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Abstract

For a graph G, κ(G) denotes its connectivity. A graph G is super connected, or simply
super-κ, if every minimum separating set is the neighborhood of a vertex ofG, that is, every
minimum separating set isolates a vertex. The direct productG1×G2 of two graphsG1 and
G2 is a graph with vertex set V (G1×G2) = V (G1)×V (G2) and edge set E(G1×G2) =
{(u1, v1)(u2, v2) | u1u2 ∈ E(G1), v1v2 ∈ E(G2)}. Let Γ = G × Kn, where G is a
non-trivial graph and Kn(n ≥ 3) is a complete graph on n vertices. In this paper, we show
that Γ is not super-κ if and only if either κ(Γ) = nκ(G), or Γ ∼= K`,` ×K3(` > 0).

Keywords: Super connectivity, direct product, vertex-cut.
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1 Introduction
Throughout this paper only undirected simple connected graphs without loops and mul-
tiple edges are considered. Unless stated otherwise, we follow Bondy and Murty [4] for
terminology and definitions.

Let G = (V (G), E(G)) be a graph. For two vertices u, v ∈ V (G), u ∼ v means
that u is adjacent to v and uv is the edge incident to u and v in G. The set of ver-
tices adjacent to the vertex v is called the neighborhood of v and denoted by NG(v), i.e.,
NG(v) = {u | uv ∈ E(G)}. The degree of v is equal to |NG(v)|, denoted by dG(v).
The number δ(G) = min{dG(v) | v ∈ V (G)} is the minimum degree of G. For a subset
S ⊆ V (G), the subgraph induced by S is denoted by G[S]. As usual, Km,m, (m is a
positive integer) denotes the complete bipartite graph; Km,m−mK2 denotes the graph ob-
tained by removing a 1-factor from Km,m; Kn denotes the complete graph on n vertices;
and Zn denotes the ring of integers modulo n.
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A separating set of a graphG is a set of vertices whose deletion either disconnectsG or
reduces G to the trivial graph K1. The connectivity of the graph G is the minimum number
of vertices in a separating set of G, and will be denoted by κ(G). In particular, κ(Kn) =
n − 1, and κ(G) = 0 if and only if G is disconnected or a K1. Clearly, κ(G) ≤ δ(G). A
graph G with minimum degree δ(G) is maximally connected if δ(G) = κ(G).

An interconnection network is often modeled as a graph G, where V (G) is the set of
processors and E(G) is the set of communication links in the network. The connectivity
κ(G) of G is an important measurement for fault-tolerance of the network, and the larger
κ(G) is, the more reliable the network is. As more refined indices of reliability than con-
nectivity, super connectivity was proposed in [2, 3]. A graphG is super connected, super-κ,
for short if every minimum separating set isolates a vertex of G.

The direct productG1×G2 of two graphsG1 andG2 is defined as the graph with vertex
set V (G1) × V (G2) and edge set {(u1, v1)(u2, v2) | u1u2 ∈ E(G1), v1v2 ∈ E(G2)}.
The direct product is also called the Kronecker product, tensor product, cross product,
categorical product, or conjunction. As an operation on binary relations, the direct product
was introduced by Whitehead and Russell in their Principia Mathematica [21]. It is also
equivalent to the direct product of the adjacency matrices of the graphs (see [20]). As one
of the four standard graph products [11], the direct product has been studied from several
points of view (see, for example, [1, 6, 8, 12, 13, 15]).

The connectivity of the direct product of graphs has also been investigated in several
recent publications. For example, Brešar and Špacapan [7] obtained an upper bound and
a lower bound on the edge-connectivity of the direct products with some exceptions, and
they also obtained several upper bounds on the vertex-connectivity of the direct products
of graphs. Mamut and Vumar [14] proved that κ(Km × Kn) = (m − 1)(n − 1) where
m ≥ n ≥ 2. In [9], it was shown that if n ≥ 3 andG is a bipartite graph, then κ(G×Kn) =
min{nκ(G), (n − 1)δ(G)}, and furthermore, the authors also conjectured that this is true
for all nontrivial graph G. Later, this conjecture was confirmed independently by Wang
and Wu [17] and Wang and Xue [18].

