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ABSTRACT

A stochastic geometrical modeling method for reconstructing three dimensional pore scale microstructures
of multiscale porous media is presented. In this method the porous medium is represented by a random
but spatially correlated structure of objects placed in thecontinuum. The model exhibits correlations with
the sedimentary textures, scale dependent intergranular porosity over many decades, vuggy or dissolution
porosity, a percolating pore space, a fully connected matrix space, strong resolution dependence and wide
variability in the permeabilities and other properties. The continuum representation allows discretization at
arbitrary resolutions providing synthetic micro-computertomographic images for resolution dependent fluid
flow simulation. Model implementations for two different carbonate rocks are presented. The method can be
used to generate pore scale models of a wide class of multiscale porous media.

Keywords: carbonate rock, image reconstruction, tomography.

INTRODUCTION

Reservoir rocks are highly heterogeneous and
many of them contain a complex pore structure
with a wide range of length scales. One of the
main objectives of pore scale physics research is
to predict macroscopic petrophysical properties from
the underlying porous microstructure. Apart from the
basic understanding of the physics of flow processes,
this has also enormous practical importance in terms of
improving uncertain estimates of recovery efficiency
on larger scales. Three dimensional pore scale models
of the rock are essential for such research (Adler, 1992;
Hilfer, 2000; Thovertet al., 2001; Arnset al., 2003;
Okabe and Blunt, 2007).

Among the frequently occurring multiscale porous
media in nature, carbonate sediments are of great
economical interest because nearly half of the worlds
petroleum is found in carbonate reservoirs. Carbonate
rocks in general, and dolomites in particular, are
formed by a large number of different physico-
chemical processes and contain a wide variety
of diagenetic textures overprinting their primary
facies. Frequently, the original primordial depositional
textures (e.g., calcite ooids or bioclastsetc.) remain
visible in the final microstructure (Moore, 1989;
Lucia, 1999; Moore, 2001). They contain vuggy pores,
defined as pores that are connected only through
interparticle porosity (Lucia, 1999). Dissolution,
nucleation and growth of crystallites are common

phenomena during dolomitization processes, and both
porosity and texture can fluctuate in the evolution
of the rocks. Unlike sandstones, permeability in
carbonate rocks can vary widely within a given rock
sample (Fernandeset al., 1996; Anselmettiet al.,
1998). Due to these reasons it has been difficult to fully
classify and characterize the pore scale microstructure
of carbonate rocks (Dunham, 1962; Lucia, 1999).

The geometrical and petrophysical parameters of
carbonates depend strongly on resolution because
of a very wide range of pore and crystallite sizes
dominating its geometric texture. For typical carbonate
rocks, with smallest calcite or dolomite crystallite sizes
of 10−7 m, one needs at least a voxel size ofa ≈
10−8 m to resolve them. Even for a small cubic sample
of size L = 10−2 m, the digitized sample requires
prohibitive CPU time and storage space (∼ 1018

digits). To be able to model such a system and at the
same time capture the complex geometry, a completely
different modeling approach and data structure are
needed. We propose here a pore scale model in the
continuum that overcomes these impediments and can
act as a starting point for more realistic modeling of
these multiscale porous media.

Because the diagenetic processes that produce
the large variety of carbonate rock textures are
complex and largely unknown, we attempt a simple
stochastic geometrical model that tries to reproduce
the main features of the pore scale geometry. Any
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modeling method for carbonates requires solving two
key problems: the “pore sizes” and grain diameters
ranging over many decades in length scales and
the carbonate textures showing a strongly correlated
disorder (Song and Sen, 2000). It is also crucial to
correlate pore scale microstructure to the depositional
and diagenetic fabrics and simultaneously distinguish
between intergrain, intragrain, intercrystalline and
vuggy pores. Porosity depends strongly on the shape
and size of the grains and grain packing. The sizes
of intergrain pores depend on the grain size sorting
and decrease as cement occludes the pore space or
as grains are forced closer together by compaction
(Lucia, 1999).

The model proposed here aims to incorporate
simultaneously the above diagenetic processes
and the following microstructure features: scale
dependent intergranular porosity over many decades,
vuggy porosity, a percolating pore space, a fully-
connected matrix space, intergranular correlations
from primordial depositional textures and mineral
transformation. It allows discretizations at any
arbitrary resolution. In this paper the feasibility of
this model is tested by reconstructing the generic
microstructure of two different carbonate rocks with
multiple length scales.

THE MODEL

In this continuum growth model the porous
medium is represented by a random sequence of
points decorated with objects (grains or crystallites)
that correlate with the location and properties of the
different crystallite phases present in the original rock.
This model belongs to the class of so-called germ-
grain models (Stoyanet al., 1995). The deposition of
the points is similar to a random sequential adsorption
process (Feder, 1980). A stochastic geometer might
call the model a random-field-controlled germ-grain
model of random sequential adsorption type.

CONTINUUM REPRESENTATION

The state space of a rock sample containingN
crystallites occupying a bounded regionS ⊂ R

3 is the
set

ΩN = (S× [Rmin,Rmax]×E×{1,2, ...,g})N (1)

of all sequencesω = (ω0,ω1, ...,ωN) ∈ ΩN with
[Rmin,Rmax] ⊂ R1 and E = {x ∈ R3 : |x| = 1}. The
sample containsg different crystallite phases. An
elementωi = (xi,Ri ,ai ,Ti) of the sequence represents
a crystallite of typeTi at spatial positionxi ∈ S with

a radius of the equivalent sphereRi and orientation
ai. These crystallite attributes shall depend on the
original depositional texture through their distribution.
A probability distribution Pr on the spaceΩ of
sequences further specifies the model.

