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Department of Mathematics and Statistics, York University,

Toronto, Ontario M3J 1P3, Canada

Received 28 January 2020, accepted 31 July 2020, published online 23 August 2021

Abstract

We show that every non-degenerate regular polytope can be used to construct a thin,
residually-connected, chamber-transitive incidence geometry, i.e. a regular hypertope.
These hypertopes are related to the semi-regular polyotopes with a tail-triangle Coxeter
diagram constructed by Monson and Schulte. We discuss several interesting examples de-
rived when this construction is applied to generalised cubes. In particular, we produce an
example of a rank 5 finite locally spherical proper hypertope of hyperbolic type. No such
examples were previously known.
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1 Introduction
Hypertopes are a special type of incidence geometries that generalise the notions of abstract
polytopes and of hypermaps. The concept was introduced in [9] with particular emphasis
on regular hypertopes (that is, the ones with highest degree of symmetry). Although in
[8, 10, 11] a number of interesting examples of regular hypertopes have been constructed,
within the theory of abstract regular polytopes much more work has been done. Notably,
[26] and [28] deal with universal constructions of polytopes, while in [5, 23, 24] some con-
structions with prescribed combinatorial conditions are explored. In another direction, in
[3, 7, 14, 22] the questions of existence of polytopes with prescribed (interesting) groups
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are investigated. Much of the impetus to the development of the theory of abstract poly-
topes, as well as the inspiration with the choice of problems, was based on work of Branko
Grünbaum [13] from the 1970s.

In this paper we generalise the halving operation on polyhedra (see 7B in [18]) to a cer-
tain class of regular abstract polytopes to construct regular hypertopes. More precisely,
given a regular non-degenerate n-polytope P , we construct a regular hypertope H(P)
whose type-preserving automorphism group is a subgroup of Aut(P) of index at most
2. The hypertope H(P), as we shall see in Section 3, is closely related to the semi-regular
polytopes with tail-triangle Coxeter diagram described by Monson and Schulte in [19, 20].

The paper is organised as follows. In Section 2 we review the basic theory of hypertopes
(with particular focus on regular hypertopes) and revisit the notion of a regular polytope
(first introduced in the early 1980s) within the theory of hypertopes. In Section 3 we
explore the halving operation on an abstract polytope and show that the resulting incidence
system is a regular hypertope. Finally, in Section 4 we give concrete examples arising
from our construction. In particular, we focus on locally spherical hypertopes arising from
Danzer’s construction of generalised cubes. As a result we produce a number of new regular
hypertopes including an example of a finite regular rank 5 proper hypertope which, because
of the size of its automorphism group, could not previously be found (see [11, Section 6]).

2 Regular hypertopes
In this section we review the definition and basic properties of regular hypertopes. We
introduce abstract polytopes as a special class of hypertopes. However, if the reader is
interested in a classic and more detailed definition of abstract polytopes, we suggest [18,
Section 2A].

The notion of a regular hypertope was introduced in [9] as a common generalisation of
an abstract regular polytope and of a regular hypermap. In short, a regular hypertope is a
thin, residually-connected, chamber-transitive geometry (the concepts are defined below).
More details and an account of general theory can be found in [2].

An incidence system is a 4-tuple Γ := (X, ∗, t, I) where X and I are sets, t : X → I is
the type function and ∗ is a binary relation in X called incidence. The elements of X and I
are called the elements and the types of Γ, respectively. The cardinality of I is the rank of
Γ. An element x is said to be of type i, or an i-element, whenever t(x) = i, for i ∈ I . The
relation ∗ is reflexive, symmetric and such that, for all x, y ∈ X , if x ∗ y and t(x) = t(y),
then x = y.

A flag F is a subset of X in which every two elements are incident. An element x is
incident to a flag F , denoted by x ∗ F , when x is incident to all elements of F . For a flag
F the set t(F ) := {t(x) |x ∈ F} is called the type of F . When t(F ) = I , F is called a
chamber.

