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Abstract. We show for a schematic quasispin model similar to the Nambu–Jona-Lasinio
model that the Hartree-Fock and RPA approximations give accurate vacuum and pion
properties in the limit of large number of quarks in the Dirac sea. This helps the under-
standing why the HF and RPA work so well in the full Nambu – Jona-Lasinio model,
especially in the largeNc limit. We also show that the excitation spectrum in a box reveals
rather accurately the pion scattering length.

1 The two-level Nambu–Jona-Lasinio model with one flavour

The Nambu–Jona-Lasinio model (NJL) has been successfully used in hadronic
physics to describe the spontaneous chiral symmetry breaking, the formation of
the massive constituent quark and the behaviour of pion and sigma meson as a
chiral rotation and vibration. This model has not yet been solved exactly; so one
does not know how accurate the approximate methods used with this model are.
In order to gain some insights we simplify the NJL model from a field-theoretical
model to an ordinary quantum-mechanical model with a fixed particle number
N. This is achieved by

(i) a sharp 3-momentum cutoff 0 ≤ |pi| ≤ Λ;
(ii) restricting the space to a box of volume V with periodic boundary conditions.

This gives a finite number of discrete momentum states, N = NcNfVΛ3/3π2
in the Dirac sea and the same number available in the “Fermi sea” (positive
energy states). In the ground state (vacuum) we assume also the same number
of particles, N = N , which, due to the interactions, are distributed between
the Dirac and the Fermi sea.
For simplicity, we make two further approximations:

(iii) We restrict the system to one flavour, Nf = 1; many qualitative and even
quantitative features will remain the same, but of course not all.

(iv) we assume all particles to have the same kinetic energy±P instead of different
individual values ±|pi|: |pi|→ P. Furthermore, the following turns out to be a
reasonable average: P = 3

4
Λ and it is surprising how well it reproduces more

detailed calculations.
? Talk delivered by M. Rosina.
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Then the NJL Hamiltonian can be conveniently written in the first-quantized
form [1]

H′
NJL =

N∑

i=1

(
γ5(i)h(i)P +m0β(i)

)
+

−
2G

V
N∑

i=1

N∑

j=1
j6=i

(
β(i)β(j) +

(
iβ(i)γ5(i)

)(
iβ(j)γ5(j)

))
P . (1)

Here γ5 is the chirality operator (handedness), h = σ · p/|p| is the helicity
andm0 is the small bare quark mass which explicitly breaks the chiral symmetry.
The interaction has two terms in order to be chirally symmetric. The projector

P =

Λ∑

pi
′

Λ∑

pj
′

Λ∑

pi

Λ∑

pj

δpi
′+pj

′, pi+pj
| pi

′, pj
′ 〉〈pi , pj | (2)

restricts momenta to a sharp cutoffΛ, but it allows any two quarks to scatter into
any two other momentum states provided they conserve momentum (at infinite
cutoff this would correspond to a contact interaction).

2 Relation to lattice calculations

The model assumption 0 ≤ |pi| ≤ Λ corresponds to the cell size (resolution)
a = 61/3π2/3/Λ. Here we assumed Nc = 3 colours, Nf = 1 flavours, and two
helicities. The periodic boundary condition in V corresponds to the block size
L = 3

√
N
6

=
3
√
V with N = VΛ3/π2.

In our present calculation with N = 144 ( 3
√
N/6 ≈ 3) and Λ = 650MeV this

corresponds to the block size in three dimensions L ≈ 3a and a ≈ 1.2 fm. It is
surprising that such a poor resolution and block size yields excellent results. We
shall discuss this point in the Discussion.

3 The quasispin NJL-like model

In order to get a soluble model we simplify the interaction. In the NJL model
the interaction conserves the sum of momenta of both quarks, but each quark
changes its momentum in any direction (in the 2-body c.m. system) with equal
probability. In the simplified interaction each quark conserves its momentum.
The schematic Hamiltonian can then be written as

H =

N∑

k=1

(
γ5(k)h(k)P +m0β(k)

)
+

−
g

2

( N∑

k=1

β(k)

N∑

l=1

β(l) +

N∑

k=1

iβ(k)γ5(k)

N∑

l=1

iβ(l)γ5(l)

)
. (3)
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Here g = 4G/V .
The interaction part of Hamiltonian changes the chirality of each separate

quark (since it does not commute with the Hamiltonian), but it conserves the he-
licity, color and momentum of each quark. That means that quarks have a unique
label and can be treated as distinguishable.

