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Abstract

A chord diagram E is a set of chords of a circle such that no pair of chords has a
common endvertex. Let v1, v2, . . . , v2n be a sequence of vertices arranged in clockwise
order along a circumference. A chord diagram {v1vn+1, v2vn+2, . . . , vnv2n} is called an
n-crossing and a chord diagram {v1v2, v3v4, . . . , v2n−1v2n} is called an n-necklace. For a
chord diagram E having a 2-crossing S = {x1x3, x2x4}, the expansion of E with respect
to S is to replace E with E1 = (E \ S)∪ {x2x3, x4x1} or E2 = (E \ S)∪ {x1x2, x3x4}.
Beginning from a given chord diagram E as the root, by iterating chord expansions in
both ways, we have a binary tree whose all leaves are nonintersecting chord diagrams. Let
NCD(E) be the multiset of the leaves. In this paper, the multiplicity of an n-necklace in
NCD(E) is studied. Among other results, it is shown that the multiplicity of an n-necklace
generated from an n-crossing equals the Genocchi number when n is odd and the median
Genocchi number when n is even.
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1 Introduction
A set of chords of a circle is called a chord diagram, if they have no common endvertex. If
a chord diagram consists of a set of n mutually crossing chords, it is called an n-crossing.
A 2-crossing is simply called a crossing as well. If a chord diagram contains no crossing,
it is called nonintersecting.

Let V be a set of 2n vertices on a circle, and let E be a chord diagram of order
n, where each chord has endvertices of V . In this situation, V is called a support of
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E. We denote the family of all chord diagrams having V as a support by CD(V ). Let
x1, x2, x3, x4 ∈ V be placed on a circle in clockwise order. Let E ∈ CD(V ). For a
crossing S = {x1x3, x2x4} ⊂ E, let S1 = {x2x3, x4x1}, and S2 = {x1x2, x3x4}. The
expansion of E with respect to S is defined as a replacement of E with E1 = (E \S)∪S1

or E2 = (E \ S) ∪ S2 (see Figure 1).

S

S1

x1 x2

x3x4

S2

x1 x2

x3x4

x1 x2

x3x4

Figure 1: The expansion of a chord diagram with respect to a 2-crossing S. Other chords
except those in S are not shown.

LetE ∈ CD(V ) be a chord diagram. Form a binary tree as follows. Begin withE as the
root, arbitrarily choose a crossing of E, and expand E in both ways, adding the results as
children ofE. Choose crossings in each child if any exists, expand them each in both ways,
and repeat the procedure until all leaves are nonintersecting. This procedure terminates and
the multiset of leaves is independent of the choices made at each step ([14]). Let us denote
the multiset of nonintersecting chord diagrams generated fromE byNCD(E). For a chord
diagram E ∈ CD(V ), let us define the chord expansion number f(E) as the cardinality of
NCD(E) as a multiset.

For a chord diagram E, the circle graph, also called the interlace graph GE of E, is
a graph such that a vertex of GE corresponds to a chord of E and two vertices of GE are
joined by an edge if their corresponding chords of E are mutually crossing. We say that
two chord diagrams E1 and E2 with a common support are isomorphic if GE1 and GE2

are isomorphic as graphs. It is proved that f(E) equals t(GE ; 2,−1), where t(G;x, y) is
the Tutte polynomial of a graph G ([15]).

In the case E is an n-crossing Cn, its associated circle graph is a complete graph Kn

with n vertices. In [13], Merino proved that t(Kn; 2,−1) = Euln+1 for n ≥ 1, where
(Eul)n≥1 = (1, 1, 2, 5, 16, 61, 272, . . .) is the Euler number. Hence, we have f(Cn) =
Euln+1 for n ≥ 1. See also [12] for the evaluation of t(G; 2,−1) for a graph G.

For two nonnegative integers k and nwith k ≤ n, we defineA(n, k) as a chord diagram
of order n+1, in which there is an n-crossing E0 with an extra chord e such that e crosses
exactly k chords of E0. (See Figure 2.) Note that A(n− 1, n− 1) is simply an n-crossing,
and that A(n, 0) is a union of an n-crossing and an isolated chord.