An incidence system Γ is a geometry (or an incidence geometry) if every flag of Γ is
contained in a chamber, that is, if all maximal flags of Γ are chambers.

The residue of a flag F of an incidence geometry Γ is the incidence geometry ΓF :=
(XF , ∗F , tF , IF ) where XF := {x ∈ X : x ∗ F, x /∈ F}, IF := I \ t(F ), and where tF
and ∗F are restrictions of t and ∗ to XF and IF respectively.

An incidence system Γ is thin when every residue of rank one of Γ contains exactly
two elements. If an incidence geometry is thin, then given a chamber C there exists exactly
one chamber differing from C in its i-element. An incidence system Γ is connected if its
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incidence graph is connected. Moreover, Γ is residually connected when Γ is connected
and each residue of Γ of rank at least two is also connected. It is easy to see that this
condition is equivalent to strong connectivity for polytopes (as defined in [18, pg. 23] and
reviewed below) and the thinness is equivalent to the diamond condition for polytopes. A
hypertope is a thin incidence geometry which is residually connected.

An abstract polytope of rank n is usually defined as a strongly-connected partially or-
dered set (P,6) that satisfies the diamond condition and in such a way that all maximal
chains of P have the same length (n+ 2). In the language of incidence geometries, an ab-
stract polytope is an incidence system (P, ∗6, rk, {−1, . . . , n}), where ∗6 is the incidence
relation defined by the order of P (i.e., x ∗6 y if and only if x 6 y or y 6 x) and rk is
the rank function. We require that P has a unique (minimum) element of rank (type) −1
and a unique (maximum) element of rank n. Note that a flag (in the language of incidence
systems) is what has been called a chain in the theory of abstract polytopes. Therefore,
maximal chains of P are precisely the chambers of the corresponding incidence system.
The fact that every maximal chain of P has (n + 2) elements implies that P defines a ge-
ometry. It is well-known that for any two incident elements Fi 6 Fj of P , with rk(Fi) = i
and rk(Fj) = j, the section Fj/Fi = {x ∈ P : Fi 6 x 6 Fj} is a (j − i − 1)-polytope.
We note that for polytopes, the residue of a chain F is a union of sections of P defined by
the intervals of IF .

Observe that the rank 2 hypertopes are precisely the abstract polygons and the rank 3
hypertopes are the non-degenerate hypermaps.

A type-preserving automorphism of an incidence system Γ := (X, ∗, t, I) is a permu-
tation α of X such that for every x ∈ X , t(x) = t(xα) and if x, y ∈ X , then x ∗ y if and
only if xα ∗ yα. The set of type-preserving automorphisms of Γ is denoted by AutI(Γ).

The group of type-preserving automorphisms of an incidence geometry Γ generalises
the automorphism group of an abstract polytope. Some familiar symmetry properties of
polytopes extend naturally to incidence geometries. For instance, AutI(Γ) acts faithfully
on the set of chambers of Γ. Moreover, if Γ is a hypertope this action is semi-regular. In
fact, if α ∈ AutI(Γ) fixes a chamber C, it also fixes its i-adjacent chamber Ci. Since Γ is
residually connected, α must be the identity.

We say that Γ is chamber-transitive if the action of AutI(Γ) on the chambers is tran-
sitive, and in that case the action of Γ on the set of chambers is regular. For that reason Γ
is then called a regular hypertope. As expected, this generalises the concept of a regular
polytope.

Observe that, when Γ is a geometry, chamber-transitivity is equivalent to flag-transitivity
(meaning that for each J ⊆ I , there is a unique orbit on the flags of type J under the action
of AutI(Γ); see for example Proposition 2.2 in [9]).

