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Abstract

We propose a generalization of the parallelogram identity in any dimension N ≥ 2,
establishing the ratio of the quadratic mean of the diagonals to the quadratic mean of the
faces of a parallelotope. The proof makes use of simple properties of the exterior product
of vectors.
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1 Introduction and statement of the result
The well known parallelogram law states:

For any parallelogram, the sum of the squares of the lengths of its two diago-
nals is equal to the sum of the squares of the lengths of its four sides.

Figure 1: The two diagonals of a parallelogram.
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Equivalently: given two vectors a and b, one has

‖a+ b‖2 + ‖a− b‖2 = 2(‖a‖2 + ‖b‖2) .

This identity holds in any inner product space, but, since the two vectors belong to the
same plane, we can see it as being of a two-dimensional nature. The aim of this paper is to
provide a generalization to higher dimensions.

The parallelogram law has a natural geometric interpretation, involving the areas of the
squares constructed on the sides and on the diagonals of the parallelogram. In particular,
when ‖a + b‖ = ‖a − b‖, it reduces to the Pythagorean theorem. In this paper, however,
we will look at the parallelogram law from a rather unusual point of view: writing it as

‖a+ b‖2 + ‖a− b‖2

2
= 2
‖a‖2 + ‖b‖2 + ‖a‖2 + ‖b‖2

4
,

and taking the square roots, we can state it in the following equivalent form.

For any parallelogram, the ratio of the quadratic mean of the lengths of its
diagonals to the quadratic mean of the lengths of its sides is equal to

√
2 .

Now, instead of a parallelogram, we will consider an N -dimensional parallelotope,
and our goal will be to prove that the same type of proposition holds in this general case.
Indeed, our result can be stated as follows.

Theorem 1.1. For any N -dimensional parallelotope, the ratio of the quadratic mean of
the (N − 1)-dimensional measures of its diagonals to the quadratic mean of the (N − 1)-
dimensional measures of its faces is equal to

√
2.

For N = 2, the 1-dimensional measure is the length, and we recover the parallelogram
law. In the general case, we first need to specify what a diagonal should be, and indeed
this will be clarified in the following sections. For example, if N = 3, the diagonals of a
parallelepiped are precisely the parallelograms obtained joining the opposite edges of the
parallelepiped (see Figure 2 below), so that the 2-dimensional measures of the diagonals
are the areas of these parallelograms.

Notice that our definition of a diagonal is not the same as the one given in [1, 2],
where a different generalization of the parallelogram law has been proposed; in the three-
dimensional case, e.g., their diagonals are triangles. We believe that our definition is some-
what more natural, since here the diagonals share the same geometrical shape of the faces.

We provide the proof of our main theorem in Section 3. However, for the reader’s
convenience, we thought it useful to first explain its proof in detail in the more familiar
three-dimensional case. This is what we are going to do next.

2 The three-dimensional case
To start with, let us consider a three-dimensional parallelepiped P , and see how to extend
the parallelogram law to this case. Instead of the lengths of the four sides of the parallel-
ogram, we would like to take the areas of the six faces of the parallelepiped. On the other
hand, the lengths of the two diagonals of the parallelogram should naturally be replaced
by the areas of the six diagonals of the parallelepiped, i.e., the six parallelograms obtained
joining the opposite edges of the parallelepiped. In this case, Theorem 1.1 can be rephrased
as follows.
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For any three-dimensional parallelepiped, the sum of the squares of the areas
of its six diagonals is equal to twice the sum of the squares of the areas of its
six faces.

Figure 2: One of the six diagonals of a parallelepiped.

In order to prove this statement, assume the parallelepiped to be generated by the fol-
lowing three vectors:

a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3).

By this we mean that P is the set of points obtained as linear combinations of these three
vectors, with coefficients in the interval [0, 1]:

P = {αa+ βb+ γc : α, β, γ ∈ [0, 1]}.