In the interaction, the double sum has simplified into products of single sums
which can be conveniently expressed with the following quasispin operators

jx =
1

2
β , jy =

1

2
iβγ5 , jz =

1

2
γ5 ,

which obey (quasi)spin commutation relations and allow us to make full use of
the angular momentum algebra.

The (quasi)spin commutation relations are also obeyed by separate sums
over quarks with right and left helicity (α = x, y, z)

Rα =

N∑

k=1

1+ h(k)

2
jα(k) , Lα =

N∑

k=1

1 − h(k)

2
jα(k) (4)

as well as by the total sum

Jα = Rα + Lα =

N∑

k=1

jα(k) . (5)

The model Hamiltonian can then be written as

H = 2P(Rz − Lz) + 2m0Jx − 2g(J2x + J2y) . (6)

It commutes with R2 and L2 but not with Rz and Lz. Nevertheless, it is con-
venient to work in the basis |R, L, Rz, Lz 〉.The Hamiltonian matrix elements can
be easily calculated using the angular momentum algebra. By diagonalisation we
then obtain the energy spectrum of the system.

A formally similar Hamiltonian has been studied already by Moszkowski
[2] in the context of nuclear rotations and vibrations; instead of the NJL interac-
tion, it is the quadrupole-quadrupole interactions that plays a similar role and
leads to the spontaneous breaking of spherical symmetry. Also Civitarese et al.
[3] used a two-level quark model to describe the low-lying mesonic spectra, but
their interaction is not like NJL, they couple quarks to a one-level bosonic degree
of freedom (representing gluon pairs or glueballs).

4 Model parameters and basic observables

Both the full NJL model as well as the quasispin model have three model pa-
rameters, Λ, G and m0. We intend to adjust them to what we choose as the
three basic observablesM = 335MeV (the dressed–constituent quark mass),Q =

〈g | ψ̄ψ |g 〉 = 1
V
〈g |
∑
i β(i) |g 〉 = 2

V
〈g | Jx |g 〉 = 2503 MeV3 (the chiral conden-

sate) and the pion mass mπ.
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We assume that the chiral condensate is related to the better defined ob-
servable, the pion decay constant, by the Gell-Mann Oakes Renner relation fπ =

−
√

−2m0Q/mπ = 93MeV. We assume this relation also for the one-flavour case
where fπ is not experimentally defined while Q has the same meaning as in the
two-flavour case.

A detailed analysis of model parameters and quality of approximations for
the ground state and the pionic excited state was performed by Oblak [4].

In the two-level quasispin model the exact values of the observables are de-
termined as

M =

√(
Eg(N) − Eg(N − 1)

)2
− P2

Q =
2

V 〈g | Jx |g 〉
mπ = E1(N) − Eg(N) . (7)

As usual we have defined the constituent quark mass through the separation
energy of theN-th quark and the pion mass as the energy difference between the
first excited and ground state (note that pionic excitation conserves the momenta
of all quarks and therefore carries no momentum).

We want to study the N-dependence of our results. Therefore it would be
meaningful to adjust the model parameters for a particular N, for example for
N → ∞. Since we cannot calculate exactly for infinite N we rather choose as
a reference the Hartree-Fock + RPA solution; anyway, also for the full NJL the
model parameters have been adjusted in this way in the literature [5,6].

In the HF+RPA approximation, the relations (7) can be calculated explicitly

M =

√(
αGΛ3

)2
− P2

Q =
Λ3

π2
M√

M2 + P2

mπ ≈

√√
M2 + P2

M2
GΛ3m0 . (8)

Here α = (4/π2)(1 − 1/N)(1 −m0/M)−1. It is then easy to determine the model
parameters (we choose the limit N→∞):

Λ = 648MeV, G = 40.6MeV fm, m0 = 4.58MeV.

