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Preface

The series of workshops on ”What Comes Beyond the Standard Models?” started
in 1998 with the idea of Norma and Holger for organizing a real workshop, in
which participants would spend most of the time in discussions, confronting
different approaches and ideas. It is the eighteenth workshop which took place
this year in the picturesque town of Bled by the lake of the same name, surrounded
by beautiful mountains and offering pleasant walks and mountaineering.
In our very open minded, friendly, cooperative, long, tough and demanding dis-
cussions several physicists and even some mathematicians have contributed. Most
of topics presented and discussed in our Bled workshops concern the proposals
how to explain physics beyond the so far accepted and experimentally confirmed
both standard models - in elementary particle physics and cosmology. Although
most of participants are theoretical physicists, many of them with their own sug-
gestions how to make the next step beyond the accepted models and theories,
experts from experimental laboratories were very appreciated, helping a lot to
understand what do measurements really tell and which kinds of predictions can
best be tested.
The (long) presentations (with breaks and continuations over several days), fol-
lowed by very detailed discussions, have been extremely useful, at least for the
organizers. We hope and believe, however, that this is the case also for most of
participants, including students. Many a time, namely, talks turned into very
pedagogical presentations in order to clarify the assumptions and the detailed
steps, analysing the ideas, statements, proofs of statements and possible predic-
tions, confronting participants’ proposals with the proposals in the literature or
with proposals of the other participants, so that all possible weak points of the
proposals showed up very clearly. The ideas therefore seem to develop in these
years considerably faster than they would without our workshops.
In the eighteen years of our workshops the organizers, together with the partic-
ipants, are trying to answer several open questions of the elementary particle
physics and cosmology. Experiments have made large steps in this time. Among
the most notable and might be also among the most important ones was two years
ago the LHC confirmation that the scalar field, the higgs is like other fermionic
and bosonic fields - just a field. And yet it is a very unusual field: A boson with the
fractional weak and hyper charges, resembling fermion charges. Do we have the
explanation for that? Can we explain the origin of families and Yukawa couplings?
Can we understand and explain all the assumptions of the standard model? That
is, can we explain the appearance of the charges of the family members, quarks
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and leptons, the left handed members distinguishing in charges from the right
handed ones? Can we understand the appearance of the vector and scalar gauge
fields of these charges? How many are they? Can we understand the origin of the
matter-antimatter asymmetry, of the dark matter?
The behaviour of the nature, that is the evolution of our universe and the dynamics
of it can be understood on all levels — from the elementary fermionic and bosonic
particles (fields) and their mutual interactions to matter of all kinds, forming
galaxies, clusters of galaxies and our universe — only if we have the theory behind,
which explains the observed phenomena and predicts new phenomena. It is hard
to distinguish among theories, which all explain the same observed phenomena,
unless one of them is more predictive, better mathematically supported, offering
more detailed predictions for the future observations.
Should we design theories and models in steps, each one more or less adapted for
explaining a new experimental observation, in particular if such models can help
to explain a small next step? Or can we suggest the theory which answers many
open questions at the same time?
Can it happen that at the LHC no new fields - scalars, vectors or fermions - will be
observed, so that there will be no sign which will help to make a trustable step
beyond the standard model?
This can hardly happen. The (so far) observed three families, (only) one scalar
field and several Yukawa couplings call for explanation for the origin of families
and of the higgs, suggesting that there are several scalar fields, which manifest as
the higgs and the Yukawa couplings.
If trusting the spin-charge-family theory, presented in this workshop in details, there
exists the fourth family, coupled to the observed three families, and several scalar
fields, all with the weak and the hyper charges of the higgs, carrying additional
quantum numbers — either the family ones or the family members ones — which
explain the origin of Yukawa couplings. This theory, which offers the explanation
for all the assumptions of the standard model — for the appearance of charges of
the family members, for families, for all the properties of fermions and of the
vector gauge fields, explaining why there are scalar fields with the weak and the
hyper charge of the standard model higgs — offers also the explanation for the
appearance of the matter/anti-matter asymmetry in the universe by predicting
that there are scalars, which are colour triplets, causing transitions between anti-
leptons into quarks and anti-quarks into quarks and back. In the presence of
the scalar condensate of the two right handed neutrinos, which breaks the CP
symmetry, might in the expanding universe in thermal inequilibrium take care
of the matter/anti-matter asymmetry. Predicting two groups of four families of
quarks and leptons the theory might explain also the appearance of the dark
matter.
The fermionization/bosonization theory, showing that at least for free massless