The six faces of P are defined as

F−1 = {αa+ βb+ γc ∈ P : α = 0},
F+

1 = {αa+ βb+ γc ∈ P : α = 1},
F−2 = {αa+ βb+ γc ∈ P : β = 0},
F+

2 = {αa+ βb+ γc ∈ P : β = 1},
F−3 = {αa+ βb+ γc ∈ P : γ = 0},
F+

3 = {αa+ βb+ γc ∈ P : γ = 1}.

So,

F−1 is generated by b and c,

F−2 is generated by a and c,

F−3 is generated by a and b,

while F+
k is congruent to F−k , for each k = 1, 2, 3.
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The six diagonals of P are defined as

D1
1,2 = {αa+ βb+ γc ∈ P : α = β},
D2

1,2 = {αa+ βb+ γc ∈ P : α+ β = 1},
D1

1,3 = {αa+ βb+ γc ∈ P : α = γ},
D2

1,3 = {αa+ βb+ γc ∈ P : α+ γ = 1},
D1

2,3 = {αa+ βb+ γc ∈ P : β = γ},
D2

2,3 = {αa+ βb+ γc ∈ P : β + γ = 1}.

So,

D1
1,2 is generated by a+ b and c,

D1
1,3 is generated by a+ c and b,

D1
2,3 is generated by b+ c and a,

while

D2
1,2 is congruent to the set generated by a− b and c,

D2
1,3 is congruent to the set generated by a− c and b,

D2
2,3 is congruent to the set generated by b− c and a.

Our proposition is thus translated into the following identity:

‖(a+ b)× c‖2 + ‖(a− b)× c‖2

+ ‖(a+ c)× b‖2 + ‖(a− c)× b‖2

+ ‖(b+ c)× a‖2 + ‖(b− c)× a‖2 = 4(‖b× c‖2 + ‖a× c‖2 + ‖a× b‖2).

Here, we have used the vector product, so that, e.g.,

‖a× b‖2 =

∣∣∣∣a2 a3
b2 b3

∣∣∣∣2 + ∣∣∣∣a3 a1
b3 b1

∣∣∣∣2 + ∣∣∣∣a1 a2
b1 b2

∣∣∣∣2
= (a2b3 − b2a3)2 + (a3b1 − b3a1)2 + (a1b2 − b1a2)2.

In order to prove the above identity, we just notice that, by the parallelogram law,

‖(a+ b)× c‖2 + ‖(a− b)× c‖2 =

= ‖(a× c) + (b× c)‖2 + ‖(a× c)− (b× c)‖2

= 2(‖a× c‖2 + ‖b× c‖2),

and similarly

‖(a+ c)× b‖2 + ‖(a− c)× b‖2 = 2(‖a× b‖2 + ‖c× b‖2),
‖(b+ c)× a‖2 + ‖(b− c)× a‖2 = 2(‖b× a‖2 + ‖c× a‖2).

Summing up the three formulas, our identity is proved.
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Remark 2.1. There surely are several ways to extend the parallelogram law to higher
dimensions. Just to mention one of these, in the three-dimensional case we have

‖a+ b+ c‖2 + ‖a+ b− c‖2

+ ‖a− b+ c‖2 + ‖a− b− c‖2 = 4(‖a‖2 + ‖b‖2 + ‖c‖2).

We acknowledge the referee for pointing out this identity. It is proved directly (by the use
of the classical parallelogram law) and can be easily extended to any dimension.

3 Proof of the main theorem
We now provide a proof for the general N -dimensional case. Let P be the parallelotope
generated by the vectors a1, . . . ,aN , i.e.,

P =

{
N∑

k=1

ckak : ck ∈ [0, 1], for k = 1, . . . , N

}
.

Its 2N faces are defined by

F−n =

{
N∑

k=1

ckak ∈ P : cn = 0

}
, F+

n =

{
N∑

k=1

ckak ∈ P : cn = 1

}
,

with n = 1, . . . , N . Each F−n is generated by the vectors a1, . . . , ân, . . . ,aN , where,
as usual, ân means that an is missing, while F+

n is a translation of F−n , for every n =
1, . . . , N .

