
Informatica 30 (2006) 87–95 87

Integration of Access Control in Information Systems: From Role Engineering
to Implementation

Thion Romuald and Coulondre Stéphane
LIRIS / INSA University of Lyon
20 Av. Albert Einstein
69621 Villeurbanne Cedex, France
romuald.thion@insa-lyon.fr and stephane.coulondre@insa-lyon.fr

Keywords: role-based access control, object-oriented models, role engineering, security

Received: November 11, 2005

Pervasive computing and proliferation of smart gadgets lead organizations to open their information sys-
tems, especially by extensive use of mobile technology: information systems must be available any-time,
any-where, on any media. This cannot be done reasonably without thorough access control policies. Such
access control must be able to deal with user profile, time and even with more complex contexts including
geographical position. This paper shows that it is possible to take into account confidentiality constraints
straight into the logical data model in a homogeneous way, for various aspects generally treated indepen-
dently (user profile, time, geographical position, etc.). We propose a language called RAPOOL which
allows the expression of authorizations at the class level. We first present the syntactical aspects, then the
semantics of the language, based on the object-oriented paradigm.

Povzetek: Članek opisuje mobilne informacijske sisteme.

1 Introduction

Companies and general public interest for new technolo-
gies keeps growing, either for mobile use (laptops, Wi-fi,
pocket-PC, GPS, UMTS, Java technology in GSM, etc..) or
for legacy use. Information Systems (IS) now become open
and online. Therefore, security is in great demand, par-
ticularly for IS containing confidential data. New mobile
and pervasive technologies introduce the concept of con-
text. The need to include it in access control mechanisms
arises [16, 13]. Thus, from now on, access control tends
towards integration of user profile, time, state of the com-
puting environment and even geographical position [8].

1.1 Motivations

Security is considered as a non-functional requirement in
software engineering. Contrary to other non-functional re-
quirements, such as efficiency, modularity or usability, con-
fidentiality has been unconsidered for long. Thus, access
control management is often postponed until the end of the
design cycle and is implemented at the very end of the de-
sign process. The software is therefore developed without
taking confidentiality constraints into account. This usual
approach often leads to serious design challenges (e.g. in-
tegration of roles) and problems (e.g. software vulnerabili-
ties, information leakage) [17].

In this paper, we show how to take into account general
context data (user roles, spatio-temporal environment, etc.)
in a homogeneous way, straight in the object data model

(and more generally in Information Systems, Objects, Web
Services, etc) to provide an object-oriented language which
allows the expression of authorizations at the class level.
We do think that security must be present throughout the
whole development cycle. Our proposal describes a logical
data model in which contextual role-based access control is
integrated. We thus provide a support to upstream design
methods [9, 14] which can rely on it.

1.2 Our approach

We do think that security concerns must be considered
all the development cycle long. As user interface is
incorporated in software architecture (e.g. the model-
view-controller architecture separates an application’s data
model, user interface and its control logic), we argue that
access control, and in a broader sense security, must be
considered in the software development cycle, and not ne-
glected until the very end of this process.

To bridge this gap between the security will and its im-
plementation, our approach is to provide a consistent logi-
cal data model including role-based access control policies.
Since Role-Based Access Control (RBAC) is currently one
of the most seducing security models and since extending
Object-Oriented (OO) systems with roles has been amply
studied in the literature, we chose to integrate role-based
authorization policies at the class level. With such embed-
ded authorizations in an OO language, developers can now
integrate their security policies in their code in a declarative
manner. As inheritance is used by programmers without



88 Informatica 30 (2006) 87–95 R. Thion et al.

worrying about how polymorphism or dynamic linking are
implemented, authorization policies can be used without
worrying about the mechanisms involved in the authoriza-
tion decision.

The rest of the paper is organized as follows. Section 2
presents the original Role-Based Access Control on which
our proposal relies for describing privileges organization
within an IS. Section 3 details syntactical aspects of the
RAPOOL (for Role-based Authorizations Policies Object-
Oriented Language) language we propose. Section 4 de-
tails functional aspects with an illustrative example in the
medical area. This section also describes how to imple-
ment RAPOOL. Section 5 surveys attempts in integrat-
ing the role concept in object data models and compare
our approach to related work on security integration within
object-oriented models. Section 6 finally concludes the pa-
per and discusses some perspectives on security integration
within the software design process.