particles it is possible to construct a boson theory, which is equivalent (in terms
of momenta and energy) to a fermion theory, might help to understand whether
the spin-charge-family theory, doing so well in explaining the assumptions of the
standard model, is the acceptable next step beyond the standard model, and what
might be beyond the spin-charge-family theory.
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The models, like a model of supersymmetry in the presence of a very small
cosmological constant, which is able to manifest at the low energy regime the
observed data, might help to understand how has the nature proceeded in the
expanding universe. In particular since the model shows correspondence with
string and other models.
The conformal field theory action and its correspondence to the Chern-Simons
action, discussed in this workshop, is manifesting the use of mathematical ap-
proaches while making the correspondence among approaches, in order to better
understand ”thoughts” of the nature.
The mathematical proofs are essential for all the theories. The proof is discussed
and presented, showing the equivalence between the vielbeins and the spin con-
nection fields in the Kaluza-Klein theories when representing the vector (and the
scalar) gauge fields in d = 3+ 1.
The studies of the origin of families, which might explain, why the nature mani-
fests in the low energy regime the families of quarks and leptons with the observed
properties, go in this workshop in several attempts: Besides with the spin-charge-
family theory, which is able to explain the properties of families of quarks and
leptons, also by using a triple tensor products of the Dirac spinors, the representa-
tions of which can be identified with the three observed families of quarks and
leptons and one more family, offering the explanation for the existence of the
dark matter. It is also the attempt, presented in this workshop, which demon-
strates, how close to the democratic matrix can the mass matrices of quarks and
leptons be parametrized while still manifesting the quarks mixing matrices. There
is the attempt, presented in this workshop, to extend the standard model with new
fermion and boson fields to explain mass matrices of quarks and leptons and
correspondingly their masses and mixing matrices.
There is also the possibility, that the dark matter might consist of the −2 electro-
magnetically charged particles, bound by the ordinary Coulomb interaction with
primordial helium in OHe. The author discussed the solved and not yet solved
problems of this model.
The last progress in experiments, manifesting that the measured annual modula-
tion, can hardly be something else but the interaction of the dark matter from our
galaxy with the scintillators in DAMA/NaI and DAMA/LIBRA experiments is
reported.
There were works on many body problems on hadron physics, interesting for high
energy physics as well. It is happening many times in physics, that experiences
from one field of physics can successfully be used also on other fields, provided
that the symmetry of the systems is comparable.
It is suggested to use the experiences with the effective action, developed for
studying hadron resonances, to calculate the scattering of two higgses or two
heavy bosons in the energy region of 1-3 TeV.
It is claimed and represented that the light-front is providing a physical, frame in-
dependent formalism, offering a new inside into the hadronic mass scale, hadronic
spectrum and the running coupling constants in nonperturbative domain.
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It is demonstrated that the theory of Dirac particles in curved space-times caused
by several central potential confirms the weak equivalence principle in deep
gravitational potentials.
As every year also this year there has been not enough time to mature the very
discerning and innovative discussions, for which we have spent a lot of time, into
the written contributions.
Since the time to prepare the proceedings is indeed very short, three months
if vacations included, authors did not have a time to polish their contributions
carefully enough.
Bled Workshops owe their success to participants who have at Bled in the heart of
Slovene Julian Alps enabled friendly and active sharing of information and ideas,
yet their success was boosted by videoconferences. Questions and answers as well
as lectures enabled by M.Yu. Khlopov via Virtual Institute of Astroparticle Physics
(viavca.in2p3.fr/site.html) of APC have in ample discussions helped to resolve
many dilemmas.
The reader can find the records of all the talks delivered by cosmovia since Bled
2009 on viavca.in2p3.fr/site.html in Previous - Conferences. The six talks delivered
by: L. Bonora (Regularization of conformal correlators), R. Cerulli (Particle Dark
Matter direct detection), N.S. Mankoč Borštnik (How many answers of the open
questions of the Standard Model can the Spin-Charge-Family theory offer?), S.
Brodsky (New perspectives for hadron physics and the cosmological constant
problem), M. Yu. Khlopov (Composite dark matter) and H.B.F. Nielsen (Fermion-
ization in an Arbitrary Number of Dimensions), can be accessed directly at
http://viavca.in2p3.fr/what comes beyond the standard models xviii.html
Most of the talks can be found on the workshop homepage
http://bsm.fmf.uni-lj.si/.
Let us conclude this preface by thanking cordially and warmly to all the partici-
pants, present personally or through the teleconferences at the Bled workshop, for
their excellent presentations and in particular for really fruitful discussions and
the good and friendly working atmosphere.
The workshops take place in the house gifted to the Society of Mathematicians,
Physicists and Astronomers of Slovenia by the Slovenian mathematician Josip
Plemelj, well known to the participants by his work in complex algebra.

