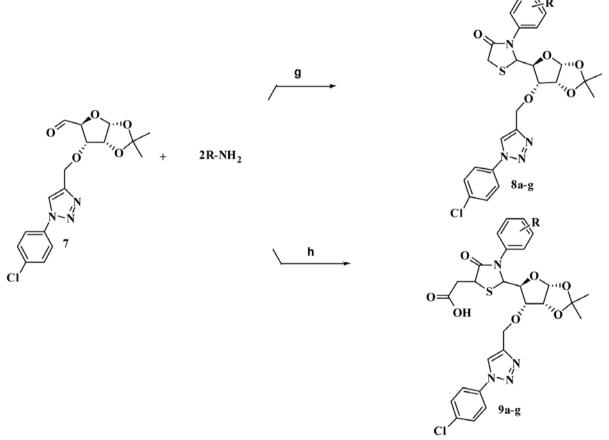
Diacetone D-glucose (1), prepared from D-(+)-glucose by treating with acetone in the presence of catalytic amount of sulphuric acid according to the literature procedure,⁴⁰ reduction of **2** (prepared by Swern oxidation of **1**) with NaBH₄ in aq. ethanol at 0 °C for 1 h gave 3 (77%), which on subsequent propargylation in DMF in the presence of NaH for 1 h afforded propargyl ether 4 (80%). Next, the propargyl ether 4 was converted into triazole 5 (82%) by using 1,3-dipolar cycloaddition with p-chlorophenvl azide carried out at ambient temperature in the presence of CuSO₄ and sodium ascorbate in a mixture of 1:1 t-BuOH-H₂O, as reported by Sharpless. Acid hydrolysis of 5,6-acetonide 5 in 60% AcOH furnished the diol 6 (85%), which on oxidative cleavage with NaIO₄ gave the aldehyde 7. Subsequently, one pot synthesis of triazole linked thiazolidenone glycosides was carried out by the condensation reaction between 7, primary aromatic amine and a thioglycolic acid in the presence of ZnCl₂ under microwave irradiation or conventional heating (Scheme 2). In classical method the reactions were performed in dry toluene at reflux for a long time (2-4 h), often leading to degradation processes and consequent low yields of isolated products, whereas with the application of microwave assisted technology, the reaction was completed in only 5-10 min and the compounds, isolated by conventional work-up, were obtained in satisfactory yields, often higher than those achieved by traditional methods (Table 1). The structures of synthesized compounds were confirmed by IR, NMR, MS and elemental analysis. Further the compounds were subject to nematicidal and antibacterial testing.

3. Antibacterial Activity

Compounds **8a–g** and **9a–g** were screened for their antibacterial activity using the tube dilution method⁴¹ by measuring the minimum inhibitory concentration (MIC) in μ g/mL against four representative organisms, *viz. Bacillus subtilis, Staphylococcus aureus, Escherichia coli* and *Staphylococcus pyogenus*. Standard antibacterial agents, such as streptomycin and Neomycin, were also screened under identical conditions for comparison. The minimum inhibitory concentrations are given in Table 2. However, it has been observed that the test compounds exhibited an interesting biological activity, with degree of variation.


Compounds in series 8 and 9, which contain 4-Cl or 3-OH groups, displayed good antibacterial activity against all the organisms. Compounds 8b and 9f were highly active against all the organisms. Compounds 8b and 9f were highly active against *B. subtilis, S. aureus* and *S. pyogenus,* compound 9f was highly active against *B. subtilis, S. aureus, E. coli*, compound 9b was highly active against *B. subtilis, E. coli* and *S. pyogenus* and the compound 8c was highly active against *E. coli* and *S. pyogenus*. Compounds 9a and 9d did not exhibit any activity against *E. coli*, even at 100 µg/mL concentration. The alkyl substituted derivatives displayed moderate levels of antibacterial activity (Table 2).

4. Nematicidal Activity


Compounds **8a–g** and **9a–g** were also screened for their nematicidal activity against *Ditylenchus mycliophagus* and *Caenorhabditis elegans* by aqueous *in vitro* screening technique⁴² at various concentrations. The results have been expressed in terms of LD₅₀, *i.e.* median lethal dose at which 50% of nematodes became immobile. The screened data reveal that compound **8f** and **9f** are the most effective against *D. myceliophagus* and *C. elegans* with LD₅₀ values of 210 and 240 ppm, respectively.

5. Experimental

Commercial grade reagents were used as supplied. Solvents except analytical reagent grade were dried and purified according to literature, when necessary. Reaction progress and purity of the compounds were checked by thin-layer chromatography (TLC) on pre-coated

Sheme 1

Sheme 2

Reagents and conditions: (a) COCl_2 , CH_2Cl_2 , Et_3N , $-78 \,^{\circ}\text{C} \ge \text{rt}$, 1.5 h; (b) NaBH_4 , EtOH, H_2O (19:1), $0 \,^{\circ}\text{C} \ge \text{rt}$; (c) propargyl bromide, NaH, DMF, $0 \,^{\circ}\text{C} \ge \text{rt}$; (d) *p*-chlorophenyl azide, sodium ascorbate, CuSO_4 , $5\text{H}_2\text{O}$, *t*-BuOH/H₂O; (e) 60%, AcOH; (f) NaIO_4 , CH_2Cl_2 ; (g) Ar-NH₂, SHCH₂COOH, ZnCl₂ toluene , 80 $^{\circ}\text{C}$; (h) Ar-NH₂, thiomalic acid, ZnCl₂ toluene , 80 $^{\circ}\text{C}$.

silica gel F254 plates from Merck and compounds were visualized either by exposure to UV light or dipping in 1% aqueous potassium permanganate solution. Silica gel chromatographic columns (60–120 mesh) were used for separations. Optical rotations were measured on an Perkin–Elmer 141 polarimeter by using a 2 mL cell with

Srinivas et al.: Synthesis and Biological Evaluation ...

Compound	R		Reaction time		Yield	
		Mol. Formula	A (h)	B (min)	Α	В
8a	C ₆ H ₅	C ₂₅ H ₂₅ ClN ₄ O ₅ S	3.5	5	62	80
8b	$4-Cl-C_6H_4$	$C_{25}H_{24}Cl_2N_4O_5S$	2.5	6	71	89
8c	$4-NO_2-C_6H_4$	$C_{25}H_{24}CIN_5O_7S$	3.0	6	69	82
8d	$2-CH_{3}-C_{6}H_{4}$	$C_{26}H_{27}CIN_4O_5S$	2.0	5	63	86
8e	$4-CH_3-C_6H_4$	$C_{26}H_{27}CIN_4O_5S$	2.5	5	68	88
8f	3-OH-C ₆ H ₄	$C_{25}H_{25}CIN_4O_6S$	3.0	5	79	86
8g	$4-OH-C_6H_4$	$C_{25}H_{25}CIN_4O_6S$	2.0	3	80	91
9a	C_6H_5	$C_{27}H_{27}CIN_4O_7S$	3.5	5	63	79
9b	$4-Cl-C_6H_4$	$C_{27}H_{26}Cl_2N_4O_7S$	2.5	6	65	82
9c	$4-NO_2-C_6H_4$	$C_{27}H_{26}Cl_2N_5O_9S$	3.0	7	61	79
9d	$2-CH_3-C_6H_4$	$C_{28}H_{29}CIN_4O_7S$	2.5	5	70	81
9e	$4-CH_3-C_6H_4$	$C_{28}H_{29}CIN_4O_7S$	2.0	5	67	82
9f	3-OH-C ₆ H ₄	$C_{27}^{20}H_{27}^{27}CIN_{4}O_{8}S$	3.0	5	77	87
9g	$4-OH-C_6H_4$	$C_{27}^{27}H_{27}^{27}CIN_4O_8^{3}S$	2.5	4	79	90

Table 1: Synthesis of	f Compounds	8a-g and 9a-g
-----------------------	-------------	---------------