2 Modelling authorizations with
roles

Role modelling has been introduced into many computer
sciences areas: databases, programming languages, ontolo-
gies or agent oriented modelling. For security purposes,
roles have been introduced to make access control policies
administration easier: this is the main idea of the Role-
Based Access Control (RBAC) model.

2.1 An Access Control model
Access control denotes the fact of determining whether a
user (not necessarily an human user: process, computer,
etc.) is able to perform an operation (read, write, execute,
delete, search, etc.) on an object (more generally: a tuple
in a database, a table, an object, a file, etc.). An operation
right on an object is called permission. An access control
model define how to organize the permissions of users.

The RBAC Model [21] was defined in the 90’s and has
been extended in many ways (temporal, geographical ex-
tensions, etc. [8, 13]). It was introduced in order to tackle
the weaknesses of DAC (Discretionary Access Control)
and MAC (Mandatory Access Control) models: the former
is difficult to implement with a large number of users, and
the latter is too rigid for modern applications. We focused
on RBAC rather than other recent access control models
because it is currently the most seducing access control
paradigm, as shown by its use in major databases man-
agement systems such as Oracle Enterprise Server v.8 or
Sybase Adaptive Server v.11.5. Even for legacy systems
which are not role- based, the use of RBAC may simplify
management [18].

The basic RBAC philosophy is based on the observation
that most of the access permissions are determined by a
person authority or function, inside an organization. This
defines the central concept of role. The introduction of role

concept in access control policies as an intermediate layer
between users and permissions, really facilitates and sim-
plifies the system administration task. The RBAC defini-
tion of a role is “a job function within the organization with
some semantics regarding the authority and responsibility
conferred on the member of the role"([21]).

The RBAC model family is based on the identification of
a certain number of roles [20], each of them representing a
set of actions and responsibilities within the system (roles
can be seen as a collection of permissions). Thus in the
RBAC model (figure 1):

– no permission is granted directly to the user, permis-
sions are only granted to roles,

– the users endorse the roles which are given by the ad-
ministrator (it is only possible to specify positive au-
thorizations, no prohibitions),

– roles are defined and organized in a hierarchy: a child
role has the permissions granted to his/her parents.

In OO systems, the concept of permission is related
to objects methods. A permission is an access privi-
lege on a ressource. In OO systems, ressources are ob-
jects (or attributes of objects) and access privileges are ob-
jects methods (e.g. getAttribute() is a read-access,
setAttribute() is a write-access). Thus, granting an
access privilege to an object consists in authorizing the ob-
ject method call. The rules defining permission assign-
ments to roles are access control policies.

2.2 Access control policies

Access control policies define the users rights on ob-
jects, in order to enforce the security of an organization.
In the RBAC model, policies define which permissions
are granted to roles (permission-role assignment in fig-
ure 1). Thus users are granted permissions through role-
assignment (user-role assignment in figure 1).

An example of role-oriented access control policies in
health sector would be:

– a nurse can only read the patient prescriptions. But
she can write the last care date and time, provided it
takes place during her working time,

– a doctor can only prescribe if he/she is geographically
located in the hospital. He has access to the whole
medical record, but he/she cannot write the last care
date and time,

– a head nurse has read access to prescriptions and cares
history without conditions of time.

Permissions associated to roles allow the expression of
access authorizations in a generic way. Therefore we do not
specify that Dr. Johnson has access to Mr. Rabot records.
Instead we only specify that doctors have write access to



INTEGRATION OF ACCESS CONTROL IN INFORMATION SYSTEMS. . . Informatica 30 (2006) 87–95 89

Figure 1: The RBAC Model

patient records. According to RBAC principle “permis-
sions are only granted to roles", our proposal do not in-
clude policies related to individuals. Thus is is not possible
to specify that only Dr. Johnson has access to Mr. Rabot
record. The RBAC roles, their hierarchical organization
and the associated permissions make up the organization
confidentiality policy.

The language we chose to express access control poli-
cies has been heavily influenced by [8] which formalize
authorization policies, including temporal aspects, in first-
order logic (FOL). Thus we use a tractable fragment of
FOL (no function symbol, no negation, only conjunctive
and disjunctive connectors) suitable to express role-based
authorization policies at the class level.