Let Γ := (X, ∗, t, I) be a regular hypertope and let C be a fixed (base) chamber of Γ.
For each i ∈ I there exists exactly one automorphism ρi mapping C to Ci. If F ⊆ C is a
flag, then the automorphism group of the residue ΓF is precisely stabiliser of F under the
action of AutI(Γ). We denote this group by StabΓ(F ). It is easy to see that

StabΓ(F ) = 〈ρi : i ∈ IF 〉 .

If IF = {i}, that is ΓF is of rank |I| − 1, the thinness of Γ implies that

ρ2
i = 1. (2.1)
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If IF = {i, j}, then there exists pij ∈ {2, . . . ,∞} such that

(ρiρj)
pij = 1; (2.2)

in this situation the residue of F is an abstract pij-gon. Moreover, if J and K are arbitrary
subsets of I and F,G ⊆ C are flags such that IF = J and IG = K, then

StabΓ(F ) ∩ StabΓ(G) = StabΓ(F ∪G),

or equivalently
〈ρj : j ∈ J〉 ∩ 〈ρk : k ∈ K〉 = 〈ρi : i ∈ J ∩K〉 . (2.3)

We call the condition in (2.3) the intersection property. Following [9], a C-group is
a group generated by involutions {ρi : i ∈ I} that satisfies the intersection property. It
follows that the type-preserving automorphism group of a regular hypertope is a C-group
([9, Theorem 4.1]).

Every Coxeter group U is a C-group and in particular, it is the type-preserving auto-
morphism of a regular hypertope [32, Section 3] called the universal regular hypertope
associated with the Coxeter group U . Moreover, every C-group G is a quotient of a Cox-
eter group U . If H is a regular hypertope whose type-preserving automorphism group is
G, the universal cover ofH is the regular hypertope associated with U .

The Coxeter diagram of a C-group G is a graph with |I| vertices corresponding to the
generators of G and with an edge {i, j} whenever the order pij of ρiρj is greater than 2.
The edge is endowed with the label pij when pij > 3. The automorphism group of an
abstract polytope is a string C-group, that is, a C-group having a linear Coxeter diagram. If
P is a regular n-polytope, then we say that P is of (Schläfli) type {p1, . . . , pn−1}whenever
the Coxeter diagram of Aut(P) is

ρ0•
ρ2•

ρn−2•
ρn−1•p1

...
pn−1

One of the most remarkable results in the theory of abstract regular polytopes is that
the string C-groups are precisely the automorphism groups of the regular polytopes. In
other words, given a string C-group G, there exists a regular polytope P = P(G) such
that G = Aut(P) (see [18, Section 2E]). This result was proved in [25, 27] for so-called
regular incidence complexes, (combinatorial objects slightly more general than abstract
polytopes). However, the results were essentially already known to Tits who constructed
coset geometries from string Coxeter groups in [30], which preceded the introduction of
the intersection property in a working paper from 1961 (see [32]). Nevertheless, Schulte
was not aware of this. In [29] he gives a nice historical note on the development of the
theory.

Analogously, it is also possible to construct, under certain conditions, a regular hyper-
tope from a group, and particularly from a C-group, using the following proposition.

Proposition 2.1 (Tits Algorithm [32]). Let n be a positive integer and I := {0, . . . , n−1}.
Let G be a group together with a family of subgroups (Gi)i∈I , X the set consisting of all
cosets Gig with g ∈ G and i ∈ I , and t : X → I defined by t(Gig) = i. Define an
incidence relation ∗ on X ×X by:

Gig1 ∗Gjg2 if and only if Gig1 ∩Gjg2 6= ∅.
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Then the 4-tuple Γ := (X, ∗, t, I) is an incidence system having {Gi : i ∈ I} as a cham-
ber. Moreover, the group G acts by right multiplication as an automorphism group on Γ.
Finally, the group G is transitive on the flags of rank less than 3.

The incidence system constructed using the proposition above will be denoted by
Γ(G; (Gi)i∈I) and called a coset incidence system.