Concerning the diagonals, they are defined as

D1
i,j =

{
N∑

k=1

ckak ∈ P : ci = cj

}
, D2

i,j =

{
N∑

k=1

ckak ∈ P : ci + cj = 1

}
,

with indices i < j varying from 1 to N . There are N(N −1) of them. Hence, we have that

D1
i,j is generated by ai + aj and a1, . . . , âi, . . . , âj , . . . ,aN ,

while

D2
i,j is a translation of the set generated by ai − aj and a1, . . . , âi, . . . , âj , . . . ,aN .

In order to compute the (N−1)-dimensional measures of the faces and the diagonals of
our parallelotope, we make use of the following proposition involving the exterior product
of vectors in RN . (See, e.g., [3] for the definition and the main properties of the exterior
product.)

Proposition 3.1. The M -dimensional measure of a parallelotope generated by M vectors
v1, . . . ,vM in RN , with 1 ≤M ≤ N , is given by ‖v1 ∧ · · · ∧ vM‖.

Proof. If v1, . . . ,vM are linearly dependent, the M -dimensional measure of the parallelo-
tope generated by v1, . . . ,vM is equal to zero, hence coincides with ‖v1 ∧ · · · ∧ vM‖.
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Assume now that the vectors v1, . . . ,vM are linearly independent, and let V be the sub-
space generated by them. Choose an orthonormal basis e1, . . . , eM of V , and write

v1 = v11e1 + · · ·+ v1MeM ,

...
vM = vM1e1 + · · ·+ vMMeM .

Then,

v1 ∧ · · · ∧ vM = det

 v11 · · · v1M
...

...
vM1 · · · vMM

 e1 ∧ · · · ∧ eM ,

so that

‖v1 ∧ · · · ∧ vM‖ =

∣∣∣∣∣∣∣det
 v11 · · · v1M

...
...

vM1 · · · vMM


∣∣∣∣∣∣∣ ,

which is indeed the M -dimensional measure of the parallelotope generated by the vectors
v1, . . . ,vM .

Hence, the (N − 1)-dimensional measures of the faces F±n are given by

‖a1 ∧ · · · ∧ ân ∧ · · · ∧ aN‖,

while the (N − 1)-dimensional measures of the diagonals D1
i,j are equal to

‖(ai + aj) ∧
∧

k 6=i,j ak‖,

and those of the diagonals D2
i,j are equal to

‖(ai − aj) ∧
∧

k 6=i,j ak‖.

Choosing any couple i < j, by the parallelogram law we have that

‖(ai + aj) ∧
∧

k 6=i,j ak‖2 + ‖(ai − aj) ∧
∧

k 6=i,j ak‖2 =

= 2
(
‖a1 ∧ · · · ∧ âj ∧ · · · ∧ aN‖2 + ‖a1 ∧ · · · ∧ âi ∧ · · · ∧ aN‖2

)
.

We now want to take the sum of all these equalities, with i < j varying form 1 to N . We
claim that, for any n = 1, . . . , N , when performing such a sum, in the right hand side,

the term 2‖a1 ∧ · · · ∧ ân ∧ · · · ∧ aN‖2 will appear N − 1 times.

Indeed, this term may appear with j = n, while i varies from 1 to n − 1, or with i = n,
while j varies from n + 1 to N , and there are exactly N − 1 of such possibilities. Hence,
summing all the equalities, we have that∑

i<j

(
‖(ai + aj) ∧

∧
k 6=i,j ak‖2 + ‖(ai − aj) ∧

∧
k 6=i,j ak‖2

)
=

= (N − 1)

N∑
n=1

2‖a1 ∧ · · · ∧ ân ∧ · · · ∧ aN‖2.

So, we have proved the following.
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For any N -dimensional parallelotope, the sum of the squares of the (N − 1)-
dimensional measures of its N(N − 1) diagonals is equal to N − 1 times the
sum of the squares of the (N − 1)-dimensional measures of its 2N faces.

The proof of the theorem is now easily completed, dividing each of the two sums by
the number of their addends and taking the square roots.

Remark 3.2. Since our result is valid in any dimension N , it would be interesting to
investigate whether it could be extended also to some infinite-dimensional vector spaces.
This seems to be a remarkable problem which could lead to further insight on the nature of
these identities.
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