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Abstract

The n-dimensional abstract polytopes and hypertopes, particularly the regular ones,
have gained great popularity over recent years. The main focus of research has been their
symmetries and regularity. The planification of a polyhedron helps its spatial construction,
yet it destroys symmetries. No “planification” of n-dimensional polytopes do exist, how-
ever it is possible to make a “mapification” of an n-dimensional polytope; in other words
it is possible to construct a restrictedly-marked map representation of an abstract polytope
on some surface that describes its combinatorial structures as well as all of its symmetries.
There are infinitely many ways to do this, yet there is one that is more natural that describes
reflections on the sides of (n− 1)-simplices (flags or n-flags) with reflections on the sides
of n-gons. The restrictedly-marked map representation of an abstract polytope is a cellular
embedding of the flag graph of a polytope. We illustrate this construction with the 4-cube,
a regular 4-polytope with automorphism group of size 384. This paper pays a tribute to
Lynne James’ last work on map representations.
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1 Introduction
This paper stands to be a tribute to Lynne James’ last, and unfinished, work [9], where
she outlines a method of representing topological categories, such as the categories of cell
decompositions of n-manifolds, by other categories, for example the category of cell de-
compositions of oriented surfaces.
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A map is a cellular embedding of a graph (possibly with multiple edges, loops and/or
free edges) on connected surfaces with or without boundary. Algebraically a map M =
(Ω; r0, r1, r2) is a set Ω of triangular pieces of surface called flags, and 3 involutory per-
mutations r0, r1, r2 on Ω satisfying (r0r2)2 = 1 and generating a transitive group on Ω
called the monodromy group of the map.

An abstract n-polytope P is a partially ordered set (poset) of faces with a strictly mono-
tone rank function of range {−1, 0, . . . , n}, represented by a Hasse diagram with n + 1
layers, where the poset obey the diamond condition and the set of flags are strongly flag-
connected. Flags are maximal chains of faces, that is, vectors consisting of n + 2 faces
of rank −1, 0, 1, . . . , n respectively. There is a unique least face, the (−1)-face F−1 and a
unique greatest face the n-face Fn. Faces of rank 0, 1 and n− 1 are called vertices, edges
and facets, respectively. Two flags are adjacent if they differ only by one face (entry). Flags
are strongly flag-connected means that any two flags Ψ1, Ψ2 are connected by a sequence
of flags Φ0 = Ψ1, Φ1, . . . , Φm = Ψ2 such that two successive flags Φi, Φi+1 are adjacent
and for any i, j, Φi ∩Φj ⊇ Ψ1 ∩Ψ2. The diamond condition says that whenever Fi−1 and
Fi+1 are faces of ranks i−1 and i+1 for some i, with Fi−1 < Fi+1, then there are exactly
two faces Fi of rank i containing Fi−1 and contained in Fi+1, that is, Fi−1 < Fi < Fi+1.
In other words, the poset of the section Fi+1/Fi−1 = {F ∈ P | Fi−1 ≤ F ≤ Fi+1} is like
a diamond.

An abstract 2-polytope is just a polygon while a 3-polytope is a non-degenerate map
(cellular embedding of a loopless graph on some compact connected (i.e. closed) surface),
with the property that every edge is incident with exactly two faces, and every vertex on a
face is incident with two edges of that face.

A n-hypertope is an extension of an n-polytope by eliminating the partial order set
condition [6]. All n-polytopes are finite in this paper and n > 2 everywhere. For a fur-
ther reading on polytopes we address the reader to the classical book by McMullen and
Schulte [13].

2 Restrictedly-marked maps
Lynne James in [9] introduced maps representations and associate it to a non-commutative
multiplication operation between map type objects. Although restrictedly-marked map rep-
resentations [4] lie in a different category, they represent the same topological objects with
a different perspective and semantics.

Consider the “right triangle” group Γ = 〈R0, R2〉 ∗ 〈R1〉 ∼= (C2 × C2) ∗ C2 generated
by the three reflections R0, R1, R2 in the sides of a hyperbolic right triangle with two zero
internal angles.