Theorem 2.2 ([9, Theorem 4.6]). Let I = {0, . . . , n − 1}, let G = 〈ρi | i ∈ I〉 be a
C-group, and let Γ := Γ(G; (Gi)i∈I) where Gi := 〈ρj | j 6= i〉 for all i ∈ I . If G is
flag-transitive on Γ, then Γ is a regular hypertope.

In other words, the coset incidence system Γ = Γ(G, (Gi)i∈I) is a regular hypertope if
and only if the group G is a C-group and Γ is flag-transitive. In order to prove that a given
group G is a C-group, we can use the following result.

Proposition 2.3 ([7, Proposition 6.1]). Let G be a group generated by n involutions
ρ0, . . . , ρn−1. Suppose that Gi is a C-group for every i ∈ {0, . . . , n − 1}. Then G is
a C-group if and only if Gi ∩Gj = Gi,j for all 0 6 i, j 6 n− 1.

At the end of this section we introduce Lemma 2.4 whose proof is straightforward and
will be used in Section 3 to prove our main results.

Lemma 2.4. Let G = 〈ρ0, . . . , ρr−1〉 and H = 〈ρr, . . . , ρr+s−1〉 be two C-groups. Then
the group

G×H = 〈ρ0, . . . , ρr−1, ρr, . . . , ρr+s−1〉
is a C-group.

3 Halving operation
In this section the halving operation is applied to the automorphism group of a non-
degenerate regular polytope P producing H(P), which is a subgroup of Aut(P) of index
at most 2. We prove that the group H(P) is a C-group and that the corresponding incidence
system is flag-transitive. Therefore the group H(P) is the type-preserving automorphism
group of a regular hypertope.

Let n > 3 and P be a regular, non-degenerate n-polytope of type {p1, . . . , pn−2, pn−1}
and automorphism group Aut(P) = 〈%0, . . . , %n−1〉. The halving operation is the map

η : 〈%0, . . . , %n−1〉 → 〈ρ0, . . . , ρn−1〉 ,

where

ρi =

{
%i, if 0 6 i 6 n− 2,

%n−1%n−2%n−1, if i = n− 1,
(3.1)

The halving group of P , denoted by H(P), is the image of Aut(P) under η.
Observe that the group H(P) = 〈ρ1, . . . , ρn−1〉 has the following diagram

ρn−2•
ρ0•

ρ1•
ρ2•

ρn−4•
ρn−3•

•
ρn−1

s
p1 p2

...
pn−3

pn−2

pn−2

(3.2)



6 Art Discrete Appl. Math. 4 (2021) #P3.07

where s = pn−1 if pn−1 is odd, otherwise s = pn−1

2 . We denote by H(P) the coset inci-

dence system Γ
(

H(P), (Hi)i∈{0,...,n−1}

)
, where Hi is the subgroup of H(P) generated

by {ρj : j 6= i}. In Theorem 3.1 we show that the group H(P) satisfies the intersection
property and in Proposition 3.2 we show that the corresponding incidence H(P) is flag-
transitive. We conclude the section with Corollary 3.3 which states that H(P) is in fact a
thin, chamber-transitive coset geometry, i.e. a regular hypertope.

The halving operation has been used before in the context of regular polyhedra of type
{q, 4} (see [17] and [18, Section 7B]) and the resulting incidence system is a regular poly-
hedron of type {q, q}.

The operation described above doubles the fundamental region of Aut(P) by gluing
together the base flag Φ and the flag Φn−1.

As an example we explore the halving operation applied to the cubic tessellation
{4, 3, 4}. The elements of type 0 and 1 of the resulting incidence system are the vertices
and edges of the {4, 3, 4}, respectively. The elements of type 2 are half of the cubes and
the elements of type 3 are the other half. This is the construction of the infinite hypertope
described in [11, Example 2.5] and can also be seen as a semi-regular polytope (see [19,
Section 3]).