PRIMORDIAL FILTER FUNCTION

The crystallite phases and intergranular
correlations from the underlying primordial
depositional textures are first captured by a greyscale
image G defined mathematically as a bounded, but
not necessarily continuous functionG : S → [0,1].
This crucial input function G(x) is constructed
with information from geological analysis of the
rock, quantitative image analysis of two dimensional
micrographs and three dimensionalµ-CT images, if
available.

The location and properties of the crystallites inS

are then defined through:

Ri = R(G(xi)) , ai = A (G(xi)) , Ti = T (G(xi)) ,
(2)

where the functionsR : [0,1]→ [Rmin,Rmax]∪{0}, A :
[0,1] → E andT : [0,1] → {1,2, ...,g} specify their
correlations with the primordial texture. The permitted
crystallite sizes in the interval[Rmin,Rmax] correlate
with the polydispersity in each crystallite phase of
the original sample. The rock sample is represented
as a random sequence ofN points, each decorated
with crystallites satisfying the primordial correlation
through Eq. 2.

DEPOSITION OF POINTS

The pointsxi are chosen randomly inS ⊂ R3 and
added sequentially if the following overlap condition
is satisfied. For each chosen pointxi a corresponding
sphere radiusRi is chosen as defined in Eq. 2 and we
set Pr(Ωc) = 0 for

Ωc = {ω ∈ Ω : ∃ i, j,O(ωi ,ω j) /∈ (0,λi ]} , (3)

where the degree of overlap between the spheres with
radii Ri andRj is measured by

O(ωi,ω j) =
Ri +Rj −|xi −x j |

Ri +Rj −|Ri −Rj |
, (4)

and O(ωi,ω j) is set to zero whenRi or Rj or both
vanish. The parameterλi = Λ(G(xi)) defines the
maximum allowed overlap with the crystallite atxi
and Λ : [0,1] → [λmin,λmax] with 0 < λmin, λmax <
1. In other words, each newly added crystallite has
a finite overlap with an existing crystallite where
the degree of overlap is defined by the primordial
filter function. This ensures full matrix connectivity.
Porosity and pore space connectivity of each crystallite
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phase depends on the degree of overlap, the density
of crystallites and the corresponding crystallite size
distribution. The density of crystallites depends on
the density of points, denoted byρ , deposited in the
corresponding phase. This is a model parameter that
is determined from the image analysis of the original
rock. Porosity and pore space connectivity of the full
sample depends on the original pore phase and vugs
defined inG, inter-crystallite pore space in each phase
and the way these different crystallite phases combine
to form the full rock sample.

VUGGY POROSITY

Apart from inter-grain and inter-crystalline pore
space, vuggy pore space is a distinctive feature of
many multiscale porous media. In general, vuggy
pores may be touching or non-touching and connected
by other type of porosity (Lucia, 1999). To include
such vuggy pores, deposition of crystallites at vuggy
pore regions are restricted by setting Pr(Ωv) = 0, for

Ωv = {ω ∈ Ω : ∃ 0≤ i ≤ N; R(G(xi)) = 0} . (5)

This correlates the vugginess with the depositional
texture.

GRAIN DECORATION

After depositing random points in a correlated
fashion, the deposited points are then decorated
with crystallites according to the depositional texture
(Eq. 2). A crystallite of typeTi with orientation
ai is placed at each pointxi . For a feasible and
fast convergence of the deposition algorithm, the
overlap condition in Eq. 3 is defined for spherical
volumes associated with each deposited point. Since
the decorated crystallites can be of arbitrary shape,
the spherical volume must either be inscribed within
the crystallite or the size of the crystallitedi(Ri) must
be scaled appropriately so as to retain the matrix
connectivity.

DISCRETIZATION

The porous media sample is fully represented by a
list of N quadruples(xi,di ,ai ,Ti). It can be discretized
at any arbitrary resolution. In the discretization
procedure, a cubic sample of sidelengthℓ is subdivided
into a grid of cubic voxels, each of side lengtha.
Within each voxel a set of selected collocation points
are chosen and the voxel is then assigned a value
depending on the fraction of these collocation points
that fall inside the deposited crystallites. A larger set

of collocation points increases the accuracy of the
discretization, but is computationally demanding when
N is large.

NINE-POINT RULE

In this simple but reasonably effective
discretization procedure a voxel is marked as matrix
and assigned the labeli if all of the following nine
points fall within theith crystalliteGi , i = 1,2, ...,N.

p j = p+
a
2
(e1 +e2 +e3)+

a
4

t j ; j = 0,1, ..,8 , (6)

wherep is the position of the first corner of the voxel,
a is the sidelength of the voxel,t0 = (0,0,0), t1 =
(1,1,1), t2 = (−1,1,1), t3 = (1,−1,1), t4 = (1,1,−1),
t5 = (−1,−1,1), t6 = (1,−1,−1), t7 = (−1,1,−1)
and t8 = (−1,−1,−1). These nine points are the
center and the eight symmetric points between the
center and the corners of the voxel. So, if the voxel
is fully inside a single crystallite then its label is the
crystallite number. If all the nine points fall inside
the pore space,i. e., outside all theN crystallites,
then the voxel is resolved as pore and assigned a
value 0. In all other cases the voxel status is labeled
as unresolvedat the current resolution and assigned
the label−m if m points fall inside one or more
crystallites. This label reflects the matrix density
within the voxel. Such labeling criteria with crystallite
information is useful for building network models and
computing mechanical properties from the discretized
representation. The above discretization rule with
just nine collocation points provides a reasonably
good discretization for the analysis of the model.
A more accurate discretization method resembling
experimentalµ-CT procedure is presented below.