Hyperbolic plane

(Poincaré disk) 0

0

0R

1R2R

Figure 1: Hyperbolic right triangle on the Poincaré disc.
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Every finite index subgroup M < Γ determines a finite map M = (Γ/rM ;M∗R0,
M∗R1,M

∗R2), where M∗ is the core of M in Γ and each M∗Ri acts as a permutation
on the right cosets Γ/

r
M of M in Γ by right multiplication. M is called the fundamental

map subgroup of M (or just “map subgroup”). Let Θ be a normal subgroup of Γ with
finite index n. A map is Θ-conservative if M is a subgroup of Θ. In this case the flags of
M are n coloured under the action of Θ, each colour determined by an orbit (the Θ-orbit)
under the action of Θ. By the Kurosh Subgroup Theorem [11, Proposition 3.6, p. 120], Θ
freely decomposes into a free product C2 ∗ · · · ∗ C2 ∗D2 ∗ · · · ∗D2 ∗ C∞ ∗ · · · ∗ C∞ =
〈Z1, . . . , Zm〉 for some finite number (possibly zero) of factors C2, D2 = C2 × C2 and
C∞. This decomposition is unique up to a permutation of the factors [12, p. 245]. A Θ-
conservative map can then be represented by a Θ-marked mapQ = (Ω; z1, . . . , zm), where
Ω is the set of right cosets Θ/rM of M in Θ, and each zi = MΘZi ∈ Θ/MΘ (where MΘ

is the core of M in Θ). The geometric construction described in [2], which can be adapted
to Γ [4], uses Θ-slices, polygonal regions determined by a Schreier transversal for Θ in Γ.
Θ-slices represent the elements of Ω. For example, a Γ-slice is a “flag” and a Γ+-slice is
a “dart”, where Γ+ is the normal subgroup of index 2 in Γ consisting of the words of even
length on R0, R1, R2. The group generated by z1, . . . , zm, called the monodromy group of
Q (denoted Mon(Q)), or the Θ-monodromy group ofM, acts transitively on the set of the
Θ-slices Ω.

A covering, or morphism, ψ from a Θ-marked map Q1 = (Ω1; z1, . . . , zm) to another
Θ-marked map Q2 = (Ω2; z′1, . . . , z

′
m) is a function ψ : Ω1 −→ Ω2 that commutes the

diagram
Ω1 ×Mon(Q1) −−−−→ Ω1

ψ

yι : zi 7→z′i yψ
Ω2 ×Mon(Q2) −−−−→ Ω2

An automorphism of Q is just a bijective covering from Q to Q. A Θ-marked map Q is
regular, or the Γ-marked map M is Θ-regular, if M is a normal subgroup of Θ. In this
case the automorphism group of Q, which is the automorphism group of M preserving
each Θ-orbit, coincides with the monodromy group Mon(Q), but with different action on
Ω. For a more detailed exposition see [2]; though the focus here has been hypermaps the
results are easily adapted to maps (see [4]).

By a restrictedly-regular (or resctrictly-regular) map we mean a map that is Θ-regular
for some (finite index) normal subgroup Θ/Γ. In a similar way as done in [2], not all maps
are restrictedly-regular. However, any group G is the monodromy group (and hence the
automorphism group) of a restrictedly-regular map ([3, Lemma 2.2] easily adapted to Γ).

3 Algebraic representation of finite n-polytopes
A Coxeter group is a group with presentation 〈s0, s1, . . . , sn−1 | s2

i = (sisj)
pij = 1〉

where pij ≥ 2 is a positive integer possibly ∞. If pij = ∞ then the relation (sisj)
pij

is vacuous and is not considered in the above presentation. Let P be an abstract n-
polytope, and denote by ΩP the set of flags of P . As an immediate consequence of
the diamond condition, for any flag Φ ∈ ΩP and for any 0 ≤ i ≤ n − 1, the set
{Φ′ ∈ ΩP | Fj(Φ′) = Fj(Φ), ∀j 6= i}, where Fj(Φ) is the face of rank j of Φ, con-
tains exactly two elements, being Φ one of them. Denote by Φri = Φ′ the other flag of
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this set. Then we have n permutations ri =
∏