A: conventional heating, B: microwave irradiation

Table 2. Antibacterial and nematicidal activity of 8a-g and 9a-g

		Anti bacteria	al activity			
Compound	Minimum inihibitory concentration (MIC, µg/mL)			Nematicidal activity		
	B. subtilis	S. aureus	E. coli	S. pyogenes	D. myceliophagus	C. elegans
8a	50	25	50	50	940	960
8b	12.5	12.5	25	12.5	360	400
8c	25	25	12.5	12.5	440	390
8d	25	50	25	25	610	650
8e	100	50	50	50	1070	1010
8f	12.5	12.5	12.5	50	210	320
8g	50	50	100	25	420	670
9a	50	50	_	25	710	650
9b	12.5	25	12.5	12.5	400	350
9c	25	25	25	12.5	490	510
9d	50	100	_	50	1030	1050
9e	50	50	50	50	910	970
9f	12.5	12.5	25	12.5	360	240
9g	50	25	50	50	660	540
Streptomycin 10	10	10	10	-	_	
Neomycin 30	30	30	30	_	_	

a path length of 1 dm with CHCl₃ or CDCl₃ as solvent. Microwave reactions are carried out in a mini lab microwave catalytic reactor (ZZKD, WBFY-201). All melting points are uncorrected and measured using Fisher–Johns apparatus. IR spectra were recorded as KBr disks on a Perkin–Elmer FT IR spectrometer. The ¹H NMR and ¹³C NMR spectra were recorded on a Varian Gemini spectrometer (300 MHz for ¹H and 75 MHz for ¹³C). Chemical shifts are reported as δ in ppm against TMS as internal reference and coupling constants *J* are reported in Hz units. Mass spectra were recorded on a VG micro mass 7070H spectrometer. Elemental analyses (C, H, N) were determined by a Perkin–Elmer 240 CHN elemental analyzer and were within $\pm 0.4\%$ of theoretical values.

(3aR,5R,6aS)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl) -2,2-dimethyldihydrofuro[3,2-d][1,3]dioxol-6(3aH)one (2). Dissolved 8.5 mL of oxalylchloride in 20 mL of dry CH₂Cl₂. Stirred, cooled to -78 °C. Added 14 mL of DMSO. Added a solution of 5 g of alcohol in 30 mL of CH₂Cl₂. Stirred for 45 min. Added 40 mL Et₃N. After 15 min, warmed to 0 °C. After 10 min TLC showed complet reaction. The reaction mixture was placed on silica gel column and the product was purified column chromatography (Silica gel 60–120 mesh, 10% ethyl

Srinivas et al.: Synthesis and Biological Evaluation ...

acetate in hexane) gave **3** quantitative yield (4.5 g) as a yellow syrup, which was used as such for the next reaction.

(3aR,5S,6R,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4yl)-2,2-dimethyltetrahydrofuro[3,2-d][1,3]dioxol-6-ol (3). To a stirred solution of 2 (4.5 g, 19 mmol) in aq. ethanol (EtOH-H₂O 19 : 1; 100 mL), NaBH₄ (0.37 g, 9.7 mmol) was added at 0 °C and then reaction mixture was stirred for 1 h. Solvent was evaporated in vaccuo, residue treated with saturated NH₄Cl solution (10 mL) and stirred at room temperature for additional 10 min. The reaction mixture was extracted with EtOAc $(2 \times 50 \text{ mL})$ and organic layer separated was washed with water (50 mL), brine (50 mL), dried (Na₂SO₄) and evaporated. Residue obtained was purified by column chromatography (60-120 mesh silica gel, 60% ethyl acetate in pethrol ether) to afford **3** (3.8g, 80%) as a white solid; mp 82 °C; $[\alpha]_{D}^{20}$ = +82.49 (c 1.62, CHCl₂); IR (KBr): v 3413, 2994, 2927, 1632, 1375, 1220, 1162, 1072, 1010 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 298 K): δ 5.75 (d, 1H, J = 3.7 Hz, C₁H), 4.56 (d, 1H, J = 4.2 Hz, C₂H), 4.23 (m, 1H, C₅H), 4.07–3.91 (m, 3H, C_4 H, 2 × C_6 H), 3.74 (dd, 1H, J = 8.0, 4.3 Hz, C_{3} H), 2.44 (d, 1H, J = 8.4 Hz, OH), 1.56 (s, 3H, CH₃), 1.44 (s, 3H, CH₃), 1.36 (s, 6H, $2 \times CH_3$); ¹³C NMR (75 MHz, CDCl₃): δ 112.8, 109.8, 103.9, 79.7, 79.0, 75.5, 72.5, 65.8, 26.6, 26.5, 26.3, 25.3; MS: m/z (M⁺+Na) 283.1171.

(3aR,5R,6R,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4yl)-2,2-dimethyl-6-(prop-2-ynyloxy)tetrahydrofuro[3,2-d][1,3]dioxole (4). Sodium hydride (60% in mineral oil, 0.64 g) was added to a stirred solution of 3 (3.6 g, 13.84 mmol) in DMF (80 mL) at 0 °C and allowed to stir for 30 min. This yellow mixture was cooled to 0 °C and treated with propargyl bromide (4.2 g) in DMF (20 mL). The dark brown reaction mixture was allowed to stir for an hour at room temperature and quenched (at 5–10 $^{\circ}$ C) with saturated aqueous ammonium chloride (20 mL). The crude product was extracted with methylene chloride $(3 \times$ 30 mL), dried (Na₂SO₄) and concentrated. The residue was purified by column chromatography on silica gel (5%) ethyl acetate-hexane) to afford 4 (3.1 g, 75%) as viscous oil. $[\alpha]_{D}^{20} = -6.3$ (c 1.7, CHCl₃). IR (KBr): v 3310, 2995, 2928, 2268, 1634, 1379, 1224, 1164, 1075, 1018 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 5.62 (d, J = 3.7 Hz, 1H, C₁H), $4.69 (t, J = 3.9 Hz, 1H, C_2H), 4.36 (dt, J = 3.1, 7.3 Hz, 1H)$ C_5H), 4.21 (s, 2H, CH₂), 4.09–3.96 (m, 3H, C_4H , 2 × C_6H), 3.68 (dd, J = 8.9, 4.1 Hz, 1H, C_3H), 3.19 (s, 1H, CH), 1.56 (s, 3H, CH₃), 1.42 (s, 3H, CH₃), 1.36 (s, 6H, 2 × CH₂); ¹³C NMR (75 MHz, CDCl₂): δ 112.7, 109.5, 103.8, 80.2, 77.6, 77.2, 74.6, 66.2, 57.2, 26.6, 26.2. MS: m/z (M^++Na) 321.10.

 $\label{eq:constraint} \begin{array}{l} 1-(4-Chlorophenyl)-4-(((3aR,5R,6R,6aR)-5-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofu-\\ \end{array}$

