
i
i

“proc14” — 2014/12/8 — 18:22 — page 267 — #281 i
i

i
i

i
i

BLED WORKSHOPS
IN PHYSICS
VOL. 15, NO. 2

Proceedings to the 17th Workshop
What Comes Beyond . . . (p. 267)

Bled, Slovenia, July 20-28, 2014

14 Deriving Diffeomorphism Symmetry

H.B. Nielsena,? and A. Kleppeb,??

aThe Niels Bohr Institute, Copenhagen, Denmark
bSACT, Oslo, Norway

Abstract. In an earlier article, we have ”derived” space, as a part of the Random Dy-
namics project. In order to get locality we need to obtain reparametrization symmetry, or
equivalently, diffeomorphism symmetry.

There we sketched a procedure for how to get locality by first obtaining reparametriza-
tion symmetry, or equivalently, diffeomorphism symmetry. This is the object of the present
article.

Povzetek. V enem od prejšnjih člankih sta avtorja v okviru projekta Naključne Dinamike
“izpeljala” pojavnost prostora. Za izpeljavo lokalnosti postora je potrebno vključiti reparame-
trizacijsko simetrijo, to je simetrijo na difeomorfizme. V tem prispevku nakažeta avtorja
izpeljavo postopka, kako do lokalnosti prostora iz reparametrizacijske simetrije.

14.1 Introduction

In an earlier article [1], we have ”derived” space, as a part of the Random Dynamics
project [2]. Since we want to have locality, we also need to derive reparametrization
symmetry, or more generally, diffeomorphism symmetry [3], essentially ensuring
that the choice of coordinates plays no role in the formulation of the physical laws.

We propose that diffeomorphism symmetry comes about as a result of a
selection principle, in reality a selection principle for how Nature ”chooses” its
symmetry groups, a scheme that has been developed by Holger Bech Nielsen
and his collaborators [4]. The initial idea was that the small representations of the
Standard Model gauge group

SMG = S(U(2)×U(3)) (14.1)

is a signature of such a selection principle, singling out groups that have the
“smallest” representations.

In the present article we use similar arguments, but instead of taking the
Standard Model group SMG = S(U(2)×U(3)) as the selected group, we consider
the combined diffemorphism-and-gauge group

B = {(λ,ϕ) |λ ∈ G, ϕ ∈ D} (14.2)

? E-mail: hbech@nbi.dk
?? E-mail: astri.snofrix@org



i
i

“proc14” — 2014/12/8 — 18:22 — page 268 — #282 i
i

i
i

i
i

268 H.B. Nielsen and A. Kleppe

where G is the group of all gauge transformations that map the four-dimensional
spacetime manifoldM on the 12-dimensional manifold of SMG: the Lie group is
a manifold,

λ :M→ SMG

and D is the group of diffeomorphisms, a diffeomorphism ϕ given by a bijective
differentiable map

ϕ :M→M
14.1.1 An alternative to grand unified models

A major part of the success of the GUT SU(5) model is that the representations
of the SU(5) gauge group automatically represent the SU(5) subgroup S(U(2)⊗
U(3)) with the Standard Model Lie algebra. The GUT SU(5) group thus presents
the needed restrictions on the allowed represenstations of the Standard Model
algebra. Any successful GUT group, like for example SO(10), reproduces the same
restrictions as SU(5) on the representations of the Standard Model Lie algebra,
restrictions corresponding to S(U(2)⊗U(3)).

Any viable alternative to the GUT scheme must thus supply a prediction not
only of the Standard Model Lie algebra, but also of the group structure. There are
however many possible scenarios, so unless one has some guiding principle for
selection the unificaton group, there isn’t much predictive power.

One way to get the Standard Model without a GUT scheme, is by using
some selection principle for how Nature selects the Standard Model group. The
underlying philosophy is that of Random Dynamics, namely that the fundamental
physics is random, and that the observed symmetries are emergent. If only some
symmetries emerge, supposedly by accident, but maybe even by some more
precise mechanism, then the initially random action could be considered as taking
random values for some small region of the value space of the representation of the
group, with the transformation properties of the fields or degrees of freedom under
the group. The elements of a representation of the group in question then move
quite slowly as the group elements themselves vary. (One can vary the group
elements much before one varies the fields or matrices of the representation).
The slower the representation moves as a function of the variation of the group
elements the more likely it is that a symmetry emerges, since displacements inside
the group itself corresponding to a small region (over which we assume essentially
constancy of the action) become bigger with a slower representation motion rate.
A symmetry of the random action is thus more likely to occur when the symmetry
is represented by ”slowly moving” representation elements (e.g. matrices).