Let us denote {1, 2, . . . , n} by [n]. A permutation σ on [n] is called an alternating
permutation if (σ(i)− σ(i− 1))(σ(i+ 1)− σ(i)) < 0 for 2 ≤ i ≤ n− 1. An alternating
permutation σ is called an up-down permutation (resp. down-up permutation) if σ(1) <
σ(2) (resp. σ(1) > σ(2)). For 0 ≤ k ≤ n, the Entringer number Entn,k is defined as the
number of down-up permutations on [n + 1] with the first term k + 1 ([11]). For n ≥ 1,
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Figure 2: A(n, k) with n = 7 and k = 4 (left), and Nn with n = 8 (right).

Entn+1,1 equals Euln, the number of all down-up permutations on [n]. In [14], it is proved
that f(A(n, k)) = Entn+2,k+1.

For a chord diagram E and for a nonintersecting chord diagram F with a common
support, let us denote the multiplicity of F inNCD(E) by m(E,F ). For a nonintersecting
chord diagram E, a chord e ∈ E is called an ear, if there is no other chord of E on at
least one side of e. In [15], it is shown that for an n-crossing Cn and a nonintersecting
chord diagram F with a common support, m(Cn, F ) = 1 if and only if F has at most 3
ears. A nonintersecting chord diagramE with n chords is called an n-necklace, denoted by
Nn, if all chords of E are ears. (See Figure 2.) The main purpose of the paper is to show
that m(Cn, Nn) equals the Genocchi number when n is odd and the median Genocchi
number when n is even. The Genocchi numbers and the median Genocchi numbers will be
introduced in the following section.

Recently, Bigeni showed a relation between a weight system of sl2 of chord diagrams
and the median Genocchi numbers ([2]). In Definition 1 of [2], followed from [3], a weight
system of sl2 is defined inductively by applying an operation for chord diagrams. The
operation and the chord expansion are closely related to each other, although our main
results in the paper do not seem directly followed from the results in [2].

The rest of this paper is organized as follows. In Section 2, the Genocchi numbers
and the median Genocchi numbers are introduced. In Section 3, the main results of the
paper are proved. In Section 4, another combinatorial interpretation for the multiplicity of
n-necklaces is exhibited. Finally, in Section 5, some open problems are discussed.

2 The Genocchi numbers and the median Genocchi numbers

According to [10], but with slightly different indices, let us recursively define the entry
S(n, k) in row n ≥ 1 and column k ≥ 0 of the Seidel triangle ([17]):

S(1, 1) = 1,

S(n, k) = 0 for k = 0 or n ≤ 2(k − 1),

S(2n, k) =
∑
i≥k

S(2n− 1, i) for 1 ≤ k ≤ n, (2.1)

S(2n+ 1, k) =
∑
i≤k

S(2n, i) for 1 ≤ k ≤ n+ 1. (2.2)
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Table 1: The Seidel triangle S(n, k).

n \ k 1 2 3 4 5
1 1
2 1
3 1 1
4 2 1
5 2 3 3
6 8 6 3
7 8 14 17 17
8 56 48 34 17
9 56 104 138 155 155
10 608 552 448 310 155

(See Table 1.) By the equations (2.1) and (2.2), we have the following recurrence relations.

S(2n, k) = S(2n− 1, k) + S(2n, k + 1) for 1 ≤ k ≤ n, (2.3)
S(2n+ 1, k) = S(2n, k) + S(2n+ 1, k − 1) for 1 ≤ k ≤ n+ 1. (2.4)

The Genocchi numbers (or Genocchi numbers of the first kind) G(2n) are defined
as S(2n − 1, n), the numbers on the right edge of the Seidel triangle, and the median
Genocchi numbers (or Genocchi numbers of the second kind) H(2n + 1) are defined as
S(2n+ 2, 1), the numbers on the left edge of the Seidel triangle. Note that (G(2n))n≥1 =
(1, 1, 3, 17, 155, . . .) and (H(2n+ 1))n≥0 = (1, 2, 8, 56, 608, . . .).

