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Abstract

In this paper, we classify the regular balanced Cayley maps of minimal non-abelian
metacyclic groups. Besides the quaternion groupQ8, there are two infinite families of such
groups which are denoted by Mp,q(m, r) and Mp(n,m), respectively. Firstly, we prove
that there are regular balanced Cayley maps of Mp,q(m, r) if and only if q = 2 and we list
all of them up to isomorphism. Secondly, we prove that there are regular balanced Cayley
maps of Mp(n,m) if and only if p = 2 and n = m or n = m + 1 and there is exactly
one such map up to isomorphism in either case. Finally, as a corollary, we prove that any
metacyclic p-group for odd prime number p does not have regular balanced Cayley maps.
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1 Introduction
A Cayley graph Γ = Cay(G,X) is a graph based on a group G and a finite set X =
{x1, x2, . . . , xk} of elements in G which does not contain 1G, contains no repeated el-
ements, is closed under the operation of taking inverses, and generates all of G. In this
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paper, we call X a Cayley subset of G. The vertices of the Cayley graph Γ are the elements
of G, and two vertices g and h are adjacent if and only if g = hxi for some xi ∈ X . The
ordered pairs (h, hx) for h ∈ G and x ∈ X are called the darts of Γ. Let ρ be any cyclic
permutation on X . Then the Cayley mapM = CM(G,X, ρ) is the 2-cell embedding of
the Cayley graph Cay(G,X) in an orientable surface for which the orientation-induced
local ordering of the darts emanating from any vertex g ∈ G is always the same as the
ordering of generators in X induced by ρ; that is, the neighbors of any vertex g are always
spread counterclockwise around g in the order (gx, gρ(x), gρ2(x), . . . , gρk−1(x)).

An (orientation preserving) automorphism of a Cayley mapM is a permutation on the
dart set ofM which preserves the incidence relation of the vertices, edges, faces, and the
orientation of the map. The full automorphism group ofM, denoted by Aut(M), is the
group of all such automorphisms of M under the operation of composition. This group
always acts semi-regularly on the set of darts ofM, that is, the stabilizer in Aut(M) of
each dart ofM is trivial. If this action is transitive, then we say that the Cayley mapM is a
regular Cayley map. As the left regular multiplication action of the underlying groupG lifts
naturally into the full automorphism group of any Cayley map CM(G,X, ρ), Cayley maps
are proved to be a very good source of regular maps. There are many papers on the topic
of regular Cayley maps, we refer the readers to [4, 10] and [11] and the references therein.
Furthermore, A Cayley map CM(G,X, ρ) is called balanced if ρ(x)−1 = ρ(x−1) for every
x ∈ X . In [11], Škoviera and Širáň showed that a Cayley map CM(G,X, ρ) is regular and
balanced if and only if there exists a group automorphism σ such that σ|X = ρ, where σ|X
denotes the restricted action of σ on X . Therefore, to determine all the regular balanced
Cayley maps of a group is equivalent to determine all the orbits of its automorphisms that
can be Cayley subsets.

In this paper, a non-abelian group G is called minimal if each of its proper subgroups
H (that is H < G but H 6= G) is abelian. In 1903, Miller and Moreno gave a full
classification of minimal non-abelian groups, one may refer to [7] for detailed results. A
group G is metacyclic if it has a cyclic normal subgroup N such that the factor group G/N
is cyclic. As one can see in [7], there are three classes of minimal non-abelian metacyclic
groups:

(1) the quaternion group Q8;

(2) Mp,q(m, r) = 〈a, b | ap = 1, bq
m

= 1, b−1ab = ar〉, where p and q are distinct
prime numbers, m is a positive integer and r 6≡ 1 (mod p) but rq ≡ 1 (mod p);

(3) Mp(n,m) = 〈a, b | apn = bp
m

= 1, b−1ab = a1+pn−1

, n ≥ 2,m ≥ 1〉.