By means of some ”goal quantities” we single out the groups that have the
largest chance to emerge from a random action model, favouring the experimental
gauge group and dimension of spacetime.

14.1.2 Groups and algebras

In Yang Mills theories, only the Lie algebra is important, since two groups G1 and
G2 that have the same Lie algebra also have the same Yang Mills system. There
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14 Deriving Diffeomorphism Symmetry 269

are however many Lie groups with the same algebra. These groups are locally
similar, but globally they can be very different, with different representations. For
example, SU(2) 6= SO(3), as for SU(2) we have j = 0, 1/2, 1, 3/2, . . ., while for
SO(3) j = 0, 1, 2, . . ., and it is only by studying the representations of Nature like
qL, qR, the Higgs and so on, that we can establish which groups are at stake. To a
group corresponds

• The Lie algebra and thus the structure constants flkm and the Yang-Mills
Lagrangian LYM.

• The system of allowed representations, a given set of representations only
being allowed by some Lie groups.

The covering group (for a given Lie algebra) can manage all the represen-
tations, so the goal is to find the most choosy group, i.e. the one that allows the
fewest representations - which also corresponds to experimental data. Our point
of deparure is the Standard Model Lie algebra

S(U(2)×U(3)) ∼ R× SU(2)× SU(3) ∼ U(1)× SU(2)× SU(3) (14.3)

and since we don’t find all its possible representations in Naure, we will concen-
trate on the Lie group rather than on the Lie algebra. It is so to speak stronger to
”predict” the group S(U(2)×U(3)), such that

det


. . 0 0 0

. . 0 0 0

0 0 . . .

0 0 . . .

0 0 . . .

 = 1,

a group which admits all phenomenological representations, which all obey the
rule

y

2
+ j3 +

1

3
"triality" = 0(mod1) (14.4)

14.2 Skewness

Small representations as one possible selection principle, but another way of
singling out Nature’s chosen group, is by studying group skewness [5], defined as
a lack of symmetry.

Nature seems to select the Lorentz group with the smallest representations;
perhaps space moreover prefers those dimensions that give the skewest Lorentz
group. The Standard Model group SMG = S(U(2)×U(3)) is very skew, and most
probably very ”complicated”.

There is always the worry that the choice of “goal property” is such that it gets
dramatically bigger or smaller with the dimension or some other size parameter
of the group. In the case of choosing a skewness measure, this can be dealt with
by defining it as

ln(number of outer automorphisms)
rank of the group
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270 H.B. Nielsen and A. Kleppe

14.2.1 Inner and outer automorphisms

The degree of skewness is thus a function of the number of outer automorphisms
of the group G. An automorphism is an isomorphism of the group onto itself,

β : G → G (14.5)

i.e. a correspondance φ of G with itself respecting the group multiplication, and
such that φ is bijective and φ(gh) = φ(g)φ(h), g, h ∈ G.

The map β(g) is an inner automorphism if there is an element h ∈ G, such
that for all g ∈ G,

β(g) = βh(g) = hgh
−1 (14.6)

The group of outer automorphisms O is then defined modulo the inner automor-
phisms in the sense that in the group of all automorphisms A, we discern the
subgroup of inner automorphisms,

Ainn = {βh|h ∈ G}, (14.7)

and then define the group of outer automorphisms as

Aout = {O/{βh|h ∈ G} (14.8)

For the Standard Model group, we have that

• The automorphisms of R (∼ the U(1) factor) are scalings with a factor k 6= 0.
• The SU(2) factor has complex conjugation (in the defining representation) as

an automorphism, it is however an inner automorphism.
• For the SU(3), as for all SU(N) algebras with N ≥ 1, complex conjugation is

an outer automorphism.

All outer automorphisms of the Standard Model algebra are combinations of these,
since an automorphism maps the three invariant subalgebras into three isomorphic
invariant subalgebras. There are infinitely many such automorphisms, but the
Standard Model algebra together with the set of Standard Model properties (the
rule system) is invariant under only one outer automorphism, namely complex
conjugation of the SU(3) combined with the U(1) scaling factor k = −1.