2.3 A suitable subset of RBAC

Our approach intends to include role-based authorizations
into class models. Thus, authorizations policies are com-
mon to every objects instantiated from a class. As classes
are most-of-the-time static in OO systems, we are not able
to express dynamic aspects of RBAC. The session concept
for example, cannot be included into the class model: each
session is related to exactly one user, and it represents the
roles its user is actually endorsing.

Moreover, our proposal is an OO language designed for
secured software. Its goal is not to integrate the whole
RBAC model into class models, but only a subset describ-
ing authorizations policies related to the application which
is to be developed. Thus user-role assignments, sessions
or delegations are outside the scope of this work: we only
model the authorization policies related to the application.
For example, let us suppose that a hospital is developing
an intranet web-portal. User-role assignments are stored
in a dedicated directory (which is used by other applica-
tions), not in web-portal itself. Only the policies describing
“which role can access a given method of a given class of
the web-portal" are included straight into the code.

Thus, the concepts of user, user-role assignment, ses-

sions and context retrieval are not included in our proposal
and will be referred as user profile (section 4).

3 The RAPOOL Language
In order to tackle the problems of RBAC integration
within object data models, we propose a generic language
RAPOOL allowing the expression of RBAC authorizations
and integrating an access control mechanism. The declara-
tive part of the language is composed of:

– the body, which relies on C++ syntax (on a purely
illustrative basis, as any class-based language could
have been used: Java, Python, etc.) while adding ac-
cess authorizations formulae to methods,

– the header, which defines the roles which are to be
used within the definition of access authorizations.

3.1 The Header
The header is used to specify (BNF grammar is given in
annex):

– various categories of roles to be taken into account. In
the example we included the categories of [3] which
are adapted to organizations: functional, seniority and
context. These categories, freely chosen by the devel-
oper, form groups of roles. These groups represent
transverse role aspects, which are combined to form
complex roles. It would be possible to add some other
groups such as ward (ex: cardiology, radiology, etc.
which remains static), or sensitivity (ex: white, grey,
black information according to the sensitivity of data)
which can be used to simulate a MAC access control,

– hierarchical relations between roles [15]. For example
head << assistant means that the head has (at least)
all the privileges of the assistant. Thus, the conjunc-
tion of seniority roles with the functional role doctor



90 Informatica 30 (2006) 87–95 R. Thion et al.

makes it possible to specify complex roles, for exam-
ple head doctor, who would have more privileges than
a doctor, but fewer privileges than the manager doc-
tor,

– the various contexts in which the access authoriza-
tions are defined. These contexts can be geographical
(by using the predicate position) or temporal (with the
predicate hour). We suppose that the position of the
user is obtained by reliable mechanisms which are not
in the scope of this paper. We suppose we can get an
absolute reference as a couple of (X, Y) co-ordinates,
indicating the user position from where he/she invokes
the service. In practice, space modelling by mean
of linear constraints is sufficient for many cases [7].
Within the header we can for example restrict access
only if the user is located within the hospital or the
building.

All simple roles defined in the header are combinable
via conjunctions and disjunctions, in order to create com-
plex roles, modelling access control constraints based on
the transverse aspects of the profile, time and space at the
same time.

Functional Roles {
Roles : nurse, doctor, day_nurse, night_nurse;
Hierarchy : day_nurse << nurse, night_nurse << nurse;
}

Seniority Roles {
Roles : manager, head, assistant;
Hierarchy : manager << head << assistant;
}

Contextual Roles {
Hospital_enclosure = (position(X,Y)

and X>10 and X<50 and Y<10 and Y>30);
First_shift = (hour(H) and H>=4 and H<12);
Second_shift = (hour (H) and H>=12 and H<20);
Third_shift = ((hour (H) and H>=20)

or (hour(H) and H<4));
}

3.2 The Body
In RAPOOL, the body part allows the expression of access
authorizations at the method level. This is made possible
using the auth keyword, followed by an appropriate logi-
cal formula. The authorization logical formulae are used to
condition access to each method, according to the roles de-
fined in the header. These access authorizations model ac-
cess control rules defined in the confidentiality policy (sec-
tion 2.2).