ro[3,2-d][1,3]dioxol-6-yloxy)methyl)-1H-1,2,3-triazole (5). To a solution containing alkyne 4 (3 g, 10.06 mmol), p-chlorophenyl azide (1.8 g, 11.76 mmol) in dichloro methane (30 mL) and water (30 mL) were added $CuSO_4$. $5H_2O$ (1.8 g, 8.15 mmol) and sodium ascorbate (1.2 g). The resulting suspension was stirred at room temperature for 4-6 h. After this time, the mixture was diluted with 20 mL dichloromethane and 20 mL water. The organic phase was separated, dried with sodium sulfate and concentrated at reduced pressure, the crude residue was purified by column chromatography on silica gel (60-120 mesh, 35% EtOAc-hexane) to afford 5 (3.2 g, 75%) as a white powder. mp 159–161°C. $[\alpha]_{D}^{20} = -91.3$ (*c* 1.7, CHCl₃). IR (KBr): v 3250, 2975, 2928, 1634, 1554, 1512, 1376, 1220, 1168, 1072, 1020, 736 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.05 (s, 1H, Ar-H), 7.56 (d, J = 9.2 Hz, 2H, ArH), 7.45 $(d, J = 8.9 \text{ Hz}, 2\text{H}, \text{Ar-H}), 5.59 (d, J = 3.7 \text{ Hz}, 1\text{H}, C_1\text{H}),$ 4.65 (t, J = 3.9 Hz, 1H, C₂H), 4.59 (s, 2H, CH₂), 4.39 (dt, J = 3.1, 7.3 Hz, 1H, C₅H), 4.09–3.96 (m, 3H, C₄H, 2 × C_6H), 3.71 (dd, J = 8.9, 4.1 Hz, 1H, C_3H), 1.54 (s, 3H, CH_{3}), 1.40 (s, 3H, CH_{3}), 1.34 (s, 6H, 2 × CH_{3}); ¹³C NMR (75 MHz, CDCl₂): δ 144.1, 134.5, 122.4, 119.5, 112.5, 109.6, 103.6, 80.0, 77.4, 74.2, 67.5, 66.2, 26.6, 26.2, 24.9. MS: m/z (M⁺+H) 452.10. Anal. Calcd for C₂₁H₂₆ClN₃O₆: C, 55.81; H, 5.80; N, 9.30. Found: C, 55.75; H, 5.75; N, 9.21.

(R)-1-((3aR,5R,6R,6aR)-6-((1-(4-chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)-2,2-dimethyltetrahydrofuro[3,2-d][1,3]dioxol-5-yl)ethane-1,2-diol (6). A mixture of 5 (3 g, 6.65 mmol) in 60% aq. AcOH (25 mL) was stirred at room temperature for 12 h. Reaction mixture was neutralized with anhy. NaHCO₃ (15 g) and extracted with EtOAc $(3 \times 41 \text{ mL})$. The combined organic layers were dried (Na₂SO₄), evaporated and residue purified by column chromatography (60-120 mesh silica gel, 41% EtOAc-pethroleum ether) to afford 6 (2.6 g, 82%) as a pale yellow solid. mp 168–171°C IR. (KBr): v 3228, 3486, 3372, 2994, 2975, 2946, 2928, 1634, 1554, 1512, 1217, 1164, 1020, 736 cm⁻¹. ¹H NMR (300 MHz, CDCl₂): δ 8.03 (s, 1H, Ar-H), 7.54 (d, J = 9.2 Hz, 2H, ArH), 7.43 (d, J = 8.9 Hz, 2H, Ar-H), 5.51 (d, J = 3.7 Hz, 1H, C₁H), 4.56 $(t, J = 3.9 \text{ Hz}, 1\text{H}, C_2\text{H}), 4.59 (s, 2\text{H}, \text{OCH}_2), 3.98-3.93$ (m, 2H, C_4H , C_5H), 4.01–3.92 (m, 3H, C_3H , 2 × C_6H), 2.44 (bs, 1H, OH), 1.54 (s, 3H, CH₃), 1.50 (bs, 1H, OH), 1.34 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 144.2, 134.2, 122.1, 119.2, 112.2, 109.2, 103.1, 79.8, 77.1, 74.1, 67.2, 66.2, 64.2, 70.6, 26.6, 26.2, 24.9. MS: *m/z* (M⁺+H) 412.10. Anal. Calcd for C₁₈H₂₂ClN₃O₆: C, 52.49; H, 5.38; N, 10.21. Found: C, 52.35; H, 5.25; N, 10.211.

2-((3aR,5*S*,6*S*,6*aR*)-6-((1-(4-chlorophenyl)-1*H*-1,2,3triazol-4-yl)methoxy)-2,2-dimethyltetrahydrofuro[2,3*d*][1,3]dioxol-5-yl)-3-phenylthiazolidin-4-one (8a–g). To a solution of diol 6 (0.200 g, 0.48 mmol) in CH₂Cl₂ (5 mL), NaIO₄ (0.130 g, 0.61 mmol) was added at 0 °C and stirred at room temperature for 6 h. The reaction mixture was filtered and washed with CH_2Cl_2 (2 × 10 mL). It was dried (Na₂SO₄) and evaporated to give aldehyde 7 (0.150 g) in quantitative yield as a yellow liquid, which was used as such for the next reaction.

To a stirred mixture of 7 (0.150 g, 0.395 mmol), aromatic amine (0.395 mmol) and anhydrous thioglycolic acid (0.160 g, 0.211 mmol) in dry toluene (5 mL), ZnCl₂ (0.100 g, 0.751 mmol) was added after 2 min and irradiated in microwave bath reactor at 280 W for 4-7 minutes at 110°C. After cooling, the filtrate was concentrated to dryness under reduced pressure and the residue was taken up in ethyl acetate. The ethyl acetate layer was washed with 5% sodium bicarbonate solution and finally with brine. The organic layer was dried over Na₂SO₄ and evaporated to dryness at reduced pressure. The crude product thus obtained was purified by column chromatography on silica gel (60-120 mesh) with hexane-ethyl acetate as eluent. Under conventional method the reaction mixture in toluene (10 mL) was refluxed at 110 °C for the appropriate time (Table 1).

2-((3aR,5S,6S,6aR)-6-((1-(4-Chlorophenyl)-1H-1,2,3triazol-4-yl)methoxy)-2,2-dimethyltetrahydrofuro[2,3d][1,3]dioxol-5-yl)-3-phenylthiazolidin-4-one (8a). mp 147-149°C; IR (KBr) v 3432, 3230, 2986, 2975, 2944, 2836, 1716, 1612, 1551, 1512, 1416, 1221, 687 cm⁻¹. ¹H NMR (300 MHz, CDCl₂): δ 8.06 (s, 1H, Ar-H), 7.52 (d, J = 9.2 Hz, 2H, Ar-H), 7.42 (d, J = 8.9 Hz, 2H, Ar-H), 7.52–6.90 (5H, m, Ar-H), 5.75 (d, J = 3.6 Hz, 1H, C₁H), 4.93 (d, J = 5.2 Hz, CH-S), 4.62 (t, J = 3.9 Hz, 1H, C₂H), 4.52 (s, 2H, OCH₂), 3.98–3.95 (m, 1H, C₄H), 3.75 (s, 2H, CH_2), 3.31 (dd, J = 9.1, 4.2 Hz, 1H, C_3H), 1.55 (s, 3H, CH₂), 1.32 (m, 3H, CH₂); ¹³C NMR (75 MHz, CDCl₂): δ 171.6, 144.2, 141.2, 134.8, 134.2, 128.9, 128.2, 127.4, 122.2, 119.6, 119.2, 104.8, 81.2, 78.5, 74.4, 66.9, 52.0, 34.6, 26.5; MS: m/z (M++Na) 552.10. Anal. Calcd for C₂₅H₂₅ClN₄O₅S: C, 56.76; H, 4.76; N, 10.59. Found: C, 56.53; H, 4.55; N, 10.43.

3-(4-Chlorophenyl)-2-((3aR,5S,6S,6aR)-6-((1-(4-chlorophenyl)-1H-imidazol-4-vl)methoxy)-2.2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)thiazolidin-4-one (8b). mp 216–218 °C; IR (KBr) v 3430, 3229, 2984, 2972, 2832, 1712, 1610, 1549, 1510, 1412, 1219, 682 cm^{-1} ; ¹H NMR (300 MHz, CDCl₂): δ 8.02 (s, 1H, Ar-H), 7.50 (d, J = 9.2 Hz, 4H, Ar-H), 7.41 (d, J = 8.9 Hz, 4H, Ar-H), 5.72 (d, J = 3.6 Hz, 1H, C₁H), 4.94 (d, J = 5.2 Hz, CH-S), 4.60 (t, *J* = 3.9 Hz, 1H, C₂H), 4.51 (s, 2H, OCH₂), 3.96-3.91 (m, 1H, C₄H), 3.76 (s, 2H, CH₂), 3.31 (dd, J =9.1, 4.2 Hz, 1H, C₃H), 1.55 (s, 3H, CH₃), 1.32 (m, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 170.6, 139.4, 134.8, 133.2, 129.4, 128.6, 125.6, 122.2, 119.4, 111.2, 104.9, 81.5, 74.5, 66.3, 52.6, 34.6, 26.5; MS: *m/z* (M⁺+H) 563.10. Anal. Calcd for C₂₅H₂₄Cl₂N₄O₅S: C, 53.29; H, 4.29; N, 9.94. Found: C, 53.21; H, 4.16; N, 9.83.