Among all algebras of dimensionality up to 12 dimensions, taking quanti-
zation rule systems into account, there are four combinations of algebras and
rule systems that have no generalized outer automorphisms, namely those with
semisimple algebras su(3) and so(3).

14.3 The size of a representation

The other suggested selection principle, namely the size of a representation, was
inspired by the fact that after the trivial representation, the lowest-dimensional
non-abelian representations in the Standard Model are the remarkably small
representations of SU(2) and SU(3).
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A probablility argument for the presence of a selection principle can be for-
mulated as follows: look at S(U(2)×U(3)) and count the Lie groups of similarly
low rank [6]. It turns out that there are about 28 = 256 groups with low dimen-
sion (up to 12, i.e. the dimension of the SMG). Among these about 256 groups,
S(U(2)×U(3)) is singled out - most probably by means of some selection principle
like the size of the representations.

In order to obtain a more precise formulation of the selection principle, we
need to establish what we mean by the “size” of a representation. For this purpose
we define a measure for this size in terms of the quadratic Casimir operators, which
’tag’ the representations in the sense that they are not defined for the algebra itself,
but only for the representations.

A general Casimir invariant is a function f(F) of the Lie group generators Fj
which is invariant under the group and commutes with all the generators,

[f(F), Fj] = 0.

The generators Fj of the group constitute a basis for the corresponding Lie algebra
and satisfy the commutation relation [Fi, Fk] = f

j
ikFj, i, k, j = 1, 2, . . . ., dG, where

dG is the dimension of the group and fjik are the structure constants by means of
which we can construct a Killing metric tensor gkl = f

j
kif

i
jl. The quadratic Casimir

operator
C2 = gklFkFl (14.9)

is used for measuring the “size” of a representation r. This is done by normalizing
the quadratic Casimir of the representation by dividing it with the quadratic
Casimir for the adjoint representation, which consists of dG × dG matrices Aj,
such that (Aj)kl = −fkjl. The metric can thus be written gkl = Tr(AkAl), and in the
first approximation, the “size” of the representation r is taken to be

S =

(
Cr

CA

)
, (14.10)

where Cr and CA are the Casimirs for the representation r and the adjoint repre-
sentation, respectively.

In the search for the groups with the smallest representations, we thus exam-
ine the quadratic Casimir operators, bearing in mind that the quadratic Casimir
is well defined only for irreducible representations. Our goal is to show that the
combined group B = {(λ,ϕ)|λ ∈ G, ϕ ∈ D} has a measure which is smaller than
the Standard Model group measure,(

Cr

CA

)
B
<

(
Cr

CA

)
SMG

, (14.11)

since this is a way of necessitating the existence of the group of diffeomor-
phisms. When we talk about SMG, it should be noted that we actually have
a SMG in each point of spacetime, corresponding to a product of SMG’s: SMG×
SMG . . .× SMG, this product however has the same size measure as SMG itself,
i.e. (Cr/CA)SMG×SMG... = (Cr/CA)SMG.
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272 H.B. Nielsen and A. Kleppe

According to Schur’s lemma [7], in an irreducible representation, any operator
that commutes with all the generators of the Lie algebra must be a multiple of the
identity operator. Therefore Cr = gklFkFl = cr1,where 1 is the dr × dr identity
matrix, and cr is a coefficient which only depends on the representation r, so we
have

S =
cr1
cA1

=
cr

cA
(14.12)

The point is to minimize the relation cρ/cA, with some normalization of cA (the
normalization in reality being arbitrary).

We are interested in the SU(N) group, which has the defining representation b1
...

bN


and the group elements are U = NxN complex unitary matrices with determinant
1. The matrices U are ≈ 1, and can be written as U = eiF, with infinitesimal
generators F. These F ′s constitute a real vector space with the dimensionN2−1, i.e.
the dimension of SU(N), and we can choose a basis in the F-space, F1, F2, . . . , FN2−1,
which can be normalized.

In an irreducible representation

ρ : G → (Matrices)

ρ(g) = ρ(1) + iρ(Fj)g
j

the quadratic Casimir gklρ(Fk)ρ(Fl) is only an eigenvalue, but it represents how
intensively ρ(g) varies, in the sense that a small cρ corresponds to a ”lazy” ρ.