Class CElectronicPatientRecord {
Public:
contact getPatientContact()

auth (doctor or nurse);
string getLastPrescription()

auth (doctor or nurse);
string getPrescriptionHistory()

auth (doctor or (nurse and head));
string getCareHistory()

auth (doctor or (nurse and head));
void setPrescription(string prescription)

auth (doctor and Hospital_enclosure);
void setLastCare(hour h, string care)

auth ((day_nurse and first_shift)
or (day_nurse and second_shift)
or (night_nurse and third_shift));

/* This authorization prevents a day nurse from
filling the LastCare field of the e-Patient
record during night, and a night nurse during the day */
}

4 Functional aspects
As the access control we propose is defined at the class
level, the following statements hold:

– for confidentiality-critical applications, access control
authorizations should be taken into account from the
very beginning of an information system design cy-
cle [17]. We do think that it does not have to be post-
poned until the end of the cycle,

– roles must be defined as soon as the requirement engi-
neering stage [20, 11],

– roles and authorizations can only be static [3], as the
class structure is modified, therefore recompiling is
necessary. We consider that this is not necessarily
a major problem, as the set of information defined
in the header and authorizations are very static (ex:
hierarchical levels, internal organization, administra-
tive responsibilities, etc.). However, no recompiling
is necessary for dynamic user role assignment or revo-
cation. Moreover, privilege delegation is possible be-
tween users. In the case of developing a wrapper (for
accessing legacy application through web services for
instance), recompilation does only involve the wrap-
per, not the wrapped applications.

4.1 The authorization decision
The principle of access control decision is as follows: when
a method call is detected, the RAPOOL engine checks if
the dynamic user profile fulfills the method authorization
policy. As described in section 2.3, our proposal does not
include the management of user profiles: we suppose that a
system storing role assignments, running sessions and pro-
viding contextual information (e.g. time) exists. Once this
information is retrieved (a cache mechanism can be used
to improve retrieval efficiency), the RAPOOL engine can
check if the requested access is granted. An architecture
for such a context repository is described in [16].

The basic idea of the access control decision is based on
logical implication. The user profile and the authorization
policy of the requested method needs to be translated into
first-order logic formulae:

1. each role is replaced by itself and the conjunction of
all its parents roles. If two roles are set to be mutually
inherited, they are considered as a same role,

2. each category c act as a predicate symbol. Each role r
defined within c is replaced by atom c(r),



INTEGRATION OF ACCESS CONTROL IN INFORMATION SYSTEMS. . . Informatica 30 (2006) 87–95 91

3. if a role is equivalent to a formula, then it is replaced
by this formula,

Once theses transformations are applied to both user pro-
file and requested authorization formula, we need to add
contextual information to the user profile. This informa-
tion is obtained by mean of software/hardware tools such
as LDAP, GPS, time clock, etc. and are also translated into
atoms. E.g. hour(18) or position(10, 23). Then if the user
profile (plus context) implies the authorization formula of
the requested method, the method is invoked, otherwise a
catchable exception is raised.

4.2 Example of authorization decision
Let us suppose that a user, John, wants to ac-
cess the setLastCare() method from his mobile de-
vice. John, who has previously identified himself
on the information system, has the following pro-
file: functional(nurse) ∧ functional(night_nurse) ∧
position(150, 45) ∧ hour(23) The functional part can be
extracted from a LDAP directory for example, and the
spatio-temporal part can be added by a time and position
server.

The authorization policy associated with the set-
LastCare() method is specified within the RAPOOL
body, as ((day_nurse ∧ first_shift) ∨ (day_nurse ∧
second_shift) ∨ (night_nurse ∧ third_shift)) The
RAPOOL engine replaces these role names by logical pred-
icates, as defined in the header:

– day_nurse is replaced by functional(nurse) ∧
functional(day_nurse). Indeed, day_nurse has at
least all the privileges of nurse. The same hold for
night_nurse,

– first_shift is replaced by hour(H) ∧ H ≥ 4 ∧
H < 12. The same holds for second_shift and
third_shift.