2-((3aR,5S,6S,6aR)-6-((1-(4-Chlorophenyl)-1H-1,2,3triazol-4-yl)methoxy)-2,2-dimethyltetrahydrofuro[2,3d][1,3]dioxol-5-yl)-3-(4-nitrophenyl)thiazolidin-4-one (8c). mp 201–205°C; IR (KBr) v 3432, 3226, 2982, 2971, 2830, 1710, 1608, 1546, 1512, 1414, 1374, 1216, 865, 632 cm⁻¹; ¹H NMR (300 MHz, CDCl₂): δ 8.26 (d, J = 8.7Hz, 2H), 8.04 (s, 1H, Ar-H), 7.51 (d, J = 9.2 Hz, 2H, Ar-H), 7.42 (d, J = 8.5 Hz, 2H, Ar-H), 6.82 (d, J = 9.8 Hz, 2H, Ar-H), 5.71 (d, J = 3.6 Hz, 1H, C₁H), 4.96 (d, J = 5.2Hz, CH-S), 4.62 (t, J = 3.9 Hz, 1H, C₂H), 4.53 (s, 2H, OCH₂), 3.96–3.91 (m, 1H, C₄H), 3.76 (s, 2H, CH₂), 3.28 $(dd, J = 9.1, 4.2 Hz, 1H, C_3H), 1.52 (s, 3H, CH_3), 1.34 (m,$ 3H, CH₂); ¹³C NMR (75 MHz, CDCl₂): δ 170.6, 147.5, 144.4, 143.2, 134.8, 131.2, 128.6, 124.6, 122.4, 119.8, 111.8, 104.9, 81.5, 78.2, 74.8, 66.9, 52.4, 34.6, 26.8; MS: m/z (M⁺+H) 574.10. Anal. Calcd for C₂₅H₂₄ClN₅O₇S: C, 52.31; H, 4.21; N, 12.20. Found: C, 52.26; H, 4.19; N, 12.11.

2-((3aR,5S,6S,6aR)-6-((1-(4-Chlorophenyl)-1H-1,2,3triazol-4-vl)methoxy)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)-3-o-tolylthiazolidin-4-one (8d). mp 181–183°C; IR (KBr) v 3436, 3234, 2986, 2976, 2834, 1710, 1705, 1610, 1549, 1516, 1418, 1262, 865 cm⁻¹; ¹H NMR (300 MHz, CDCl₂): δ 8.23 (d, J = 8.7 Hz, 2H, Ar-H), 8.04 (s, 1H, Ar-H), 7.54 (d, J = 9.2 Hz, 2H, Ar-H), 7.45–6.82 (m, 5H, Ar-H), 5.74 (d, J = 3.6 Hz, 1H, C₁H), 4.94 (d, J = 5.2 Hz, 1H, CH-S), 4.62 (t, J = 3.9Hz, 1H, C₂H), 4.54 (s, 2H, OCH₂), 3.96–3.91 (m, 1H, C_4H), 3.76 (s, 2H, CH₂), 3.26 (dd, J = 9.1, 4.2 Hz, 1H, C₂H), 2.1 (s, 3H, CH₂), 1.53 (s, 3H, CH₂), 1.36 (m, 3H, CH₂); ¹³C NMR (75 MHz, CDCl₂): δ 170.6, 144.6, 138.7, 134.8, 134.3, 130.6, 129.4, 128.6, 125.8, 122.6, 119.8, 111.6, 104.8, 81.7, 78.6, 74.7, 66.5, 52.4, 26.6, 16.5; MS: m/z (M++H) 545.10. Anal. Calcd for C₂₆H₂₇ClN₄O₅S: C, 57.51; H, 5.51; N, 10.32. Found: C, 56.86; H, 5.39; N, 10.11.

2-((3aR,5S,6S,6aR)-6-((1-(4-Chlorophenyl)-1H-1,2,3triazol-4-yl)methoxy)-2,2-dimethyltetrahydrofuro[2,3d][1,3]dioxol-5-yl)-3-p-tolylthiazolidin-4-one (8e). mp 191-193°C; IR (KBr) v 3428, 3230, 2986, 2976, 2832, 1708, 1698, 1608, 1546, 1514, 1416, 1261, 859 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.26 (d, J = 8.7 Hz, 2H, Ar-H), 8.04 (s, 1H, Ar-H), 7.54 (d, J = 9.2 Hz, 2H, Ar-H), 7.39 (d, J = 8.3 Hz, 2H, Ar-H), 7.15 (d, J = 8.3 Hz, 2H, Ar-H), 5.76 (d, J = 3.6 Hz, 1H, C₁H), 4.96 (d, J = 5.2 Hz, 1H, CH-S), 4.66 (t, J = 3.9 Hz, 1H, C₂H), 4.54 (s, 2H, OCH₂), 3.96–3.91 (m, 1H, C₄H), 3.76 (s, 2H, CH₂), 3.26 $(dd, J = 9.1, 4.2 Hz, 1H, C_3H), 2.30 (s, 3H, CH_3), \overline{1.53} (s, 3$ 3H, CH₃), 1.36 (m, 3H, CH₃); ¹³C NMR (75 MHz, CDC-1₃): δ 172.6, 143.2, 137.4, 133.6, 132.3, 131.2, 128.4, 127.9, 124.8, 122.9, 119.2, 111.2, 103.8, 81.2, 78.1, 74.1, 65.9, 51.4, 26.1, 16.1; MS: *m/z* (M⁺+Na) 565.10. Anal. Calcd for C₂₆H₂₇ClN₄O₅S: C, 57.51; H, 5.51; N, 10.32. Found: C, 56.82; H, 5.35; N, 10.09.

833

2-((3aR,5S,6S,6aR)-6-((1-(4-Chlorophenyl)-1H-1,2,3triazol-4-yl)methoxy)-2,2-dimethyltetrahydrofuro[2,3d][1,3]dioxol-5-yl)-3-(3-hydroxyphenyl)thiazolidin-4one (8f). mp 208–209°C; IR (KBr) v 3535, 3426, 3231, 2985, 2974, 2832, 1710, 1610, 1549, 1516, 1418, 1261, 864 cm⁻¹; ¹H NMR (300 MHz, CDCl₂): δ 8.26 (d, J = 8.7 Hz, 2H, Ar-H), 8.03 (s, 1H, Ar-H), 7.56 (d, J = 9.2 Hz, 2H, Ar-H), 7.14–6.70 (m, 4H, Ar-H), 5.76 (d, J = 3.6 Hz, 1H, C_1H , 5.40 (s, 1H, OH), 4.96 (d, J = 5.2 Hz, 1H, CH-S), 4.66 (t, J = 3.9 Hz, 1H, C₂H), 4.54 (s, 2H, OCH₂), 3.93-3.96 (m, 1H, C₄H), 3.74 (s, 2H, CH₂), 3.26 (dd, J =9.1, 4.2 Hz, 1H, C₃H), 1.53 (s, 3H, CH₃), 1.38 (m, 3H, CH₂); ¹³C NMR (75 MHz, CDCl₂): δ 171.6, 158.3, 144.2, 143.2, 134.6, 134.4, 130.6, 128.6, 122.2, 120.1, 119.4, 114.6, 111.8, 107.6, 106.8, 81.8, 78.6, 74.8, 64.9, 54.9, 41.1, 35.3; MS: m/z (M⁺+H) 545.20. Anal. Calcd for C₂₅H₂₅ClN₄O₆S: C, 55.09; H, 4.62; N, 10.28. Found: C, 54.82; H, 4.55; N, 10.19.