The Casimirs thus function as a crude measure for how much the represen-
tation matrix varies as a function of the group element it represents. In a lattice
context we take the contribution from one plaquette to be the trace of some rep-
resentation of the group, the most general action S� is then a linear expansion
on traces of all the possible representations of the gauge group, and the traces of
the smallest representations supposedly dominate. This domination corresponds
to the variation of the action as a function of how the combination of the link
variables varies over the gauge group, and if the action varies relatively slowly
over the group, it’s taken as an indication that it also varies relatively slowly when
we vary the gauge group.

So with an action which is dominated by the contributions from small rep-
resentations, the variation along the gauge variation is presumeably quite small,
a situation corresponding to small quadratic Casimir values. This increases the
chance that an action which was not perceived as invariant under a gauge trans-
formation, would nevertheless appear as gauge invariant.

To get an intuition of this ”smallness” of a representation, consider SU(2)
with its quadratic Casimir~J2. On an irreducible representation,~J2 effectively only
takes one value, i.e. it has the same eigenvalue on the whole representation. With
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~J2 = gijJ
iJj we have a notion of distance, and we can visualise~J2 as performing a

rotation,
~J2|a >= j(j+ 1)|a >

where the ”smallness” of the representation means that |a > is just slightly rotated,

Fig. 14.1.

By means of the Casimir measure we can thus define a size measure, making it
meaningful to say that the representations of the non-abelian parts of the Standard
Model are ”small”. In the abelian case, it is however problematic to establish what
we mean by the ”size” of a representation. We cannot apply a similar reasoning for
the U(1) groups as for non-abelian groups, because in the abelian case we cannot
use the dimension of the representation as a measure, since abelian groups always
have 1-dimensional representations, so dimension doesn’t tell anything. There
simply is no Casimir element defined, since for an abelian Lie algebra the Killing
form is zero.

What we can do is to consider the ratio of the charges of the representation
and refer to a “Quantum of charge”, for example the Millikan unit quantum. The
unique abelian invariant subgroup in the Standard Model gauge group corre-
sponds to the weak hypercharge. That can however not be used as the Quan-
tum, since the quantum for y/2 is 1/6, while right-handed charged leptons have
y/2 = −1, which is 6 times larger than 1/6, and 6 is obviously not the smallest
integer after zero.

So instead we consider non-invariant abelian subgroups, and define an abelian
representation as small if it has relatively many charges (generators of the Lie
algebra) with only the values 0, 1 or -1 measured in the Quantum.

It turns out that the Standard Model has a relatively large set of such charges,
so in this perspective, even from the abelian point of view the Standard Model is a
model with “small” representations.
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14.3.1 The size of a composite group

In order to normalize the measure by means of the Casimir of the adjoint repre-
sentation, we clearly need that there is a well-defined adjoint representation. In
the case of a composed, non-simple group like B = {(λ,ϕ)|λ ∈ G, ϕ ∈ D, }, there
is however no straightforward definition of the adjoint representation. For B, we
therefore must find a way of varying the two adjoint normalizations relative to
each other.

In order to achieve this, we seek to establish a (faithful, 1-1) representation r
of B on which we define a metric, whereby the image of B becomes a manifold
with a metric, allowing us to define a volume.

One way to do this is to establish a (faithful) representation r of B on which
we define a metric. Thus the image of B becomes a manifold with a metric, which
makes it possible to define a volume. The measure (cF/cA)B is then given as the
volume ratio of the two representations, taken to the power 2/dB,(

cF

cA

)
B
=

(
VF

Vadj

)2/dB
In the representation picture cr ∼ gik, i.e.

g
(G)
ik =

cA

cr
g
(r)
ik (14.13)

thus
Vol(G)

Vol(representation r)
=

(
cA

cr

)dG/2
(14.14)

and in the case of
G = G1 × G2 × . . .× Gk (14.15)

where the Gj are simple, the quantity

cr

cA
=

[(
cr1
cA1

)d1 ( cr2
cA2

)d2
. . .

(
crk
cAk

)dk] 1
d1+d2+...+dk

(14.16)

is a ”good quantity”.

14.3.2 Competing groups

For an irreducible representation r, consisting of a set of r × r matrices Mj, the
second-order index I2(r) of the representation is defined by

Tr(Mi
rM

j
r) = I2(r)δ

ij (14.17)

Taking the trace of (14.9), we get for the quadratic Casimir

c2(r) = I2(r)dG/dr (14.18)

where dr is the dimension of the representation r, and dG is the group dimension.
For the defining, fundamental representationN of SU(N) (i.e., in reality the algebra
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su(N)) the second-order index is I2(N) = 1/2, and for the adjoint representation
I2(A) = N and dA = N2 − 1, which gives

(
cN
cA

)
SU(N)

= N2−1
2N2

, thus for SU(2)(
cN
cA

)
SU(2)

= 3/8.