The resulting formula (under disjunctive form) is:
(functional(nurse) ∧ functional(night_nurse) ∧
hour(H) ∧ H < 4) ∨ (functional(nurse) ∧
functional(night_nurse) ∧ hour(H) ∧ H ≥
20) ∨ (functional(nurse) ∧ functional(day_nurse) ∧
hour(H) ∧ H ≥ 4 ∧ H < 12) ∨ (functional(nurse) ∧
functional(day_nurse)∧hour(H)∧H ≥ 12∧H < 20)

The RAPOOL engine checks if the dynamic user pro-
file logical formula implies this formula. As the user pro-
file is functional(nurse)∧functional(night_nurse)∧
position(150, 45)∧hour(23). Implication holds, therefore
access is granted.

4.3 Implementation in an object-oriented
framework

The first approach to implement RAPOOL is to add a layer
over an existing object-oriented language. Such a layer

has to retrieve user profile and contextual information from
role-assignment database. This layer needs to implement
the profile and authorization policy transformation into log-
ical formulae. This framework allows software designers
to integrate access control in a declarative manner, without
worrying about the mechanisms involved in authorization
decision.

A proof-of-concept pre-processor RAPOOL to C++ has
been implemented. For a developer, the RAPOOL to C++
pre-processor is a black-box transforming his code into
C++. The basic steps of the pre-processor are:

– the input is a RAPOOL source file, as written by de-
velopers according to RAPOOL grammar,

– the pre-processor includes the C++ framework files to
the source code,

– the pre-processor parse the header of RAPOOL (ac-
cording to its grammar) and suppress it from the
source file,

– the pre-processor analyse the body of RAPOOL and
transform authorization policies into logical formu-
lae (section 4.1) according to the previously parsed
header,

– the pre-processor add a call to the authorization deci-
sion mechanism (included from C++ framework files)
at the beginning of each method,

– the output is a C++ source file, obtained from
RAPOOL source file once header and authorization
policies are translated into calls to the framework.

4.4 Implementation in a role-based
object-oriented model

In many class-based object-oriented systems the associa-
tion between an instance and a class is exclusive and per-
manent. Therefore these systems have serious difficulties
in representing dynamic evolution of objects over time.
The problem is the most severe for OO databases in which
objects are stored over long periods during which the enti-
ties evolve. Object-role oriented models intend to fill this
shortcomings of object-oriented models by adding an or-
thogonal concept to classes: roles.

The authors of [23] describe an RBAC framework orga-
nized into 7 layers, as the OSI (Open Systems Interconnect)
network stack is (from physical layer #1 to abstract appli-
cation layer #7). The least abstract layer is the object layer,
used by the directly higher one: objects handles. This sec-
ond layer is used to keep the association between objects
and roles. An object-role oriented model integrate directly
such a layer: handles are no more needed, associations be-
tween roles and objects are handled in declarative manner
in the object-role oriented paradigm.

The implementation of RAPOOL in a role-based object-
oriented model is possible if:



92 Informatica 30 (2006) 87–95 R. Thion et al.

– the model integrates a role hierarchy,

– the role hierarchy is independent of the class hierar-
chy,

– the model respects the Object Data Management
Group (ODMG) standard (e.g. encapsulation, inher-
itance, polymorphism, etc.) to be compliant with an
existing object-oriented language.

Section 5.2 survey previous works on integration of role
mechanisms into object-oriented models. According to
previous surveys [2, 10], Samovar is the most suitable
model for hosting the RAPOOL language. This model re-
spects the ODMG standard and integrate roles into object-
oriented model. In this model, class can be seen as abstract
role containers: no method is directly associated to a class.
Attributes are only associated to roles or combinations of
roles (including conjunction and disjunction). These com-
binations are expressed in first-order logic formulae (the
same fragment of FOL used to express authorization poli-
cies in RAPOOL).

Thus, to implement RAPOOL in a role-based object-
oriented model, we must carry a prior transformation step
on access control policies. In RAPOOL, each authorization
is associated to an object method, roughly said as “policies
are organized by permissions". In order to implement our
language, we must infer on these policies to organize them
by roles, rather than by permissions. Note that this process
can be performed automatically without human interven-
tion.

For example, assuming we are working with
the example from section 3.2. Policies of the
CElectronicPatientRecord class are organized by
permissions:

– permission getPatientContact() is granted to
roles (doctor or nurse),

– permission getLastPrescription() is granted
to roles (doctor or nurse),

– permission getPrescriptionHistory()
is granted to roles
(doctor or (nurse and head)).