Φ∈ΩP
(Φ,Φri) for i ∈ {0, 1, . . . , n − 1},

giving rise to a transitive permutation group G(P) = 〈r0, r1, . . . , rn−1〉 on ΩP , called the
connection group (or monodromy group) of P , that describes the polytope P: each rank i
face Fi for i ∈ {0, 1, . . . , n− 1}, corresponds to an orbit of 〈r0, . . . , r̂i, . . . , rn−1〉 on ΩP ,
where r̂i denotes the absence of ri. In fact, if Fi is a face of rank i and Φ and Ψ are two
flags containing Fi, then by strong connectedness

Φ〈r0, . . . , r̂i, . . . , rn−1〉 = Ψ〈r0, . . . , r̂i, . . . , rn−1〉.

So Φ〈r0, . . . , r̂i, . . . , rn−1〉 is the set of all flags containing the common i-face Fi. An i-
face Φ〈r0, . . . , r̂i, . . . , rn−1〉 is incident to a j-face Ψ〈r0, . . . , r̂j , . . . , rn−1〉 (i 6= j) if and
only if Φ〈r0, . . . , r̂i, . . . , rn−1〉 ∩ Ψ〈r0, . . . , r̂j , . . . , rn−1〉 6= ∅; so incidence corresponds
to non-empty intersection.

Hence the polytope P can be identified with the n + 1 tuple (ΩP ; r0, r1, . . . , rn−1).
Two such n + 1 tuples (Ω1; r0, r1, . . . , rn−1) and (Ω2; s0, s1, . . . , sn−1) are isomorphic
if there is a bijection f from Ω1 to Ω2 that satisfy ωrif = ωfsi for every ω ∈ Ω1 and
i ∈ {0, 1, . . . , n− 1}.

Denote by ∆n−1 the Coxeter group 〈S0, S1, . . . , Sn−1 | S2
i = 1〉. Then we have

a natural epimorphism π : ∆n−1 → G(P), mapping each Si to ri, inducing an action
Φd := Φdπ of ∆n−1 on ΩP . Similarly to [2, §1.2], fixing a flag Φ ∈ ΩP and letting P be
the stabiliser of Φ in ∆n−1, then ∆n−1 acts on ∆n−1/rP by right multiplication, inducing
a bijective function πΦ : ∆n−1/rP → ΩP , Pd 7→ Φdπ. The kernel of π is the core P ∗ of P
in ∆n−1

1 and the group ∆n−1/P
∗ acts transitively on ∆n−1/rP by right multiplication in a

similar way asG(P) acts on ΩP . Hence the polytope (ΩP ; r0, r1, . . . , rn−1) is isomorphic
to (∆n−1/rP ;P ∗S0, P

∗S1, . . . , P
∗Sn−1). Every polytope P is described by such (n+ 1)-

tuples; the converse is false. The set of all such (n+1)-tuples will be called for the moment
the set of (n − 1)-hypermaps (see also Section 7). So both n-polytopes and n-hypertopes
are (n− 1)-hypermaps, the converse is false. The subgroup P will be called a fundamental
subgroup of P . This is unique up to a conjugacy in ∆n−1.

A (n − 1)-hypermap H = (ΩP ; r0, r1, . . . , rn−1) is regular if the connection group
acts regularly on Ω; this is equivalent to say that the fundamental subgroup P is normal
in ∆n−1. In such case P ∗ = P and, up to an (n − 1)-hypermap isomorphism, Ω =
∆n−1/rP = G is the connection group, which coincides with the automorphism group of
H. The action of G on Ω = G as a connection group is done by right multiplication, while
as automorphism group is done by left multiplication.

A string Coxeter group of type [k1, k2, . . . , kn−1] (k1 > 2, k2 > 2, . . . , kn−1 > 2) is
a Coxeter group 〈S0, S1, . . . , Sn−1 | S2

i = 1〉 satisfying the Dynking diagram (or string
diagram) of type [k1, k2, . . . , kn−1]:

S4S3S2S0 S1

k1 k2 k3 k4 kn-1

Sn-1
...

A regular polytopeP is of type [k1, k2, . . . , kn−1] if its automorphism group (or connection
group) is a smooth quotient of a string Coxeter group ∆n−1 of type [k1, k2, . . . , kn−1].

