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Abstract

A simple undirected graph is said to be semisymmetric if it is regular and edge-transitive
but not vertex-transitive. Every semisymmetric graph is a bipartite graph with two parts of
equal size. Let p be a prime. In this paper, a class of semisymmetric graphs of order
2p3 are determined. This work is a partial result for our long term goal to classify all
semisymmetric graphs of order 2p3.
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1 Introduction
All graphs considered in this paper are finite, undirected, connected and simple. For a
graph X , we use V (X), E(X) and A := Aut(X) to denote its vertex set, edge set and
the full automorphism group, respectively. The graph is said to be vertex-transitive and
edge-transitive, if A acts transitively on V (X) and E(X), respectively. If X is bipartite
with bipartition V (X) = W (X)∪U(X), we let A+ be the subgroup of A preserving both
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W (X) and U(X). Since X is connected, we have that either |A : A+| = 2 or A = A+,
depending on whether or not there exists an automorphism which interchanges the two
parts. For G ≤ A+, the graph X is said to be G-semitransitive if G acts transitively on
both W (X) and U(X), and semitransitive if X is A+-semitransitive.

We call a graph semisymmetric if it is regular and edge-transitive but not vertex-transi-
tive. It is easy to see that every semisymmetric graph is a semitransitive bipartite graph
with two parts of equal size.

The first person who studied semisymmetric graphs was Folkman. In 1967 he con-
structed several infinite families of such graphs and proposed eight open problems see
[13]. Afterwards, Bouwer, Titov, Klin, I.V. Ivanov, A.A. Ivanov and others did much work
on semisymmetric graphs see [2, 4, 16, 17, 18, 30]. They gave new constructions of such
graphs and nearly solved all of Folkman’s open problems. In particular, Iofinova and Ivanov
[16] in 1985 classified biprimitive semisymmetric cubic graphs using group-theoretical
methods. This was the first classification theorem for such graphs. More recently, fol-
lowing some deep results in group theory which depend on the classification of finite sim-
ple groups and some methods from graph coverings, some new results on semisymmetric
graphs have appeared. For instance, in [11] Du and Xu classified semisymmetric graphs of
order 2pq for two different primes p and q. For more papers on semisymmetric graphs see
[5, 7, 8, 9, 10, 11, 12, 19, 21, 22, 23, 24, 25, 26, 27, 28, 33].

In [13], Folkman proved that there are no semisymmetric graphs of order 2p and 2p2

where p is a prime. Then we are interesting in determining semisymmetric graphs of order
2p3, where p is prime. Since the smallest semisymmetric graphs have the order 20 [13], we
let p ≥ 3. It is proved in [25] that the Gray graph of order 54 is the only cubic semisym-
metric graph of order 2p3. To classify all semisymmetric graphs of order 2p3 is still one of
attractive and difficult problems. These graphsX are naturally divided into two subclasses:

(1) Aut(X) acts unfaithfully on at least one part;

(2) Aut(X) acts faithfully on both parts.

Now we are going to concentrate on Subclass (1). To state our main theorem, we first
introduce two concepts.

Let Y be a connected semitransitive and edge-transitive graph with bipartition V (Y ) =
W (Y )∪U(Y ), whereW (Y ) = Z3

p andU(Y ) = Z2
p for an odd prime p. For distinguishing

the vertices of W (Y ) and U(Y ) convenience, the vertices of W (Y ) and U(Y ) are denoted
by (i, j, k, 0) and (y, z, 1), respectively, where i, j, k, y, z ∈ Zp. Now we define a bipartite
graph X with bipartition W (X) ∪ U(X), where

W (X) = W (Y ), U(X) = Zp × U(Y ) = {(x, y, z, 1)
∣∣ x, y, z ∈ Zp},

such that two vertices (i, j, k, 0) ∈ W (X) and (x, y, z, 1) ∈ U(X) are adjacent if {(i, j,
k, 0), (y, z, 1)} ∈ E(Y ). From now on, we shall say that the graph X is the graph ex-
panded from Y and that the graph Y is the graph contracted from X . Clearly X is
edge-transitive and regular. Furthermore, since for any (y, z, 1) ∈ U(Y ), the p vertices
{(x, y, z, 1)

∣∣ x ∈ Zp} in U(X) have the same neighborhood, X is semisymmetric, pro-
vided there exist no two vertices in W (X) which have the same neighborhood. Clearly,
Aut(X) acts unfaithfully on W (X) and Aut(X)/Spp

∼= Aut(Y ).
Note that the semisymmetric graphs where two vertices have the same neighbourhood

have been studied in several papers see [11, 20, 29, 33], with different definitions, for
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instance, X is a derived graph from Y , X is a unworthy graph, X is contracted to from Y
and so on.