In order to be implemented in a role-based object-
oriented model, policies must be organized by roles. Thus,
the above example will be organized as follows:

– role (doctor) is granted ac-
cess to getPatientContact(),
getLastPrescription() and
getPrescriptionHistory(),

– role (nurse) is granted access
to getPatientContact() and
getLastPrescription()

– role (nurse and head) is granted access to
getPrescriptionHistory().

Everybody who is assigned to several roles is granted
all permissions assigned to each role, as permitted by role
hierarchy. Thus, (nurse and head) is also granted
access which (nurse) is granted.

5 Related work
Very few work focused on integrating of access control
models within logical data models. This section survey re-
lated work on introduction of security in object-oriented
models and on the role-object oriented paradigm.

5.1 Integration of access control in
object-oriented systems

Many papers have described how to implement security
mechanisms involving roles and contexts (e.g. [16, 3]) in a
role-oriented system. Our goal is not to describe how role-
based access control can be implemented with classes, but
is to describe how (and which subset of) role-based access
control mechanisms can be implemented in classes.

Integration of access control into OO systems has al-
ready been studied. The authors of [24] describe how
to implement Mandatory Access Control (MAC) in OO
database systems. Roughly stated, MAC is a military-
oriented model, in which users and resources are associated
to labels. Access is granted if and only if the user label is
as least as high as the requested resource label. Commonly
used labels are unclassified, confidential, secret and top-
secret. However, MAC has been shown to be too rigid for
current applications, particularly when multiple users with
different profiles are working on the system.

A more recent approach in [5] integrate MAC to UML
diagrams. Their framework bridges the gap between soft-
ware engineers and an organization security. A very inter-
esting contribution which is not limited to class diagram
and intends to integrate MAC in use cases and sequence
diagrams. This paper describes a logic data model, but we
are working on a conceptual model integrating role-based
authorizations (section 6).

5.2 Extending object-oriented systems with
roles

The object paradigm is a very expressive framework,
largely used. According to [22], implementing object roles
is a difficult task. Indeed, the multiplicity of roles and their
lifecycle (creation, deletion) is incompatible with the hard
constraints of class-based models: object identity, strong
typing, etc.

This problem could be partly solved with multiple in-
heritance (figure 2a) in an object programming language.
But each combination of role must lead to create a new
class, which leads to an explosion of the number of neces-
sary classes. Moreover, their existence is only motivated
by technical reasons and not by a modelling need. Another



INTEGRATION OF ACCESS CONTROL IN INFORMATION SYSTEMS. . . Informatica 30 (2006) 87–95 93

solution is to create a structure of handles [23] (figure 2b)
which corresponds to the desired multiple-role instances.
The handle references several OIDs, each of them corre-
sponding to a role played by this instance. This leads to a
referencing problem and involves the use of message dele-
gation. Moreover, Jacques would be only a handle, loosing
its encapsulation, and therefore not an object anymore.

The implementation of RBAC models in OO systems
clearly points out that maintaining association between
roles and classes can be a tough design challenge, par-
ticularly when dealing with role hierarchies. For exam-
ple, [3, 4] describes a, UML class-diagram to implement
RBAC. Their framework includes role and role instance
classes. Thus, software designers have to implement a
mechanism to ensure that an object instance of role is
linked with another object instance of role instance.

A review of role-based object models in the program-
ming and database areas can be found in [10, 2, 6]. How-
ever, these models are intended mainly to take into account
the dynamic part of the objects during their life, but either
they do not propose in general any access control primi-
tive or they do not totally respect the standard paradigms
of object programming (e.g. [25]).

5.3 Integration of security in role-oriented
systems

To the best of our knowledge, the closest paper to our
is [25]. This approach intends to integrate a subset of
RBAC into a role-oriented system: DOOR. This model
permits modelling an owner relationship between roles and
objects, but this approach does not entirely respect the stan-
dard paradigms of object programming. Section 5.2 ex-
plains how RAPOOL can be implemented in role-object
oriented systems, nevertheless in such implementation,
roles can still be used for non role-based authorization pur-
poses. The Samovar model [2] is well suited to include a
basic form of RBAC because it includes role definition in
a logical manner. These role formulae can easily capture
permission-role assignments of RBAC.