These values compare favourably with those of full Nambu-Jona Lasinio

Coimbra [5] : Λ = 631MeV, G = 40MeV fm, m0 ≈ 5MeV ,
Buballa [6] : Λ = 664MeV, G = 37.8MeV fm, m0 = 5.0MeV .

The agreement is not surprising for the following reasons.

(i) The Hartre-Fock solution in the quasispin model coincides with the Hartree-
Fock solution in the two-level NJL model (apart from small Fock terms).
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This can be seen from the potential energy contribution
∑
u≤v Vuvuv which is

the same in both cases. Hartree-Fock ignores the off-diagonal terms Vuvu ′v ′

which we have anyway thrown away in the quasispin model.
(ii) In order to make up for the contributions of the second flavour we have in-

creased the coupling strength in (1) by a factor of two compared to the stan-
dard definition in the two-flavour NJL, G→ 2G

(iii) It seems that we have chosen a good average kinetic energy P = 3
4
Λwhen we

replaced the individual values by an average.
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Fig. 1. Linear extrapolations of exact results ofM,mπ, 3
p

|Q| and fπ for different values of
N (144, 156, 168, 180, 192, 204) to the infinite N.

It is an interesting result that the exact values of the observables as a function
of N approach the HF+RPA values in the limit N → ∞. The linear extrapolation
in Fig. 1 shows that HF+RPA is either exact or very accurate in this limit. Since full
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NJL has the same HF+RPA solution, this fact gives a good credit to the HF+RPA
approximation in full NJL (but does not yet prove the exactness).

5 Pion-pion scattering

An interesting application of the model is to calculate the pion-pion scattering
length from the excitation spectrum in the box V . Since we are working in a fi-
nite volume V with periodic boundary conditions we cannot impose scattering
boundary conditions. Instead of a continuous spectrum of scattering states we ob-
tain a discrete spectrum. However, we can interpret the ground state as vacuum
and excited states as multi-pion states or sigma-meson excitations or superposi-
tions of both. For his purpose we have to choose the spectrum with ground-state
quantum numbers R = L = N/4. In this case pionic excitations conserve the
momenta of all quarks and therefore carry no momentum (nor angular momen-
tum). Such states correspond to n pions in s-state and allow the evaluation of the
average effective pion-pion potential V̄ and through it the pion-pion scattering
length.

In Table 1 we present the spectrum for N = 144 and the model parameters
listed in Section 4.

Table 1. The spectrum of the quasispin model withN = 144, quantum numbers R+L = 36

and model parameters listed in Section 4.

Parity E− E0[ MeV] V̄[ MeV]

+ 932 -9.5
− 803 -11.7
+ 771 -11.3
− 767 -8.8

+ 646 -11.4
+ 634 -12.2
− 580 -10.0
+ 482 -10.5

− 378 -10.1
+ 261 -10.3
− 136
+ 0

For ideal n-pion states the energy should be

Enπ = nmπ +
n(n − 1)

2
V̄.
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The quantity V̄ = (E− E0 −nmπ)/(
1
2
n(n− 1)) in Table1 is in fact rather constant

throughout the spectrum, except around 600-700 MeV where two positive parity
states appear in succession and signal the presence of a sigma-excitation causing
the confusion.

Another test of the concept of average effective pion-pion potential is its
N-dependence. Larger N means a larger normalization volume V and therefore
more dilute pions leading to a proportionally smaller V̄ . In fact, for N = 132, the
value (132/144)V̄ = −10.6MeV, close to -10.3 MeV atN = 144. On the other hand,
for N = 108, the value (108/144)V̄ = −12.2MeV, rather far. This is an indication
that above 132 we are already close enough to large-N limit, while 108 is still too
small.

We calculate the s-state scattering length in the first-order Born approxima-
tion

a =
mπ/2

2π

∫
V(r) d3r =

mπ

4π
V̄V . (9)

This formula was first quoted by M.Lüscher[7] in 1986 and 1991 and later by
many authors. It was derived in a much more sophisticated way, but in our con-
text it is just the first-order Born approximation.