One can also cite [3, Theorem 2.1] for reference or [13, pp. 123] for details.
For regular balanced Cayley maps, it has been shown that all odd order abelian groups

possess at least one regular balanced Cayley map [4]. Wang and Feng [12] classified all reg-
ular balanced Cayley maps for cyclic, dihedral and generalized quaternion groups. In [9],
Oh proved the non-existence of regular balanced Cayley maps with semi-dihedral groups.
In this paper, we pay our attentions to the regular balanced Cayley maps of minimal non-
abelian metacyclic groups. Since the regular balanced Cayley maps ofQ8 have been classi-
fied in [12] (Q8 has exactly one regular balanced Cayley map up to isomorphism), we only
consider the groups Mp,q(m, r) and Mp(n,m). In Section 3, we show that Mp,q(m, r) has
regular balanced Cayley maps if and only if q is 2 and we list all of them up to isomor-
phism. In Section 4, we show that Mp(n,m) has regular balanced Cayley maps if and only
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if p = 2 and n = m or n = m + 1. In either case, it has exactly one regular balanced
Cayley map up to isomorphism and the map has valency 4. Moreover, as a corollary any
metacyclic p-group for odd prime p doesn’t have regular balanced Cayley maps.

2 Preliminaries
Lemma 2.1. Take an element btas ∈ Mp,q(m, r), where t 6= 0, then the order of btas is
qm if and only if (t, q) = 1.

Proof. The group Mp,q(m, r) is the union of one cyclic group of order p and p conjugate
cyclic subgroups of order qm. If t 6= 0, then btas belongs to one of the cyclic subgroups of
order qm. Therefore, the order of btas is qm if and only if (t, q) = 1.

Lemma 2.2. The automorphism group of Mp,q(m, r) is

Aut(Mp,q(m, r)) = {σ | aσ = ai, bσ = bjak, 1 6 i 6 p−1, 1 6 j 6 qm−1, q | (j−1)}.

Proof. Assume σ ∈ Aut(Mp,q(m, r)). According to Lemma 2.1, aσ = ai, bσ = bjak for
some 1 6 i 6 p − 1, 1 6 j 6 qm − 1 and (j, q) = 1. If Mp,q(m, r) = 〈aσ, bσ〉, then we
can get the relation q | (j − 1).

In fact, since (ar)σ = (b−1ab)σ = (b−1)σaσbσ = b−jaibj = air
j

= air, we have
air(r

j−1−1) = 1. Moreover, from (ir, p) = 1 and ap = 1, we get (rj−1−1) ≡ 0 (mod p),
that is rj−1 ≡ 1 (mod p). As rq ≡ 1 (mod p) and q is prime, we have q | (j − 1).

Lemma 2.3 ([5]). The automorphism group of Mp(n,m) is listed as follows:

(i) If n ≤ m, then Aut(Mp(n,m)) = {σ | aσ = bjai, bσ = bsar, (i, p) = 1, 1 ≤ i ≤
pn, j = kpm−n+1, 0 ≤ k < pn−1, 1 ≤ r ≤ pn, s ≡ 1 (mod p), 1 ≤ s ≤ pm}.

(ii) If p is odd and n > m ≥ 1 or p = 2 and n > m > 1, then Aut(Mp(n,m)) = {σ |
aσ = bjai, bσ = bsar, (i, p) = 1, 1 ≤ i ≤ pn, 1 ≤ j ≤ pm, r = kpn−m, 0 ≤ k <
pm, s ≡ 1 (mod p), 1 ≤ s ≤ pm}.

The following Lemma 2.4 is a basic result in group theory and we omit the proof.

Lemma 2.4. LetG be a finite group andN be a normal subgroup ofG. Take α ∈ Aut(G).
If Nα = N , then ᾱ : Ng 7→ Ngα is an automorphism of G/N which is called the induced
automorphism of α.

Lemma 2.5. LetG be a finite group andN be a proper characteristic subgroup ofG. Take
α ∈ Aut(G) and g ∈ G. If X = g〈α〉 is a Cayley subset of G, then X = g〈α〉 = ḡ〈ᾱ〉 is
a Cayley subset of G = G/N . Moreover, if the order of α is a power of 2 and g is not an
involution, then |X| = |X|.

Proof. By Lemma 2.4, ᾱ is an automorphism of G/N induced by α. Set X = g〈α〉, then
X = g〈α〉 = ḡ〈ᾱ〉. If X is a Cayley subset of G, then the relations 〈X〉 = G, X = X

−1

follow naturally. Since N < G, we have X 6= 1̄〈ᾱ〉 and then 1 6∈ X . So, X is a Cayley
subset of G.

If the order of α is 2s for some positive integer s, then the order of α is 2t for some

integer t ≤ s. From gα
2s−1

= g−1, we have gα
2s−1

= g−1. While gα
2t

= g, then
t > s− 1. So, s = t and |X| = |X|.
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As a direct corollary of Lemmas 2.4 and 2.5, we give the following Corollary 2.6.