Let Y be a connected graph and B an imprimitive system of Aut(Y ). Define a graph Z
with the vertex set B such that two blocks are adjacent in Z if there exists at least one edge
in Y between two blocks. This graph Z is called the block graph of Y . Moreover, if B is
the set of orbits of some nontrival normal subgroup N of Aut(Y ), then we call Z the block
graph induced by N .

The following proposition gives a characterization for Subclass (1) given in [31]:

Proposition 1.1. Suppose X is a semisymmetric graph of order 2p3, where p is an odd
prime, such that Aut(X) acts unfaithfully on at least one part. Then Aut(X) must act
unfaithfully on one part and faithfully on the other part, and X is the graph expanded from
the graph Y with bipartition V (Y ) = W (Y )∪U(Y ), whereW (Y ) = Z3

p andU(Y ) = Z2
p .

Moreover, we have that either

(1) p = 3, Aut(Y ) ∼= S3 o S3 which acts primitively on W (Y ); or

(2) Aut(Y ) has blocks of length p2 on W (Y ) and of length p on U(Y ). Let Y be the
block graph of Y . Then either

(2.1) the block graph Y is of valency at least 3, and Aut(Y ) is solvable and con-
tains a normal regular subgroup on W (Y ); or

(2.2) the block graph Y is of valency 2, where Aut(Y ) may be solvable or insolv-
able.

Following Proposition 1.1, in this paper we shall determine the graphs in Case (2.2),
while Cases (1) and (2.1) will be determined in our another paper. Before giving the main
theorem of this paper, we first define six families of graphs Y .

Definition 1.2. We shall define six families of bipartite graphs X with bipartition V (X) =
W (X) ∪ U(X), where

W (X) = {(i, j, k, 0)
∣∣ i, j, k ∈ Zp}, U(X) = {(x, y, z, 1)

∣∣ x, y, z ∈ Zp},
and edge set

E(X) = {{(i, j, k, 0), (x, i+ b, k + p−1
2 , 1)}

∣∣ i, j, k, x ∈ Zp, b ∈ Σ}∪
{{(i, j, k, 0), (x, j + sb, k + p+1

2 , 1)}
∣∣ i, j, k, x ∈ Zp, b ∈ Σ},

where s = θ
p−1
2r , Z∗p = 〈θ〉 for the family of graphs X2(p, r), s = 1 for other five families

of graphs Xi(p, r), and Σ is given by

(1) Graphs X1(p, r): Let p ≥ 3 and let Σ be a subgroup of Z∗p of order r, where
(p, r) 6= (7, 3), (11,5). Moreover, the valency of X1(p, r) is 2pr and the smallest
examples are X1(3, 1) and X1(3, 2).

(2) Graphs X2(p, r): Let p ≥ 5 and let Σ be a subgroup of Z∗p of order r ≥ 2, where
(p, r) 6= (7, 3), (11, 5) and 2r

∣∣ (p − 1). Moreover, the valency of X2(p, r) is 2pr
and the smallest example is X2(5, 2).

(3) Graphs X3(11, 5): Let p = 11 and let Σ = {0, 2, 3, 4, 8} ⊂ Z11. Moreover, the
valency of X3(11, 5) is 110.
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(4) Graphs X4(11, 6): Let p = 11 and Σ = {1, 5, 6, 7, 9, 10} ⊂ Z11. Moreover, the
valency of X4(11, 6) is 132.

(5) Graphs X5(p, r): Choose a point 〈v〉 and a hyperplane L in the project space
PG(n − 1, q), where qn−1

q−1 = p ≥ 7, and let G = 〈t〉 be a Singer subgroup of

PGL(n, q). Let Σ = {l ∈ Zp
∣∣ 〈v〉 ∈ Ltl}, where r = |Σ| = qn−1−1

q−1 . Moreover, the

valency of X5(p, r) is 2p q
n−1−1
q−1 and the smallest example is X5(7, 3).

(6) Graphs X6(p, r) : Adopting the same notation as in (5), set Σ = {l ∈ Zp
∣∣ 〈v〉 6∈

Ltl},where r = qn−1. Moreover, the valency ofX6(p, r) is 2pqn−1 and the smallest
example is X6(7, 4).

Remark 1.3. For 1 ≤ i ≤ 6, let Xi(p, r) be as in Definition 1.2. Then

(1) For any given y, z ∈ Zp, the p vertices {(x, y, z, 1)
∣∣ x ∈ Zp} have the same neigh-

borhood. Let Yi(p, r) be the contracted graph fromXi(p, r), obtained by contracting
each such p vertices into one vertex while preserving the adjacent relation, that is,

W (Yi(p, r)) = W (Xi(p, r)), U(Yi(p, r)) = {(y, z, 1)
∣∣ y, z ∈ Zp}.