The aspect-oriented paradigm can be seen as an alterna-
tive to the role-oriented one. Both of them aim at a more
flexible use of objects in OO systems. The authors of [19]
describe their approach based on an “aspect-oriented mod-
elling (AOM) technique that allows system developers to
isolate cross-cutting design structures in aspects to support
controlled evolution of the structures". In this approach,
design structures that represent access control policies are
treated as aspects. Policies are integrated into system by
merging aspects with the system design model in which
acces control concerns are not adresses. This composition
results in a woven model. This approach is interesting for
its dynamic perspectives on access control modelling but
do not consider role hierarchy. We chosed to exclude dy-
namic concerns in our approach to provide a less flexible
but easier to use language. In our approach the basic subset
of RBAC is incorporated directly, thus do not impose the

composition of two models. We are investigating whether
RAPOOL can be as easily implemented in an aspect-based
model as it is in a role-based model.

6 Discussion
Our proposal makes possible to take into account RBAC
access control straight into the logical object data model.
We presented the generic RAPOOL language, which con-
tains two parts. The header allows specification of roles
categories and hierarchies. The body part allows specifi-
cation of authorizations at the method level, by mean of
logical connectors in order to build more complex ones.
We also presented the functional part of RAPOOL, which
relies on a first-order logic engine.

Security is often divided into confidentiality, reliability
and integrity. Confidentiality is the least considered non-
functional requirements of security. Access control mod-
els, and nowadays role-based ones, are designed to en-
hance confidentiality. Integration of Mandatory Access
Control [5] in UML diagrams and security extensions for
UML [12, 14] are promising. They will bridge the gap be-
tween a security will and its implementation. These con-
ceptual and logical propositions can be core models for
methodologies considering security as in integral part of
the whole software design process such as [17]. We are
currently working on automatic translation into RAPOOL
of UML diagrams expressed in specific security models.
RAPOOL can indeed be used as a target language for a
CASE supporting a RBAC-based design method, such as
SecureUML. We currently plan to validate this approach
using our prototype, a RAPOOL to C++ pre-processor,
with the Foundstone SecureUML Visio template [1].

References
[1] R. Araujo and S. Gupta (2005) Design authorisation

systems using SecureUML, Foundstone, Technical
report.

[2] S. Coulondre and T. Libourel (2002) An integrated
object-role oriented database model, Data Knowl.
Eng., 42(1):113–141.

[3] R. Crook, D. C. Ince, and B. Nuseibeh (2003) Mod-
elling access policies using roles in requirements
engineering, Information & Software Technology,
45(14):979–991.

[4] J. P. Davis and R. D. Bonnell (1999) Role-playing: A
mechanism for bridging the object-oriented design-
level gap, OOPSLA-97: Workshop on Object Tech-
nology, Architectures and Domain Analysis.

[5] T. Doan, S. Demurjian, T. C. Ting, and A. Ketterl
(2004) Mac and uml for secure software design,
FMSE ’04: Proceedings of the 2004 ACM workshop



94 Informatica 30 (2006) 87–95 R. Thion et al.

Figure 2: Empirical solutions for role implementation

on Formal methods in security engineering, ACM
Press, 75–85.

[6] G. Gottlob, M. Schrefl, and B. Rock (1996) Extend-
ing object-oriented systems with roles, ACM Trans.
Inf. Syst., 14(3):268–296.

[7] S. Grumbach, P. Rigaux, and L. Segoufin (2001)
Spatio-temporal data handling with constraints,
GeoInformatica, 5(1):95–115.

[8] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor (2005)
A generalized temporal role-based access control
model, IEEE Transactions on Knowledge and Data
Engineering, 17(1):4–23.

[9] J. Jürjens (2002) UMLsec: Extending UML for se-
cure systems development, UML 2002 - The Unified
Modeling Language. Model Engineering, Languages,
Concepts, and Tools. 5th International Conference,
Springer, Dresden Germany, 412–425.

[10] G. Kappel, W. Retschitzegger, and W. Schwinger
(1998) A comparison of role mechanisms in object-
oriented modeling, Modellierung CEUR Workshop
Proceedings, CEUR-WS.org.