More recently, several papers dealing with the super-connectivity of direct product of
graphs were published. Guo et al. [10] showed that for a bipartite graph G with κ(G) =
δ(G), G ×Kn(n ≥ 3) is super-κ. In [19], the authors generalized this result by showing
that for a nonbipartite graph G with κ(G) = δ(G), G × Kn(n ≥ 3) is super-κ. In [19],
the authors also pointed out that Guo et al.’s result is not true when G = K`,`(` ≥ 1) and
n = 3, and they also claimed that except for this case, Guo et al.’s statement is true.

The aim of this article is to determine all graphs G such that G × Kn(n ≥ 3) is not
super-κ. The following is the main result.

Theorem 1.1. Let Γ = G×Kn, where n ≥ 3 and G is a non-trivial graph. Then Γ is not
super-κ if and only if one of the following happens.

(1) G has a minimum separating set T so that T × V (Kn) is a minimum separating set
of Γ. In particular, κ(Γ) = nκ(G).

(2) Γ ∼= K`,` ×K3(` > 0).

From Theorem 1.1 we can immediately obtain the following corollaries.

Corollary 1.2. [17, 18] Let Γ = G×Kn, where n ≥ 3 and G is a non-trivial graph. Then
κ(Γ) = min{nκ(G), (n− 1)δ(G)}.
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Corollary 1.3. [10, 19] For a maximally connected graph G, G × Kn(n ≥ 3) is not
super-κ if and only if n = 3 and G ∼= K`,`(` > 0).

2 Proof of Theorem 1.1
We start by introducing some notations.

Notations.

• Γ := G×Kn, where n ≥ 3 and G is a non-trivial graph.

• V (G) := {ui | i ∈ Zm}.
• V (Kn) := Zn.

• Vi := {ui} × V (Kn), i ∈ Zm.

• S: a minimum separating set of Γ.

• Γ− S :=
⋃s−1

i=0 Γi, where each Γi is a connected component of Γ− S.

• Wi := V (Γi).

In the following Lemmas 2.1-2.5, we assume that Γ is not super connected, and S is a
minimum separating set of Γ with each component Γi of Γ−S having at least two vertices.

By the definition, we can obtain the following easy facts.

Lemma 2.1. (1) δ(Γ) = (n− 1)δ(G).

(2) For any i ∈ Zm, Vi is an independent subset of V (Γ).

(3) If ui0 is adjacent to vi1 in G, then (ui0 , j) ∼ (ui1 , k)(in Γ) if and only if j 6= k. In
particular, Γ[Vi0 ∪ Vi1 ] ∼= Kn,n − nK2.

(4) Let T be a separating set of G. Then T × V (Kn) is also a separating set of Γ. In
particular, |S| = κ(Γ) ≤ min{nκ(G), (n− 1)δ(G)}.

(5) s ≥ 2 and |Wi| ≥ 2 for each i ∈ Zs.

Lemma 2.2. For each (ui, j) ∈ S, (ui, j) has at least one neighbor in Wi for each i ∈ Zs.

Proof. Suppose to the contrary that (ui, j) has no neighbors in Wi for some i ∈ Zs. Set
S′ = S − {(ui, j)}. Then Wi must be a component of Γ− S′. This implies that S′ is also
a separating set of Γ, contrary to the minimality of S.

Lemma 2.3. For two components Wk,W`, if there exist (ui, i
′) ∈ Wk and (uj , j

′) ∈ W`

such that ui ∼ uj(in G), then i′ = j′ and Wk ∩ Vi = {(ui, i′)} and W` ∩ Vj = {(uj , j′)}.

Proof. Since ui ∼ uj(inG), it follows from Lemma 2.1 (3) that Γ[Vi∪Vj ] ∼= Kn,n−nK2.
As Γ − S is disconnected, there are no edges between Wk and W`. Consequently, i′ = j′

and Wk ∩ Vi = {(ui, i′)} and W` ∩ Vj = {(uj , j′)}.

Lemma 2.4. Assume that for each Vi there exists at most one Wj such that Vi ∩Wj 6= ∅.
Then S = T × V (Kn), where T is a minimum separating set of G. In particular, κ(Γ) =
nκ(G).



238 Ars Math. Contemp. 8 (2015) 235–244

Proof. We shall first show the following two claims.

Claim 1 If there exists an i ∈ Zm such that Vi ∩S 6= ∅ and Vi 6⊆ S, then |Vi ∩S| = n− 1.
Furthermore, for each Wj , there is a V` such that |Wj ∩ V`| = 1.