Combinatorial properties of the Genocchi numbers have been extensively studied ([1,
4, 5, 6, 7, 8, 9, 10, 16, 19]). It is known that the Genocchi numberG(2n) counts the number
of permutations σ on [2n−1] such that σ(i) < σ(i+1) if σ(i) is odd, and σ(i) > σ(i+1)
if σ(i) is even ([6]). It is also known that the median Genocchi number H(2n+ 1) counts
the number of permutations σ on [2n + 1] such that σ(i) > i if i is odd and i 6= 2n + 1,
and σ(i) < i if i is even ([6]).

In the on-line encyclopedia of integer sequences [18], we can find more information
for the sequences A001469 (Genocchi numbers), A005439 (median Genocchi numbers),
A099960 (An interleaving of the Genocchi numbers of the first and second kind) and
A014781 (Seidel triangle).

3 Main results
Our aim is to show a new combinatorial interpretation for the values of the Seidel triangle
by using chord expansions.

Let v0, v1, . . . , v2n+1 be a sequence of vertices in clockwise order along a circumfer-
ence. Let V = {vi : 0 ≤ i ≤ 2n+ 1}. As one of chord diagrams E ∈ CD(V ) isomorphic
to A(n, k), introduced in the previous section, we have E = {v0vk+1} ∪ {vivn+i+1 :
1 ≤ i ≤ k} ∪ {vivn+i : k + 2 ≤ i ≤ n + 1}. (See Figure 2.) Now let us define (n + 1)-
necklaces N+

n+1,k and N−n+1,k ∈ CD(V ) such that N+
n+1,k contains an ear vkvk+1 and

N−n+1,k contains an ear vk+1vk+2. The values of m(A(n, k), N+
n+1,k) for n and k small

are shown in Table 2.
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Table 2: m(A(n, k), N+
n+1,k) for 0 ≤ k ≤ n ≤ 8.

n \ k 0 1 2 3 4 5 6 7 8
0 1
1 1 1
2 1 1 1
3 1 1 2 2
4 2 2 3 3 3
5 3 3 6 6 8 8
6 8 8 14 14 17 17 17
7 17 17 34 34 48 48 56 56
8 56 56 104 104 138 138 155 155 155

Let us define b+n,k = m(A(n, k), N+
n+1,k) and b−n,k = m(A(n, k), N−n+1,k). We also

simply denote b+n,k by bn,k. The main result of the paper is the following theorem.

Theorem 3.1. Let n ≥ 1. Then we have

b2n−1,k = S(2n, n− bk/2c) for 0 ≤ k ≤ 2n− 1, (3.1)

and

b2n,k = S(2n+ 1, bk/2c+ 1) for 0 ≤ k ≤ 2n. (3.2)

A(n, k)

A(n, k-1) A(n-1, n-k)

v0

vk

vk+1

vn+k+1

v0

vk

vk+1

vn+k+1

v0

vk

vk+1

vn+k+1

Figure 3: A chord expansion of A(n, k) with respect to {v0vk+1, vkvn+k+1} with n = 7
and k = 3.

Firstly, we show a relation between b−n,k and b+n,k.

Lemma 3.2. b−n,k = b+n,k−1 for 1 ≤ k ≤ n.



386 Ars Math. Contemp. 18 (2020) 381–391

Proof. LetE be a chord diagram isomorphic toA(n, k), as shown in Figure 3. By the chord
expansion of E with respect to {v0vk+1, vkvn+k+1}, we have two successors E1 and E2,
which are isomorphic toA(n, k−1) andA(n−1, n−k), respectively. SinceE2 contains a
chord vkvk+1, it does not generateN−n+1,k. Furthermore, sinceN−n+1,k is a necklace having
a chord vk−1vk, we have b−n,k = m(A(n, k), N−n+1,k) = m(A(n, k − 1), N+

n+1,k−1) =

b+n,k−1, as required.

In order to prove Theorem 3.1, let us show a recurrence relation for bn,k.