2-((3aR,5S,6S,6aR)-6-((1-(4-Chlorophenyl)-1H-1,2,3triazol-4-vl)methoxy)-2,2-dimethyltetrahydrofuro[2,3d][1,3]dioxol-5-yl)-3-(4-hydroxyphenyl)thiazolidin-4one (8g). mp 263–265°C; IR (KBr) v 3541, 3425, 3232, 2987, 2980, 2834, 1710, 1612, 1546, 1519, 1416, 1258, 862 cm⁻¹; ¹H NMR (300 MHz, CDCl₂): δ 8.22 (d, J = 8.7 Hz, 2H, Ar-H), 8.06 (s, 1H, Ar-H), 7.54 (d, J = 9.2 Hz, 2H, Ar-H), 7.10–6.70 (m, 4H, Ar-H), 5.76 (d, J = 3.6 Hz, 1H, C_1H), 5.28 (s, 1H, OH), 4.92 (d, J = 5.2 Hz, 1H, CH-S), 4.65 (t, J = 3.9 Hz, 1H, C₂H), 4.52 (s, 2H, OCH₂), 3.91-3.94 (m, 1H, C₄H), 3.79 (s, 2H, CH₂), 3.34 (dd, J =9.1, 4.2 Hz, 1H, C₃H), 1.52 (s, 3H, CH₃), 1.36 (m, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 171.2, 157.8, 143.8, 143.2, 133.9, 133.4, 130.2, 127.6, 121.9, 120.5, 1198.8, 114.2, 111.2, 106.8, 81.4, 78.2, 73.8, 62.9, 54.2, 40.9, 34.9; MS: m/z (M⁺+H) 545.20. Anal. Calcd for C₂₅H₂₅ClN₄O₆S: C, 55.09; H, 4.62; N, 10.28. Found: C, 54.92; H, 4.59; N, 10.22.

2-(2-((3aR,5S,6S,6aR)-6-((1-(4-Chlorophenyl)-1*H*-1,2,3-triazol-4-yl)methoxy)-2,2-dimethyltetrahydrofuro[2,3-*d*][1,3]dioxol-5-yl)-4-oxo-3-phenylthiazolidin-5yl)acetic acid (9 a–g). To a solution of diol 6 (0.200 g, 0.48 mmol) in CH₂Cl₂ (5 mL), NaIO₄ (0.130 g, 0.61 mmol) was added at 0 °C and stirred at room temperature for 6 h. The reaction mixture was filtered and washed with CH₂Cl₂ (2 × 10 mL). It was dried (Na₂SO₄) and evaporated to give aldehyde 7 (0.150 g) in quantitative yield as a yellow liquid, which was used as such for the next reaction.

To a stirred mixture of **7** (0.150 g, 0.395 mmol), aromatic amine (0.395 mmol) and thiomalic acid (0.125 g, 0.86 mmol) in dry toluene (5 mL), anhydrous ZnCl_2 (0.100 g, 0.751 mmol) was added after 2 min and irradiated in microwave bath reactor at 280 W for 4–7 min at 110 °C. After cooling, the filtrate was concentrated to dryness under reduced pressure and the residue was taken up in ethyl acetate. The ethyl acetate layer was washed with 5% sodium bicarbonate solution and finally with brine. The organic layer was dried over Na_2SO_4 and evaporated to dryness at reduced pressure. The crude product thus obtained was purified by column chromatography on silica gel (60–120 mesh) with hexane–ethyl acetate as the eluent. Under conventional method the reaction mixture in toluene (10 mL) was refluxed at 110 °C for the appropriate time (Table 1).

2-(2-((3aR,5S,6S,6aR)-6-((1-(4-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)-4-oxo-3-phenylthiazolidin-5yl)acetic acid (9a). mp 211-214°C; IR (KBr) v 3436, 3226, 2984, 2973, 2942, 2832, 1724, 1614, 1549, 1510, 1412, 1224, 685 cm⁻¹; ¹H NMR (300 MHz, CDCl₂): δ 11.44 (s, 1H, CO₂H), 8.09 (s, 1H, Ar-H), 7.55 (d, J = 9.2Hz, 2H, Ar-H), 7.48 (d, J = 8.9 Hz, 2H, Ar-H), 6.73–7.35 (m, 5H, Ar-H), 6.15 (s, 1H, CHS), 5.73 (d, J = 4.2 Hz, 1H, C_1H), 4.69 (t, J = 3.9 Hz, 1H, C_2H), 4.65 (t, 1H, CH), 4.52 $(s, 2H, OCH_2), 3.92-3.89 (m, 1H, C_4H), 3.31 (dd, J = 9.1),$ 4.2 Hz, 1H, C₂H), 2.38 (d, 2H, CH₂), 1.53 (s, 3H, CH₂), 1.30 (m, 3H, CH₂); 13 C NMR (75 MHz, CDCl₂): δ 170.9, 143.8, 141.2, 134.2, 128.2, 126.8, 122.1, 118.8, 104.2, 80.4, 77.9, 73.8, 66.1, 52.0, 37.2, 33.9, 25.9; MS: m/z (M⁺+H) 545.20. Anal. Calcd for $C_{27}H_{27}ClN_4O_7S$: C, 55.24; H, 4.64; N, 9.54. Found: C, 55.12; H, 4.59; N, 9.39.

2-(3-(4-Chlorophenyl)-2-((3aR,5S,6S,6aR)-6-((1-(4chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)-4-oxothiazolidin-5-yl)acetic acid (9b). mp 259-261 °C; IR (KBr) v 3438, 3431, 2982, 2829, 1724, 1716, 1608, 1539, 1509, 1410, 1216, 689 cm⁻¹; ¹H NMR (300 MHz, CDCl₂): δ 11.44 (s, 1H, CO₂H), 7.98 (s, 1H, Ar-H), 7.45 (d, J = 9.2Hz, 4H, Ar-H), 7.39 (d, J = 8.9 Hz, 4H, Ar-H), 6.14 (s, 1H, CHS), 5.73 (d, J = 4.2 Hz, 1H, C₁H), 4.69 (t, J = 3.9 Hz, 1H, C₂H), 4.65 (t, 1H, CH), 4.52 (s, 2H, OCH₂), 3.92-3.89 (m, 1H, C₄H), 3.20 (dd, J = 9.1, 4.2 Hz, 1H, C₂H), 2.34 (d, 2H, CH₂), 1.53 (s, 3H, CH₂), 1.30 (m, 3H, CH₂); ¹³C NMR (75 MHz, CDCl₂): δ 170.6, 143.2, 141.6, 134.6, 128.8, 126.9, 122.2, 118.4, 104.5, 80.6, 77.6, 73.2, 66.4, 52.3, 36.9, 33.2, 25.6; MS: *m/z* (M⁺+H) 621.13. Anal. Calcd for C₂₇H₂₆Cl₂N₄O₇S: C, 52.18; H, 4.22; N, 9.01. Found: C, 52.02; H, 4.09; N, 8.95

2-(2-((3aR,5S,6S,6aR)-6-((1-(4-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)-2,2-dimethyltetrahydrofuro[2,3*d*][**1,3]dioxol-5-yl)-3-(4-nitrophenyl)-4-oxothiazolidin-5-yl)aceticacid (9c).** mp 256–258 °C; IR (KBr) v 3428, 3434, 3225, 2981, 2966, 2820, 1725, 1710, 1609, 1536, 1510, 1412, 1373, 1210, 863, 639 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 11.45 (s, 1H, CO₂H), 8.21 (d, *J* = 8.4 Hz, 2H), 8.01 (s, 1H, Ar-H), 7.49 (d, *J* = 9.1 Hz, 2H, Ar-H), 7.41 (d, *J* = 8.5 Hz, 2H, Ar-H), 6.79 (d, *J* = 9.6 Hz, 2H, Ar-H), 6.14 (s, 1H, CHS), 5.69 (d, *J* = 4.2 Hz, 1H, C₁H), 4.65 (t, 1H, CH), 4.53 (t, *J* = 3.9 Hz, 1H, C₂H), 4.52 (s, 2H, OCH₂), 3.90–3.86 (m, 1H, C₄H), 3.19 (dd, *J* = 9.1, 4.2 Hz, 1H, C₃H), 2.30 (d, 2H, CH₂), 1.49 (s, 3H, CH₃), 1.25 (m, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 190.2, 173.2, 143.6, 141.9, 134.5, 128.2, 126.5, 122.2, 118.2, 104.3, 80.4, 77.2, 73.1, 66.2, 52.1, 36.4, 33.1, 25.4; MS: *m*/z (M⁺+H) 632.13. Anal. Calcd for C₂₇H₂₆Cl₂N₅O₉S: C, 51.31; H, 4.15; N, 11.08. Found: C, 51.19; H, 4.09; N, 10.95.