By the assumption, there is a unique j ∈ Zs such that Vi∩Wj 6= ∅. By Lemma 2.2, for
each vertex, say (ui, i

′), in Vi ∩ S, there is at least one neighbor, say (u`, `
′), in each Wt

with t 6= j. By Lemma 2.3, |Vi ∩Wj | = |V` ∩Wt| = 1. From our assumption we know
that |Vi ∩ S| = |V` ∩ S| = n− 1.

Claim 2 For each i ∈ Zm, either Vi ∩ S = ∅ or Vi ⊆ S.

Suppose on the contrary that there exists an i ∈ Zm such that Vi ∩ S 6= ∅ and Vi 6⊆ S.
For each j ∈ Zs, let Ωj = {` ∈ Zm | |V` ∩Wj | = 1}, and set nj = |Ωj |. By Claim 1,
nj > 0. Without loss of generality, assume that n0 ≤ n1 ≤ . . . ≤ ns−1.

Assume that W0 ⊆
⋃

`∈Ω0
V`. Then for each (ui, `) ∈ W0, we have |Vi ∩W0| = 1.

Combining this with Lemma 2.3, we have for a fixed (ui, `) ∈ W0, if uk ∼ ui(in G), then
|Vk ∩ S| ≥ n− 1. As n ≥ 3, one has

|S| ≥ |Vi ∩ S|+
∑

uj∈NG(ui)

|Vj ∩ S| ≥ n− 1 + δ(G)(n− 1) > κ(Γ).

A contradiction occurs.
Now assume that W0 6⊆

⋃
`∈Ω0

. Let U =
⋃

Vi⊆S Vi, Z0 =
⋃

`∈Ω0
V`, and Z1 =⋃

`∈Ω1
V`. Set T = U ∪ Z0. Clearly, |Z0 ∩W0| = n0. Since n1 ≥ n0 and n ≥ 3, one has

|Z0 ∩W0| = n0 < n1(n− 1) = |Z1 ∩ S|. Then

|T | = |U |+ |Z0| = |U |+ |Z0 ∩ S|+ |Z0 ∩W0|
< |U |+ |Z0 ∩ S|+ |Z1 ∩ S|
≤ |S|.

Since S is a minimum separating set, Γ − T is connected. So there is an edge between
W0 \ T and V (Γ) \ (T ∪ W0). We may assume that (vi, j) ∈ W0 \ T is adjacent to
(vs, k) ∈ V (Γ) \ (T ∪ W0). Obviously, (vs, k) ∈ S \ T . Since U =

⋃
Vi⊆S Vi and

T = U∪Z0, one has Vs 6⊆ S . If Vs∩W0 6= ∅, then by Claim 1, we must have |Vs∩W0| = 1
and so Vs ⊆ Z0 ⊆ T . This contradicts the fact that (vs, k) ∈ S \ T . Consequently,
Vs ∩ W0 = ∅. It follows that Vs ∩ Wt 6= ∅ for some t > 0. Since (vi, j) ∼ (vs, k),
by Lemma 2.3, |Vi ∩ W0| = 1 and so Vi ⊆ Z0 ⊆ T . This contradicts the fact that
(vi, j) ∈W0 \ T .

Now we are ready to finish the proof. From Claim 2 it follows that S = T × V (Kn)
for some subset T of V (G). Since n ≥ 3, T is a separating set of G (see [20]). So,
|S| ≥ κ(G)n. However, by Lemma 2.1 (4), |S| ≤ nκ(G). Hence, |S| = nκ(G).

Lemma 2.5. Assume that there exist a Vi and two differentWj0 ,Wj1 such that Vi∩Wk 6= ∅
with k = j0, j1. Then n = 3 and G ∼= K`,`(` > 0).

Proof. Recall that Wk = V (Γk) with k = j0 or j1. We shall finish the proof by the
following claims.

Claim 1 V (Γ) = Wj0 ∪Wj1 ∪ S, |Vi ∩Wj0 | = |Vi ∩Wj1 | = 1 and |Vi ∩ S| = n− 2.
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By Lemma 2.1 (2), Vi is an independent subset, and by Lemma 2.1 (5), |Wk| ≥ 2
with k = j0 or j1. It follows that Vi ∩ Wk ⊂ Wk. Since Γj0 is connected, there exist
(ui, t0) ∈ Vi ∩ Wj0 and (ui0 , t

′
0) ∈ Wj0 \ (Vi ∩ Wj0) such that (ui, t0) ∼ (ui0 , t

′
0).