Corollary 2.6. If a group G has regular balanced Cayley maps, then so does the quotient
group G/N for any proper characteristic subgroup N of G.

There are many ways to get proper characteristic subgroups. In the following, we give
a method to get such subgroups. These results are exercises for students, so we omit the
proof.

Lemma 2.7. LetG be a finite group, S ⊆ G, σ ∈ End(G),K be a characteristic subgroup
of G and n be a positive integer. Then,

(i) 〈S〉σ = 〈Sσ〉;
(ii) H1 = 〈xn | x ∈ K〉 is a characteristic subgroup of G;

(iii) H2 = 〈y | y ∈ G, yn ∈ K〉 is a characteristic subgroup of G.

As for isomorphism of regular maps, one may refer to [10] for the following Lemma 2.8.

Lemma 2.8. Assume M1 = CM(G,X1, ρ1) and M2 = CM(G,X2, ρ2) are two regular
balanced Cayley maps of the finite group G, where X1 = g〈σ1〉 and X2 = h〈σ2〉 are orbits
of two group elements g and h under the action of two automorphisms σ1 and σ2 of G,
respectively. Then M1 and M2 are isomorphic if and only if |X1| = |X2| = k and there is
some τ ∈ Aut(G) such that hσ

i
2 = gσ

i
1τ , 1 ≤ i ≤ k.

As a special case and an application of Lemma 2.8, we have the following Lemma 2.9.

Lemma 2.9. Let G be a finite group. Take α ∈ Aut(G) and two elements g, h ∈ G.
Assume X = g〈α〉 is a Cayley subset of G. If there is some σ ∈ Aut(G) such that gσ = h,
then Y = h〈σ

−1ασ〉 is also a Cayley subset ofG and Y = Xσ . Under this situation, the two
regular balanced Cayley maps CM(G,X,α|X) and CM(G, Y, σ−1ασ|Y ) are isomorphic.

Proof. Because Y = h〈σ
−1ασ〉 = gσ〈σ

−1ασ〉 = gσσ
−1〈α〉σ = g〈α〉σ = Xσ and X is a

Cayley subset, it follows that Y is also a Cayley subset. The result that CM(G,X,α|X)
and CM(G, Y, σ−1ασ|Y ) are isomorphic follows from Lemma 2.8.

3 Regular balanced Cayley maps of Mp,q(m, r)

As we mentioned in the introduction, to determine all the regular balanced Cayley maps of
a group is equivalent to determine all the orbits of its automorphisms that can be Cayley
subsets. In this section, we divide our discussion into two parts according to the parity of q.

Lemma 3.1. The center Z(Mp,q(m, r)) of Mp,q(m, r) is generated by bq and the quotient
group Mp,q(m, r)/Z(Mp,q(m, r)) ∼= Mp,q(1, r).

Proof. From the defining relation of Mp,q(m, r), we have b−qabq = ar
q

= a. So, bq ∈
Z(Mp,q(m, r)). Since Mp,q(m, r) is not abelian and generated by a and b, we have a, b 6∈
Z(Mp,q(m, r)), henceZ(Mp,q(m, r)) = 〈bq〉. The formulaMp,q(m, r)/Z(Mp,q(m, r)) ∼=
Mp,q(1, r) follows directly from the definition of Mp,q(m, r).

Theorem 3.2. If q is odd, then the groupMp,q(1, r) does not have regular balanced Cayley
maps.
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Proof. For brevity, setH = Mp,q(1, r). Suppose there exists a σ ∈ Aut(H) and bvau ∈ H
such that X = (bvau)〈σ〉 is a Cayley subset of H . The derived subgroup of H is H ′ = 〈a〉
which is a characteristic subgroup. LetH = H/H ′ and σ be induced by σ. By Lemma 2.2,

bσ = bak for some integer k and as a result b
σ

= b. So, X = bvau
〈σ〉

= bv
〈σ〉

= {bv}.
While X = X

−1
, o(b) = q and o(bv) | o(b), we have bv = 1 and so bv ∈ H ′. It follows

that 〈X〉 ≤ H ′ < H contradicting to H = 〈X〉.

As a corollary of Lemmas 3.1 and 2.5, we have the following Theorem 3.3.

Theorem 3.3. If q is odd, then Mp,q(m, r) does not have regular balanced Cayley maps.

