
199

Acta Chim. Slov. 1998, 45(2), pp. 199-208

Received 8. 5. 1998

ANALYSIS OF OSMOTIC PRESSURE DATA
FOR AQUEOUS PROTEIN SOLUTIONS VIA A

ONE - COMPONENT MODEL 1

Yu. V. Kalyuzhnyia;b, J. Re�s�ci�cb and V. Vlachy b

a Institude for Physics of Condensed Matter, Lviv, Ukraine
b Faculty of Chemistry and Chemical Technology, University of Ljubljana, A�sker�ceva
5, 1000 Ljubljana, Slovenia.

Abstract

A modi�cation of the one-component model of protein solutions is presented
that accounts for the self-association of protein molecules in solution. In
addition to the usual screened Coulomb interaction the protein molecules can
form dimers, but no higher clusters are allowed. Essentially, we treat the
solution as a mixture of hard spheres and hard dumb-bells characterized by
some e�ective diameter. A simple variational approach is proposed to relate
the e�ective diameter to the parameters of the solution under investigation,
i.e. the real diameter of the protein, its charge and concentration. The new
method is used to analyse the reported data for the osmotic pressure of three
di�erent proteins with various degrees of self-association. The method, which
requires little numerical work, seems to be able to explain the osmotic pressure
behaviour of protein solutions in terms of a single parameter, i.e. the fraction
of dimers in solution.

Introduction

Professor Savo Lapanje in the Preface to his monograph on protein denaturation

[1] wrote: "the physicochemical aspects of protein denaturation represent the basis

1Dedicated to the memory of Professor Savo Lapanje
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for understanding all other aspects of this important phenomenon". In other words,

knowledge of the protein-protein and protein-solvent interactions is a prerequisite for

understanding of their properties in solution. It appears, however, to be very di�cult

to build a consistent microscopic picture of these complex systems. The structure

and thermodynamics of protein solutions will result from a subtle balance between

the protein-protein interaction, protein-electrolyte and protein-solvent interaction,

including the in
uence of the electrolyte-solvent and solvent-solvent interaction. It is

clear that a general theory for these ternary systems, based on Hamiltonian models,

cannot be expected soon. Yet, there is need to study the sources of nonideality in

protein solutions and to interpret the experimental results in the light of molecular

theories. One such attempt is presented in this paper.

Among experimental techniques used to identify the principal interactions in macro-

molecular solutions, measurements of the osmotic pressure play very important role

(see, for example [2], [3], [4], [5]). The �rst measurements of the osmotic pressure in

aqueous protein solution were conducted as early as 1899 [6] and since that time os-

mometry has become an important tool for characterization of proteins in solution.

Very recently, some of us have applied this experimental technique to study the

association of human serum albumin (HSA) in aqueous solutions in mixtures with

phosphate bu�er [5]. These measurements indicate strong deviations from ideality,

the osmotic pressure being in
uenced by factors like pH, the concentration of added

electrolyte and protein concentration. The osmotic pressure measurements [5] were

complemented by an X-ray study of the same system and the protein association

was identi�ed as the principal source of the nonideality. So far, only the experimen-

tal results were presented and no theoretical predictions were compared with our

experimental data for HSA [5].

Traditionally, osmotic pressure data are interpreted in terms of the second virial

coe�cient, B2. This automatically limits the theoretical analysis to solutions which

are very dilute with respect to the protein component. A more satisfying approach

is to include higher virial coe�cients through a suitable integral equation theory. In

some cases [7], good agreement between the experiment and theory can be obtained.

Unfortunately, integral equation theories, based on the concentration expansion (the

�rst term of this expansion is proportional to B2) are not well suited for systems with

a strong attractive interaction [8]. For the strongly nonideal systems studied here,

where the osmotic coe�cient does not approach unity even in a dilute regime, the

classical integral equation theories become inapplicable. For example, the hypernet-

ted chain approximation, an otherwise successful theory for charged solutions, does
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not yield convergent results under conditions where strong attractive forces yield to

partial association of ions. In the last decade, however, statistical-mechanical theo-

ries were developed which permit us to study model solutions, where the particles

form dimers or even higher clusters [9].