Then we shall see from the proof of Theorem 1.4 that Aut(Yi(p, r)) = K o D2p,
where the subgroup K is the following

(i) Y1(p, r) and Y2(p, r): K = Spp if r ∈ {1, p − 1}; K = (Zp o Zr)
p if r 6∈

{1, p− 1};
(ii) Y3(11, 5) and Y4(11, 6): K = (PSL(2, 11))p;

(iii) Y5(p, r) and Y6(p, r): K = (PΓL(n, q))p.

(2) For any k ∈ Zp, let

Wk(Y ) = {(i, j, k, 0) ∈W (Y )
∣∣ i, j ∈ Zp}, Uz(Y ) = {(y, z, 1)

∣∣ y ∈ Zp}.
Then we shall see from the proof of Theorem 1.4 that {Wk(Y )

∣∣ k ∈ Zp} and
{Uz(Y )

∣∣ z ∈ Zp} are orbits of the group K on W (Y ) and U(Y ), respectively. Let
Y be the block graph induced by K. Then Y is a cycle of length 2p.

Now we give the main theorem of this paper.

Theorem 1.4. For an odd prime p, suppose that X is a semisymmetric graph of order 2p3

expanded from a graph Y such that Aut(Y ) has the blocks of length p2 on W (Y ) and of
length p on U(Y ) while the block graph Y is a cycle of length 2p. Then X is isomorphic
to one of graphs Xi(p, r) where 1 ≤ i ≤ 6, defined in Definition 1.2.

After this introductory section, some preliminary results will be given in Section 2, and
the main theorem will be proved in Sections 3. For group-theoretic concepts and notation
not defined here the reader is refereed to [6, 15].
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2 Preliminaries
First we introduce some notation. By H char G, we mean that H is a characteristic sub-
group of G. Given a group G and a subgroup H of G, by Cos(G,H) we denote the set of
right cosets of H in G. The action of G on Cos(G,H) is always assumed to be the right
multiplication action. For two subgroups N � G and H ≤ G, by N o H we denote the
semi-direct product of N by H , where N is normal. For a group G, by Exp (G) we denote
the least common multiple of orders of all the elements of G. By H o K, we denote the
wreath product of H and K.

A group-theoretic construction of semitransitive and semisymmetric graphs were given
in [11]. Here we quote one definition and two results.

Definition 2.1. Let G be a group, let L and R be subgroups of G and let D be a union
of double cosets of R and L in G, namely, D =

⋃
iRdiL. Define a bipartite graph X =

(G,L,R;D) with bipartition V (X) = Cos(G,L) ∪ Cos(G,R) and edge set E(X) =
{(Lg,Rdg)

∣∣ g ∈ G, d ∈ D}. This graph is called the bi-coset graph of G with respect to
L, R and D.

Proposition 2.2. [11] The graph X = B(G,L,R;D) is a well-defined bipartite graph.
Under the right multiplication action of G on V (X), the graph X is G-semitransitive. The
kernel of the action of G on V (X) is CoreG(L) ∩ CoreG(R), the intersection of the cores
of the subgroups L and R in G. Furthermore, we have

(i) X is G-edge-transitive if and only if D = RdL for some d ∈ G;

(ii) the degree of any vertex in Cos(G,L) (resp. Cos(G,R)) is equal to the number of
right cosets ofR (resp. L) inD (resp. D−1), soX is regular if and only if |L| = |R|;

(iii) X is connected if and only if G is generated by elements of D−1D;

(vi) X ∼= B(G,La, Rb;D′) where D′ =
⋃
iR

b (b−1dia)La, for any a, b ∈ G;

(v) X ∼= B(Ĝ, Lσ, Rσ;Dσ) where σ is an isomorphism fromG to Ĝ (it does not appear
in [11] but it is easy to prove.)

Proposition 2.3. [11] Suppose Y is a G-semitransitive graph with bipartition V (Y ) =
U(Y ) ∪W (Y ). Take u ∈ U(Y ) and w ∈W (Y ). Set D = {g ∈ G

∣∣ wg ∈ Y1(u)}. Then
D is a union of double cosets of Gw and Gu in G, and Y ∼= B(G,Gu, Gw;D).

Proposition 2.4. [32, 11.6, 11.7] Every permutation group of prime degree p is either
insolvable and 2-transitive, or isomorphic to Zp o Zs for some s dividing p− 1.

Proposition 2.5. [14] The insolvable permutation groups of prime degree p are given as
follows, where T denotes be the socle of the group and H denotes a point stabilizer of T :

(i) T = Ap and H = Ap−1;

(ii) T = PSL(n, q) and H is the stabilizer of a projective point or a hyperplane in
PG(n− 1, q), and |T : H| = (qn − 1)/(q − 1) = p;

(iii) T = PSL(2, 11) and H = A5, and T has two conjugacy classes of subgroups
isomorphic to A5;

(iv) T = M11 and H = M10;
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(v) T = M23 and H = M22.