Lemma 3.3. We have b0,0 = 1 and for n ≥ 1, we have

bn,0 = bn,1 = bn−1,n−1,

bn,k =

{
bn,k−2 + bn−1,n−k for 2 ≤ k ≤ n and n is odd,
bn,k−2 + bn−1,n−k−1 for 2 ≤ k ≤ n− 1 and n is even,

bn,n = bn,n−2 for n is even.

Proof. When k = 0, 1 or n, equations bn,0 = bn,1 = bn−1,n−1 can be proved easily. Let
us consider the case 2 ≤ k ≤ n. As in the proof of Lemma 3.2, we use the expansion of
A(n, k) with respect to {v0vk+1, vkvn+k+1}.

If n is odd, we have

b+n,k = b−n,k−1 + b+n−1,n−k

= b+n,k−2 + b+n−1,n−k.

If n is even and k < n, we have

b+n,k = b−n,k−1 + b−n−1,n−k

= b+n,k−2 + b+n−1,n−k−1.

Finally, if n is even and k = n, since b−n−1,0 = 0, we have

b+n,n = b−n,n−1 + b−n−1,0

= b+n,n−2,

as needed.

Proof of Theorem 3.1. We proceed by induction on n and k. For (3.1) with n = 1, we have
b1,0 = 1 and b1,1 = 1. On the other hand, we have S(2, 1) = 1. For (3.2) with n = 1, we
have b2,0 = 1, b2,1 = 1 and b2,2 = 1. On the other hand, we have S(3, 1) = S(3, 2) = 1.

Let n ≥ 2. For k = 0, we have

b2n−1,0 = b2n−2,2n−2

= S(2n− 1, n)

= S(2n, n),
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and

b2n,0 = b2n−1,2n−1

= S(2n, 1)

= S(2n+ 1, 1).

For k = 1, we have

b2n−1,1 = b2n−1,0

= S(2n, n),

and

b2n,1 = b2n,0

= S(2n+ 1, 1).

For (3.1) with 2 ≤ k ≤ 2n− 1, we have

b2n−1,k = b2n−1,k−2 + b2n−2,2n−1−k

= S(2n, n− b(k − 2)/2c) + S(2n− 1, b(2n− 1− k)/2c+ 1)

= S(2n, n+ 1− bk/2c) + S(2n− 1, n− bk/2c)
= S(2n, n− bk/2c),

and for (3.2) with 2 ≤ k ≤ 2n− 1, we have

b2n,k = b2n,k−2 + b2n−1,2n−1−k

= S(2n+ 1, b(k − 2)/2c+ 1) + S(2n, n− b(2n− 1− k)/2c)
= S(2n+ 1, bk/2c) + S(2n, 1 + bk/2c)
= S(2n+ 1, 1 + bk/2c),

and for (3.2) with k = 2n, we have

b2n,2n = b2n,2n−2

= S(2n+ 1, n)

= S(2n+ 1, n+ 1).

By Theorem 3.1, we have the following corollary.

Corollary 3.4. m(C2n, N2n) = H(2n− 1) and m(C2n−1, N2n−1) = G(2n) for n ≥ 1.

Proof. By Theorem 3.1, we have m(C2n, N2n) = b2n−1,2n−1 = S(2n, 1) = H(2n − 1),
and m(C2n−1, N2n−1) = b2n−2,2n−2 = S(2n− 1, n) = G(2n).

4 Multiplicity of an N -necklace and the number of perfect matchings
of an associated graph

In this section, we will exhibit a combinatorial interpretation of m(E,Nn) for a given
chord diagram E. For a set V of vertices on the circumference, C(V ) denotes the set of all
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chords whose endvertices are in V . A Ptolemy weight w on C(V ) is defined as a function
that satisfies

w(x1x3)w(x2x4) = w(x2x3)w(x1x4) + w(x1x2)w(x3x4) (4.1)

for all vertices x1, x2, x3, x4 ∈ V placed along the circle. If w(e) is the Euclidean length
of a chord e, then (4.1) holds by the Ptolemy’s theorem in Euclidean geometry. Let w be a
Ptolemy weight on C(V ). If a chord diagram E ∈ CD(V ) has a 2-crossing S, by the chord
expansion of E with respect to S, we have two successors E1 and E2. Then by (4.1), we
have ∏

e∈E
w(e) =

∏
e∈E1

w(e) +
∏
e∈E2

w(e). (4.2)