It is easy to see that H(P) has index 2 in Aut(P) if and only if the set of facets of P is
bipartite. This is only possible if pn−1 is even. If this is the case, then the elements of type
i, for i ∈ {0, . . . , n− 3} are the faces of rank i of P . The elements of type n − 2 are half
of the facets of P (those belonging to the same partition as the base facet) and the elements
of type n−1 are the other half of the facets, namely, those in the same partition as the facet
of Φn−1.

In the remainder of the section we let P be a fixed regular n-polytope with a base
flag Φ, the automorphism group Aut(P) = 〈%0, . . . %n−1〉 and H = 〈ρ0, . . . , ρn−1〉
the halving group of P . For i, j ∈ {0, . . . , n− 1} we let Hi and Hi,j be the groups
〈ρk : k 6= i〉 and 〈ρk : k 6∈ {i, j}〉, respectively. Finally, by H(P) we denote the incidence
system Γ

(
H, (Hi)i∈{0,...,n−1}

)
and by Γi the residue of H(P) induced by Hi, that is

Γi = Γ
(
Hi, (Hi,j)j∈{0,...,n−1}\{i}

)
.

Theorem 3.1. Let n > 3 and P be a regular, non-degenerate n-polytope of type {p1, . . . ,
pn−1}. Then the halving group H(P) is a C-group.

Proof. The strategy of this proof is to use Proposition 2.3. To do so, we proceed by in-
duction over n. Let Φ = {F−1, . . . , Fn} be the base flag of P . Let F ′n−1 be the facet of
Φn−1.

If n = 3, we need to prove that the group H0 = 〈ρ1, ρ2〉 = 〈%1, %2%1%1〉 is a C-group.
However, this group is a subgroup of the automorphism group of the polygonal section
F3/F1 isomorphic to the dihedral group Ds. The groups H1 = 〈ρ0, ρ2〉 and H2 = 〈ρ0, ρ1〉
are the automorphism groups of the polygonal sections F ′2/F−1 and F2/F−1, respectively.
It follows that they are C-groups.

To finish our base case we only need to show

〈ρ0, ρ1〉 ∩ 〈ρ0, ρ2〉 = 〈ρ0〉 , (3.3)
〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉 = 〈ρ1〉 , (3.4)
〈ρ0, ρ2〉 ∩ 〈ρ1, ρ2〉 = 〈ρ2〉 . (3.5)
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To prove (3.3), just observe that 〈ρ0〉 = StabP({F1, F2}). Let γ ∈ 〈ρ0, ρ1〉 ∩ 〈ρ0, ρ2〉.
Since γ ∈ 〈ρ0, ρ1〉, γ fixes F2. Similarly, since γ ∈ 〈ρ0, ρ2〉, γ must fix F ′2. This implies
that γ fixes F1, since this is the only 1-face of P incident to both F2 and F ′2. Therefore,
γ ∈ StabP({F1, F2}) = 〈ρ0〉. The other inclusion is obvious.

Similarly, we have that 〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉 ⊆ StabP({F0, F1}). This follows from
the fact that the group 〈ρ0, ρ1〉 fixes F2 and the group 〈ρ1, ρ2〉 fixes F0. Then, 〈ρ0, ρ1〉 ∩
〈ρ1, ρ2〉 ⊆ 〈ρ1〉. Again, the other inclusion is obvious. The proof of (3.4) follows from the
same argument but now with respect to the flag Φ2 = {F0, F1, F

′
2} of P . This completes

the base case.
Assume that the halving group H(F) of every non-degenerate regular polytope F of

rank r with 3 6 r < n is a C-group.
Observe that the groups Hn−1 = 〈ρ0, . . . , ρn−2〉 and Hn−2 = 〈ρ0, . . . , ρn−3, ρn−1〉

are the automorphism groups of the sections Fn−1/F−1 and F ′n−1/F−1, respectively.
Hence, these groups are C-groups (see [18, Proposition 2B9]).