Lemma 2.6. [31] Let G be an imprimitive transitive group of degree p2 with p ≥ 3 and
p3
∣∣ |G|. Suppose that G has an imprimitive system B with p-blocks and the kernel K. Let

P be a Sylow p-subgroup of G and N = P ∩K. Then

(1) Exp (P ) ≤ p2, |Z(P )| = p and P = N〈t〉, where tp ∈ Z(P );

(2) K is solvable, N char K and so N � G, provided either p = 3; or p ≥ 5 and
|N | ≤ pp−1.

3 Proof of the main theorem
To prove Theorem 1.4, we assume that p is an odd prime and that X is a semisymmetric
graph of order 2p3 expanded from the graph Y , where Aut(Y ) acts edge transitively on Y
and has blocks of length p2 on W (Y ) and of length p on U(Y ), and the block graph Y is a
cycle C2p of length 2p.

Let F = Aut(Y ) and let

B = {B0, B1, · · · , Bp−1} and B′ = {B′0, B′1, · · · , B′p−1}

be blocks system of F on U(Y ) and W (Y ), respectively. Label
E(Y ) = {(B0, B

′
p+1
2

), (B′p+1
2

, B1), · · · , (B p−1
2

, B′0), (B
′
0, B p+1

2
), · · · , (Bp−1, B

′
p−1
2

), (B′p−1
2

, B0)},

so that Y ∼= C2p. Set

σ = (0, 1, · · · , p− 1) and τ = (0)(1,−1) · · · (p− 1

2
,
p+ 1

2
) ∈ Sp.

Then Aut(Y ) ∼= 〈σ, τ〉 ∼= D2p, by defining (Bi)
γ = Biγ and (B′j)

γ = B′jγ for any
γ ∈ 〈σ, τ〉.

Label the vertices in Bi by aji for j ∈ Zp. By considering the imprimitive action of F
on U(Y ), we know that

F ≤ Sp o 〈σ, τ〉 = Spp o 〈σ, τ〉,
where, for any

e = (e(0), e(1), · · · , e(p−1)) ∈ Spp and γ ∈ 〈σ, τ〉,

we have
aji

(e;γ) = a
je

(i)
iγ
.

In particular, by identifying (1, γ) with γ so that aγji = ajiγ , we have that 〈σ, τ〉 can be
viewed as a subgroup of F .

From now on, for any t ∈ T ≤ Sp and i ∈ Zp, we set

ti = (

i+1︷ ︸︸ ︷
1, 1, · · · , t, 1, · · · , 1) and Ti = 〈ti

∣∣ t ∈ T 〉,
where Ti acts transitively on Bi and fixes Bj pointwise for all j 6= i. Moreover, we have

t
(e;γ)
i = te

(i)

iγ , Tσ
i

0 = T0σi = Ti, B
σi

0 = Bi.

SinceKBi is a transitive group of degree p, following Propositions 2.4 and 2.5 we need
to consider the following four cases separately in four subsections:
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(i) p ≥ 5 and KBi is insolvable;

(ii) p ≥ 5 and KBi ∼= Zp o Zr for r 6= 1;

(iii) p ≥ 5 and KBi ∼= Zp.

(iv) p = 3.

3.1 KBi is insolvable for p ≥ 5

Lemma 3.1. Suppose that p ≥ 5 and KBi is insolvable. Then Y is isomorphic to one of
the following graphs:

(i) Y1(p, r), and Aut(Y ) = Sp oD2p, where r = 1 or p− 1;

(ii) Y3(11, 5) and Y4(11, 6), and Aut(Y ) = PSL(2, 11) oD22;

(iii) Y5(p, q
n−1−1
q−1 ) and Y6(p, qn−1), and Aut(Y ) = PΓL(n, q) oD2p.

Proof. Suppose that p ≥ 5 and KBi is insolvable. Then by Lemma 2.6 we know that
K = T0 × T1 × · · · × Tp−1, where T is an insolvable group of degree p and Ti is defined
as before. In particular, a Sylow p-subgroup of F is of order pp+1, and so we may assume
that F contains σ defined as above.

Let u ∈ B0 and take an element g0 ∈ Fu \K. Since g0 fixes B0 setwise and exchanges
B′p−1

2

andB′p+1
2

, there exists a d = (d(0), d(1), · · · , d(p−1)) ∈ Spp such that g0 = dτ , where

τ is defined as before. Since F/K ∼= D2p, by considering the order of F we get F = KR
where R = 〈σ, dτ〉.

Let H0 = (T0)u. Then

Ku = H0 × T1 × · · · × Tp−1 and Fu = Ku o 〈dτ〉.