There are presumably other candidates, like SO(N), with the fundamental
representation consisting of N × N real matrices. One can define higher tensor
representations from the defining vector representation N, but there are also addi-
tional, double-valued spinor representations, similar to SO(3) ∼ SU(2), generated
by direct products of the fundamental spinor.

In the case of the SU(N) group, the faithful representation with the smallest
quadratic Casimir, is the fundamental representationN, while for the SO(N) group
the picture is much more complicated, as the faithful representation F with the
smallest quadratic Casimir might be either the vector representation, or the spinor
representation, the spinor representation being the winner for N < 8.

For the vector representation, the second-order index for the SO(N) fun-
damental and adjoint representations are I2(N) = 2 and I2(A) = 2N − 4, re-
spectively, and the dimension of the adjoint representation dA = N(N − 1)/2,
thus

(
cN
cA

)
SO(N)

= N−1
2(N−2) , and for the corresponding spinor representation we

have
(
cN
cA

)spinor
SO(N)

= N−1
2(N−2)

N
8

. Another competitor is sp(2N), with
(
cN
cA

)
sp(2N)

=

2N+1
4(N+1) , thus

(
cN
cA

)vector
SO(N)

= N−1
2(N−2) ,

(
cN
cA

)spinor
SO(N)

= N−1
2(N−2)

N
8(

cN
cA

)
SU(N)

= N2−1
2N2

,
(
cN
cA

)
sp(2N)

= 2N+1
4(N+1)

(14.19)

In the search for the groups chosen by Nature, we examine the (cN/cA) for the
different groups, but we also worry about possible differences between 3+1 and
4 spacetime dimensions. For example, for dimension d = 3 +1, we have for the
Lorentz group SO(3, 1) ∼ SL(2, C), while for d = 4, SO(4) ∼ SU(2)R × SU(2)L. For
both d = 3 + 1 and d = 4, the Lorentz group however has the same small S,

S =

(
cN

cA

)
=
1
2
(1+ 1

2
)

1(1+ 1)
=
3

8
(14.20)

while for d = 2 and d = 5, the value is bigger.
The Lorentz group SO(d − p, p) in reality comes from a symmetric metric

gik = gki. If gki instead had been antisymmetric, we would have symplectic
groups, which are not so competitive, as they have bigger (cN/cA). We consider the
Lorentz group as a function of the dimension d and of the ”geometry”, in the sense
of the dependence on whether gik is symmetric, antisymmetric or nonexistent.
But an antisymmetric gik actually does very poorly, while for d = 3,4 it looks good
for symmetric gik; and for the case without metric for d = 2 [8].

Among simple groups, SU(2) has the smallest (cN/cA), but in order to allow
SU(3) be let in, some cooperation with SU(2) is necessary, since the Spin(5), which
is the covering group of SO(5), in reality seems to outdo SU(3).
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SU(3) however has a relatively big center Z3, so if we divide by the group
center SU(3) is in good shape, since the SO(5) covering group has a smaller center.
For SU(3), the number of elements in the center is 3, while the center of SU(2)
merely has 2 elements, and likewise for Spin(5). We thus redefine our measure of
representations as

S = (
cr

cA
)

1

[(Number of elements in the center)]2/d
(14.21)

We in reality consider volumes:

Vol(SU(3))

Vol(SU(3)/Z3)
= 3

And with SU(2)/Z2 = SO(3),

Vol(SU(2))

Vol(SO(3))
= 2.

the quadratic Casimir being a sort of area in the group.

14.4 The group of diffeomorphisms

We define our group B as the combination of the gauge transformations of SMG
and the group of diffeomorphisms.