SYNTHETIC µ-CT

The number of collocation points in the
discretization rule is increased from 9 ton3. These
n3 collocation points are the points of an×n×n cubic
sublattice positioned centrally inside each voxel. Each
voxel is labeled with an integer numberm with the
following meaning

– m= n3 : all collocation points are in matrix space.

– m= 0 : all collocation points are in the pore space.

– 0< m< n3 : exactlymcollocation points are in the
matrix space.

This procedure produces syntheticµ-CT
discretizations of the computer model of the rock.
Experimentalµ-CT images contain noise and a direct
comparison may require addition of noise to the
syntheticµ-CT or filtering of the experimentalµ-CT
or both. Digitized representations of the pore scale
can be obtained by choosing an appropriate threshold
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mc and relabeling the voxels with label 0< m < mc
to 0 (pore) and the voxels with labelmc ≤ m≤ n3 to
1 (matrix). It is important to note that the CPU time
needed for the discretization procedure is proportional
to the number of collocation points (n3) and can be
prohibitive if the number of crystallites defining the
microstructure is large.

COMPUTATION

The discretization procedure requires us to check if
a given pointp ∈Gi , i = 1,2, ...,N. The computational
procedure for dolomite type crystallites,i. e., Gi is
rhombohedral, is as follows: A dolomite crystalliteGi
at positionxi is defined by three pairs of intersecting
parallel planes. Each pair is separated by a distancedi
and tilted by an angleα degrees about the coordinate
axes to which they are parallel initially. The equations
of these three pairs of planes are

n j .x±
di

2
= 0 , j = 1,2,3 , (7)

wheren1 = (cosα ,0,−sinα), n2 = (−sinα ,cosα ,0),
n3 = (0,−sinα ,cosα).

The rotations of the crystallites are implemented
through generalized quaternions. For eachGi , with the
center of the crystallite at the origin of the coordinate
system, the orientationai is defined by a sequence of
three rotations ofθ1, θ2 andθ3 about the coordinate
axes e1 = (1,0,0), e2 = (0,1,0) and e3 = (0,0,1)
respectively. So

ai = A (G(xi)) = Qi3Qi2Qi1 , (8)

where the unit quaternionQi j represents a rotation of
θ j about the vectorej .

The pointp ∈ Gi if

(n j .p′
r +

di

2
)(n j .p′

r −
di

2
) < 0 , j = 1,2,3 , (9)

wherep′
r = q−1

i (p− xi)(q−1
i )∗ and(.)∗ is quaternion

conjugation. The caseα = 0 corresponds to cubic
Gi . Checkingp ∈ Gi for spherical shaped grains is
straightforward. The above procedure can be readily
generalized to other arbitrary shaped crystallites
defined by cutting planes.

MODEL IMPLEMENTATION

Realistic models of multiscale porous media can be
generated using the algorithm described in Eqs. 1–5.
Actual implementations may differ from sample
to sample depending on the underlying primordial

textures, crystallite size distributions, type of
crystallites, location and type of vugs etc. Apart from
testing the feasibility of the microscopic modeling for
carbonate rocks, the following description presents
the detailed computational implementation of this
modeling procedure for two different carbonate
microstructures.

Fig. 1.Left: A part (ℓ = 0.6mm) of the original oolithic
dolostone. Right: A part of the reconstructed sample of
the same size.

SAMPLE 1: DOLOMITIZED OOID
GRAINSTONE WITH ISOPACHOUS
DOLOMITE CEMENT

Here we present in detail the specific
reconstruction of an oolithic dolostone (Biswalet al.,
2007). Only a two-dimensional photomicrograph of
the original sample was available as input data in this
case. A part of the image is shown in Fig. 1. It contains
ellipsoidal primordial facies, complete dolomitization
and vuggy porosity of touching-vug type.

Image analysis

Due to insufficient resolution and small size
of the original image, computerized quantitative
image analysis is not feasible. Therefore, only visual
inspection and manual measurements are carried out.
The rock contains ellipsoidal ooid grains that are
fully dolomitized to two distinct crystallite phases:
a thin isopachous layer (rims of the elliptical ooids)
and the inner core. The diameters of the dolomite
crystallites in these two phases are roughly in the
interval (5 µm to 25 µm) and (1 µm to 10 µm)
respectively. No discernible crystallite size distribution
or overlap variation are visible in both phases. The
crystallite packing in both phases shows a space filling
by large number of smaller crystallites around bigger
crystallites. The crystallite packing in the inner cores
of ooids have large overlap. The ooid grains feature
diagenetic replacive dolomitization and dissolution
vugs. Thresholding analysis of the image indicates the
porosity of the sample to lie in the range of 0.25–0.3.

26



Image Anal Stereol 2009;28:23-34

Primordial filter function

In the absence of any three dimensional
information, the primordial filter functionG(x) is
constructed from a computer model of polydisperse
sedimentation of elliptical ooids (disc-shaped) in
S ⊂ R3 (Bakke and Øren, 1997). Vuggy pores were
artificially generated by removing a small fraction of
the deposited ooids and enlarging the remaining ooids
by 20% of their size to compensate the inter-ellipsoid
pore space and porosity. Thekth ooid represented
by {r k,sk,ek} is centered atr k = (xk,yk,zk) with
semi-axes lengthsak = eksk, bk = eksk, ck = sk and
k = 1, 2, . . . ,1359. The primordial filter function is
defined as

G(x) =

{

1− (dk/sk) if any dk < sk ,

0 otherwise,
(10)

wheredk =

[

(x1−xk)
2

e2
k

+ (x2−yk)
2

e2
k

+ (x3−zk)
2

1

]1/2

. A small

thin section of the primordial geometry is shown in
Fig. 2 (top left).