For additional details on polytopes and related subjects we address the reader to [14].
1Let α : G(P) → SΩ be the action homomorphism of G(P) on Ω, then πα : ∆n−1 → SΩ (right action

notation) is the action homomorphism of ∆n−1 on Ω. As G(P) acts faithfully on Ω, then P ∗ = Ker(πα) =
π−1(Ker(α)) = π−1(1) = Ker(π).
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4 Topological approach to n-polytopes and n-hypertopes
Polytopes appear in the literature both as abstract and geometric. Hypertopes have been
essentially introduced as abstract constructions. There is a topological construction that
is relevant for what follows later in Section 8. From the example below (Section 6) one
see that a flag of the hypercube can be associated to a tetrahedron, that is, a 3-simplex.
Replacing faces in the poset of a polytope (hypertope) by simplices and the rank function by
the dimension function, under the same conditions, we get an abstract simplicial complex
model of a polytope (hypertope).

Towards a more topological approach, let a n-flag be an (n − 1)-simplex with its n
vertices labelled 0, 1, . . . , n − 1 and its n facets labelled by the opposite vertex label. Let
also Ω be a set of n-flags.

3-flag2-flag 4-flag 5-flag

. . .
0 12

2

01

0 1 01 0 1

2

1111

3

0
2 3

0 1

23

2
3

1
4

3

2
3

1
4

0
42

Figure 2: Example of n-flags.

For each i ∈ {0, 1, . . . , n − 1} we denote by the transposition τi = (a, b) the joining of
two n-flags a, b ∈ Ω along their facet labelled i so that its facet’s vertex numbers match
up, and call it an i-transposition. Denote by ri the product of i-transpositions recording
those pairs of n-flags that are joined by their i-labelled facets; ri = 1 just means that no
pairs of n-flags are joined by their facets labelled i. The group G = 〈r0, r1, . . . , rn−1〉
records all the existing joining between the n-flags. We call it a connection group (or
monodromy group). If this group acts transitively on Ω then (Ω; r0, r1, . . . , rn−1) describes
a topological/algebraic object isomorphic2 to an (n − 1)-hypermap. Call it n-hyperplex3.
Since n-flags are only connected by their facets, no k-face, for k < n − 1, can occur as
the intersection of two consecutive n-flags. Moreover, if an n-flag is fixed by some ri this
means that the facet labelled i of the flag is on the boundary. Thus boundary cannot be
made of k-faces for k < n− 1. Thus if two n-flags have in common a k-face (k < n− 1)
then necessarily there must be a sequence of n-flags that intersect two by two on a facet
containing the k-face. Hence by construction, if this connection group acts transitively on
Ω it does so strongly transitively.

This bring polytopes (hypertopes) close to Piecewise Linear Manifolds (PL-manifolds).

5 Regular representation of n-polytopes by restrictedly-marked maps
Following Lynne’s ideas [9], and more explicitly the notations and definitions expressed in
[4], a regular representation of (n−1)-hypermaps by restrictedly-marked maps is a (m+1)-
tuple (Θ;X0, X1, . . . , Xm−1), consisting of a normal subgroup Θ of Γ freely generated by
X0, X1, . . . , Xm−1 for some m ≥ n, together with an epimorphism ρ from Θ to ∆n−1.

2Isomorphisms taken in the same sense as isomorphisms between Θ-marked maps defined in Section 3.
3Terminology introduced by Steve Wilson in BIRS Workshop 17w5162, Canada, 2017.
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Such representation gives rise to a bijection between the set of (n− 1)-hypermaps P with
fundamental subgroup H to the set of regular Θ-marked maps with fundamental subgroup
Hρ−1, henceforth a representation of n-polytopes (or n-hypertopes).

Γ

Θ ∆n−1

Hρ−1 H

ρ
= 〈S0, S1, . . . , Sn−1〉

= C2 ∗D2 = 〈R1〉 ∗ 〈R0, R2〉

Q P
Θ-marked

map

Theorem 5.1. There is a regular restrictedly-marked representation of n-polytopes such
that:

(1) n-flags ((n− 1)-simplices for n-polytopes and -hypertopes) correspond to n-gons;

(2) local reflections about facets of an n-flag corresponds to local reflections on the sides
of the n-gon;

(3) the (full) automorphism group of the n-polytope (-hypertope) is the (full) automor-
phism group of the restrictedly marked map;

(4) the n-polytope (-hypertope) is orientable if and only if the restrictedly marked map
is orientable.