We denote the left-hand side of (4.2) by w(E). By iterating chord expansions with (4.2),
we have

w(E) =
∑

F∈NCD(E)

w(F ). (4.3)

Let V = {v1, v2, . . . , v2n}, where v1, v2, . . . , v2n are placed along the circumfer-
ence in this order. A Ptolemy weight w on C(V ) is called rectilinear if w(vivj) =∑

i≤k<j w(vkvk+1) for all 1 ≤ i < j ≤ 2n. For example, if the vertices are placed
on a straight line and the weight w(vivj) is defined as the Euclidean distance between vi
and vj , then w is indeed a rectilinear Ptolemy weight.

In order to analyzem(E,Nn), let us consider the rectilinear Ptolemy weightw on C(V )
such that w(v2k−1v2k) = xk for 1 ≤ k ≤ n and w(v2kv2k+1) = 0 for 1 ≤ k ≤ n − 1.
In this weight, since for every chord e, w(e) corresponds to a first degree polynomial of
a multiple variables x1, x2, . . . , xn or w(e) = 0, for all chord diagrams E, w(E) is a
homogeneous polynomial of degree n or w(E) = 0. From this point until the end of this
section, we fix this weight. Let us define an n-necklace Nn = {v2k−1v2k : 1 ≤ k ≤ n}.

Lemma 4.1. In the rectilinear Ptolemy weight w as defined in the above, for a chord
diagram E, m(E,Nn) equals the coefficient of x1x2 . . . xn of the polynomial w(E).

Proof. Sincew(Nn) = x1x2 . . . xn, what we need to show is that if F ∈ NCD(E)\{Nn},
a polynomial w(F ) contains no monomial x1x2 . . . xn. Suppose to a contradiction that
F ∈ NCD(E) \ {Nn} and F has a monomial x1x2 . . . xn. Since F 6= Nn, there exists
a chord v2k−1v2` of F with 1 ≤ k < ` ≤ n such that ` − k ≥ 1 is maximal. Then the
two variables xk and x` do not appear together in the weight of any chord of F , otherwise
such a chord would either intersect v2k−1v2` or contradict `− k being maximal. It follows
that the product xkx` never appears in w(F ). This contradicts to that w(F ) contains a
monomial x1x2 . . . xn.

For a chord diagram E having n chords e1, e2, . . . , en with the rectilinear Ptolemy
weight w as defined in the above, let us define a balanced bipartite graph G(E,X) with
partite sets A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn} as follows. For 1 ≤ i ≤ n and
1 ≤ j ≤ n, ai and bj are adjacent if and only if a polynomialw(ei) contains a monomial xj .

Theorem 4.2. For a chord diagram E with n chords and its associated balanced bipartite
graphG(E,X) as defined in the above, m(E,Nn) equals the number of perfect matchings
of G(E,X).



T. Nakamigawa: The expansion of a chord diagram and the Genocchi numbers 389

Proof. We have w(E) =
∏

e∈E w(e), and for all chords e, w(e) = 0 or w(e) = xi +
xi+1 + · · · + xj for some 1 ≤ i ≤ j ≤ n. Hence, the coefficient of x1x2 . . . xn of w(E),
which is m(E,Nn) by Lemma 4.1, is the number of possible combinations to choose a
variable x ∈ X from each w(e) without repetition. This is the number of perfect matchings
of G(E,X).

x1 x2 x3 x4

e1 1 1 1 0

e2 0 1 0 0

e3 0 1 1 0

e4 0 0 1 1

E G(E, X)
v1

v2

v3

v4 v5

v6

v7

v8
x1

x2 x3

x4

Figure 4: A chord diagram E (left) and its biadjacency matrix of a corresponding bipartite
graph G(E,X) (right).