Fig. 2. A thin section of the primordial ooid deposits
(top left), the deposited spheres for the isopachous
layer (top right), deposited spheres for the intraooid
regions (bottom left) and after the spheres are replaced
by the corresponding dolomite crystallites (bottom
right).

Deposition of points

The reconstructed cubic carbonate rock sampleS

for Sample 1 has a sidelengthℓ = 2 mm, i. e., S =
[0, ℓ]3. Due to large polydispersity andRmin/ℓ << 1,

the continuum list contains millions of crystallites.
The deposition rule requires a computational scheme
for random deposition of overlapping polydisperse
spheres inS that obey a specific size distribution and
each added pointxi ∈ S must satisfy Eq. 3.

For computational efficiency we divideS ⊂ R3

into smaller non-overlapping cubic cellsU each of
sidelengthl , i. e., S = U1 ∪ U2 ∪ U3 . . . Points are
deposited randomly in each cellUi and added to the
final list if Eq. 3 is satisfied. This scheme provides
fast convergence in deposition as Eq. 3 is verified
only for a small set of existing points inUi and the
neighboring cells. Further, to ensure a space filling by
a large number of smaller crystallites around bigger
crystallites as observed in the original image, the
following crystallite size distribution is incorporated
into the deposit scheme. For thejth deposited point at
x j in each cellU, the excluded volume radiusRj is
chosen as

Rj = Rmin +

[

1−
j
n

]

ξ j∆R , (11)

where∆R= Rmax−Rmin andξ j is a uniform random
number in (0,1). Although λi = Λ(G(xi)), for this
sample, we have assumed it to be constant,λi = λc.
In each celln = ρ l3 number of points are deposited.
The packing densityρ is first determined from trial
samples that match the target porosity and show pore
space connectivity. This is checked using the Hoshen-
Kopelman algorithm (Stauffer and Aharony, 1992) on
high resolution discretizations of the trial samples.

For the crystallites in the isopachous layers, points
are added toS with Pr(Ω1) = 0, for

Ω1 = {ω ∈ Ω : ∃ 0≤ i ≤ N, G(xi) 6∈ (0,0.125)} ,
(12)

with Rmin = 2.5 µm, Rmax = 12.5 µm, λc = 0.6, l =
62.5 µm andρ = 1.95× 10−4. For crystallites in the
inner core of the ooid grains points are added toS with
Pr(Ω2) = 0, for

Ω2 = {ω ∈ Ω : ∃ 0≤ i ≤ N, G(xi) ∈ [0,0.1]} , (13)

with Rmin = 0.5 µm, Rmax = 5 µm, λc = 0.65, l =
7.5 µm andρ = 3.395× 10−2. The reconstruction
procedure for a small thin section of the sample is
shown schematically in Fig. 2. A 2D image of a section
of the full 3D sample is shown in Fig. 1. The inter-
ooid vuggy porosities correspond toG(x) = 0 and
is automatically introduced inS through Eq. 12 and
Eq. 13. Some of the large vugs seen are introduced by
the removal of a small fraction of the ooids from the
primordial deposit.
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Fig. 3.The full cubic sampleS of sidelengthℓ = 2 mm
discretized at different resolutions: a= 20 µm (top
left), 10 µm (top right), 5 µm (bottom left) and 2.5 µm
(bottom right). Color codes: black (intra-ooid grains),
grey (grains in isopachous layer), blue (pore space)
and peach (unresolved voxels).

Grain decoration

For this model reconstruction, points
corresponding to the isopachous layer and the inner
cores of ooids are deposited separately and combined
in the following way. First theN1 points in the
isopachous layer are decorated with equilateral
rhombohedra (α = −15). The volume of each
dolomite Gi equals the volume of the associated
excluded volume sphere. Although the sphere overlap

does not imply crystallite overlap, in this sample
the matrix connectivity is retained due to the large
overlap and packing . The orientationsθ j are chosen
randomly from [−20,20] degrees. From the points
deposited in inner cores of ooids, we only chose the
pointsxi 6∈ M1 whereM1 = G1∪G2......∪GN1. The
matrix spaceM of the reconstructed rock sample is
fully characterized by a list ofN = N1 +N2 ≃ 4×107

deposited rhombohedral crystallites.

Discretization and property calculation

The reconstructed model is discretized at different
resolutions using the 9-point rule described in
Eq. 6. Four discretizations are shown in Fig. 3.
As in real carbonates, with increasing resolution
of discretization, the fraction of the unresolved
voxels decreases and porosity increases significantly.
Table 1 lists the fraction of the resolved matrix, pore
and unresolved voxels for different resolutions of
discretization. The rough estimate of the porosity at
full resolution obtained by extrapolating these values
is in the targeted range 0.25–0.3. The resolved pore
scale structure shown in Fig. 3 resembles a typical
multiscale microstructure of oolithic carbonate rocks.
The strong resolution dependence of permeabilities
measured on the discretized samples is also listed in
Table 1. Simulation results of resolution dependent
pore space and matrix properties of the discretized
models have been presented in Biswalet al. (2007).
Absolute, single phase permeability and electrical
resistivity, or formation factor resistivity, capture
the pore space connectivity and geometry, whereas
elastic property calculations of bulk and shear moduli
recover the connectivity of the matrix structure. These
property calculations lend themselves to extrapolation
to infinite resolution, like the porosity determined on
our model at different discretization levels. This was
exemplified in Biswalet al. (2007), and suggests that

Table 1.Fraction of resolved pore voxels ( fp), unresolved voxels ( fu) and matrix voxels ( fm) at different levels of
discretization. In column5 and6 the absolute permeabilities computed on the discretized samples are listed. To
compute the permeability, the unresolved voxels are eitherconverted to matrix (Km) or to pore (Kp).