Proof. Lynne James’s first example [9], more specifically the example given by the alterna-
tive construction, gives an answer to this question for n = 4. The proof could be resumed
to find a normal subgroup Θ of Γ which is freely generated by reflections. However there
are only four subgroups that are freely generated by, and only by, reflections, namely

Γ2.1 = 〈R0, R1, R2R1R2〉 = C2 ∗ C2 ∗ C2,

Γ2.4 = 〈R1, R2, R0R1R0〉 = C2 ∗ C2 ∗ C2,

Γ2.5 = 〈R1, R2R0, R0R1R0〉 = C2 ∗ C2 ∗ C2, and
Γ4.2 = 〈R1, R0R1R0, R2R1R2, R0R2R1R2R0〉 = C2 ∗ C2 ∗ C2 ∗ C2.

These solve the problem for n = 3 and 4. The following approach gives a general con-
struction for all n ≥ 3.

Denote by
∏
k(Ri, Rj) the product RiRjRiRjRi . . . of Ri and Rj in alternate form,

starting from Ri and counting k total factors. If k = 0 then put
∏

0(Ri, Rj) = 1. Now
take the normal subgroup4

Γn = 〈R0, R
R1
0 , RR1R2

0 , . . . , R
∏

n−1(R1,R2)

0 , (R1R2)n〉

of rank n + 1 and index 2n in Γ (Γ/Γn is a dihedral group of order 2n). By the Kurosh’s
Subgroup Theorem [11, Proposition 3.6], these generators decompose Γn as a free product

4There is another subgroup generated by reflections and one rotation with the same decomposition as a free
product C2 ∗ C2 ∗ C2 ∗ · · · ∗ C∞, it is the dual resulting from swapping R0 with R2. Another subgroup also
appears with such free product decomposition C2 ∗C2 ∗C2 ∗ · · · ∗C∞, however one of the C2 is generated by
the rotation R0R2, instead of a reflection.
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C2 ∗ C2 ∗ · · · ∗ C2 ∗ C∞. We take the epimorphism ρ : Γn → ∆n−1 by mapping each
R

∏
k(R1,R2)

0 to Sk, for k = 0, 1, . . . , n− 1, and (R1R2)n to 1. Then the regular map with
dihedral automorphism group of size 2n corresponding to the quotient Γ/Γn, called trivial
Γn-map, is a star graph cellular embedded in the disk, thus a boundary map with one vertex
and n edges. We need to cut open this disk to its centre to create a Γn-slice (see [4] for the
constructing example of such a Γn-slice) for the restricted Γn-marked map, however we
need to join it back to accomplish (R1R2)n = 1, satisfied by the epimorphism ρ, to create
a Γn-slice for this representation ρ. Each (n− 1)-hypermap P , and hence each n-polytope
(and each n-hypertope), corresponding to a fundamental subgroup P , is isomorphic to a
Γn-marked map Q with fundamental subgroup the inverse image Q = Pρ−1. The rooted
Γn-slice forQ is the above n-gon with a distinguished flag (in black) as shown in Figure 3.

Figure 3: Rooted Γ3-slice, Γ4-slice and Γ6-slice.

The monodromy group (which corresponds to the connection group of the (n− 1)-hyper-
map, n-polytope or n-hypertope) is generated by the reflections on the sides of this n-gon.
The isomorphism ρ̄ between the restricted Γn-marked map Q and P establishes the third
statement. A (n− 1)-hypermap is orientable (and so is an n-polytope and an n-hypertope)
if and only if any word on r0, r1, . . . , rn−1 that turns to be the identity has even length,
that is, it can be expressed as a word on the rotations r1r2, r2r3, . . . , rn−2rn−1. Given that
the isomorphism ρ̄ sends each odd length word R

∏
i(R1,R2)

0 to ri, that is also true in the
restrictedly marked map representation, that is, the representation word will also be a word
of even length on R0, R1, . . . , Rn. This establishes the last statement.