A diffeomorphism so to say moves a function, by the operation

xµ → xµ + ηµ

The displacement takes place in a given direction, and if we perceive the dif-
feomorphisms as vectors over a manifold, then for infinitesimal ηµ the set of
displacements {ηµ} constitutes a tangent field. The group of diffeomorphisms does
not have a (usual) Lie algebra, but we take as the Lie algebra a set of fields {εµ}

corresponding to the tangents

f(x) =
∑
µ

εµ∂µ, (14.22)

which amounts to substituting a manifold with a space of functions on the mani-
fold,

[f1(x), f2(x)] = [
∑
µ

εµ∂µ,
∑
ν

εν∂ν], (14.23)

and then we could take
C =

∫
gµνε

µ(x)εν(x)dx (14.24)

as a kind of Casimir. There are scarcely any outer automorphisms for the group of
diffeomorphisms, and if all the automorphisms for the group of diffeomorphisms
are inner, the group of diffeomorphisms is maximally skew. It should however be
noted that the group of diffeomorphisms depends on the topology of the space on



i
i

“proc14” — 2014/12/8 — 18:22 — page 277 — #291 i
i

i
i

i
i
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which it is operating, for example for R4, the diffeomorphism group has a trivial
center.

Even though the Lie algebra for the group of diffeomorphisms is not a usual
Lie algebra, the group is still a Lie group. Consider the mappings of a manifold
onto itself,M, ϕ : x→ x ′, i.e.

ϕ :M→M where ϕ is

• bijective,
• sufficiently many times continuously differentiable,
• a group under the group of diffeomorphisms,

thenϕ :M→M is really a ”Lie group”, which is clear by consideringϕ+δϕ

and take the commutators [δϕ1, δϕ2] = [1+ δϕ1, 1+ δϕ2] 6= 0.
One difficulty we meet with respect to the combined group B is that the

group D of diffeomorphisms is probably simple, while the group G of gauge
transformations is not,

g ∈ G|g : R4 → SMG,

meaning
g : R4 → S(U(2)×U(3));g(x) ∈ S(U(2)×U(3)),

and
f, g : R4 → S(U(2)×U(3)); (fg)(x) = f(x) · g(x)

and for a non-simple group we cannot define a straightforward measure like
(cr/cA) for the size of representation. There is however one possibility to define a
quadratic Casimir replacement, viz.

ln"cN" =

∫
lnC
√
gd4x (14.25)

where g = det(gik). The problem is that we cannot really have a metric, since a
metric would not be diffeomorphism-symmetric. On the other hand, we don’t
quite need the metric gik, but only

√
g.

14.5 The composite group

Our selected group is B|{(λ,ϕ), λ ∈ G, ϕ ∈ D}, composed by the group of gauge
transformations

G = {λ :M→ SMG}

and the group of diffeomorphisms

D = {ϕ :M→M}

In order to investigate the group structure, we determine the action of the
group elements.

Let Ψl be a fermion state, and let (λ,ϕ) operate on Ψl. With the dfinition

(λ,ϕ)[Ψl](x) = ρ
k
l (λ(ϕ(x)))[Ψk](ϕ(x)) (14.26)



i
i

“proc14” — 2014/12/8 — 18:22 — page 278 — #292 i
i

i
i

i
i

278 H.B. Nielsen and A. Kleppe

where ρkl is the representation matrix, we want to determine the properties of the
group operation ◦ of B, i.e. of (λ1, ϕ1) ◦ (λ2, ϕ2). First consider

(λ, 1)[Ψk](x) = ρ
l
k(λ(x))[Ψl](x)

(1,ϕ)[Ψk](x) = [Ψk](ϕ(x)) = [Ψk ◦ϕ](x),

thus
(λ, 1) ◦ (1,ϕ)[Ψk](x) = (λ, 1)[Ψk ◦ϕ](x) =

= ρlk(λ(x))[Ψl(ϕ(x))]
(14.27)

Then consider

(1,ϕ) ◦ (λ, 1)[Ψk](x) = (1,ϕ)ρlk(λ(x))[Ψl(x)] =

= ρlk(λ(ϕ(x)))[Ψl(ϕ(x))]

which leads to the conclusion that

(λ,ϕ) 6= (λ, 1) ◦ (1,ϕ)
(λ,ϕ) = (1,ϕ) ◦ (λ, 1)

(14.28)

When investigating (λ1, ϕ1) ◦ (λ2, ϕ2) we use that

(1,ϕ)[χ](x) = (χ ◦ϕ)(x)

thus

(λ1, ϕ1) ◦ (λ2, ϕ2)[Ψk](x) = (λ1, ϕ1)ρ
l
k(λ2(ϕ2(x)))[Ψl(ϕ2(x))]

= (λ1, ϕ1)[ρ
l
k(λ2(ϕ2(x)))(Ψl ◦ϕ2)(x)]

= ρml (λ1(ϕ1(x)))ρ
l
k(λ2(ϕ2 ◦ϕ1(x)))(Ψm ◦ϕ2 ◦ϕ1)(x)