Very recently, Kalyuzhny and Vlachy [10] have proposed a theoretical model in

which the protein molecules, in addition to the usual Coulomb forces, interact via

a short-range directional attractive force. Our approach is based on the theory

developed by Wertheim [9] for treating associated systems. Parameters of the short-

range interaction are chosen to result in formation of dimers. This model provides

a basis to quantify the e�ects of macroion association on factors such as protein

and electrolyte concentration, charge and size of the protein and others. The major

disadvantage of the proposed theory is that it requires a solution of the integral

equations for the multicomponent system and it is therefore less applicable for daily

analysis of experimental results.

In the present paper we propose a much simpler approach to analyse osmotic pres-

sure data in protein solutions: the method is an extension of the one-component

model and should apply equally well to both associated and nonassociated systems.

In the proposed theory the solution is treated as a mixture of dimers (pairs of pro-

tein molecules) and monomers. The particles forming the mixture are assumed to

have some "e�ective" size which di�ers from their "real" (molecular) size. This way

we can use a known formula to obtain the osmotic pressure for a hard sphere -

hard dumb-bell mixture [11]. The e�ective size of the particles re
ects the interac-

tions between the protein molecules in solution; it is obtained using the variational

principle [12], taking into account the "real" size of the protein, its charge, the con-

centration of added electrolyte and other parameters which characterize the solution

under investigation.

Theoretical Part

Ternary solutions containing protein, a simple electrolyte and water are too com-

plicated for a complete description on the molecular level. Fortunately, many ex-

perimental properties of globular proteins can be explained using a simple one-

component model wherein a pseudo- solvent (simple electrolyte and water) modi�es

the interactions between the protein molecules. In this article we present an ex-

tension of this approach to account for the possible self-association of the protein

molecules in solution.

The aqueous solution of a globular protein is represented as a two-component mix-
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ture of charged hard spheres (monomers) and charged hard sphere diatomics (dumb-

bells), mimicking the dimers. The e�ect of added electrolyte is modelled by the

screened Coulomb potential acting between each pair of monomer units. Thus,

the total pair potential U(r) between the diatomic sites, the diatomic site and the

charged hard sphere and between the charged hard spheres is of the following form:

U(r) = Uh(r) + UY (r) (1)

where Uh(r) is the hard-sphere potential, and

UY (r) =
A

r
exp(��r); (2)

where

A =
z2pLB exp(��)

(1 + ��=2)
(3)

In Eqs. (2,3) � is the Debye-H�uckel screening parameter de�ned as

�2 = 4�LBNAcs (4)

where e0zp is the macroion charge, � is the hard-sphere (molecular) diameter, cs is

the molar electrolyte concentration and NA is the Avogadro number. Further, LB

is the Bjerrum length given by

LB =
e20

4��0�rkBT
; (5)

where �0�r is the permittivity of the solution, kB Boltzmann's constant and T the

absolute temperature.

To calculate the thermodynamic properties of the model system described above we

utilize a simple thermodynamic perturbation theory and the Boublik equation of

state for a mixture of hard convex bodies [11]. First, the original system interacting

via the potential given by Eq. (1) is replaced by a reference system represented

by the two-component mixture of hard spheres and hard dumb-bells (representing

dimers) of some "e�ective" diameter. The e�ective hard-sphere diameter �ef for

the dumb-bell sites and hard spheres, re
ecting the screened Coulomb interaction,

is then determined using the condition proposed by Lado [12]:

4�
Z
1

0
r2dr[e��U(r)

� e��Uh(�ef ;r)]
@yh(�ef ; r)

@�ef
= 0 (6)

In this calculation the dumb-bell elongation L is L = �. An alternative is to choose

the value of L in such a way that the dumb-bell excluded volume is the same as of
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original hard spheres. The choice of L, however, does not a�ects �ef signi�cantly.

In order to evaluate integral in Eq. (6) we need to know yh; the so-called cavity

distribution function for the hard-sphere system [13]. The hard-sphere cavity distri-

bution function yh(�ef ; r) was calculated using the Henderson-Grundke prescription

[14]. It is important to stress that condition given by Eq. (6) enforces thermody-

namic consistency; the energy and the virial route to osmotic pressure yield exactly

the same result [12].