It is known that Z∗2n
∼= Z2 × Z2n−2 = 〈−1〉 × 〈5〉, where −1 and 5 denote the class of

integers equaling to −1 and 5 modular 2n, respectively. In a p-group G, let f1(G) = 〈ap |
a ∈ G〉. Then, f1(Z∗2n) = 〈52〉 which does not contain −1.

Lemma 3.4. For a positive integer n ≥ 2, the equation xk ≡ −1 (mod 2n) holds if and
only if k is odd and x ≡ −1 (mod 2n).

Proof. It is obviously true when n = 2. So, we may assume n ≥ 3. Let u be a solution
of the equation xk ≡ −1 (mod 2n), then the integer u should be odd, so u ∈ Z∗2n =
〈−1〉 × 〈5〉. From the discussion preceding to the lemma, suppose k is even, then −1 ≡
uk = (u

k
2 )2 ∈ f1(Z∗2n), a contradiction. So, k is odd.

Let u = ab for some a ∈ 〈−1〉 and b ∈ 〈5〉 such that uk = −1. Then, uk = akbk = −1.
There are two choices of a, that is 1 and −1. But a 6= 1, for otherwise bk = −1, a
contradiction. So, bk = 1 and as a result b = 1 and u = −1.

In a group G, for any element g ∈ G, we use o(g) to denote the order of g. Now we
look at the group Mp,2(m, r). In the definition of Mp,2(m, r), one can see that r ≡ −1
(mod p). In particular, if m = 1, then Mp,2(m, r) is a dihedral group of order 2p. One
may refer to [12] for the classification of the regular balanced Cayley maps of dihedral
groups. For the sake of completeness, We restate the result in the following theorem.

Theorem 3.5 ([12, Theorem 3.3]). The dihedral group D2p of order 2p has p − 1 non-
isomorphic regular balanced Cayley maps, where p is an odd prime number.

When m ≥ 2, we have the following Theorem 3.6.

Theorem 3.6. Let G = Mp,2(m, r), where m ≥ 2, p is an odd prime and r ≡ −1
(mod p). If p − 1 = 2es, where s is odd, then G has s non-isomorphic regular balanced
Cayley maps. In particular, if p is a Fermat prime, thenG has exactly one regular balanced
Cayley map up to isomorphism.

Proof. If the orbit of bvau under the action of σ ∈ Aut(G) is a Cayley subset ofG, then the
integer v must be odd. In fact, both the subgroups 〈a〉 and Z(G) = 〈b2〉 are characteristic
in G, so 〈(bvau)〈σ〉〉 is a proper subgroup of G if (v, 2) 6= 1. By Lemma 2.2, there is some
α ∈ Aut(G) such that (bvau)α = b. According to Lemma 2.9, we only need to consider
the orbit of b under the action of σ.

For brevity, we denote the automorphism σ ∈ Aut(G) satisfying aσ = ai and bσ =
bjak by σi,j,k and X = b〈σi,j,k〉 by Xi,j,k. Let ρi,j,k be the arrangement of the elements
in Xi,j,k which respects the order of the elements in the orbit. Assume Xi,j,k is a Cayley
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subset of G for some integer i coprime to p and odd integer j. Note that k 6≡ 0 (mod p)
for otherwise contradicting to the Cayley subset assumption of Xi,j,k.

In the quotient group G = G/〈a〉, Xi,j,k = b
〈σi,j,k〉 should be a Cayley subset of

G. Therefore, there exists some integer t such that b
σi,j,k

t

= b
−1

. Clearly, b
σi,j,k

t

=

b
jt

= b
−1

, so jt ≡ −1 (mod 2m). From Lemma 3.4, t is odd and j ≡ −1 (mod 2m).
Moreover, as Xσk,1,0

i,−1,1 = Xi,−1,k, we may assume k = 1. Under these conditions, we only
need to pay attention to Xi,−1,1. By direct enumeration one can easily get

bσ
`
i,−1,1 = b(−1)`ai

`−1+i`−2+···+i+1,

for any positive integer `. Since Xi,−1,1 is a Cayley subset, there exists some positive
integer n such that bσ

n
i,−1,1 = b−1. So, n is odd and

in−1 + in−2 + · · ·+ i+ 1 ≡ 0 (mod p).