(14.29)
which we identify with

(λ1, ϕ1) ◦ (λ2, ϕ2)[Ψk](x) = (λ3, ϕ3)[Ψk](x) = ρ
m
k (λ3(ϕ3(x)))(Ψm ◦ϕ3(x))

(14.30)
thus

ϕ3 = ϕ2 ◦ϕ1, (14.31)

We demand that for all [Ψk](x)

ρmk (λ3(ϕ3(x))) = ρ
m
l (λ1(ϕ1(x)))ρ

l
k(λ2(ϕ2 ◦ϕ1(x)))

which can only be achieved for a faithful representation, and

λ1(ϕ1) · λ2(ϕ3) = λ3(ϕ3)

(where · is the group operation for G) which applies to all x, a special case being
ϕ−1
3 (x). We perform the substitution x→ ϕ−1

3 (x), thus obtaining

λ1(ϕ1 ◦ϕ−1
3 (x)) · λ2(x) = λ3(x)

and with ϕ3 = ϕ2 ◦ϕ1, we get ϕ1 ◦ϕ−1
3 = ϕ−1

2 and

λ1(ϕ
−1
2 (x)) · λ2(x) = λ3(x), (14.32)
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thus

(λ1, ϕ1) ◦ (λ2, ϕ2) = (λ3, ϕ3) = (λ1(ϕ
−1
2 (·)) · λ2, ϕ2 ◦ϕ1) (14.33)

Now λ1(ϕ
−1
2 (·)) ∈ G, and

(λ1(ϕ
−1
2 (·), 1))Ψk(x) = ρlk(λ1(ϕ−1

2 (x)))Ψl(x),

but exchange of argument in λ, i.e. λ(x)→ λ(ϕ(x)), is an automorphism in G, and
in this sense,

λ1(ϕ
−1
2 (x)) = [Φϕ−1

2
(λ1)](x),

is an automorphism in G. The product of two elements of B finally reads

(λ1, ϕ1) ◦ (λ2, ϕ2) = (λ3, ϕ3) = (Φϕ−1
2

(λ1) · λ2, ϕ2 ◦ϕ1) (14.34)

With the alternative definition (λ,ϕ)[Ψl](x) = ρkl (λ(ϕ
−1(x)))[Ψk](ϕ

−1(x)), we
moreover get that

(λ1, ϕ1) ◦ (λ2, ϕ2) = (λ3, ϕ3) = (Φϕ2(λ1) · λ2, ϕ1 ◦ϕ2) (14.35)

14.5.1 Subgroups of B

Does B = {(λ,ϕ)} have any subgroups? The relation (14.32) seems to indicate that
the gauge group G is a normal (invariant) subgroup of B, which means that for
b ∈ B, bGb−1 ⊆ G.

With (λ,ϕ)[Ψl](x) = ρ
k
l (λ(ϕ(x)))[Ψk](ϕ(x)) and (14.34), i.e.

λ3 = Φϕ−1
2

(λ1) · λ2, ϕ3 = ϕ2 ◦ϕ1

we take

(Λ,ϕ) ◦ (λ, 1) ◦ (Λ,ϕ)−1 = (Λ,ϕ) ◦ (λ, 1) ◦ (Φ−1
ϕ (Λ), ϕ−1) =

= (Φϕ(Λ) ·Φϕ(λ) ·Φ−1
ϕ (Λ), 1) ∈ G

(14.36)

and specifically for (1,ϕ), we get (1,ϕ) ◦ (λ, 1) ◦ (1,ϕ)−1 = (λ, 1), so for these
specific representatives (1,ϕ) of the cosets of

{(λ, 1)|λ :M→ G},
(λ, 1) is similarity transformation invariant, and we conclude that G is a normal
subgroup of B. This implies that B is not simple, but a semi-direct product group,
unless the subgroup D of diffeomorphisms also is normal, i.e.