As it turns out from the rooted Γn-slice, a restrictedly-marked map representation of an
abstract polytope is a cellular embedding of the flag graph of the polytope on a connected
surface without boundary. In [4] we dealt only with clean restrictedly-marked representa-
tions (of hypermaps), that is, regular restricted Θ-marked map representations of n-ranked
objects where the generators of Θ give rise to free product decompositions of Θ of equal
rank n; this translates, for instance, to 3 generators for representations of hypermaps (rank
3 polytopes). As (n − 1)-hypermaps (n-polytopes, n-hypertopes) have rank n and Γn
has rank n + 1, the above restricted Γn-marked map representations are not clean. As a
consequence of this fact we have,

Proposition 5.2. There are infinitely many regular restricted Γn-marked map representa-
tions of (n− 1)-hypermaps. Thus in general, there are infinitely many regular restrictedly-
marked representations of (n− 1)-hypermaps, and so of n-polytopes and n-hypertopes.

Proof. In order to get distinct epimorphisms ρ : Γn → ∆n−1 = 〈S0, . . . , Sn−1〉 = C2 ∗
C2 ∗ · · · ∗ C2 we just assign R

∏
k(R1,R2)

0 to Sk as before, for k = 0, 1, . . . , n − 1, and
(R1R2)n to different, and non conjugate, elements in ∆n−1. In this way we get infinitely
many distinct epimorphism and hence infinitely many regular restricted Γn-marked map
representations of (n− 1)-hypermaps.
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6 Example: The hypercube
As an illustration we take the hypercube, an orientable and regular 4-polytope with 384
flags. The rooted Γ4-slice of the restricted Γ4-marked map representation is illustrated in
the picture above (Figure 3). To construct the regular restricted Γ4-map Q that represents
the hypercube, we need to join the 384 rooted Γ4-slices through their four sides according
to the rule dictated by the side reflections r0 = R0, r1 = RR1

0 , r2 = RR1R2
0 and r3 =

RR1R2R1
0 .

r0
r1

r2r3

Figure 4: Identification sides on the rooted Γ4-slice.

The automorphism group G of the hypercube is a Coxeter group of type [4, 3, 3] with
presentation

〈r0, r1, r2, r3 | r2
0, r

2
1, r

2
2, r

2
3, (r0r2)2, (r0r3)2, (r1r3)2, (r0r1)4, (r1r2)3, (r2r3)3〉.

Since it is regular, its connection group coincide with its automorphism group (only its
action on the flags is different), and since the automorphism group acts regularly on the
set of flags its size is the number of flags. So we may replace the set of flags by the auto-
morphism group, in which case the action of the automorphism group on the flags is done
by left multiplication while the action of the connection group is done by right multiplica-
tion. For the constructing we use the group as a connection group and automatically label
its elements 1, 2, 3, . . . , being the identity element the element labelled 1, followed by the
elements 2 = r0 = R0, 3 = r1 = RR1

0 , 4 = r0r1, 5 = r0r1r0 etc, so that the first 8 label
all the elements of the dihedral subgroup 〈r0, r1〉 (the central 8-gon). As the hypercube is
symmetric around the central 8-gon, we only need to construct one sector, being the rest of
the 7 sectors obtained by reflections and rotations about this central 8-gon. So we only need
to figure out how to arrange the 48 Γ4-slices and the final labelling of the outside border of
this sector. This is done (with the help of GAP [15]) in the figure below (Figure 5). GAP
was used twice:

(i) to ensure that each rooted Γ4-slice placed inside the sector does not appear when
reflecting or rotating around the central 8-gon,

(ii) to get the side-pairings between the labelled sides of the sector with the sides of the
rest of the picture.

Bold numbers and letters label the sides of this sector; the red labels signalize identifications
inside the same sector, while the black ones label indentifications outside this sector.