If i ≡ 1 (mod p), then bσ
p
1,−1,1 = b−1 and

X1,−1,1 = {b, b−1a, ba2, . . . , bap−1, b−1, (b−1a)−1, . . . , (bap−1)−1}

is a Cayley subset of G of valency 2p.
If 1 < i ≤ p − 1, then in−1 + in−2 + · · · + i + 1 ≡ 0 (mod p) if and only if in ≡ 1

(mod p). Let S = {x | x ∈ Z∗p, o(x) is odd}, then |S| = s. Since n is odd, any i satisfying
in ≡ 1 (mod p) corresponds to ī ∈ S. And for any ī ∈ S \ {1}, if o(̄i) = n, then
bσ

n
i,−1,1 = b−1 and

Xi,−1,1 = {b, b−1a, bai+1, b−1ai
2+i+1, . . . , bai

n−2+···+i+1, b−1, . . . , (bai
n−2+···+i+1)−1}

is a Cayley subset of G of valency 2n. From all the above, when i > 1, Xi,−1,1 is a Cayley
subset of G if and only if ī ∈ S and |Xi,−1,1| is twice of o(̄i).

For any two distinct i1 and i2 in S \ {1}, Cayley maps CM(G,Xi1,−1,1, ρi1,−1,1) and
CM(G,Xi2,−1,1, ρi2,−1,1) are not isomorphic. Otherwise, according to Lemma 2.8, there
exists some β ∈ Aut(G) such that bβ = b and for each ` ≥ 1,

(b(−1)`ai
`−1
1 +i`−2

1 +···+i1+1)β = b(−1)`ai
`−1
2 +i`−2

2 +···+i2+1.

In particular, (b−1a)β = b−1a and therefore β is the identical automorphism. Therefore, G
has s non-isomorphic regular balanced Cayley maps. When p is a Fermat prime, then p−1
is a power of 2, so G has exactly one regular balanced Cayley map up to isomorphism.

4 Regular balanced Cayley maps of Mp(n,m)

For minimal non-abelian p-group, one may refter to [1, 2] or [14] for the following Lem-
ma 4.1.

Lemma 4.1 ([14, Theorem 2.3.6]). Let G be a finite p-group, d(G) be the number of
elements in a minimal generating subset of G. Then, the followings are equivalent.

(i) The group G is a minimal non-abelian group;

(ii) d(G) = 2 and |G′| = p;
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(iii) d(G) = 2 and Z(G) = Φ(G), where Φ(G) denotes the Frattini subgroup of G.

Lemma 4.2. Assume G is a finite p-group for some prime number p and d(G) = 2. Let
β ∈ Aut(G), g ∈ G and X = g〈β〉. If G = 〈X〉, then G = 〈g, gβ〉.

Proof. Because d(G) = 2, it follows that G = G/Φ(G) ∼= Zp × Zp. Suppose 〈g, gβ〉 <
G, then in the quotient group the subgroup generated by g and gβ has order p, that is
|〈g, gβ〉| = p. So, gβ ∈ 〈gΦ(G)〉. As Φ(G) is a characteristic subgroup of G, for each
k > 1 the element gβ

k ∈ 〈gβk−1

Φ(G)〉. Therefore, X ⊆ 〈gΦ(G)〉 and then 〈X〉 ≤
〈gΦ(G)〉 < G, a contradiction. So, G = 〈g, gβ〉.

Remark Lemma 4.2 may not be true for a non-p-group. For example, the symmetry group
Sn can be generated by two elements (1 2) and (1 2 . . . n). Take g = (1 2) ∈ Sn and
β the automorphism of Sn induced from the conjugation by the element (2 3 . . . n), then
X = g〈β〉 = {(1 2), (1 3), . . . , (1 n)} is a Cayley subset of Sn and gβ = (1 3). But it is
obvious that Sn 6= 〈(1 2), (1 3)〉 when n ≥ 4.

Theorem 4.3. Let G = Mp(n, n), where n ≥ 2 and p is an odd prime number. Then, the
group G does not have regular balanced Cayley maps.

Proof. Let N = 〈x ∈ G | xpn−1 ∈ G′〉. According to Lemma 2.7, N is a characteristic
subgroup of G. One can see from the defining relations of G that G′ = 〈apn−1〉 ∼= Zp
and N = 〈a, bp〉. Take σ ∈ Aut(G) such that aσ = bkpai and bσ = bsar, where the
integers i, s, r satisfy the conditions in Lemma 2.3 and especially s ≡ 1 (mod p). Suppose
X = (buav)

〈σ〉 is a Cayley subset of G. Then buav 6∈ N and therefore (u, p) = 1. In the

quotient groupG = G/N ,X = (buav)
〈σ〉

= bu
〈σ̄〉

is a Cayley subset ofG. So, there exists
some integer n such that b−u = bsnu. As a result, one can get snu ≡ −u (mod p). While
(u, p) = 1, then sn ≡ −1 (mod p). But this result contradicts to s ≡ 1 (mod p).