By Kdτ
u = Ku, we know that d(0) ∈ N(Sp)0(H0) and d(i) ∈ N(Sp)i(Ti) for i 6= 0.

Now dτ fixes the block B′0 setwise and exchanges B p−1
2

and B p+1
2

. Take w ∈ B′0.
Since T p−1

2
×T p+1

2
fixes u and acts transitively onB′0, there exists a k ∈ T p−1

2
×T p+1

2
≤ Ku

such that kdτ fixes both u andw, where without loss of generality, we denote kd by d again
so that dτ fixes both u and w. Then

Kw = T0 × · · · × T p−3
2
× L p−1

2
×N p+1

2
× T p+3

2
× · · · × Tp−1 and Fw = Kw〈dτ〉.

By Kdτ
w = Kw, we know that L = N and d(i) ∈ N(Sp)i(Li) for i ∈ {p−12 , p+1

2 }.
Now the corresponding groups H and L are two maximal subgroups of T of index p.

Following Proposition 2.5 we need to consider three cases separately.

(1) H and L are conjugate in T .

Without loss of generality, let H = L. For any almost simple group T in Sp, its point
stabilizers have two orbits in each block Bi with the respective length 1 and p−1. We may
therefore let T = Sp so that H = Sp−1 and F = SppR = Spp〈σ, dτ〉 = Spp〈σ, τ〉. Thus, we
may set d = 1. For later use, we set t = (0, 1, · · · , p− 1), Σ1 = {0} and Σ2 = Z∗p .

(2) soc(T ) = PSL(2, 11), and H and L are not conjugate in T .
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In this case T = PSL(2, 11), and T has two nonequivalent representations on the set of
right cosets of A5 of cardinality 11. Now F = T p〈σ, dτ〉. Since d(i) ∈ NS11

(Ti) = Ti, we
have d ∈ T p and so F = T p〈σ, τ〉. Therefore, we set d = 1.

Moreover, T may be considered as the automorphism group of a (11, 5, 2)-design D.
Let V = Z11 be the point set and let t = (0, 1, · · · , 10) be an element of order 11 in T .
Then M = {0, 2, 3, 4, 8} ⊂ V is a block (see [1, p.55]) of D. Without loss of generality,
we choose L and H to be the stabilizes of the block M and point 0, respectively. Again,
for later use, set Σ3 = M and Σ4 = Z11 \M.

(3) soc(T ) = PSL(n, q), and H and L are not conjugate in T .

In this case, PSL(n, q) ≤ T ≤ NSp(PSL(n, q))=PΓL(n, q). With the same reason as
(1), we let T = NSp(PSL(n, q)) and d = 1. Let S1 and S2 be the set of points and
hyperplanes of PG(n, q− 1), respectively, where |S1| = |S2| = qn−1

q−1 = p. Without loss of
generality, we choose L and H to be the stabilizers of a given point 〈v〉 and a hyperplane
L, respectively. Let G = 〈t〉 ∼= Zp be a singer subgroup of PGL(n, q). Let

Σ5 = {l ∈ Zp
∣∣ 〈v〉 ∈ Ltl}, Σ6 = Zp \ Σ1 = {l ∈ Zp

∣∣ 〈v〉 6∈ Ltl},
where |Σ5| = qn−1−1

q−1 and |Σ6| = qn−1.

Now for the above three cases (1)-(3), we have

Cos(F, Fw) = {Fwtip−1
2

tjp+1
2

σk
∣∣ i, j, k ∈ Zp}, Cos(F, Fu) = {Futy0σz

∣∣ y, z ∈ Zp}.
Clearly, Fw has two orbits on B p−1

2
∪B p+1

2
, that is,

Dl = {Futb0σ
p−1
2 , Fut

b
0σ

p+1
2

∣∣ b ∈ Σl},

where l = 1, 3, 4, 5, 6. For any point Fwtip−1
2

tjp+1
2

σk in W (Y ), since

Fut
b
0σ

p−1
2 tip−1

2

tjp+1
2

σk = Fut
b
0(tσ

p+1
2

p−1
2

)i(tσ
p+1
2

p+1
2

)jσ
p−1
2 +k = Fut

b
0t
i
0t
j
1σ

p−1
2 +k

= Fut
i+b
0 σk+

p−1
2 ,

and similarly,
Fut

b
0σ

p+1
2 tip−1

2

tjp+1
2

σk = Fut
j+b
0 σk+

p+1
2 ,

its neighbor is

Dlt
i
p−1
2

tjp+1
2

σk = {Futi+b0 σk+
p−1
2 , Fut

j+b
0 σk+

p+1
2

∣∣ b ∈ Σl}.