2-(2-((3aR,5S,6S,6aR)-6-((1-(4-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)-4-oxo-3-o-tolylthiazolidin-5yl)acetic acid (9d). mp 247-249 °C; IR (KBr) v 3431, 3229, 2978, 2834, 1709, 1699, 1610, 1550, 1516, 1418, 1264, 853 cm⁻¹; ¹H NMR (300 MHz, CDCl₂): δ 11.45 (s, 1H, CO₂H), 8.22 (d, J = 8.4 Hz, 2H, Ar-H), 8.06 (s, 1H, Ar-H), 7.50 (d, J = 9.1 Hz, 2H, Ar-H), 7.42–6.85 (m, 4H, Ar-H), 6.14 (s, 1H, CHS), 5.65 (d, J = 4.2 Hz, 1H, C₁H), 4.60 (t, 1H, CH), 4.53 (t, J = 3.9 Hz, 1H, C₂H), 4.54 (s, $2H, OCH_2$, 3.92-3.86 (m, $1H, C_4H$), 3.22 (dd, J = 9.1, 4.2Hz, 1H, C₃H), 2.34 (d, 2H, CH₂), 2.21 (s, 3H, CH₂), 1.51 (s, 3H, CH₃), 1.29 (m, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₂): δ 191.4, 173.4, 144.6, 142.9, 133.9, 125.4, 122.2, 119.2, 105.6, 80.6, 77.4, 73.4, 66.5, 53.1, 36.3, 33.2, 25.2, 16.2; MS: m/z (M⁺+H) 600.13. Anal. Calcd for C₂₈H₂₉ClN₄O₇S: C, 55.95; H, 4.86; N, 9.32. Found: C, 54.19; H, 4.62; N, 9.15.

2-(2-((3aR,5S,6S,6aR)-6-((1-(4-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)-4-oxo-3-p-tolylthiazolidin-5yl)aceticacid (9e). mp 197-199 °C; IR (KBr) v 3435, 3239, 2971, 2830, 1710, 1696, 1615, 1540, 1510, 1428, 1254, 843 cm⁻¹; ¹H NMR (300 MHz, CDCl₂): δ 11.45 (s, 1H, CO₂H), 8.20 (d, J = 8.4 Hz, 2H, Ar-H), 8.04 (s, 1H, Ar-H), 7.54 (d, J = 9.1 Hz, 2H, Ar-H), 7.36 (d, J = 8.3 Hz, 2H, Ar-H), 7.12 (d, J = 8.3 Hz, 2H, Ar-H), 6.14 (s, 1H, CHS), 5.65 (d, J = 4.2 Hz, 1H, C₁H), 4.60 (t, 1H, CH), 4.53 (t, J = 3.9 Hz, 1H, C₂H), 4.54 (s, 2H, OCH₂), 3.92-3.86 (m, 1H, C₄H), 3.22 (dd, J = 9.1, 4.2 Hz, 1H, C₂H), 2.34 (d, 2H, CH₂), 2.21 (s, 3H, CH₂), 1.51 (s, 3H, CH₂), 1.29 (m, 3H, CH₂); ¹³C NMR (75 MHz, CDCl₂): δ 191.4, 173.4, 144.6, 142.9, 133.9, 125.4, 122.2, 119.2, 105.6, 80.6, 77.4, 73.4, 66.5, 53.1, 36.3, 33.2, 25.2, 16.2; MS: m/z (M⁺+H) 600.13. Anal. Calcd for C₂₈H₂₉ClN₄O₇S: C, 55.95; H, 4.86; N, 9.32. Found: C, 54.19; H, 4.62; N, 9.15.

2-(2-(((3aR,5S,6sR)-6-(((1-(4-Chlorophenyl)-1*H***-1,2,3-triazol-4-yl)methoxy)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)-3-(3-hydroxyphenyl)-4oxothiazolidin-5-yl)acetic acid (9f).** mp 227–229 °C; IR (KBr) v 3535, 3436, 3236, 2975, 2832, 1710, 1610, 1544, 1516, 1418, 1261, 864 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 11.42 (s, 1H, CO₂H), 8.24 (d, *J* = 8.7 Hz, 2H, Ar-H), 8.03 (s, 1H, Ar-H), 7.56 (d, *J* = 9.2 Hz, 2H, Ar-H), 7.14–6.70 (m, 4H, Ar-H), 6.14 (s, 1H, CHS), 5.76 (d, *J* = 3.6 Hz, 1H, C₁H), 5.42 (s, 1H, OH), 4.96 (d, *J* = 5.2 Hz, 1H, CH), 4.51 (t, J = 3.9 Hz, 1H, C₂H), 4.54 (s, 2H, OCH₂), 3.93–3.96 (m, 1H, C₄H), 3.26 (dd, J = 9.1, 4.2 Hz, 1H, C₃H), 2.34 (d, 2H, CH₂), 1.53 (s, 3H, CH₃), 1.38 (m, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 175.6, 171.6, 158.3, 144.2, 143.2, 134.6, 134.4, 130.6, 128.6, 122.2, 120.1, 119.4, 114.6, 111.8, 107.6, 106.8, 81.8, 78.6, 74.8, 64.9, 54.9, 41.1, 38.9, 35.3; MS: *m/z* (M⁺+H) 545.20. Anal. Calcd for C₂₇H₂₇ClN₄O₈S: C, 53.78; H, 4.52; N, 9.29. Found: C, 53.52; H, 4.35; N, 8.99.

2-(2-((3aR,5S,6S,6aR)-6-((1-(4-Chlorophenvl)-1H-1,2,3-triazol-4-yl)methoxy)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)-3-(4-hydroxyphenyl)-4-oxothiazolidin-5-yl)acetic acid (9g). mp 256-258 °C; IR (KBr) v 3532, 3430, 3226, 2973, 2830, 1710, 1616, 1534, 1506, 1411, 1258, 854 cm⁻¹; ¹H NMR (300 MHz, CDCl₂): δ 11.39 (s, 1H, CO₂H), 8.22 (d, J = 8.7 Hz, 2H, Ar-H), 8.06 (s, 1H, Ar-H), 7.52 (d, J = 9.2 Hz, 2H, Ar-H), 7.14–6.87 (m, 4H, Ar-H), 6.14 (s, 1H, CHS), 5.76 (d, J = 3.6 Hz, 1H, C₁H), 5.42 (s, 1H, OH), 4.96 (d, J = 5.2 Hz, 1H, CH), 4.51 (t, J = 3.9 Hz, 1H, C₂H), 4.54 (s, 2H, OCH_2 , 3.93–3.96 (m, 1H, C₄H), 3.26 (dd, J = 9.1, 4.2 Hz, 1H, C₃H), 2.34 (d, 2H, CH₂), 1.53 (s, 3H, CH₃), 1.38 (m, 3H, CH₂); ¹³C NMR (75 MHz, CDCl₂): δ 173.6, 171.6, 154.1, 143.2, 142.1, 133.6, 131.4, 129.6, 128.1, 122.6, 120.5, 115.4, 112.6, 111.8, 107.6, 106.8, 81.8, 78.6, 76.8, 65.9, 56.9, 42.1, 36.9, 34.3; MS: m/z (M⁺+H) 545.20. Anal. Calcd for C₂₇H₂₇ClN₄O₈S: C, 53.78; H, 4.52; N, 9.29. Found: C, 53.42; H, 4.25; N, 8.79.