In the last step, Boublik's equation for the osmotic coe�cient [11] is applied in the

form:

� =
�P

NkBT
=

1

1� v
+

2rcs

�(1 + x)(1� v)2
+

2qs2(1� v=3)

3�(1 + x)(1� v)3
; (7)

where

rc =
1

4
�(1 + x)�ef

�
1

2
(1� x)(1 +

1

2
�) + x

�
; (8)

s =
1

2
�(1 + x)��2

ef

�
1

2
(1� x)(1 + �) + x

�
; (9)

v =
�

12
�(1 + x)�3

ef

�
1

2
(1� x)(1 +

3

2
� �

1

2
�3) + x

�
; (10)

q =
1

8
(1 + x)��2

ef

�
(1 +

1

2
�)2 + x

�
: (11)

In Eqs. (7-11) x is the fraction of the hard spheres, � is the total number density of

the monomeric units (stoichiometric number concentration of protein) in the system,

de�ned by

� = �0 + 2 � �d (12)

In the last equation (12) �0 is the number density of hard spheres and �d the num-

ber density of dumb-bells. One important advantage of the perturbation theory

described above is that it requires very little numerical work in comparison with

the theories based on the integral equation approach [10]. Equation (6) was solved

numerically using Newton - Raphson method.

Analysis of experimental data

The theory outlined in the previous section yields results for the osmotic coe�cient

(or osmotic pressure) which can be compared with the experimental values. The

computational procedure is the following. First, we calculate the interaction po-

tential given by Eq. (1) using the "real" (molecular) parameters of the system of
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Figure 1: Osmotic coe�cient � = �=�id as a function of BSA concentration [3].
Theoretical predictions at pH 7.3 are represented by the solid line and at pH 5.4 by
the dashed line; experimental data at pH 7.3 (+++) and at pH 5.4 (xxx). Protein
charges are -20 and -9 at pH 7.3 and 5.4, respectively.

interest. This information is used as input to Eq. (6) which determines the e�ec-

tive dimensions of the hard sphere - hard dumb-bells mixture. Once the e�ective

diameter for the model mixture is known the osmotic coe�cient can be determined

from Eq. (7). The calculated osmotic coe�cient (or pressure) can be �tted to ex-

perimental results to obtain the fraction of dimers in the solution. The results for

three di�erent proteins in solution are presented below.

First we apply our analysis to the osmotic pressure measurements of bovine serum

albumin (BSA) in 0.15 M sodium chloride. These results are shown in Fig. 1,

where the osmotic coe�cient is given as a function of the protein concentration.

The lines in �gures are 'eye best �t'. The experimental data are from ref. [3].

The protein molecular weight used in the calculation of osmotic coe�cient is 69,000

g/mol. Under these conditions (for other parameters see the caption to the �gure)

no self-association of protein molecules is detected - the fraction of dimers giving

good agreement with experiment is zero. Note, however, that these results apply

to a very high concentration of BSA molecules. In Fig. 2 we present the results

for the human serum albumin (HSA) solutions recently studied by some of us [5].

Again the osmotic coe�cient is analysed as a function of the protein concentration
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Figure 2: Osmotic coe�cient as a function of the HSA concentration [5]. Theoretical
predictions at pH 8.0 are represented by the solid line and at pH 5.4 by the dashed
line; experimental data at pH 8.0 (+++) and at pH 5.4 (xxx). The number of
negative charges on the HSA molecule are 22 and 0 at pH 8.0 and 5.4, respectively.

and for two di�erent pH values. The concentration of added phosphate bu�er was

0.1 M. The protein molecular weight used in this calculation was 66,700 g/mol and

the charges on the protein [17] are given in caption to this �gure. In this case the

strong nonideality in solution can be explained by the formation of dimers. A

reasonably good agreement between calculation and experiment is obtained when

the fraction of dimers is equal to 1 (full dimerization) and 0.9, for pH values equal

to 8.0 and 5.4, respectively. Appreciable association in dilute solutions of HSA has

been con�rmed by an X-ray scattering study [5].

The third �gure (Fig. 3) presents the osmotic pressure results for moderately con-

centrated BSA solutions at two di�erent pH values (for experimental details see [15],

[16]). The number of (negative) charges on the protein molecule is 21 and 17 at pH

7.3 and 6.9, respectively. The ionic strength of the added simple electrolyte is 0.1

M. The fraction of dimers used as input in these calculations was 0.3. Equally good

agreement between theory and experiment was also obtained for pH = 8.0, but these

results are not shown here. Diammeter of both HSA and BSA molecules used in

calculations is 6.0 nm.