Similarly, there exist (ui, t1) ∈ Vi ∩ Wj1 and (ui1 , t
′
1) ∈ Wj1 \ (Vi ∩ Wj1) such that

(ui, t1) ∼ (ui1 , t
′
1). From Lemma 2.3 we obtain that t′0 = t1, Vi ∩Wj0 = {(ui, t0)} and

Vi0 ∩Wj0 = {(ui0 , t1)}, and t′1 = t0, Vi ∩Wj1 = {(ui, t1)} and Vi1 ∩Wj1 = {(ui1 , t0)}
(see Figure 1). In particular, we have |Vi ∩Wj0 | = |Vi ∩Wj1 | = 1.

Wj0 S Wj1

Vi

s

s

(ui0 , t1)

(ui, t0)

s

s

(ui1 , t0)

(ui, t1)

Figure 1: Explanation of the proof of Claim 1

It follows that |Vi ∩ S| ≤ n− 2. If |Vi ∩ S| < n− 2, then we would have Vi ∩Wj 6= ∅
for some j 6= j0, j1. Take (ui, t) ∈ Vi ∩ Wj . Clearly, t 6= t0, t1. This forces that
(ui, t) ∼ (ui0 , t1), contrary to the fact that Γj0 and Γj are two distinct components. Thus,
|Vi ∩ S| = n− 2.

At last, we shall show that s = 2. Suppose to the contrary that s > 2. Since |Vi ∩ S| =
n−2 > 0, we can take (ui, j) ∈ Vi∩S. By Lemma 2.2, (ui, j) has a neighbor, say (uk, j

′)
in each Wj with j 6= j0, j1. Since t0 6= t1, either (uk, j

′) ∼ (ui, t0) or (uk, j
′) ∼ (ui, t1).

This is again contrary to the fact that Γj0 ,Γj1 and Γj are three distinct components. Thus,
s = 2 and hence V (Γ) = Wj0 ∪Wj1 ∪ S.

By Claim 1, we may assume that Vi ∩Wj0 = {(ui, t0)} and Vi ∩Wj1 = {(ui, t1)}.

Claim 2 For each (uj , `) ∈ NΓ((ui, t0)) ∩Wj0 , |Vj ∩ S| = n − 1 or n − 2. There is at
least one (ui0 , `0) ∈ NΓ((ui, t0)) ∩Wj0 such that |Vi0 ∩ S| = n− 2.

Take (uj , `) ∈ NΓ((ui, t0)) ∩Wj0 . From Claim 1 we see that Vi ∩Wj1 = {(ui, t1)}.
By Lemma 2.3, we have |Vj ∩Wj0 | = 1, implying |Vj ∩ S| ≤ n− 1. If |Vj ∩ S| < n− 1
then we must have Vj ∩Wj1 6= ∅. By Claim 1, we have |Vj ∩ S| = n − 2. Therefore,
|Vj ∩ S| = n− 1 or n− 2.

Suppose that for each (uj , `) ∈ NΓ((ui, t0))∩Wj0 , we have |Vj ∩S| = n− 1. Noting
that n ≥ 3, one has

|S| ≥ |Vi ∩ S|+
∑

uj∈NG(ui)

|Uj ∩ S| ≥ n− 2 + δ(G)(n− 1) > κ(Γ),

a contradiction. Thus, there is at least one (ui0 , `0) ∈ NΓ((ui, t0)) ∩Wj0 such that |Vi0 ∩
S| = n− 2.

Now we know that Claim 2 holds. Since (ui0 , `0) ∈ NΓ((ui, t0)) ∩Wj0 , it follows
from Lemma 2.3 that Vi0 ∩Wj0 = {(ui0 , t1)} and Vi0 ∩Wj1 = {(ui0 , t0)} (see Figure 2).
By the arbitrariness of Vi, Claims 1,2 also hold if we replace Vi by Vi0 .
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Figure 2: Explanation of Claims 1,2

For the convenience of statement, we shall use the following notations in the remainder
of the proof.

Notations

(1) Ni = NΓ((ui, t0)) ∩Wj0 ,
(2) Ni0 = NΓ((ui0 , t1)) ∩Wj0 ,
(3) Ωi = {k ∈ Zm | Vk ∩Ni 6= ∅},
(4) Ωi0 = {k ∈ Zm | Vk ∩Ni0 6= ∅},
(5) ∆i = {k ∈ Zm | k /∈ Ωi, Vk ∩NΓ((ui, t0)) 6= ∅},
(6) ∆i0 = {k ∈ Zm | k /∈ Ωi0 , Vk ∩NΓ((ui0 , t1)) 6= ∅}.