Now copy reflecting this sector about the central 8-gon we get the final picture of the
hypercube (Figure 6) which reflects a Γ4-restrictedly regular map on an orientable surface
of genus 41. Not all the sides were labelled. To complete the labelling we use the reflec-
tions and rotations about the central polygonal region. For example, the central bottom
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Figure 5: The first sector of the hypercube.

side labelled 37 has its right side unlabelled; label it x for a while. This x vertically mirror
reflects to 37, so the x side should be identified to the side y that is the vertical mirror
reflection of the identification pair of 37. There is also no arrows to instruct the identifica-
tion side pairing; this is unnecessary as well since the identification is done similarly to the
matching of the internal sides, which was done by following the words R0, RR1

0 , RR1R2
0

and RR1R2R1
0 corresponding to the sides (Figure 4); any of these words will take a rooted

Γ4-slice to a neighbouring rooted Γ4-slice.
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7 Genus of a regular orientable n-polytope and n-hypertope
The genus g of an orientable n-polytope (resp. orientable n-hypertope) can be defined to
be the genus of the orientable (n − 1)-hypermap it corresponds to, which is the genus of
the regular Γn-marked map representation Q without boundary. Recall that g = 2−χ

z ,
where z = 2 ifQ is orientable and 1 otherwise. The formula of the characteristic χ (i.e. the
Euler characteristic of the underlying surface of the regular Γn-marked map representation)
presented below is derived from the characteristic formula in [2] taking into account that
the trivial Γn-map is a boundary map with edges and faces on the boundary. A direct
calculation can go as follows: we see from a rooted Γn-slice (Figure 7) that the embedding
of the n-coloured graph (flag graph in the case of polytopes and hypertopes) produces n
type of faces f1, f2, . . . , fn determined by

ρ1 = r0r1 = (R0R1)2,

ρ2 = r0r2 = (R0R1)R2 ,

ρ3 = r1r3 = ((R0R1)2)R2R1 ,

...

ρn−1 = rn−3rn−1 = ((R0R1)2)
∏

n−2(R2,R1), and

ρn = rn−2rn−1 = ((R0R1)2)
∏

n−1(R2,R1).

Then Fi = |G|
2mi

is the number of faces of type i, where mi = |ρi| and G = 〈r0, . . . , rn−1〉
is the set of n-flags. It also produces n types of edges, one for each ri, being the number
Ei of edges of type i given by Ei = |G|

2 .
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Figure 7: Γ12-slice showing the i-labelled edges and the i-labelled faces.

Finally, as the number V of vertices is |G|, the number of edges is E = E0 + E1 + · · · +
En−1 and the number of faces is F = F1 +F2 + · · ·+Fn, then the characteristic χ = V −
E+F of a regular (n−1)-hypermap (or a regular n-hypertope)H = (G; r0, r1, . . . , rn−1)
is given by

χ =
|G|
2

(
1

m1
+

1

m2
+ · · ·+ 1

mn−1
+

1

mn
+ 2− n

)
.

In regular (n− 1)-hypermaps we may have mi = 1, so writing N = −χ, we have

|G| = 2N

n− 2− ( 1
m1

+ 1
m2

+ · · ·+ 1
mn

)
≤ 2N

n− 2− ( 1
1 + · · ·+ 1

1 + 1
2 + 1

3 + 1
7 )

= 84N,
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the usual Hurwitz bound.
However, for regular n-polytopes, of type [m1, k2, k3, . . . , kn−1,mn], we have m2 =

m3 = · · · = mn−1 = 2, which gives the formula

χ =
|G|
2

(
1

m1
+

1

mn
+

2− n
2

)
.

We have also m1 ≥ 3 and mn ≥ 3, so that

|G| = 2N
n−2

2 − ( 1
m1

+ 1
mn

)
≤ 12N

3n− 10
.

In particular if n > 3, then

|G| < 4N

n− 4
and N ≥ |G|

12
(3n− 10) >

|G|
4

(n− 4).