Example 4.3. Let n = 4. Let V = {vi : 1 ≤ i ≤ 2n}, where v1, v2, . . . , v2n are placed
on the circumference in this order. Let us consider a rectilinear Ptolemy weight w on C(V )
such that w(v2i−1v2i) = xi for 1 ≤ i ≤ n and w(v2iv2i+1) = 0 for 1 ≤ i ≤ n − 1. Let
E = {ei : 1 ≤ i ≤ 4} be a chord diagram, where e1 = v1v6, e2 = v2v5, e3 = v3v7, e4 =
v4v8. (See Figure 4.) Since

w(E) =
∏

1≤i≤n

w(ei) = (x1 + x2 + x3)x2(x2 + x3)(x3 + x4),

the coefficient of x1x2x3x4 of w(E) is 1, and the number of perfect matchings ofG(E,X)
is also 1. Hence, we have m(E,Nn) = 1.

By Corollary 3.4 and Theorem 4.2 for n-crossings Cn, we have the following corollary.

Corollary 4.4. The number of perfect matchings of the following bipartite graphs G and
H corresponds to Genocchi numbers G(2n) and median Genocchi numbers H(2n− 1) as
follows:

V (G) = E ∪X, where E = {e1, e2, . . . , e2n−1}, X = {x1, x2, . . . , x2n−1},
E(G) = {eixj : 1 ≤ i ≤ 2n− 1, bi/2c+ 1 ≤ j ≤ b(i− 1)/2c+ n}.
V (H) = E ∪X, where E = {e1, e2, . . . , e2n}, X = {x1, x2, . . . , x2n},
E(H) = {eixj : 1 ≤ i ≤ 2n, bi/2c+ 1 ≤ j ≤ bi/2c+ n}.

Example 4.5. As shown in Figure 5,

w(C6) = (x1 + x2 + x3)(x2 + x3 + x4)
2(x3 + x4 + x5)

2(x4 + x5 + x6).

The coefficient of x1x2x3x4x5x6 of w(C6) is 8, and the number of perfect matchings of
G(C6, X) is also 8. Hence, we have H(5) = m(C6, N6) = 8.

w(C7) = (x1 + x2 + x3 + x4)(x2 + x3 + x4)(x2 + x3 + x4 + x5)(x3 + x4 + x5)

(x3 + x4 + x5 + x6)(x4 + x5 + x6)(x4 + x5 + x6 + x7).
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x1 x2 x3 x4 x5 x6

e1 1 1 1 0 0 0

e2 0 1 1 1 0 0

e3 0 1 1 1 0 0

e4 0 0 1 1 1 0

e5 0 0 1 1 1 0

e6 0 0 0 1 1 1

x1 x2 x3 x4 x5 x6 x7

e1 1 1 1 1 0 0 0

e2 0 1 1 1 0 0 0

e3 0 1 1 1 1 0 0

e4 0 0 1 1 1 0 0

e5 0 0 1 1 1 1 0

e6 0 0 0 1 1 1 0

e7 0 0 0 1 1 1 1

G(C6, X)

G(C7, X)

C6

C7

x1

x2

x3
x4

x5

x6

x1

x2

x3

x4

x5

x6

x7

Figure 5: n-crossings (upper left, lower left) and their biadjacency matrices of correspond-
ing bipartite graphs G(Cn, X) (upper right, lower right).

The coefficient of x1x2x3x4x5x6x7 of w(C7) is 17, and the number of perfect matchings
of G(C7, X) is also 17. Hence, we have G(8) = m(C7, N7) = 17.

5 Further discussions

There are a lot of unknown things for the multiplicity inNCD(E). One ambitious problem
is to find a formula for m(E,F ) in general.

In Section 4, we represent m(E,Nn) by the number of perfect matchings of a corre-
sponding bipartite graph. It is interesting if we can find an efficient method to calculate the
number of perfect matchings in a graph of this kind.

As is shown in [15], there is a relation between the chord expansion number and the
evaluation of the Tutte polynomial at the point (2,−1). As a future research subject, it is
considered to find a relation between the multiplicity m(E,F ) in general, or m(E,Nn),
and some counting polynomials of graphs.
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