Theorem 4.4. Let G = Mp(n,m), where n ≥ 2,m ≥ 1,m 6= n and p is an odd prime
number. Then, the group G does not have regular balanced Cayley maps.

Proof. We firstly assume m > n. Set N = {xpn | x ∈ G}. By Lemma 2.7, N = 〈bpn〉 is
a characteristic subgroup of G. The quotient group

G = G/N = 〈a, b | ap
n

= b
pn

= 1, ab = a1+pn−1

〉 ∼= Mp(n, n).

According to Theorem 4.3 and Lemma 2.5,G does not have regular balanced Cayley maps.
When m < n, suppose there exists some σ ∈ Aut(G) such that X = (buav)〈σ〉 is

a Cayley subset of G. Because Z(G) = 〈ap, bp〉 is characteristic of G, one can assume
u = 0, v = 1 from the results of Lemma 2.3 and Lemma 2.9. That is, X = a〈σ〉. Assume
aσ = bjai, o(σ) = 2k and τ = σk, then aτ = a−1, (bjai)τ = a−ib−j . Recall that
G′ = 〈apn−1〉 ∼= Zp and [a, bj ] ∈ G′ < 〈a〉, so [a, bj ]

τ
= [a, bj ]

−1. While

[a, bj ]
τ

= ([a, ai][a, bj ][a, bj , ai])τ = [a, bjai]
τ

=

[aτ , (bjai)
τ
] = [a−1, a−ib−j ] = [a−1, b−j ],

and [a−1, b−j ] belongs to the center, the result

[a, bj ]
τ

= [a−1, b−j ] = b−ja−1[a−1, b−j ]abj = [a, bj ]
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follows. Therefore, [a, bj ]
−1

= [a, bj ], that is [a, bj ]
2

= 1. But the order of [a, bj ] is a
power of p which is coprime with 2, we get [a, bj ] = 1. And from Lemma 4.2, one can get
G = 〈a, aσ〉 = 〈a, bjai〉. So G is abelian, a contradiction. Thus in either case, G doesn’t
have regular balanced Cayley maps.

Remark 4.5. In the paper of Newman and Xu ([8]), they claimed that for odd primes p
every metacyclic p-group is isomorphic to one of the groups

G = 〈a, b | ap
r+s+u

= 1, bp
r+s+t

= ap
r+s

, b−1ab = a1+pr 〉, (4.1)

where r, s, t, u are non-negative integers with r positive and u ≤ r, and these groups are
pairwise non-isomorphic. In the following Lemma 4.6, one will see that the metacyclic
p-group has an ‘intimate’ connection with the minimal non-abelian metacyclic p-group.

Lemma 4.6. Let G be a metacyclic p-group for some odd prime number p and N < G′ be
a maximal subgroup of the derived subgroup G′. Then N is a characteristic subgroup of
G and the quotient group G = G/N is a minimal non-abelian metacyclic p-group.

Proof. Because G′ is cyclic and G′ is characteristic of G, it follows that N is also char-
acteristic of G. While N is a proper subgroup of G′, the quotient group G = G/N is
non-abelian and metacyclic, generated by two elements because G is generated by two el-
ements. As G

′
= G′ ∼= Zp and so |G′| = p. The quotient group G is mininal non-abelian

follows from Lemma 4.1.

From the results of Lemma 2.5 and Theorems 4.3 and 4.4, we get the following Corol-
lary 4.7.

Corollary 4.7. For any odd prime number p, the metacyclic p-group does not have regular
balanced Cayley maps.

Theorem 4.8. Let G = M2(n,m), where m and n are positive integers and m > n ≥ 2.
Then G does not have regular balanced Cayley maps.