Observe that if i ∈ {0, 1, . . . , n− 3} then Hi = H−i ×H
+
i where H−i = 〈ρj : j < i〉

and H+
i = 〈ρj : i < j〉. Note that H−i is just the automorphism of the section Fi/F−1,

hence a C-group. If i < n− 3 then H+
i is the halving group of the section Fn/Fi, which is

a C-group by the inductive hypothesis. If i = n − 3, then H+
i is isomorphic to a dihedral

group Ds. In any case, it follows from Lemma 2.4 that Hi is a C-group.
In order to use Proposition 2.3, we need to prove that for every pair i, j ∈ {0, . . . , n−

1}, with i < j, the equality
Hi ∩Hj = Hi,j (3.6)

holds. We proceed in a similar way as in rank 3. If {i, j} = {n− 1, n− 2}, then observe
that Hi = Hn−2 fixes Fn−1 and Hj = Hn−1 fixes F ′n−1. This implies that an element
γ ∈ Hn−2 ∩Hn−1 must fix Fn−2. Thus γ ∈ StabP({Fn−2, Fn−1}) = 〈ρ0, . . . , ρn−3〉 =
Hi,j . The other inclusion is obvious.

If j ∈ {n− 1, n− 2} and i 6 n− 3 then (3.6) follows from the fact that Hj is a string
C-group.

Assume that 0 6 i < j 6 n− 3. Let F be the section Fj/F−1 of P . Let γ ∈ Hi ∩Hj .
Observe that Hj = H−j ×H

+
j and that Aut(F) = H−j . Let α ∈ H−j and β ∈ H+

j be such
that γ = αβ. Note that β fixes the face Fi of P and since γ ∈ Hi it follows that α must
fix Fi. Since H−j is a string C-group, it follows that α ∈ 〈ρ0, . . . , ρi−1, ρi+1, . . . , ρj−1〉.
Then

γ ∈ 〈ρ0, . . . , ρi−1, ρi+1, . . . , ρj−1〉 × 〈ρj+1, . . . , ρn−1〉 = Hi,j .

The other inclusion is obvious.

The halving group of a regular polytope P is a C-group with Coxeter diagram (3.2).
The groups generated by involutions with this diagram are called tail-triangle groups (even
when s = 2). In [19, 20] Monson and Schulte show that when a tail-triangle group is a
C-group, it is the automorphism group of an alternating semi-regular polytope. We de-
note by S(P) the semi-regular polytope obtained by the halving operation on P . The
polytope S(P) has two orbits of isomorphic regular facets, namely the right cosets of
〈ρ0, . . . , ρn−3, ρn−2〉 and 〈ρ0, . . . , ρn−3, ρn−1〉. These base facets are incident with a reg-
ular polytope R of rank n − 2. In fact, every flag of R can be extended to a flag of S(P)
in two different ways. Moreover, any flag of S(P) belongs to the orbit of one of these two
flags. The automorphisms of S(P) can now be used to show flag transitivity ofH(P).
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Proposition 3.2. The incidence system H(P) associated with a non-degenerate regular
polytope P is flag-transitive.

Proof. Let J ⊆ {0, . . . , n− 1} and let F = {Hih : i ∈ J} for some h ∈ H(P) be a flag
of H(P) of type J . If |J ∩ {n− 2, n− 1}| 6 1, then F is a chain of S(P) of type J . By
[19, Lemma 4.5b], the group H(P) is transitive on the chains of this type.

If {n − 2, n − 1} ⊆ J , then F = Υ ∪ Υn−1, where Υ is the chain of S(P) of type
J ′ = J \ {n − 1} whose faces are contained in F . Again, [19, Lemma 4.5b] implies
that H(P) is transitive in chains of type J ′. Finally, observe that if β ∈ H(P), then
(Υβ)n−1 = (Υn−1)β. It follows that H(P) is also transitive on flags of type J .

Corollary 3.3. Let P be a non-degenerate, regular n-polytope and I = {0, . . . , n− 1}.
Let H(P) be the halving group ofP . Then the incidence systemH(P) = Γ (H(P), (Hi)i∈I)
is a regular hypertope such that AutI (H(P)) = H(P).