It is easy to see that NG(ui) = {uk | k ∈ Ωi ∪ ∆i} and NG(ui0) = {uk | k ∈
Ωi0 ∪∆i0}. Hence, |Ωi|+ |∆i| = dG(ui) and |Ωi0 |+ |∆i0 | = dG(ui0).

Claim 3 |Ni| = |Ωi| and |Ni0 | = |Ωi0 |.

By Claim 1, for each k ∈ Ωi, we have |Vk ∩Wj0 | = 1. It follows that |Ni| = |Ωi|.
Similarly, |Ni0 | = |Ωi0 |.

Claim 4 Both Ni and Ni0 are independent subsets of V (Γ).

Take any two vertices, say (ui1 , t), (ui2 , t
′) in Ni. Since Vi ∩Wj1 = {(ui, t1)}, from

Lemma 2.3 it follows that t = t′ = t1. So, (ui1 , t) is not adjacent to (ui2 , t
′). Therefore,

Ni is an independent subset of V (Γ). Similarly, Ni0 is also an independent subset.

Claim 5 (
⋃

k∈Ωi∪∆i
Vk) ∩ (

⋃
k∈Ωi0

Vk) = ∅ and (
⋃

k∈Ωi0∪∆i0
Vk) ∩ (

⋃
k∈Ωi

Vk) = ∅.
Suppose that (

⋃
k∈Ωi∪∆i

Vk) ∩ (
⋃

k∈Ωi0
Vk) 6= ∅. Take (uj , t) ∈ (

⋃
k∈Ωi∪∆i

Vk) ∩
(
⋃

k∈Ωi0
Vk). Then Vj∩Ni0 6= ∅, implying that Vj∩Wj0 6= ∅. Assume (uj , t

′) ∈ Vj∩Wj0 .
Clearly, ui and ui0 are neighbors of uj in G. Since t0 6= t1, either (uj , t

′) ∼ (ui, t1) or
(uj , t

′) ∼ (ui0 , t0). This is contrary to the fact that there are no edges between Wj0 and
Wj1 . Thus, (

⋃
k∈Ωi∪∆i

Vk) ∩ (
⋃

k∈Ωi0
Vk) = ∅. Similarly, we have (

⋃
k∈Ωi0

∪∆i0
Vk) ∩

(
⋃

k∈Ωi
Vk) = ∅.

Claim 6 Let k ∈ ∆i ∪∆i0 . Then Vk ∩Wj0 = ∅ and |Vk ∩ S| ≥ n− 1.

Assume k ∈ ∆i. Then uk ∈ NG(ui). If Vk ∩Wj0 6= ∅, then take (uk, t) ∈ Vk ∩Wj0 .
Since k /∈ Ωi, (uk, t) is not adjacent to (ui, t0), and hence t = t0. Consequently, (uk, t) ∼
(ui, t1), a contradiction. Thus, Vk ∩Wj0 = ∅. By Lemma 2.3, |Vk ∩Wj1 | ≤ 1, and hence
|Vk∩S| ≥ n−1. With a similar argument, we can show that if k ∈ ∆i0 , then Vk∩Wj0 = ∅
and |Vk ∩ S| ≥ n− 1.
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Claim 7 (1) n = 3; (2) |Ni| = |Ni0 | = δ(G); (3) |∆i| = |∆i0 | = 0; (4) |S| = 2δ(G); (5)
S =

⋃
k∈Ωi∪Ωi0

(Vk∩S); (6) for each k ∈ Ωi∪Ωi0 , |Vk∩S| = |Vk∩Wj0 | = |Vk∩Wj1 | = 1.