Proof. According to Lemma 2.3, Aut(G) = {σ | aσ = bjai, bσ = bsar}, where (is, 2) =
1, 1 ≤ i ≤ 2n, 1 ≤ s ≤ 2m, j = 2m−n+1k, 0 ≤ k < 2n−1, 1 ≤ r ≤ 2n. From the
defining relations of G, one can see that both a2 and b2 belong to the center of G. Set
N = 〈a2, b4〉 = {x ∈ Z(G) | x2m−2

= 1}. By Lemma 2.7, N is a characteristic subgroup
of Z(G). Since Z(G) is characteristic in G, N is characteristic in G. Suppose there is
some σ ∈ Aut(G) and buav ∈ G such that X = (buav)〈σ〉 is a Cayley subset of G. By
Lemma 2.9, one may assume u = 1 and v = 0, that is, X = b〈σ〉.

Assume aσ = bjai and bσ = bsar, then 4 | j, (s, 2) = 1 and so s2 ≡ 1 (mod 4).
According to Lemma 4.2, G = 〈b, bsar〉 = 〈b, ar〉 and so (r, 2) = 1. In the quotient group
G = G/N , X = b〈σ〉 should be a Cayley subset of G. Noticing that 2 | (s + i), 4 | j
and G′ ≤ N , we have (bsar)σ = (bsar)s(bjai)r = bs2arsbjrair = bs2+jrar(s+i) = bs2 .
Since o(b) = 4 and s2 ≡ 1 (mod 4), we have bs2 = b. So, X = {b, bsar}. But (r, 2) = 1,
b
−1

/∈ X . Then, X is not a Cayley subset, a contradiction.

Theorem 4.9. Let G = M2(n,m), where m and n are positive integers, n > m + 1 and
m ≥ 2. Then G does not have regular balanced Cayley maps.
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Proof. In this case, Aut(G) = {σ | aσ = bjai, bσ = bsar}, where (is, 2) = 1, 1 ≤ i ≤
2n, 1 ≤ s ≤ 2m, 1 ≤ j ≤ 2m, r = k2n−m, 0 ≤ k < 2m. Let N = 〈a4, b2〉 = {x ∈
Z(G) | x2n−2

= 1}. According to Lemma 2.7, N is characteristic in Z(G). Since Z(G) is
characteristic in G, N is characteristic in G. Similar to the proof of Theorem 4.8, we only
need to show that X = a〈σ〉 is not a Cayley subset of G for any σ ∈ Aut(G).

Assume aσ = bjai and bσ = bsar. Then (s, 2) = 1, 4 | r, (i, 2) = 1 and so i2 ≡ 1
(mod 4). And from Lemma 4.2, G = 〈a, bjai〉 = 〈a, bj〉 and so (j, 2) = 1. If X is a
Cayley subset, thenX = a〈σ〉 is a Cayley subset ofG = G/N . While from 2 | (s+i), 4 | r
and G′ ≤ N , we have (bjai)σ = (bsar)j(bjai)i = bsjarjbjiai2 = bj(s+i)ai2+rj = ai2 .
And from o(a) = 4, i2 ≡ 1 (mod 4), we have ai2 = a. So,X = {a, bjai}. But (j, 2) = 1
implies a−1 /∈ X . So, X is not a Cayley subset, a contradiction.

In Theorem 4.9, if we allow m = 1 and so n > 2, then the group M2(n, 1) belongs
to one of the p-groups with a cyclic maximal subgroup which had been considered by
D. D. Hou, Y. Wang and H. P. Qu in [6]. We list the result in the following theorem.

Theorem 4.10 ([6, Theorem 3.3]). For positive integers n > 2, M2(n, 1) does not have
regular balanced Cayley maps.

Now, there are still two cases about which we have not said anything, that is M2(n, n)
for n ≥ 2 and M2(n + 1, n) for n ≥ 1. One may look back at Lemma 2.3 and can easily
see that the automorphism groups of both M2(n, n) and M2(n+ 1, n) are 2-groups.

Theorem 4.11. Let G = M2(n, n), n ≥ 2. Then G has exactly one regular balanced
Cayley map of valency 4 in the sense of isomorphism.

Proof. By Lemma 2.3, Aut(G) = {σ | aσ = b2kai, bσ = bsar}, where (si, 2) = 1,
1 ≤ i, s, r ≤ 2n, 1 ≤ k ≤ 2n−1, and both a2 and b2 belong to Z(G).