The assumption thatP is non-degenerate is very important. When the halving operation
is applied on the dual of the 4-hemicube the resulting incidence system is not a hypertope
(see [11, Example 3.3]).

Theorem 2.5 in [20] implies that the semi-regular polytope S(P) is regular because the
associated C-group admits a group automorphism interchanging the generators ρn−1 and
ρn−2 (this automorphism is given by conjugation by %n−1). The polytope S(P) is in fact
isomorphic to P .

4 Locally spherical hypertopes from generalised cubes.
A spherical hypertope is a universal regular hypertope whose Coxeter diagram is a union
of diagrams of finite irreducible Coxeter groups. This definition is slightly different from
that in [11]. A locally spherical hypertope is a regular hypertope whose all proper residues
are spherical hypertopes. An irreducible regular hypertope is of euclidean (resp. spherical)
type if the type-preserving automorphism group of its universal regular cover is an affine
(resp. finite irreducible) Coxeter group. Similarly, an irreducible locally spherical hyper-
tope is of hyperbolic type if the type-preserving automorphism group of its universal cover
is a compact hyperbolic Coxeter group. It is well known that compact hyperbolic Coxeter
groups exist only in ranks 3, 4 and 5.

In [11] the authors show that a locally spherical hypertope has to be of spherical, eu-
clidean or hyperbolic type. The complete list of the Coxeter diagrams of these groups can
be found in [11, Tables 1 and 2]. Whereas the first two classes are well understood, not
much is known about the hyperbolic type. In particular, the authors were not successful in
producing a finite example of rank 5 locally spherical proper hypertope of this type. In what
follows we will use the halving operation on a certain class of polytopes first described by
Danzer in [5] (see also [18, Theorem 8D2]) and in particular we produce an example of
finite rank 5 proper regular hypertope of hyperbolic type.

We briefly review Danzer’s construction of generalised cubes.
Let K be a regular finite non-degenerate n-polytope with vertex set V = {v1, . . . , vm}.

Consider the set

2V =

m∏
j=1

{0, 1} = {x̄ = (x1, . . . , xm) : xj ∈ {0, 1}} .
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Given an i-face F of K and x̄ ∈ 2V define the sets

F (x̄) =
{

ȳ = (y1, . . . , ym) ∈ 2V : yj = xj if vj 66 F
}
.

Then the polytope 2K is the set

{∅} ∪ 2V ∪
{
F (x̄) : F ∈ K, x̄ ∈ 2V

}
ordered by inclusion. The improper face of rank −1 of 2K is ∅ and if i > 0 the i-faces
of 2K are the sets F (x̄) for F a certain (i − 1)-face of K and some x̄ ∈ 2V . Note that
F−1(x̄) = {x̄} for every x̄ ∈ 2V , hence 2K has 2|V | vertices.

IfK is a regular of type {p1, . . . , pn−2} then 2K is a regular polytope of type {4, p1, . . . ,
pn−2}. In fact, all the vertex figures of 2K are isomorphic to K. The polytope 2K is called
a generalised cube since when K is the (n− 1)-simplex, the polytope 2K is isomorphic to
the n-cube.

For our purposes it is convenient to denote by 2̂K the polytope
(
2K

∗)∗
, so that 2̂K is a

regular polytope of type {p1, . . . , pn−2, 4} whose facets are isomorphic to K.
The automorphism group of 2̂K is isomorphic to Zm2 o Aut(K), where m denotes the

number of facets of K and the action of Aut(K) on Zm2 is given by permuting coordi-
nates in the natural way. In particular, the size of this group is 2m × |Aut(K)| (see [18,
Theorem 2C5] and [23]).