Resolution fp fu fm Km Kp
(in µm) (in mD) (in mD)

20 0.12683 0.8463 0.02687 256.32 1.8467×107

13.333 0.13868 0.78332 0.078 1643.2 3.7239×106

10 0.14595 0.7154 0.13864 3495 1.0391×106

6.6667 0.15562 0.58397 0.2604 6539.5 2.0192×105

5 0.1628 0.4756 0.3616 8150.4 7.3075×104

4 0.16914 0.3941 0.43677 8520.3 4.0128×104

3.333 0.1749 0.3341 0.491 8570.9 2.7383×104

2.5 0.18506 0.254 0.561 8558.6 1.834×104

0 (extrapolated) 0.253 0.008 0.739
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the investigated properties on multiscale structures
can be retrieved consistently by means of scale and
resolution dependent simulation from the model.

SAMPLE 2: DOLOMITIZED GRAINSTONE
WITH DIFFERENT OOID PHASES

Here we present the detailed modeling procedure
for a second generic carbonate rock microstructure.
It is another dolomitized ooid grainstone for which
three-dimensionalµ-CT discretizations are available
at three different resolutions. Separate cross-sections
for each resolution are shown in Fig. 4. The modeling
procedure aims not only to match the morphology but
also to incorporate calibrated porosities at different
levels of resolution.

Fig. 4.Left window shows the cross-sections from the
experimental µ-CT images of the original rock sample
at three different resolutions: sidelength of 1.5 mm
at 8.06 µm resolution (top), sidelength of 0.7 mm at
1.4 µm resolution (middle) and sidelength of 0.35 mm
with 0.7 µm resolutions (bottom). On right are the
cross-sections from the synthetic µ-CT images of the
reconstructed rock sample at the same resolutions and
sidelengths.

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

n (greyscale value)

P
(n

)

 

 

µ−CT (8.06 µm)
Model

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

n (threshold)

P
or

os
ity

 

 

µ−CT (8.06 µm)
Model

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

n (greyscale value)

P
(n

)

 

 

µ−CT (1.4 µm)
Model

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

n (threshold)

P
or

os
ity

 

 

µ−CT (1.4 µm)
Model

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

n (greyscale value)

P
(n

)
 

 

µ−CT (0.7 µm)
Model

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

n (threshold)

P
or

os
ity

 

 

µ−CT (0.7 µm)
Model

Fig. 5. Greyscale histogram (left, solid lines) and
threshold dependent porosities (right, solid lines)
of the carbonate rock sample computed from
the µ-CT images of size 10003 voxels at three
different resolutions. The dotted lines correspond
to the processed synthetic µ-CT images from the
reconstructed rock sample at the same resolutions.

Image analysis

Subsampleµ-CT images of size 1000× 1000×
1000 voxels were analyzed for porosity, crystallite
types, crystallite size distribution and packing. The
greyscale histograms and the threshold dependence
of the porosities are shown in Fig. 5 for these three
different resolutions. Although the 8.06 µm image
seems to have a representative volume for porosity
(sidelength of 8.06 mm), the matrix is not well
resolved and one observes a more or less continuous
histogram. Hence a clear cut-off for the porosity is
hard to determine at this resolution. The 1.4 µm
data set also seems to have a representative volume
(sidelength of 1.4 mm). It appears to resolve the matrix
adequately as confirmed by the clear separation of the
two peaks in the corresponding greyscale histogram
shown in Fig. 5. A similar separation of the two
peaks is also observed in the histograms from 0.7 µm
resolution images. Ideally, the reference threshold
for determining the porosity of the rock should
be ascertained from the highest resolution images
available. However, in spite of the well resolved
matrix, the size of the 0.7 µm images (sidelength of
0.7 mm) is clearly no longer representative. Therefore,
to determine the porosity of the rock at different
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resolutions, we choose a greyscale value of 126 as the
reference threshold, determined from the separation
of the peaks in the histogram of 1.4 µm image. At
this threshold, the 8.06 µm data set has a porosity of
26.27%, the 1.4 µm data set has a porosity of 31.21%
and the two data sets with 0.7 µm resolution have
porosities of 30.03% and 31.62%, respectively. The
large fluctuations observed in the porosities of 0.7 µm
images are due the small volumes of these subsamples.
Moreover, theµ-CT images at different resolutions
analyzed here are cut from different sections of the
rock.

In absence of any automated method for estimating
the intraooid porosity, rough areal analysis was done
for a selection of grains. At the 8.06 µm resolution,
no intraooid porosity can be discerned, except in the
hollow ooids. Based on visual inspection at different
resolutions, approximately 20 percent of the ooids
have a hollow inside and around 10–50% of the radius
is hollow. The hollow ooids are mostly elongated. The
intraooid porosity is found more or less similar at
1.4 µm and 0.7 µm resolutions.