We firstly show that if for some g ∈ G and σ ∈ Aut(G), X = g〈σ〉 is a Cayley subset
of G, then |X| = 4. Set N = {x ∈ G | x2n−2 ∈ G′}. According to Lemma 2.7, N is
a characteristic subgroup of G and N = 〈a2, b4〉. Without loss of generality, we assume
g = b, then in the quotient group G = G/N ∼= Z2 × Z4, the order of b is 4. While

there are exactly four order-4 elements in G and X = b
〈σ〉

is a Cayley subset of G, X
should contain all these four elements. Because the order of σ is a power of 2 and b is not
involution, according to the results in Lemma 2.5, we have |X| = |X| = 4.

Take σ1 ∈ Aut(G) such that aσ1 = b2a−1 and bσ1 = ba2n−1−1. By a direct calcula-
tion, X1 = b〈σ1〉 = {b, ba2n−1−1, b−1, (ba2n−1−1)−1} is clearly a Cayley subset of G.

For any σ2 ∈ Aut(G) such that aσ2 = b2kai, bσ2 = bsar, where k, i, s, r satisfy
the conditions listed in the first paragraph, and X2 = b〈σ2〉 = {b, bsar, b−1, (bsar)−1} is
a Cayley subset of G, one may take τ ∈ Aut(G) such that aτ = b1−sa−r(1+2n−1) and
bτ = b. It is easy to check that (ba2n−1−1)τ = bsar.

Therefore, by Lemma 2.8, the two regular balanced Cayley maps CM(G,X1, σ1|X1)
and CM(G,X2, σ2|X2

) are isomorphic. So, G has exactly one regular balanced Cayley
map of valency 4 in the sense of isomorphism.

Theorem 4.12. Let G = M2(n+ 1, n), n > 1. Then G has exactly one regular balanced
Cayley map up to isomorphism and this map is of valency 4.
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Proof. By Lemma 2.3, Aut(G) = {σ | aσ = bjai, bσ = bsa2k}, where (si, 2) = 1,
1 ≤ i ≤ 2n+1, 1 ≤ j, s, k ≤ 2n and both a2 and b2 belong to Z(G).

We firstly show that if g ∈ G, σ ∈ Aut(G) and X = g〈σ〉 is a Cayley subset of G, then
|X| = 4. Set N = {x ∈ G | x2n−1

= 1}. According to Lemma 2.7, N is a characteristic
subgroup of G and N = 〈a4, b2〉. In the quotient group G ∼= Z2 × Z4, the order of a
is 4. There are exactly four order-4 elements in G, similar to the proof of Theorem 4.11,
X = a〈σ〉 is a Cayley subset of G of order 4 and |X| = |X| = 4.

Take σ1 ∈ Aut(G) such that aσ1 = b−1a and bσ1 = b−1a2. Then, Y1 = a〈σ1〉 =
{a, b−1a, a−1, (b−1a)−1} is a Cayley subset of G.

For any σ2 ∈ Aut(G) such that aσ2 = bjai, bσ2 = bsa2k, where j, i, s, k satisfy
the conditions listed in the first paragraph, and Y2 = a〈σ2〉 = {a, bjai, a−1, (bjai)−1} is
a Cayley subset of G, one may take τ ∈ Aut(G) such that aτ = a and bτ = b−ja1−i. It
is easy to check that (b−1a)τ = bjai. Therefore, the two regular balanced Cayley maps
CM(G, Y1, σ1|Y1) and CM(G, Y2, σ2|Y2) are isomorphic and so G has only one regular
balanced Cayley map of valency 4 in the sense of isomorphism.

To be more clear, we list the number of non-isomorphic regular balanced Cayley maps
of minimal non-abelian metacyclic groups in Table 1. For brevity, we use |G|, N , RBCM
and MNAMG to denote the order of group G, the number of regular balanced Cayley maps
up to isomorphism, regular balanced Cayley maps and minimal non-abelian metacyclic
groups, respectively.

Table 1: Number of RBCM of MNAMG.

G |G| N

1 Q8 8 1

2 Mp,2(1, r) ∼= D2p 2p p− 1

3 Mp,2(m, r),m ≥ 2, p− 1 = 2es, (s, 2) = 1 2mp s

4 Mp,q(m, r), q 6= 2 pqm 0

5 M2(2, 1) ∼= D8 8 2

6 M2(n, 1), n > 2 2n+1 0

7 M2(n, n), n ≥ 2 22n 1

8 M2(n+ 1, n), n ≥ 2 22n+1 1

9 M2(n,m), m 6= n and m 6= n− 1 2n+m 0

10 Mp(n,m), p 6= 2 pn+m 0
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