Remark 4.1. In [23] Pellicer generalises Danzer’s construction of 2K. Given a finite non-
degenerate regular (n − 1)-polytope K of type {p1, . . . , pn−2} and s ∈ N, Pellicer’s con-
struction gives as a result an n-polytope Ps of type {p1, . . . pn−2, 2s}. If s = 2, the poly-
tope P2 is isomorphic to 2̂K. However, when our construction is applied to the polytopes
Ps for s > 3, the resulting hypertopes are not locally spherical and therefore not included
in this paper.

Now we discuss the locally spherical hypertopes resulting from applying the halv-
ing operation to the polytopes obtained from Danzer’s construction. Since 2̂K is of type
{p1, . . . pn−2, 4}, the hypertopeH(2̂K) has the following Coxeter diagram:

ρn−2•
ρ0•

ρ1•
ρ2•

ρn−4•
ρn−3•

•
ρn−1

p1 p2
...

pn−3

pn−2

pn−2

We naturally extend the Schläfli symbol and say that H(2̂K) is of type {pn−1, . . . ,
pn−3,

pn−2
pn−2}.

In rank 3 the polytope 2̂{p} is obtained by applying the construction on a regular poly-
gon {p} and the induced hypertope is in fact a self-dual polyhedron of type {p, p}. This
polyhedron has 2p−1 vertices, 2p−2p edges and 2p−1 faces and it is a map on a surface of
genus 2p−3(p− 4) + 1. For p = 3 the resulting hypertope is a spherical polyhedron {3, 3},
i.e. the tetrahedron. When p = 4 the polytope 2̂{4} is the toroid {4, 4}(4,0) and the induced
hypertope is also of euclidean type, more precisely, it is the toroid {4, 4}(2,2).

To obtain locally spherical hypertopes in rank 4, K must be of type {p, 3} with p =
3, 4, 5. The resulting hypertopes are of spherical, euclidean, and hyperbolic type, respec-
tively. If p = 3, the hypertope H(2̂K) is the universal hypertope of Coxeter diagram D4
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and type {3, 33}. When p = 4 the polytope 2̂K is the toroid {4, 3, 4}(4,0,0) and H(2̂K) is a
toroidal hypertope described by Ens in [6, Theorem 4.3], which we denote by

{
4, 33
}

(4,0,0)
.

The automorphism group of this hypertope has Coxeter diagram B̃3. If p = 5, the resulting
hypertope is of type

{
5, 33
}

with automorphism group of size 211 × 120 = 245, 760. This
example is different from any of the examples listed in [11].

In rank 5 the polytope K must be of type {p, 3, 3} with p = 3, 4, 5, the resulting hyper-
topes are of spherical, euclidean and hyperbolic type, respectively. If p = 3 then the hy-
pertopes is the universal spherical hypertope of type

{
3, 3, 33

}
, i.e. the universal hypertope

of Coxeter diagram D5. If p = 4 the polytope 2̂K is the regular toroid {4, 3, 3, 4}(4,0,0,0).
The induced hypertope is of euclidean type, hence a toroidal hypertope which we denote
by
{

4, 3, 33
}

(4,0,0,0)
. The Coxeter diagram of its automorphism group is B̃4. For p = 5

the regular polytope 2̂K is constructed from the 120-cell. The hypertope H(2̂K) is of type{
5, 3, 33

}
and its automorphism group has size 2119 × 14400. It is not surprising that the

authors of [11] could not find this example using a computational approach.
For rank n > 6 we can only obtain locally spherical hypertopes from our construction

ifK is the (n−1)-simplex {3n−2} or the (n−1)-cube {4, 3n−3}. The polytope 2̂K is the n-
cross-polytope {3n−2, 4} or the toroid {4, 3n−3, 4}(4,0,...0), respectively. In the former case
the resulting hypertope is the universal spherical hypertope of type {3n−3, 33} associated
with the Coxeter diagram Dn while in the latter it is a toroidal hypertope associated with
the Coxeter diagram B̃n−1 which we denote by {4, 3n−4, 33}(4,0,...0).
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