In the �nal example studied in this paper we present the results for � -chymotrypsin

solutions. In Fig. 4 the osmotic pressure is plotted as a function of protein concen-
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Figure 3: Osmotic pressure � as a function of BSA concentration [15], [16]. Theo-
retical predictions at pH 7.3 are represented by the solid line and at pH 6.9 by the
dashed line; experimental data at pH 7.3 (+++) and at pH 6.9 (xxx).
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Figure 4: Osmotic pressure � as a function of �-chymotrypsin concentration [4].
Theoretical predictions at pH 8.25 are represented by the solid line, at pH 6 by the
dashed line and at pH 4 by the dashed-dotted line. Experimental data at pH 8.25
are denoted by (+++), at pH 6 by (xxx) and at pH 4 by (***).
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tration for three di�erent values of pH. Experimental values are taken from ref. [4];

the ionic strength of the added simple electrolyte is 0.3 M in this example and the

number of charges on the protein for the three pH values is 0 (pH=8.25), 3 (pH=6.0)

and 10 (pH=4.0). The protein diammeter is 2.17 nm. The fraction of dimers used

to calculate the lines in Fig. 4 are 0.48 (pH=8.25), 0.38 (pH=6), and 0.35 (pH=4).

Discussion

The nonideality of protein solutions may originate from several sources; the associ-

ation between protein molecules is one of them. It is known that this association

plays an important role in the control of enzyme activity. To know the degree of

protein self-association and the factors which control this phenomenon is therefore

important. Among experimental methods, membrane osmometry is a traditional

method of measuring the nonideality of protein solutions.

In an attempt to explain the osmotic pressure data of aqueous solutions of globular

proteins, we propose a simple perturbation theory. The idea was to develop a the-

oretical model that predicts how factors such as protein size and charge (pH), salt

concentration and protein aggregation a�ect the osmotic pressure. The perturbation

theory presented in this paper has two advantages: i) it does not require massive

numerical work as do integral equation theories, and, ii) it applies equally well to

associated and non-associated systems of molecules. The analysis of experimental

data for three di�erent proteins in a broad range of protein concentration, (vary-

ing pH and concentration of added simple electrolyte) is presented in the previous

section. The results indicate that we can �t the experimentally obtained osmotic

pressure by adjusting the fraction of dimers in solution. In this way, the fraction of

dimers in solution can be determined. With this respect, the theory proposed above

is positioned somewhere between the molecular theories based on Hamiltonian mod-

els [10] and fully empirical methods [16] of data analysis. At this level of the theory

only formation of dimers is considered. At higher degrees of dimerization (e.g. the

system presented in Fig. 2), the contribution of higher clusters may become appre-

ciable, what essentially limits applications of the theory only to situations where the

degree of pairing is low. It is not impossible, however, to extend the calculation to

treat trimers and higher clusters or, for example, to account for the interpenetration

of the protein molecules. We hope to present some of these developments in the

near future.
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Povzetek
�Clanek obravnava raz�siritev enokomponentnega modela raztopine globularnih proteinov v vodi.
Novi model omogo�ca �studij asociiranih sistemov, kjer molekule ali ioni tvorijo pare. Poleg obi�caj-
nega, zaradi prisotnosti elektrolita zasen�cenega coulombskega potenciala delujejo med protein-
skimi molekulami tudi kratkose�zne sile, ki vodijo do nastanka parov. Gru�ce, ki vsebujejo tri ali
ve�cmolekul, smo v tem delu prezrli. Raztopino smo obravnavali kot me�sanico, ki jo sestavljajo
toge kroglice (monomer) in pa v par povezane toge kroglice (dimer). Za tak�sen primer je bila
izpeljana ena�cba stanja, ki je dana v analiti�cni obliki. Velikost togih kroglic, ki smo jo uporabili v
ra�cunu, ne ustreza molekularnim dimenzijam proteina, ampak �ze odra�za tudi njihovo interakcijo s
topilom in dodanim elektrolitom. Raz�sirjeni model omogo�ca analizo termodinami�cnih koli�cin pri
neasociiranih kot tudi pri asociiranih raztopinah in zahteva razmeroma malo numeri�cnega dela.
Uporabnost predlaganega modela smo prikazali z analizo izmerjenih osmoznih tlakov v raztopinah
treh razli�cnih proteinov in sicer v �sirokem obmo�cju koncentracij in pH vrednosti. Kot rezultat
podajamo dele�z asociiranih molekul v teh raztopinah.