[11] A. Kern, M. Kuhlmann, A. Schaad, and J. D. Mof-
fett (2002) Observations on the role life-cycle in the
context of enterprise security management, SACMAT,
43–51.

[12] D.-K. Kim, I. Ray, R. B. France, and N. Li (2004)
Modeling role-based access control using parameter-
ized uml models, FASE, Lecture Notes in Computer
Science, 180–193.

[13] A. Kumar, N. Karnik, and G. Chafle (2002) Con-
text sensitivity in role-based access control, SIGOPS
Oper. Syst. Rev., 36(3):53–66.

[14] T. Lodderstedt, D. A. Basin, and J. Doser (2002) Se-
cureuml: A uml-based modeling language for model-
driven security, UML ’02: Proceedings of the 5th

International Conference on UML, Springer-Verlag,
London UK, 426–441.

[15] J. D. Moffett and E. Lupu (1999) The uses of role hi-
erarchies in access control, ACM Workshop on Role-
Based Access Control, 153–160.

[16] G. K. Mostéfaoui and J. Pasquier-Rocha (2003)
Deterministic context-based security policies: An
object-oriented approach, SNPD, ACIS, 160–165.

[17] H. Mouratidis, P. Giorgini, and G. A. Manson (2003)
Integrating security and systems engineering: To-
wards the modelling of secure information systems,
CAiSE, Lecture Notes in Computer Science, 63–78.

[18] S. L. Osborn, Y. Han, and J. Liu, (2003) A methodol-
ogy for managing roles in legacy systems, SACMAT,
ACM, 33–40.

[19] I. Ray, R. B. France, N. Li, and G. Georg (2004)
An aspect-based approach to modeling access con-
trol concerns, Information & Software Technology,
46(9):575–587.

[20] H. Roeckle, G. Schimpf, and R. Weidinger (2000)
Process-oriented approach for role-finding to imple-
ment role-based security administration in a large in-
dustrial organization, ACM Workshop on Role-Based
Access Control, 103–110.

[21] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman (1996) Role-based access control models,
IEEE Computer, 29(2):38–47.

[22] F. Steimann (2000) On the representation of roles
in object-oriented and conceptual modelling, Data
Knowl. Eng., 35(1):83–106.

[23] D. Thomsen, D. O’Brien, and J. Bogle (1998) Role-
based access control framework for network enter-
prises, ACSAC ’98: Proceedings of the 14th Annual
Computer Security Applications Conference, IEEE
Computer Society, Washington DC USA.



INTEGRATION OF ACCESS CONTROL IN INFORMATION SYSTEMS. . . Informatica 30 (2006) 87–95 95

[24] M. B. Thuraisingham (1989) Mandatory security
in object-oriented database systems, OOPSLA ’89:
Conference proceedings on Object-oriented program-
ming systems, languages and applications, ACM
Press, New York USA, 203–210.

[25] R. K. Wong (1997) Rbac support in object-oriented
role databases, RBAC ’97: Proceedings of the second
ACM workshop on Role-based access control, ACM
Press, New York USA, 109–120.

Annex: BNF Grammar of RAPOOL
header
Note: grammar of non–terminal symbol logical_formula
is not included.

RAPOOL_header := groups_list
groups_list := groups_list group
|
group := group_identifier ’Roles’ ’{’ definitions_list ’}’
group_identifier := IDENTIFIER

definitions_list := definitions_list definition
|
definition := role_definition
| hierarchy_definition
| equivalency_definition

role_definition := ’Roles’ ’:’ roles_list ’;’
roles_list := role_identifier roles_list_suite
roles_list_suite := ’,’ role_identifier roles_list_next
|
role_identifier := IDENTIFIER

hierarchy_definition := ’Hierarchy’ ’:’ hierarchi-
cal_relations_list ’;’
hierarchical_relations_list := hierarchical_relation hierar-
chical_relations_list_suite
hierarchical_relations_list_suite := ’,’ hierarchical_relation
hierarchical_relations_list_suite
|
hierarchical_relation := role_identifier ’<<’ role_identifier

equivalency_definition := equivalency_identifier ’:=’
logical_formula ’;’
equivalency_identifier := IDENTIFIER