For n > 8 the minimum size of a regular polytope is |G| = 2.4n−1 (Conder [5]), which
gives N > 2.4n−2(n − 4). A better refinement for n in {3, 4, 5, 6, 7, 8} can be made by
taking the Propositions 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 of [5] into account:

Table 1: Leasted values for |G| and negative characteristic N for regular n-polytopes.

n min |G| (from [5]) minN = −χ inf

3 |G| ≥ 24 N ≥ −2 from |G| = 24, type [3, 3]

4 |G| ≥ 96 N ≥ 18 from |G| = 108, type [3, 6, 3]

5 |G| ≥ 432 N ≥ 198 from |G| = 432, type [3, 6, 3, 4]

6 |G| ≥ 1728 N ≥ 1296 from |G| = 1728, type [4, 3, 6, 3, 4]

7 |G| ≥ 7776 N ≥ 7452 from |G| = 7776, type [3, 6, 3, 6, 3, 4]

8 |G| ≥ 31104 N ≥ 38234 estimated with |G| = 32772,
type [3, . . . , 3]

n |G| ≥ 2.4n−1 N > 2.4n−2(n− 4)

Regular n-polytopes and their duals have the same genus. The restricted Γ4-map pic-
tured in Figure 6 that represents the hypercube has genus 41 (N = 80). If we have done
the same for the hypertetrahedron, an orientable and regular 4-polytope with 120 flags and
automorphism group the Coxeter group of type [3, 3, 3], we would end up with a regular
restricted Γ4-map of genus 11 (N = 20).

The above formulae do not take into account the smallest dimension that a n-polytope
(or n-hypertope) might be realised as a complex simplicial manifold. For this we have
the genus g(M) of a piecewise linear manifold M introduced by Gagliardi [8] as being
the minimum genus of any colour-graph that induces the same piecewise linear manifold
M , where the genus of a coloured-graph is the minimum genus of its strongly-regular
embeddings. Despite g(M) be a topological invariant, g(M) = 0 if and only if M is the
(n − 1)-sphere, and g(M) coincides with usual surface genus if dim(M) = 2 and with
Heegaard genus if dim(M) = 3, to calculate g(M) one needs to apply dipoles operations
of addition and/or subtraction consecutively on the n-graph in order to transform it into a
minimal coloured-graph embedding for M , called a crystallisation of M [7]. The genus of
a crystallisation is a topological invariant and coincides with g(M). However it has been
shown to be difficult to get a transition from a crystallisation to another one [16].
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8 n-hypermaps as generalisation of hypermaps
Hypermap are generalisations of maps by allowing edges to join more than two vertices.
They are accomplished by cellular embeddings of hypergraphs (bipartite graphs) on con-
nected surfaces. Now n-hypermaps can also be seen as a further generalisation of hyper-
maps. A map is a cellular embedding of a (1-partite) graph on a connected surface (so to
speak a 1-partite map). A n-hypermap, n > 1, is a cellular embedding of an n-partite
graph on a connected surface (that is an n-partite map or n-coloured map) such that each
vertex coloured k with 1 < k < n, is alternately surrounded by vertices coloured k − 1
and k + 1, while vertices coloured 1 (resp. n) are surrounded by vertices coloured 2 (resp.
n− 1). They arise as quotients of “(n+ 1)-gonal” groups. Take a hyperbolic (n+ 1)-gon
with zero internal angles (Figure 8 left). The dual is a cellular embedding tree (Figure 8
right) and so the Coxeter group generated by the reflections on the sides of this hyperbolic
(n+ 1)-gon is a free product C2 ∗C2 ∗ · · · ∗C2. Each conjugacy class of a subgroup H in
∆n determines, up to isomorphism, a n-hypermapH = (∆n/rH;H∗r0, H

∗r1, . . . ,H
∗rn)

with monodromy group Mon(H) = ∆n/H
∗, where H∗ is the core of H in ∆n, and
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Figure 8: Hyperbolic 5-gonal tesselation (left), 4-hypermap (centre), 5-valency tree (right).

Aut(H) = N
∆n

(H)/H . It occurs as an orbifold of the universal hyperbolic n-hypermap
illustrated in Figure 8 centre (for n = 4). A map is a 1-hypermap and a hypermap is a
2-hypermap.

These (n+1)-gonal hyperbolic tessellations on the Poincaré disc are maps. Their duals
are maps whose edges are (n+1) coloured (Figure 8 right) representing hyperbolic cellular
embeddings of universal (n + 1)-coloured graphs [1] or (n + 1)-GEMs ((n + 1)-graph
encoding manifolds) [10].
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