By labeling Fwtip−1
2

tjp+1
2

σk by (i, j, k, 0) and Fut
y
0σ

z by (y, z, 1), we get the respective

edge set of two graphs Y (l)

El = {((i, j, k, 0), (y, z, 1))
∣∣ y = i+ b, z = k + p−1

2 ; and

y = j + b, z = k + p+1
2 , i, j, k, y, z ∈ Zp, b ∈ Σl}.
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In cases (2) and (3), we get the graphs Y3(11, 5), Y4(11, 6) with the automorphism
group PSL(2, 11) o D2p, and Y5(p, r), Y6(p, r) with the automorphism group PΓL(n, q) o
D2p.

For case (1), the graph with the edge set E2 is exactly Y1(p, p − 1) for p ≥ 5. As
for the graph with the edge set E1, let φ be a map on W (Y ) ∪ U(Y ) which fixes W (Y )
pointwise and sends (y, z, 1) to (y+1, z, 1). Then φ is an isomorphism between the present
graph and Y1(p, 1). From the proof we know that both Y1(p, 1) and Y1(p, p − 1) have the
automorphism group Sp oD2p.

3.2 KBi ∼= Zp o Zr for p ≥ 5 and r 6= 1

Lemma 3.2. SupposeKBi ∼= ZpoZr for p ≥ 5 and r 6= 1. Then Y ∼= Y1(p, r) or Y2(p, r)
where p ≥ 5, r 6= 1, p− 1 and (p, r) 6= (7, 3), (11, 5), where Aut(Y ) = (Zp o Zr) oD2p.

Proof. Step 1: Determination of the structure of F .

Proof. Suppose KBi ∼= Zp o Zr for r 6= 1. Let S = 〈t〉o 〈c〉 ∼= Zp o Zp−1 ≤ Sp. Then
we may set T = 〈t〉 o 〈h〉, where h = c

p−1
r . Let P be a Sylow p-subgroup of F and take

d0σ ∈ P where
d0 ∈ 〈t0〉 × 〈t1〉 × · · · × 〈tp−1〉 ∼= Zpp .

Then K ≤ T p and F = K〈d0σ, dτ〉 for some d ∈ Spp . Moreover,

F ≤ F̂ = T p〈d0σ, dτ〉 = T p〈σ, dτ〉 and 〈σ, dτ〉/(T p ∩ 〈σ, dτ〉) ∼= D2p.

Let w ∈ B′0 and (B′0, B p−1
2

), (B′0, B p+1
2

) ∈ E(Y ). Let (w, u1) ∈ E(Y ) for u1 ∈
B p−1

2
. Then E = (w, u1)F ≤ (w, u1)F̂ . Since the orbits of Fw and F̂w on the block

B p−1
2

in U(Y ) are completely the same, we have |(w, u1)F̂ | = 2rp3 = |E|, which implies

E = (w, u1)F̂ . Therefore, we may just consider the case F = F̂ = T p〈σ, dτ〉.
As in the last Lemma, we choose two vertices u ∈ B0 and w ∈ B′0 which are fixed by

dτ. Without loss of generality, let H = 〈h〉 so that

Fu = (H0×T1×· · ·×Tp−1)〈dτ〉, Fw = (T0×T1×· · ·×H p−1
2
×H p+1

2
×· · ·×Tp−1)〈dτ〉.

We then need to determine the element d.
Let d = (d(0), d(1), · · · , d(p−1)) ∈ Spp . Since dτ normalizes K, Ku and Kw, it follows

that d(i) ∈ NSp(Hi) = 〈c〉 for i ∈ {0, p±12 }, and d(i) ∈ NSp(Ti) = S = 〈t〉〈c〉 for
i 6∈ {0, p±12 }. Suppose that i ∈ {0, p±12 } and write d(i) = tmcn. Since Ti ≤ Fu and Fw
we may re-choose d(i) = cn. Therefore, for any i ∈ Zp, we get

d(i) ∈ 〈c〉. (1)

Since (dτ)2 ∈ K, we have

dτdτ = ((d(0))2, d(1)d(p−1), · · · , d(p−1)d(1)) ∈ K,

and by taking into account (1) we get

(d(0))2, d(1)d(p−1), · · · , d(
p−1
2 )d(

p+1
2 ) ∈ H. (2)
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SinceKw fixes only one point uσ
p−1
2 inB p−1

2
and uσ

p+1
2 inB p+1

2
and since dτ normalizes

Kw and exchanges B p−1
2

and B p+1
2

, it follows that dτ must exchange these two points.
Therefore,

Fuσ
p−1
2 (dτ) = Fu(d(

p−1
2 ), d(

p+1
2 ), · · · , d(p−1), d(0), d(1), · · · , d(

p−3
2 ))τσ

p+1
2

= Fud(d(
p−1
2 ), d(

p−3
2 ), · · · , d(1), d(0), d(p−1), · · · , d(

p+1
2 ))σ

p+1
2

= Fu(d(0)d(
p−1
2 ), d(1)d(

p−3
2 ), · · · , d(

p−1
2 )d(0), d(

p+1
2 )d(p−1),

· · · , d(p−1)d(
p+1
2 ))σ

p+1
2

= Fuσ
p+1
2 .