By the arbitrariness of Vi and Vi0 , we may assume that |Ni| ≤ |Ni0 |. By Claim 5,

|S| ≥ |
⋃

k∈Ωi0

(Vk ∩ S)|+ |(
⋃

k∈Ωi∪∆i

(Vk ∩ S))|. (2.1)

By Claim 2, if k ∈ Ωi ∪Ωi0 , then |Vk ∩S| ≥ n− 2, and by Claim 6, if k ∈ ∆i ∪∆i0 , then
|Vk ∩ S| ≥ n− 1. It follows that

|S| ≥ (n− 2)|Ωi0 |+ (n− 2)|Ωi|+ (n− 1)|∆i|. (2.2)

By Claim 3, we have

|S| ≥ (n− 2)|Ni0 |+ (n− 2)|Ni|+ (n− 1)|∆i|. (2.3)

Since |Ni0 | ≥ |Ni| and n ≥ 3, we obtain that

|S| ≥ 2(n− 2)|Ni|+ (n− 1)|∆i| ≥ (n− 1)dG(ui). (2.4)

However, by Lemma 2.1 (4), we have |S| ≤ (n−1)δ(G). So, in the above four inequalities,
“=” must hold. By Eq. (2.4) we obtain that n = 3, |Ni| = |Ni0 |, and δ(G) = dG(ui).
Furthermore, for each k ∈ Ωi∪Ωi0 , |Vk∩S| = n−1, and for each k ∈ ∆i, |Vk∩S| = n−1.
It follows that

|S| = 2|Ni|+ 2|∆i| = 2δ(G). (2.5)

To show that |∆i| = |∆i0 | = 0, we shall first show that

(
⋃

k∈∆i

Vk) ∩ (
⋃

k∈Ωi0
∪∆i0

Vk) = ∅.

Suppose on the contrary that for some k ∈ ∆i, Vk∩(
⋃

k∈Ωi0
∪∆i0

Vk) 6= ∅. Since |Vk∩S| =
n − 1, from Claim 6 it follows that |Vk ∩ Wj1 | = 1. Take (uk, t) ∈ Vk ∩ Wj1 . Then
ui, ui0 are neighbors of uk in G. Since t0 6= t1, either (uk, t) ∼ (ui, t1) or (uk, t) ∼
(ui0 , t0). This is contrary to the fact that there are no edges between W0 and W1. Thus,
(
⋃

k∈∆i
Vk) ∩ (

⋃
k∈Ωi0∪∆i0

Vk) = ∅. It follows that

|S| ≥ |
⋃

k∈Ωi0
∪∆i0

(Vk ∩ S)|+ |(
⋃

k∈Ωi∪∆i
(Vk ∩ S))|

= |
⋃

k∈Ωi0
(Vk ∩ S)|+ |(

⋃
k∈Ωi∪∆i

(Vk ∩ S))|+ |
⋃

k∈∆i0
(Vk ∩ S)|

≥ 2|Ni|+ 2|∆i|+ 2|∆i0 |
= 2δ(G) + 2|∆i0 |.

Combining this with Eq. (2.5) we obtain that |∆i0 | = 0. Since dG(ui) = δ(G), we have
dG(ui0) ≥ dG(ui). Recall that |Ni|+ |∆i| = dG(ui) and |Ni0 |+ |∆i0 | = dG(ui0). Since
|Ni| = |Ni0 |, one has |∆i0 | ≥ |∆i|, implying |∆i| = 0.

At last, from Eq. (2.1) it can be deduced that

S = (
⋃

k∈Ωi0

(Vk ∩ S)) ∪ (
⋃

k∈Ωi

(Vk ∩ S)). (2.6)
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Claim 8 Wj0 = Ni ∪Ni0 .

Suppose thatWj0 6= Ni∪Ni0 . Since Γ0 is a component of Γ−S, we can take a vertex,
say (vk1 , t), in Wj1 − (Ni∪Ni0) such that (vk1 , t) is adjacent to some vertex, say (vk2 , t

′),
in Ni ∪ Ni0 . Since (vk2

, t′) ∈ Ni ∪ Ni0 , by Claim 7 |Vk2
∩Wj1 | = 1. By Lemma 2.3,

we have |Vk1
∩Wj0 | = 1. By Claim 1, we have Vk1

∩ S 6= ∅. From Eq. (2.6) we see that
k1 ∈ Ωi0 ∪ Ωi, and hence (vk1

, t) ∈ Ni ∪Ni0 , a contradiction. Thus, Wj0 = Ni ∪Ni0 .

Wj0 S Wj1

Ni

Ni0

rr...rrr...r

rr...rrr...r

rr...rrr...r

Vi0

Vi

Figure 3: Explanation of Claims 8,9

Claim 9 m = |G| = 2δ(G).