(λ, 1)(1,ϕ)(λ, 1)−1 ∈ D

Again using (14.34), we get that

(λ,ω)◦ (1,ϕ)◦ (λ,ω)−1 = (λ,ω)◦ (1,ϕ)◦ (Φ−1
ω (λ),ω−1) = (Φ−1

ϕ (λ) ·λ−1, ϕ) /∈ D
(14.37)

thus D is not an invariant subgroup of B, and B is a semidirect product of G and
D,

B = G oD (14.38)

This means that φϕ−1 in (14.34) is a group homomorphism φϕ−1 : D → Aut(G),
where Aut(D) denotes the group of automorphisms of D.
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14.6 To evaluate the size of B

We started out from the Standard Model group SMG, which in itself is a compact,
12-dimensional manifold. When we go to the bigger group B encompassing the
group of gauge transformations extended with the group of diffeomorphims,
we are dealing with an infinite dimensional Lie group. But this does not nec-
essarily have to be so devastating, keeping in mind that the effect of D in B
in reality is nothing more than to dislocate the different SMG in the product
SMG×SMG . . .×SMG, gabρ(Fa)ρ(Fb). Compared to

∏
SMG, the groupB (where

also D is included) will still have the same representations.
In deciding on how to measure the size of a representation, we have encoun-

tered a set of problems,

• How to establish a viable ’size’ for the U(1) group in SMG.
• How do we handle the problem with the adjoint representation in the case of
B?

• How do we define cF/cA for a semidirect product?

In spite of all these problems, let us make an attempt to evaluate the difference
between the measures for SMG and B, respectively. Represent D by the Lorentz
group, taken as SO(3, 1) or SO(4), supposing we are in 3+1 or 4 dimensions, and
use (cF/cA) = 3/8 (with the corresponding group dimension 6). In accordance
with (14.16) we then define a tentative measure for the composite group B = GoD,
as

′′S ′′B =

[(
cF
cA

)d(SU(2))

SU(2)
·
(
cF
cA

)d(SU(3))

SU(3)
·
(
cF
cA

)d(SO(4))

SO(4)

] 1∑
di

=

=
[(
3
8

)3 · (4
9

)8 · (3
8

)6] 117
= 0.406213...

(14.39)

where we for SG have used SSU(2)⊗SU(3), keeping in mind that the quadratic
Casimir for

∏
SMG is the same as for SMG itself, and ignored U(1).

For SMG alone, we get

′′S ′′G =

[(
cF
cA

)d(SU(2))

SU(2)
·
(
cF
cA

)d(SU(3))

SU(3)

] 1∑
di

=

=
[(
3
8

)3 · (4
9

)8] 111
= 0.424320...,

(14.40)

so in this crude approach, ′′S ′′B < ′′S
′′
G .

′′S ′′G =

[(
cF
cA

)d(SU(2))

SU(2)
·
(
cF
cA

)d(SU(3))

SU(3)

] 1∑
di

=

=
[(
3
8

)3 · (4
9

)8] 111
= 0.424320...,

(14.41)

There is however another aspect to this. Let us make no assumption about the
dimensionN in SO(N), and simply plot the expression (14.39) for ′′S ′′B as a function
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of N for N ≤ 8,

′′S ′′B =

[(
cF
cA

)d(SU(2))

SU(2)
·
(
cF
cA

)d(SU(3))

SU(3)
·
(
cF
cA

)d(SO(N))

SO(N)

] 1∑
di

=

=

[(
3
8

)3 · (4
9

)8 · (N(N−1)
16(N−2)

)N(N−1)
2

] 1

11+
N(N−1)

2

,

(14.42)

Fig. 14.2.

corresponding to a minimal value for the size ′′S ′′B at N = 4. These encouraging
results, both for the relative smallness of ′′S ′′B compared to ′′S ′′G , and well as the
singling out of N = 4, are of course based on a coarse evaluation, which is to be
refined with a more precise formulation of the quadratic Casimir for the group B,
in order to accomplish a fair comparison between the sizes of the two groups.

14.7 Conclusion

In this article we have taken the first steps in ”deriving” diffeomorphism symmetry,
which is called for within the framework of the derivation of space. We have
discussed different ”goal quantities”, especially the size of a representation of a
group, identified as the size of the quadratic Casimir, which is connected with
natural metric on the space of unitary matrices in the representations.



i
i

“proc14” — 2014/12/8 — 18:22 — page 282 — #296 i
i

i
i

i
i

282 H.B. Nielsen and A. Kleppe

With this ”goal quantity” in mind, we argue that diffeomorphism symmetry
necessarily comes about, because the size of the bigger group, which is the semidi-
rect product of the Standard Model group and the group of diffeomorphisms, is
smaller than the size of th Standard Model group.

The next step will be to calculate the Casimirs for the entire group B, and
more precisely evaluate the size of B as compared with the size of the Standard
Model group.
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