6. Conclusions

A series of novel triazole linked thiazolidenone derivatives 8a-g and 9a-g was prepared and evaluated for their antibacterial and nematicidal activity against various bacterias and nematodes. The screened compounds 8b, 9f exhibited potent antibacterial activity compared to standard drugs at the tested concentrations and 8f, 9f exhibited potent nematicidal activity compared to standard drugs at the tested concentrations and 8f, 9f exhibited potent nematicidal activity compared to standard drugs at the tested concentrations.

7. Acknowledgements

The authors are thankful to CSIR - New Delhi for the financial support (Project funding No: 02(0247)15/ EMR - II), Director, CSIR - IICT, Hyderabad, India, for NMR and MS spectral analyses.

8. References

 (a) K. D. Hänni, D. A. Leigh, *Chem. Soc. Rev.* 2010, 39, 1240–1251. http://dx.doi.org/10.1039/B901974J

- (b) C. O. Kappe, E. van der Eycken, *Chem. Soc. Rev.* **2010**, *39*, 1280–1290. http://dx.doi.org/10.1039/B901973C
- (c) A. H. El-Sagheer, T. Brown, *Chem. Soc. Rev.* **2010**, *39*, 1388–1405. http://dx.doi.org/10.1039/b901971p
- (d) A. Qin, J. W. Y. Lam, B. Z. Tang, *Chem. Soc. Rev.* **2010**, *39*, 2522–2544.
- http://dx.doi.org/10.1039/b909064a
- (e) M. Meldal, C. W. Tornoe, *Chem. Rev.* 2008, 108, 2952–3015. http://dx.doi.org/10.1021/cr0783479
- (f) H. Nandivada, X. Jiang, J. Lahann, Adv. Mater. 2007, 19,
- 2197-2208. http://dx.doi.org/10.1002/adma.200602739
- (g) Y. L. Angell, K. Burgess, *Chem. Soc. Rev.* **2007**, *36*, 1674–1689. http://dx.doi.org/10.1039/b701444a
- (h) D. Fournier, R. Hoogenboom, U. S. Schubert, *Chem. Soc.*
- *Rev.* **2007**, *36*, 1369–1380.
- http://dx.doi.org/10.1039/b700809k (i) J. E. Moses, A. D. Moorhouse, *Chem. Soc. Rev.* **2007**, *36*, 1240, 1262, http://dx.doi.org/10.1020/D61201401
- 1249–1262. http://dx.doi.org/10.1039/B613014N
- (j) J. F. Lutz, *Angew. Chem. Int. Ed.* **2007**, *46*, 1018–1125. http://dx.doi.org/10.1002/anie.200604050
- (k) A. Dondoni, *Chem. Asian J.* **2007**, *2*, 700–708.
- http://dx.doi.org/10.1002/asia.200700015
- (1) H. C. Kolb, K. B. Sharpless, *Drug Discov. Today* **2003**, 8, 1128–1137.
- http://dx.doi.org/10.1016/S1359-6446(03)02933-7
- (a) A. Brik, J. Muldoon, Y.-C. Lin, J. H. Elder, D. S. Goodsell, A. J. Olson, V. V. Fokin, K. B. Sharpless, C.-H. Wong, *ChemBioChem* 2003, *4*, 1246–1248.
 http://dx.doi.org/10.1002/cbic.200300724
 (b) M. J. Soltis, H. J. Yeh, K. A. Cole, N. Whittaker, R. P. Wersto, E. C. Kohn, *Drug Metab. Dispos.* 1996, *24*, 799–806.
- (a) W.-Q. Fan, A. R. Katritzky, 1,2,3-Triazoles, In *Comprehensive Heterocyclic Chemistry II*. Edited by A. R. Katritzky, C. W. Rees, V. Scriven, Elsevier, Oxford. **1996**, *4*, 1–126, pp. 905–1006.
 - (b) M. Whiting, J. Muldoon, Y.-C. Lin, S. M. Silverman, W. Lindstrom, A. J. Olson, H. C. Kolb, M. G. Finn, K. B. Sharpless, J. H. Elder, V. V. Fokin, *Angew. Chem. Int. Ed.*, **2006**, *45*, 1435–1439.
 - http://dx.doi.org/10.1002/anie.200502161
 - (c) Y. Bourne, H. C. Kolb, Z. Radić, K. B. Sharpless, P. Taylor, P. Marchot, *Proc. Natl. Acad. Sci. USA* 2004, 101, 1449–1454. http://dx.doi.org/10.1073/pnas.0308206100
 - (d) W. G. Lewis, G. Green, F. Z. Grynszpan, Radić, P. R. Carlier, P. Taylor, M. G. Finn, K. B. Sharpless, *Angew. Chem. Int. Ed.* **2002**, *41*, 1053–1057.
 - http://dx.doi.org/10.1002/1521-3773(20020315)41:6<1053: :AID-ANIE1053>3.0.CO;2-4
- R. Huisgen, A. Padwa, 1,3-Dipolar Cycloaddition Chemistry, Ed. Wiley, New York, 1984, 1, 1–176.
- 5. (a) N. A. Al-Maoudi, A. Y. Al-Soud, *Tetrahedron Lett.* **2002**, *43*, 4021–4022.
 - http://dx.doi.org/10.1016/S0040-4039(02)00733-5
 - (b) B. H. M. Kuijpers, S. Groothuys, A. (B.) R. Keereweer, P. J. L. M. Quaedflieg, R. H. Blaauw, F. L. van Delft, F. P. J. T. Rutjes, *Org. Lett.* **2004**, *6*, 3123–3126.

http://dx.doi.org/10.1021/ol0488410

- (c) C. Srinivas, X. Fang, Q. Wang, *Tetrahedron Lett.* 2005, 46, 2331–2334.
- http://dx.doi.org/10.1016/j.tetlet.2005.01.175
- (d) S. Hotha, R. I. Anegundi, A. A. Natu, *Tetrahedron Lett.* **2005**, *46*, 4585–4588.
- http://dx.doi.org/10.1016/j.tetlet.2005.05.012

(e) S. Hotha, S. Kashyap, *J. Org. Chem.* **2006**, *71*, 364–367. http://dx.doi.org/10.1021/jo051731q

6. (a) R. B. Patel, P. S. Desai, K. R. Desai, K. H. Chikalia, *Indian J. Chem. Sec. B.* 2006, *45B*, 773–778. (b) A. Bishnoi, S. Krishna, C. K. M. Tripathi, *Indian J. Chem. Sec. B.* 2006, *45B*, 2136–2139.
(c) P. Venkateshwarlu, V. Nageshwar, Pao. I. Chem. Res.

(c) P. Venkateshwarlu, V. Nageshwar Rao, J. Chem. Res. 2004, 288–296.

- http://dx.doi.org/10.3184/0308234041209077
- 7. C. V. Dave, M. C. Shukla, *Indian J. Chem. Sec B.* **2000**, *39B*, 210–214.
- W. J. Doran, H. A. Shoukla, J. Org. Chem. 1939, 93, 626– 633.
- (a) G. Menozzi, L. Mosti, P. Schenone, M. D'Amico, M. Falcaini, W. Filippeli, *Farmaco* **1994**, *49*, 115–119. (b) J. S. Biradar, S. Y. Manjunath, *Indian J. Chem. Sec. B.* **2004**, *43B*, 389–392.
- (a) N. P. Buu-Hoi, N. D. Young, F. Binon, J. Chem. Soc. 1948, 70, 3436–3439.
 - http://dx.doi.org/10.1021/ja01190a064

(b) A. Gangiee, G. Adaer, *J. Med. Chem.* **1999**, *42*, 2447–2455. http://dx.doi.org/10.1021/jm990079m

(c) T. Srivastava, K. G. Anil, H. Wahajul, S. Sudhir, B. K. Setu, *Arkivoc* **2005**, *(ii)*, 120–130.