Hence,

d(0)d(
p−1
2 ), d(1)d(

p−3
2 ), · · · , d(

p−1
2 )d(0), d(

p+1
2 )d(p−1), · · · , d(p−1)d(

p+1
2 ) ∈ H. (3)

From (2) and (3) we get

d(0), d(1) · · · , d(p−1) ∈ H, or d(0), d(1) · · · , d(p−1) ∈ 〈c
p−1
2r 〉 \H if 2r

∣∣ (p− 1). (4)

Therefore, if 2r - (p− 1) then we set d = 1; if 2r
∣∣ (p− 1), we set d = (c′m, c′m, · · · c′m)

where c′ = c
p−1
2r and m = 0, 1. To unify these two cases, in the first case we still write

d = (c′m, c′m, · · · c′m) for m = 0.

Suppose that 2r
∣∣ (p − 1). Let F1 = K o 〈σ, τ〉 and F2 = K o 〈σ, dτ〉, where

d = (c′, · · · , c′) with c′ = c
p−1
2r , noting that c′ 6∈ T . we may then state the following fact

Fact: F1 6∼= F2

Proof: Assume the contrary. Suppose that γ is an isomorphism from F1 to F2. Since
〈(t, t, · · · , t)〉 is characteristic in F1 and F2, we get

γ((t, t · · · t)) = (tk, tk, tk · · · , tk)

for some k ∈ F ∗p . Assume that γ(τ) = edτ , where e = (e(0), e(1) · · · , e(p−1)) ∈ K. Since

τ−1(t, t, · · · , t)τ = (t, t, · · · , t).

we have
γ(τ−1)γ((t, t, · · · , t))γ(τ) = γ(t, t, · · · , t),

that is
(edτ)−1(tk, tk, · · · , tk)(edτ) = (tk, tk, · · · , tk),

which implies
(tk)e

(0)c′ = tk.

Therefore, e(0)c′ ∈ 〈t〉 and so c′ ∈ T , a contradiction.

Step 2: Determination of the bicoset graphs.

Set D(l) = Fut
lσ

p−1
2 Fw and by Z = Z(p, r, d, l) we denote the corresponding bicoset

graph. We consider two cases separately.
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(1) l = 0.

Since Fuσ
p−1
2 Kw = Fuσ

p−1
2 and Fuσ

p−1
2 Kw〈dτ〉 = Fuσ

p+1
2 , we have

D(0) = Fuσ
p−1
2 Fw = {Fuσ

p−1
2 , Fuσ

p+1
2 }.

For any point Fwtip−1
2

tjp+1
2

σk in W (Z), since

Fuσ
p−1
2 tip−1

2

tjp+1
2

σk = Fu(tσ
p+1
2

p−1
2

)i(tσ
p+1
2

p+1
2

)jσk+
p−1
2 = Fut

i
0t
j
1σ
k+ p−1

2 = Fut
i
0σ
k+ p−1

2 ,

and similarly
Fuσ

p+1
2 tip−1

2

tjp+1
2

σk = Fut
j
0σ
k+ p+1

2 ,

its neighbor is N = {Futi0σk+
p−1
2 , Fut

j
0σ
k+ p+1

2 }. In this case, d(w) = 2. Let

ρ : Fwt
i
p−1
2

tjp+1
2

σk → Fwt
i+1
p−1
2

tj+1
p+1
2

σk, Fut
y
0σ

z → Fut
y
0σ

z

be the mapping of V (Z(p, r, d, 0)) to V (Y1(p, 1)). Then one may check that ρ is an iso-
morphism from Z(p, r, d, 0) to Y1(p, 1). Therefore, Aut(Z(p, r, d, 0)) ∼= Sp oD2p, contrary
to our hypothesis KBi ∼= Zp o Zr.

(2) l 6= 0.

In Sp o D2p, there exists some cl
′

such that the inner automorphism I(cl
′
) fixes Fu

and Fw and maps D(1) to D(l). Therefore, up to graph isomorphism, we only consider
Z(p, r, d, 1).