Fig. 6.A section of the primordial ooid deposits used
for the modeling (left) and the corresponding synthetic
µ-CT image of the reconstructed rock sample (right,
sidelength of 1.5 mm at resolution 8.06 µm).

Primordial filter function

A computational model of ooid grain (disc shaped)
deposits (Bakke and Øren, 1997) was used as the
primordial geometry. In this continuum primordial
grain deposits, the grain size distribution was made
to match with that extracted from theµ-CT samples.
The ellipsoidal ooid deposits (Fig. 6, left) are all
perfectly oriented. The side length of the cubic box
with primordial deposits is 1.5 mm. In order to avoid
unwanted border effect it is taken from the center of
the deposited cubic box of sidelength 1.8 mm with
2152 ooid (disc shaped) deposits. After gridding at
300×300×300 voxels, the porosity of the disc grain
pack is roughly 34%. This estimate is somewhat lower
than the actual porosity of the continuum grainpack.
To compensate the intraooid porosity that will be

introduced later and still be able to achieve the targeted
porosity, the sizes of the primordial grains are enlarged
by 2%. The greyscale primordial filter functionG(x) is
then constructed using Eq. 10.

Based on the image analysis, five different kinds
of grain parameters (primordial phases) were chosen.
Theprimordial phase1 corresponds to the isopachous
rim on all the grains. The remaining four primordial
phases are defined as follows. LetH

j
i denote theith

primordial grain in thejth primordial phase ({H
j
i , i =

1,2, ..,mj , j = 2, ..,5}). mj is the number of grains
in primordial phasej and m = ∑5

i=2mj is the total
number of primordial grains. 30% of the primordial
grains are randomly selected and defined asprimordial
phase2. They are denoted by{H2

i , i = 1,2, ..,m2} and
correspond to the tight intraooid crystallite packing.
20% of the randomly chosen primordial grains are
grouped into theprimordial phase3 corresponding
to the moderate intraooid crystallite packing and
30% of the randomly chosen grains are grouped into
the primordial phase4 corresponding to the loose
intraooid crystallite packing. The remaining 20% of
the primordial grains are grouped into theprimordial
phase 5 that contains grains with tight intraooid
crystallite packing along with hollow, vuggy cores. We
define new primordial filter functions separately for
each of the primordial phases as

H j(x) =

{

G(x) if x ∈ H
j
i for i ≤ mj ,

0 otherwise,
(14)

whereG(x) is defined in Eq. 10.

Deposition of centers and grain
parameters

Model parameters for different primordial phases
are chosen as follows and points were deposited
randomly and sequentially inS. For computational
efficiency we divide S ⊂ R3 into smaller non-
overlapping cubic cellsU each of sidelengthl , i. e.,
S = U1∪U2∪U3 . . . Points are deposited randomly in
each cellUi and added to the final list if the overlap
condition defined in Eq. 3 is satisfied.

1. For primordial phase 1(isopachous rims of all
the ooids with moderate packing of intraooid
crystallites), we choseRmin = 5 µm, Rmax =
12.5 µm,λ = 0.6, l = 37.5 µm andρ = 1.8335×
10−3 and set Pr(Ω1) = 0, for

Ω1 = {ω ∈ Ω : ∃ 0≤ i ≤ N, H1(xi) 6∈ (0,0.15)} .
(15)

2. For primordial phase2 (30% of the randomly
chosen ooids with tightly packed intraooid
crystallites) we choseRmin = 3.75 µm, Rmax =
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11.25 µm,λ = 0.8, l = 33.75 µm andρ = 5.0301×
10−3 and set Pr(Ω2) = 0, for

Ω2 = {ω ∈ Ω : ∃ 0≤ i ≤ N, H2(xi) ∈ [0,0.15]} .
(16)

3. For primordial phase3 (20% of the randomly
chosen ooids with intermediate packing,i. e., less
than the moderate packing in the rim,) we chose
Rmin = 3.75 µm,Rmax = 11.25 µm,λ = 0.5, l =
33.75 µm andρ = 2.012×10−3 and set Pr(Ω3) =
0, for

Ω3 = {ω ∈ Ω : ∃ 0≤ i ≤ N, H3(xi) ∈ [0,0.15]} .
(17)

4. For primordial phase4 (30% of the randomly
chosen ooids with loosely packed intraooid
crystallites) we choseRmin = 3.75 µ , Rmax =
11.25 µm,λ = 0.5, l = 33.75 µm andρ = 1.6767×
10−3 and set Pr(Ω4) = 0, for

Ω4 = {ω ∈ Ω : ∃ 0≤ i ≤ N, H4(xi) ∈ [0,0.15]} .
(18)

5. Intraooid vugs are introduced in the remaining
20% of the ooids deposited with parameters
Rmin = 3.75 µm,Rmax = 11.25 µm,λ = 0.8, l =
33.75 µm andρ = 5.0301× 10−3. Vug radius
varies randomly (with uniform distribution) from
10% to 50% of the corresponding ooid radius.
With each of the grains in the primordial phase
5, we associate a random number{ηi , i ≤ m5}
that has a fixed but random value in[0.5,1]. We set
Pr(Ω5) = 0, for

Ω5 = {ω ∈Ω :∃0≤ i ≤N, H5(xi) 6∈ [η(xi),0.85]} ,
(19)

whereη(xi) = η j if xi ∈ H5
j for j ≤ m5.