By Claim 8, |Wj0 | = 2δ(G). So, m ≥ |Wj0 | = 2δ(G). Suppose that m > 2δ(G).
By Claim 7, for each k ∈ Ωi ∪ Ωi0 , |Vk ∩ S| = |Vk ∩ Wj0 | = |Vk ∩ Wj1 | = 1, and
S =

⋃
k∈Ωi0

∪Ωi
(Vk ∩ S). This implies that

⋃
k∈Ωi0

∪Ωi
(Vk ∩Wj1) is a proper subset of

Wj1 . By the connectedness of Γ1, take an edge e in Γ1 such that one end, say (uk1
, t), of e is

in
⋃

k∈Ωi0
∪Ωi

(Vk∩Wj1) and the other end, say (uk2 , t
′), is inWj1 \

⋃
k∈Ωi0

∪Ωi
(Vk∩Wj1).

By Claim 7, |Vk1
∩Wj0 | = 1, and by Lemma 2.3, we have |Vk2

∩Wj1 | = 1. By Claim 1,
|Vk2 ∩ S| ≥ 1. It follows from Eq. (2.6) that k2 ∈ Ωi0 ∪ Ωi. This forces that (uk2 , t

′) ∈⋃
k∈Ωi0∪Ωi

(Vk ∩Wj1), a contradiction.

Claim 10 G ∼= K`,`, where ` = δ(G).

Clearly, {uk | k ∈ Ωi ∪ Ωi0} ⊆ V (G). By Claim 9, m = |G| = 2δ(G). It follows that
V (G) = {uk | k ∈ Ωi ∪ Ωi0}. Set B0 = {uk | k ∈ Ωi} and B1 = {uk | k ∈ Ωi0}. Take
any two vertices, say uk1

and uk2
, inB0. Suppose uk1

∼ uk2
. By Claim 7, we may assume

that Vki
∩Wj0 = {(uki

, di)} with i = 1 or 2. From Claim 4 we obtain that (uk1
, d1) is

not adjacent to (uk2 , d2), and hence d1 = d2. Since uk1 ∼ uk2 , (uk1 , d1) is adjacent to
all the remaining vertices in Vk2 . Again, by Claim 7, we get that |Vk2 ∩Wj1 | = 1. This
implies that there is an edge between Wj0 and Wj1 , a contradiction. Therefore, uk1

and
uk2

are nonadjacent. By the arbitrariness of uk1
and uk2

, we get that B0 is an independent
subset of V (G). Similarly, B1 is also an independent subset of V (G). It follows that G
must be a bipartite graph with two partition sets B0 and B1. By Claims 3,7, we know that
|B0| = |B1| = δ(G). This means that G ∼= K`,`, where ` = δ(G).

Lemma 2.6. Let ` be a positive integer. Then K`,` ×K3 is not super-κ.

Proof. Let B0 = {vi | i ∈ Z`} and B1 = {ui | i ∈ Z`} be the two partition sets of K`,`.
Set V (K3) = Z3. Let S = V (K`,`)×{1}. Clearly, |S| = 2`. By [9], κ(K`,`×K3) = 2`.

Set W0 = (B0 × {0}) ∪ (B1 × {2}) and W1 = (B0 × {2}) ∪ (B1 × {0}). Clearly,
V (K`,` × K3) = S ∪W0 ∪W1. It is also easy to see that Γ[Wi] ∼= K`,` for i = 0, 1.
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Furthermore, in K`,` ⊗K3 there are no edges between W0 and W1. It follows that K`,` ×
K3−S is disconnected with no isolated vertices. Therefore, K`,`×K3 is not super-κ.
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Figure 4: K2,2 ×K3

Proof of Theorem 1.1. By Lemmas 2.4 and 2.5, we can get the necessity. For the sufficiency,
by Lemma 2.6, K`,` ×K3 is not super-κ.

Now assume that κ(Γ) = nκ(G). Suppose to the contrary that Γ is super-κ. Then
κ(Γ) = δ(Γ) = (n− 1)δ(G), and hence (n− 1)δ(G) = nκ(G). So, κ(G) < δ(G). Let T
be a minimum separating set ofG. ThenG−T has no isolated vertices. By Lemma 2.1 (4),
T × V (Kn) is a separating set of Γ. Clearly, |T × V (Kn)| = nκ(G). So, T × V (Kn)
is also a minimum separating set of G. Since Γ is super-κ, T × V (Kn) must be the
neighborhood of some vertex, say (ui, j). Let uk ∈ T . Then (uk, j) ∈ T × V (Kn), and
hence (ui, j) ∼ (uk, j). This is clearly impossible by the definition of the direct product of
graphs. Thus, Γ is not super-κ.
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