Since

Fut0σ
p−1
2 Kw = Fut0σ

p−1
2 (T0× T1× · · · ×H p−1

2
×H p+1

2
× · · ·Tp−1) = Fu(tH)0σ

p−1
2 ,

Fut0σ
p−1
2 Kwdτ = Fu(tH)0σ

p−1
2 dτ = Fu(tH)0(c′m, c′m, · · · , c′m)τσ

p+1
2

= Fu(tHc
′m

)0σ
p+1
2 ,

it follows that

D(1) = {Fu(th
′
)0σ

p−1
2 , Fu(th

′c′m)0σ
p+1
2

∣∣ h′ ∈ H}.
For any i, j, k ∈ Zp, since

Fu(th
′
)0σ

p−1
2 tip−1

2

tjp+1
2

σk = Fu(th
′
)0t

i
0σ
k+ p−1

2 = Fu(th
′+i)0σ

k+ p−1
2

and

Fu(th
′c′m)0σ

p+1
2 tip−1

2

tjp+1
2

σk = Fu(th
′c′m)0t

j
0σ
k+ p+1

2 = Fu(th
′c′m+j)0σ

k+ p+1
2 ,

the neighbor of Fwtip−1
2

tjp+1
2

σk is

{Fu(th
′+i)0σ

k+ p−1
2 , Fu(th

′c′m+j)0σ
k+ p+1

2

∣∣ h′ ∈ H}.
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Suppose d(w) = 2(p − 1). Then KBi ∼= Zp o Zp−1 and F = K〈σ, τ〉. In this case,
for any Fwtip−1

2

tjp+1
2

σk in W (Y ), its neighbor is

N = {Fu(th
′+i)0σ

k+ p−1
2 , Fu(th

′+j)0σ
k+ p+1

2

∣∣ h′ ∈ H}
where H ∼= Zp−1. Clearly, the corresponding graph is isomorphic to Y1(p, p − 1), with
KBi ∼= Sp, a contradiction. Therefore, 2 < d(w) < 2(p− 1).

Let th
′

= tb and b ∈ Σ where Σ is a subgroup of Z∗p of order r. Define a mapping φ
from V (Z) to V (Y2(p, r)), for r 6= 1, p− 1, by

Fwt
i
p−1t

j
1σ
k → Fwt

i
p−1t

j
1σ
k, and Fut

y
0σ

z → Fut
y
0σ

z.

Then φ is clearly an isomorphism between the two graphs.

Step 3: Determination of isomorphic classes and automorphism groups.

Let Ã = Aut(Z) and KZ be the kernel of Ã on Z, where Z is a cycle of length 2p.
Clearly, Ã/K ∼= D2p.

If (p, r) = (7, 3) and (11, 5), then Z is Y2(7, 3) with KBi ∼= PΓL(3, 2) and Y1(11, 5)
with PSL(2, 11), respectively, contradicting our condition.

Suppose that (p, r) 6= (7, 3), (11, 5). Since r
∣∣ (p − 1) and r 6= 1, p − 1, KBi can

not be insolvable and hence an affine group. Therefore, K ≤ KZ = (Zp o Zr)
p and then

KZ = K. Therefore, Ã = F .
In the case of 2r

∣∣ (p− 1), let F1 = K o 〈σ, τ〉 and F2 = K o 〈σ, dτ〉 be defined as in
Step 1. Let Z1 and Z2 be the corresponding graphs. Suppose that ρ is an isomorphism from
Z1 to Z2. Then F2 ≤ 〈ρ−1F1ρ, F2〉 ≤ Aut(Z2) = F2. Therefore, F2 = ρ−1F1ρ ∼= F1, a
contradiction. Therefore, the two graphs are not isomorphic.

3.3 KBi ∼= Zp for p ≥ 5

Lemma 3.3. The case KB ∼= Zp cannot occur.

Proof. Suppose that KB ∼= Zp. Then |E(Y )| = 2p3. As above, let w ∈ B′0 and
(B′0, B p−1

2
), (B′0, B p+1

2
) ∈ E(Y ). Let (w, u1) ∈ E(Y ) for u1 ∈ B p−1

2
. Then E =

(w, u1)F . We may consider the group F̂ = Sppo〈σ, τ〉 ≥ F. From the proof of Lemma 3.1,
we may construct two representations of F̂ with respective degree p3 and p2 such that both
Kw and (Spp)w fix u1. Then (w, u1)F ⊂ (w, u1)F̂ . Since |(w, u1)F | = 2p3 = |(w, u1)F̂ |,
we have (w, u1)F̂ = (w, u1)F = E(Y ) and so Aut(Y ) ∼= F̂ , contrary to our hypothesis
KBi ∼= Zp. Therefore, this case cannot occur.

3.4 p = 3

Lemma 3.4. If p = 3, then Y ∼= Y1(3, r) for r = 1, 2.

Proof. In this case, take F = S3 o D6 and H = L = Z2. Checking the proof of
Lemma 3.1(1), one may find that the arguments in there still hold for p = 3. Therefore,
Y ∼= Y1(3, r) for r = 1, 2.
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