The points are then decorated with equilateral
rhombohedra. Each rhombohedronGi (before
rotation) centered atxi is the intersection of three pairs
of parallel planes as defined in Eq. 7. The distance
di is chosen such that the volume ofGi equals the
volume of the associated excluded volume sphere and
α = −15 degrees. Each rotation angleθ j is chosen
randomly from[−60,60] degrees. Roughly 6.4×106

rhombohedral crystallites are sufficient to fill the
whole 1.5 mm× 1.5 mm× 1.5 mm cubic sample.
A cross-section of the discretized sample with these
decorated crystallites is shown in Fig. 6.

Fig. 7. Cross-sections from the experimental µ-CT
images of the rock sample (left) are compared
with sections from the processed synthetic µ-CT
images (right) of the reconstructed rock samples at
corresponding resolutions: sidelength of 1.5 mm at
8.06 µm resolution (top), sidelength of 0.7 mm at
1.4 µm resolution (middle) and sidelength of 0.35 mm
with 0.7 µm resolutions (bottom). The synthetic µ-
CT images are processed with added white noise of
standard deviation 19, 17 and 15, respectively.

Discretization

The reconstructed samples are then discretized
with 125 collocation points (corresponding ton = 5)
as described above in the section entitled “SYNTHETIC
µ-CT”. Seven discretized data sets are generated. One
data set contains the full sample discretized at 8.06 µm.
Next, two non-overlapping subsamples, half the size of
the full sample, were discretized at 1.4 µm resolution.
These two subsamples are the lower left corner and the
upper right backwards corner of the full sample,i. e.,
the second subsample is displaced along the diagonal.
Finally, there are four non-overlapping subsamples
cut along the diagonal, each one quarter the size of
the full sample and discretized at 0.7 µm resolution.
Cross-sections of these greyscale discretizations are

31



BISWAL B ET AL : Modeling of multiscale porous media

visualized in Fig. 4 for all three resolutions. Porosity
was measured at different thresholds for all these
discretized samples. Threshold dependent porosities
averaged over the subsamples are presented in Table 2.
Porosities of theµ-CT images thresholded at 126 (see
section “SYNTHETIC µ-CT”) were compared with
model discretizations at corresponding resolutions for
threshold values ofmc = 48, 52, and 56. The porosities
of the model discretizations correspond well to those
of the µ-CT images atmc = 52. Like the 0.7 µm
resolution µ-CT images large porosity fluctuations
are also observed in the discretized samples at this
resolution. Morphologically, the discretized samples
shown in Fig. 4 also match well with theµ-CT images
shown in Fig. 4.

It is important to note that the above discretizations
represent syntheticµ-CT images from the model
and owing to the continuum representation, can
be generated at arbitrary resolutions. This allows
investigation of the rock properties at both
intermediate and higher resolutions than the available
µ-CT images. However, a direct comparability with
experimentalµ-CT images requires addition of a small
amount of Gaussian white noise to these synthetic
images. For example, to match the greyscale densities,
we first shift the peaks and width of the greyscale
density histograms from the model to match with that
of the the experimentalµ-CT images. Then we add a
small amount of noise (see Fig. 7) to match the peak
corresponding to the matrix phase. The discretizations
at resolutions 8.06 µm, 1.4 µm and 0.7 µm are added
with white noise of standard deviation 19, 17 and 15
respectively. These images are shown in Fig. 7 and
the threshold dependent porosity reveals an impressive
match with that measured from the experimentalµ-CT
images as shown in Fig. 5.

Two-point correlation function

Quantitative characterization and comparison of
the microstructure is carried out through the two-point
correlation function (Ørenet al., 2007) measured from
the discretizations of the model and the originalµ-
CT images at different resolutions. These greyscale
representations are thresholded to obtain a digitized
representationI(x). The indicator functionI(x) = 1 if
x ∈ matrix space andI(x) = 0 if x ∈ pore space, where
x is the position vector of the voxel on the digitized
grid. Assuming homogeneity, the two-point correlation
functionC(r) is defined as

C(r) =
〈(I(x)−φ)(I(x+ r)−φ)〉

〈(I(x)−φ)2〉
, (20)

where φ is the porosity of the sample. For the
following analysisC(r) is computed forr aligned in
the X, Y and Z directions.
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Fig. 8.Two-point correlation functions (averaged over
X, Y and Z directions) calculated from the digitized µ-
CT images and the model discretizations at resolutions
8.06 µm (top left), 1.4 µm (bottom left) and 0.7 µm
(bottom right). Sample names are as defined in Table 2.
Top right: comparison of the correlation functions in
the individual directions from the model discretization
at 8.06 µm. Bottom left: Two dashed curves calculated
for subsamples. Bottom right: All curves calculated for
subsamples.

For this analysis, theµ-CT images (10003 voxels,
8–bit greyscale) at resolutions 8.06 µm, 1.4 µm and
0.7 µm are digitized at threshold value of 126. The
model discretizations at resolutions 8.06 µm (full
sample, 1863 voxels), 1.4 µm (two subsamples, 5363

voxels) and 0.7 µm (four subsamples, 5363 voxels)
are digitized at threshold valuemc = 52. The two-
point correlation functions measured on these digitized
representations are plotted in Fig. 8. At 8.06 µm
resolution, the model measurements agree reasonably
well with the µ-CT data in the short range with
marginal discrepancy in the long range. At 1.4 µm
resolution, the model measurements also agree well
with the µ-CT data. At 0.7 µm resolution, model
measurements from several of the subsamples agree
with the µ-CT data in the short range. The non-
representative sample sizes give rise to large sample
to sample fluctuations making a comparison at this
resolution difficult. The slope of the tangent drawn at
C(0) provides a rough estimate of the specific surface
area of the solid/void and is related to the permeability
of the sample (Hilfer, 1996). The above results indicate
that along with the quantitative agreement in the
porosities (Table 2) and in the morphologies (Fig. 4
and Fig. 7), the transport properties measured from
the model subsamples at different resolutions are
also expected to show reasonable agreement with the
subsamples of the rock used for theµ-CT imaging.