- B. R. Shah, N. C. Desai, P. B. Trivedi, *Indian J. Heterocycl. Chem. Sec. B.* 1993, 2, 249–252.
- N. Lingaiah, B. Yadagiri, B. Rajashaker, C. Ganesh Kumar, P. Sujitha, N. Jagadesh, *Eur. J. Med. Chem.* 2014, 71, 91–97. http://dx.doi.org/10.1016/j.ejmech.2013.10.078
- (a) A. Chimmiri, S. Grasso, A. M. Monforte, P. Monoforte, M. Zappala, *II Farmaco* 1991, 46, 817–823. (b) A. Chimmiri, S. Grasso, A. M. Monforte, P. Monoforte, M. Zappala, *II Farmaco* 1991, 46, 925–933.
 (c) A. Chimmiri, S. Grasso, C. Molica, A. M. Monforte, P. Monoforte, M. Zappala, *II Farmaco* 1996, 51, 279–282.
 (d) A. Chimmiri, S. Grasso, A. M. Monoforte, C. Pannecou-

que, M. Witvrouw, J. Balzarini, E. Declercq, *Antiviral Chem. Chemother*. **1999**, *10*, 211–217. http://dx.doi.org/10.1177/095632029901000405

(e) A. Rao, A. Chimmiri, F. Stefania, A. M. Monforte, P. Monoforte, M. Zappala, *Arkivoc* **2004**, (*v*), 147–155.

- 14. V. M. Barot, Asian J. Chem. 1996, 100, 8802-8806.
- M. H. Khan, Nizamuddin, J. Food Agric. Chem. 1995, 43, 2719–2721. http://dx.doi.org/10.1021/jf00058a032
- V. K. Ahulwalia, C. Gupta, *Heterocycles* 1991, *32*, 907–914. http://dx.doi.org/10.3987/COM-90-5636
- 17. (a) H. D. Trautmen, L. M. Longe, J. Am. Chem. Soc. 1948, 70, 3434–3436. http://dx.doi.org/10.1021/ja01190a063
 (b) A. R. Surray, J. Am. Chem. Soc. 1949, 71, 3354–3356.

http://dx.doi.org/10.1021/ja01178a023

- M. R. Manrao, J. Monika, V. K. Kaul, *Pl. Dis. Res.* 1997, *12*, 94–96.
- T. Saini, S. Kumar, B. Narasimhan, Cent. Nerv. Syst. Agents Med. Chem. 2015, 16, 19–28.
- http://dx.doi.org/10.2174/1871524915666150608103224 20. T. Kato, T. Ozaki, N. Ohi, *Tetrahedron Assymetry* **1999**, *10*,
- 3963–3968. http://dx.doi.org/10.1016/S0957-4166(99)00441-3
- 21. (a) R. B. Desyk, B. S. Zimenskovsky, *Curr. Org. Chem.* 1992, 35, 2712–2716.
 (b) A. Usha, O. Swathi, B. Dinesh, L. T. Ganpat, *Arkivoc*
- 2006, (*xiii*), 83–89.
 22. Y. Tanabe, H. Yamamoto, M. Murakami, I. K. Yanag, Y. Kubota, Y. Sanimistu, G. Suzukamo, *J. Chem. Soc. Perkin Trans. I* 1975, 7, 935–939.
- 23. U. L. B. Jayasinghe, B. M. M. Kumarihamy, A. G. D. Bandara, E. A. Vasequez, W. Kraus, *Nat. Prod. Res.* 2003, *17*, 259–262. http://dx.doi.org/10.1080/1057563021000060121
- 24. M. H. Zaki, D. Mordan, D. Harris, Am. J. Public Health 1982, 72, 1391–1395. http://dx.doi.org/10.2105/AJPH.72.12.1391
- 25. F. J. Gommers, Helmenthol. Abstr. 1981, 50, 9–22.
- 26. J. H. Uhelenbroek , J. D. Bijloo, *Targets Roots. Recl. Trav. Chim.* **2002**, *8*, 161–168.
- A. Srinivas, M. Sunitha, C. Govind Rao, *Acta Chim. Slov.* 2016, 63, 344–350.
 - http://dx.doi.org/10.17344/acsi.2015.2124
- 28. A. Srinivas, Acta Chim. Slov. 2016, 63, 344–350. http://dx.doi.org/10.17344/acsi.2015.2124
- 29. A. Srinivas, M. Sunitha, G. Rajesh Kumar, *Org. Commun.* **2016**, *91*, 1–8.

- A. Srinivas, M. Sunitha, *Indian J. Chem. Sec. B.* 2016, 55B, 102–109.
- 31. A. Srinivas, M.Sunitha, *Indian J. Chem. Sec. B.* **2016**, *55B*, 231–239.
- 32. A. Srinivas, A. Nagaraj, C. S. Reddy, *Eur. J. Med. Chem.* 2010, 45, 2353–2358. http://dx.doi.org/10.1016/j.ejmech.2010.02.014
- 33. C. S. Reddy, A. Srinivas, M. Sunitha, A. Nagaraj, J. Heterocycl. Chem. 2010, 47, 1303–1309. http://dx.doi.org/10.1002/jhet.474
- 34. C. S. Reddy, A. Nagaraj, A. Srinivas, G. P. Reddy, *Indian J. Chem. Sec. B* **2010**, *49B*, 617–622.
- 35. A. Srinivas, C. S. Reddy, A. Nagaraj, *Chem. Pharm. Bull.* 2009, 57, 685–693. http://dx.doi.org/10.1248/cpb.57.685
- C. S. Reddy, A. Srinivas, A. Nagaraj, J. Heterocycl. Chem. 2009, 46, 497–502. ttp://dx.doi.org/10.1002/jhet.100
- 37. C. S. Reddy, A. Nagaraj, A. Srinivas, G. P. Reddy, *Indian J. Chem. Sec. B* 2009, 48B, 248–254.
- 38. C. S. Reddy, A. Srinivas, A. Nagaraj, J. Heterocycl. Chem. 2008, 45, 1121–1125. http://dx.doi.org/10.1002/jhet.5570450428
- C. S. Reddy, G. P. Reddy, A. Nagaraj, A. Srinivas, Org. Commun. 2008, 1, 84–94.
- P. A. Levene, G. M. Meyer, J. Biol. Chem. 1931, 92, 257– 262.
- R. Frenkel, A. C. Sonnenwirth, *Clinical laboratory method and diagnosis*. C. V. Mosby Company, Germany, 7th Ed. 1970, 1406–1409.
- 42. C. W. McBeth, G. B. Bergerson, *Phytopathology* **1953**, *43*, 264.

Povzetek

S pomočjo kondenzacije (3aR,5S,6R,6aR)-6-((1-(4-chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)-2,2-dimethyltetrahydro[2,3-d][1,3]dioxole-5-carbaldehyde 7 z merkapto kislinami in primarnimi amini v prisotnosti ZnCl₂ smo pod pogoji obsevanja z mikrovalovi in s klasičnim segrevanjem s pomočjo enolončnega postopka pripravili serijo novih derivatov**8a–g**in**9a–g**, ki vsebujejo povezana triazolski in tiazolidinonskiobroč. Spojino 7 smo pripravili iz diaceton D-glukoze s pomočjo oksidacije, ki ji je sledila redukcija, klikreakcija, odščita primarnega acetonida in oksidativni razcep. Karakterizacijo novih spojin smo izvedli z IR,NMR, MS in elementno analizo. Raziskali smo tudi aktivnost novih spojin proti nematodam in bakterijam.

Srinivas et al.: Synthesis and Biological Evaluation ...