In our example for N = 144 we have V̄ = −10.3MeV and V = π2N/Λ3 =

40 fm3 This gives

amπ =
m2π
4π
V̄V = −0.0836. (10)

Of course, there are no experiments with one-flavour pions. It is, however,
interesting to compare with the two-flavour value (I = 2). The chiral perturbation
theory (soft pions) suggests in leading order aI=20 mπ = −m2π/16πf

2
π = −0.0445.

The old analysis of Gasser and Leutwyler gave -0.019 and the more recent anal-
ysis by Lesniak gave -0.034 (“non-uniform fit”) or -0.044 (“uniform fit”). It is not
yet clear to us why we get about twice larger value in our one-flavour model.
Possibly this is due to the artifact that we made up for the second flavour by re-
placing G → 2G which might give too strong attraction between pions. We are
still exploring this point.

6 Conclusion

From the quasispin model of the Nambu–Jona-Lasinio type one can learn several
lessons:

(i) The Hartree-Fock solution is (almost) exact for a truncated Nambu–Jona-
Lasinio model in which the off-diagonal interaction matrix elements (corre-
sponding to scattering of two quarks into different final momenta) are ne-
glected. Since the full NJL model has the same HF solution as the truncated
one it is well approximated by HF provided the effect of the off-diagonal
terms is suppressed.

(ii) The off-diagonal terms are important for pairing since scattering in all pos-
sible directions provides a large phase space for long range pairing correla-
tions to develop. On the other hand, the interaction matrix elements which
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conserve each momentum and scatter the two quarks between the lower and
the upper level (between the Dirac and Fermi sea) are responsible for the chi-
ral deformation of the system (spontaneous chiral symmetry breaking). There
is a competition between pairing and deformation. Here we draw a pictorial
analogy with nuclear physics where it is also a competition between pairing
and quadrupole deformation. The pairing energy is proportional to the num-
ber of valence nucleons and the deformation energy to the square of their
number. Therefore near closed shells pairing prevails and nuclei are spher-
ical, while far from closed shells (at large number of valence nucleons) the
deformation prevails and nuclei are deformed. Similarly, due to a large num-
ber N of quarks and large chiral symmetry breaking we expect the pairing
to be suppressed by order 1/N. We have still to test this idea by studying
the Hartree-Fock-Bogoliubov approximation of two-level NJL and verifying
that the solution does not support pairing; if this is the case it would strongly
support the idea that HF is an accurate approximation of NJL.

(iii) The picture that we have a chiral deformation of the mean field and of quark
wavefunctions can be mapped into a picture in which we have quark-anti-
quark pairing. The interaction terms of the truncated NJL (and our quasispin
model) scatter two quarks between the Dirac and Fermi sea but conserve their
individual momenta; this leads to chiral deformation. We can, however, also
call quark holes antiquarks, antiquarks carry opposite momenta as the miss-
ing quarks. Two quarks having whichever different momenta scatter back in
the same momenta; in the other picture, quark and antiquark have opposite
momenta and scatter in whichever pair of different opposite momenta. This
is then just the condition stimulating pairing. The formal relation between the
chiral deformation of Hartree-Fock quarks and the quark-antiquark pairing
will be described elsewhere.

(iv) In the quasispin model it is very instructive that the number of coloursNc and
the number of spatial states VΛ3/6π2 appear on equal footing in the product
N = 2NcVΛ3/6π2. The colour and the momentum quantum number together
are just the house number of the particle since the interaction does not depend
on them. Therefore it is the same limit N → ∞ whether we take the large Nc
limit or a large block V . This explains why even with 3 colours the quasispin
model behaves similarly as the theorems regarding large Nc limit suggest
(good HF approximation, suppression of off-diagonal terms and their effects,
etc.).

(v) The presented quasispin model is reminiscent of the schematic model of Lip-
kin, Agassi, Glick and Meshkov [8], popular in nuclear many-body problems.
The purpose of the Lipkin model was to show essential features of approxi-
mations such as HF, perturbation theory, Projected HF, Time-dependent HF,
RPA, Peierls-Yoccoz, Peierls-Thouless, Generator Coordinate Method, as well
as to test their accuracy. Our schematic NJL-like model could be designed as
“the Lipkin model of chiral symmetry”.
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