Discrepancies observed between theµ-CT images
and the model discretizations may originate from a
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Table 2.Variation in threshold dependent porosities of the µ-CT images and the discretized samples (without
noise) at three different resolutions. µ-CT measurement for 0.7 µm resolution is averaged over two different
subsamples. Model measurements for 1.4 µm and 0.7 µm resolutions are averaged over two and four subsamples
respectively.

Resolution Original φ(n) Model φ(mc)
(in µm) µ-CT n = 126 mc = 48 mc = 52 mc = 56

8.06 mCT F 0.2627 modelF 0.2537 0.2615 0.27
1.40 mCT H 0.3121 modelH 0.3096 0.3133 0.317
0.70 mCT Q 0.3082 modelQ 0.3077 0.3097 0.3116

number of different sources. The model parameters are
only approximate. The dolomite sizes and their overlap
are measured from two dimensional micrographs. The
phases are determined from rough areal analysis of
some selected grains in the experimentalµ-CT images
shown in Fig. 4. The primordial ooid deposits differ
from the ooids visible in theµ-CT images in a
number of ways. The primordial ooids have circular
cross-sections in the Z-direction and elliptical cross-
section in the other two directions, thus the shape
of the primordial ooids match with the original rock
only in the X and Y directions. As a result of the
deposition procedure (Bakke and Øren, 1997), they are
perfectly aligned with respect to Z-direction, whereas
the orientation of the ooids in the original rock is more
isotropic. Due to these reasons a large discrepancy is
observed between the correlation functions measured
in the Z-direction and the other two directions for the
model (Fig. 8). This emphasizes the need for using
valid primordial input and model parameters in the
model reconstruction to achieve good correspondence
with the spatial correlations in the microstructure and
transport parameters.

CONCLUSION

In this paper we present a model for multiscale
porous media that provides a continuum description
of the porous rock at arbitrary precision. It reproduces
the enormous variation of “pore sizes” (vugs, pores,
cracks, slits etc) that is typical of multiscale porous
media. The range of length scales that can be
included is limited only by the floating point precision
of computers. The petrophysical properties of the
reconstructed models can be studied as a function of
resolution without any limit in the magnification,i. e.,
scale dependence of porosity, connectivity or network
models. The model permits to represent vugginess
(both separate, moldic and touching such as Breccia in
the sense of Lucia (1999). It reproduces intergranular
porosity, intragranular porosity, correlation with
primordial depositional texture and full connectivity of

pore and matrix space. The model parameters allow
calibration of porosities and physical parameters at
different resolutions.

A successful reconstruction of a given rock using
this model depends on the accuracy of both the
input parameters obtained from image analysis and
the primordial filter function. The matrix connectivity
is ensured by finite crystallite overlap that is
implemented through an overlap of spheres associated
with each crystallite. Although it makes the algorithm
simple and fast, this approach may not be suitable
for rocks containing elongated or complex objects. To
ensure faster and computationally feasible deposition
of millions of spheres, the algorithm presented in
this paper uses a subdivision of the rock into
sub-cells, filled sequentially. A faster algorithm for
depositing hundreds of millions of objects with
a given size distribution, satisfying simultaneously
the overlap rule, would be necessary to overcome
these restrictions. To the best of our knowledge, the
proposed modeling approach is currently the only
feasible method available for generating complex
multiscale carbonate pore-scale models of laboratory
scale rock samples.

This process inspired continuum model represents
a feasible pore scale modeling technology for
multiscale porous media such as carbonates. Many
elements of realistic diagenetic processes are included
in the modeling procedure. The model was tested
on two examples of oolithic dolostones and can be
easily generalized to model a wide variety of carbonate
rocks. It can also be used to reconstruct other kinds
of multiscale porous media such as sandstones with
strong heterogeneities and fractured porous media.

ACKNOWLEDGEMENTS

BB and RH gratefully acknowledge funding of this
work by StatoilHydro ASA, Norway.

REFERENCES

Adler PM (1992). Porous Media – Geometry and
Transports. Boston: Butterworth-Heinemann.

33



BISWAL B ET AL : Modeling of multiscale porous media

Anselmetti FS, Luthi SM, Eberli GP (1998). Quantitative
characterization of carbonate pore systems by digital
image analysis. AAPG Bulletin 82:1815–36.

Arns CH, Knackstedt MA, Mecke KR (2003).
Reconstructing complex materials via effective
grain shapes. Phys Rev Lett 91:215506.

Bakke S, Øren PE (1997). 3-d pore-scale modeling of
sandstones and flow simulations in pore networks. SPE
J 2:136–49.

Biswal B, Øren PE, Bakke S, Held RJ, Hilfer R (2007).
Stochastic multiscale model for carbonate rocks. Phys
Rev E 75:061303.

Dunham R (1962). Classification of carbonate rocks
according to depositional texture. In: W. Ham,
eds. Classification of carbonate rocks: American
Association of Petroleum Geologists, 108–21.

Feder J (1980). Random sequential adsorption. J Theor Biol
87:237–54.

Fernandes CP, Magnani FS, Philippi PC, Däian JF
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