Norma Mankoč Borštnik, Holger Bech Nielsen, Maxim Y. Khlopov,
(the Organizing comittee)

Norma Mankoč Borštnik, Holger Bech Nielsen, Dragan Lukman,
(the Editors)

Ljubljana, December 2015
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1 Predgovor (Preface in Slovenian Language)

Serija delavnic ”Kako preseči oba standardna modela, kozmološkega in elek-
trošibkega” (”What Comes Beyond the Standard Models?”) se je začela leta 1998 z
idejo Norme in Holgerja, da bi organizirali delavnice, v katerih bi udeleženci v
izčrpnih diskusijah kritično soočili različne ideje in teorije. Letos smo imeli osem-
najsto delavnico na Bledu ob slikovitem jezeru, kjer prijetni sprehodi in pohodi
na čudovite gore, ki kipijo nad mestom, ponujajo priložnosti in vzpodbudo za
diskusije.
K našim zelo odprtim, prijateljskim, dolgim in zahtevnim diskusijam, polnim
iskrivega sodelovanja, je prispevalo veliko fizikov in celo nekaj matematikov.
Večina predlogov teorij in modelov, predstavljenih in diskutiranih na naših Ble-
jskih delavnicah, išče odgovore na vprašanja, ki jih v fizikalni skupnosti sprejeta
in s številnimi poskusi potrjena standardni model osnovnih fermionskih in bo-
zonskih polj ter kozmološki standardni model puščata odprta. Čeprav je večina
udeležencev teoretičnih fizikov, mnogi z lastnimi idejami kako narediti naslednji
korak onkraj sprejetih modelov in teorij, so še posebej dobrodošli predstavniki
eksperimentalnih laboratorijev, ki nam pomagajo v odprtih diskusijah razjasniti
resnično sporočilo meritev in kakšne napovedi so potrebne, da jih lahko s poskusi
dovolj zanesljivo preverijo.
Organizatorji moramo priznati, da smo se na blejskih delavnicah v (dolgih) pred-
stavitvah (z odmori in nadaljevanji čez več dni), ki so jim sledile zelo podrobne
diskusije, naučili veliko, morda več kot večina udeležencev. Upamo in verjamemo,
da so veliko odnesli tudi študentje in večina udeležencev. Velikokrat so se pre-
davanja spremenila v zelo pedagoške predstavitve, ki so pojasnile predpostavke
in podrobne korake, soočile predstavljene predloge s predlogi v literaturi ali s
predlogi ostalih udeležencev ter jasno pokazale, kje utegnejo tičati šibke točke
predlogov. Zdi se, da so se ideje v teh letih razvijale bistveno hitreje, zahvaljujoč
prav tem delavnicam.
V teh osemnajstih letih delavnic smo organizatorji skupaj z udeleženci poskusili
odgovoriti na marsikatero odprto vprašanje v fiziki osnovnih delcev in kozmologiji.
Na vsakoletnem napovedniku naše delavnice objavimo zbirko odprtih vprašanj,
na katera bi udeleženci utegnili predlagati rešitve. V osememnajstih letih so eksper-
imenti napravili velike korake. Med najpomembnejšimi dosežki je potrditev LHC,
da je skalarno pole, Higgsov delec, prav tako polje kot ostala fermionska in bo-
zonska polja. In vendar je to skalarno polje zelo nenavadno polje: Je bozon s
polovičnim šibkim in hiper nabojem, kot pritičeta fermionom. Ali to razumemo?
Ali lahko pojasnimo izvor družin in Yukawinih sklopitev? Znamo pojasniti nes-
imetrijo med snovjo in antisnovjo v vesolju? Znamo razložiti privzetke standard-
nega modela?
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Dinamiko vesolja na vseh nivojih, od osnovnih delcev do snovi, lahko razumemo
samo, če ponudimo teorijo, ki opažanja razloži in napove nova spoznanja. Je prava
pot pri postavljanju teorij ta, da prilagodimo teorijo eksperimentalnim spoznanjem
po korakih in s tem omogočimo napovedi za naslednje majhne korake? Ali pa
ponudimo teorijo, ki odgovori na mnoga (morda vsa) doslej odprta vprašanja?
Naravne zakone, to je razvoj našega vesolja in njegovo dinamiko, lahko razumemo
na vseh nivojih — od elementarnih fermionskih in bozonskih delcev (polj) in
njihovih vzajemnih interakcij s snovjo vseh vrst, ki tvori galaksije, gruče galaksij
in naše vesolje — le, če imamo teorijo, ki pojasni opažene pojave in napove nove.
Med teorijami, ki pojasnjujejo iste pojave, je težko ločevati, razen, če je kakšna
bolj elegantna, preprosteša, ima boljše matematične temelje in daje bolj natančne
napovedi za prihodnja opazovanja.
Kaj pa, če na LHC ne bodo izmerili nobenega novega polja, ne skalarnega, ne
vektorskega, ne fermionskega in ne bo ponudil eksperiment nobenega napotka,
kako napraviti naslednji korak od standardnega modela?
Menimo, da je to malo verjetno. Dosedaj opažene (tri) družine, (samo) eno skalarno
polje in več Yukawinih sklopitev kliče po razlagi izvora družin in higgsa in
namiguje, da je skalarnih polj več in da se kažejo kot higgs in Yukawine sklo-
pitve.
Če ima prav teorija spina, naboja in družin, ki je bila podrobno predstavljena na tej
delavnici, potem obstaja četrta družina, ki je sklopljena z že opaženimi. Je tudi več
skalarnih polj, vsa s šibkim in hiper nabojem kot ga ima higgs, in še z dodatnimi
kvantnimi števili — s kvantnimi števili družin in njihovih članov — ki pojasnijo
izvor Yukawinih sklopitev. Ta teorija ponudi razlago za vse privzetke standardnega
modela — pojasni izvor nabojev članov družin, izvor družin in družinskih kvantnih
števil, pojasni lastosti fermionov in vektorskih umeritvenih polj, pojasni, zakaj
nosijo skalarna polja šibki in hiper naboj higgsa — in ponudi tudi razlago za pojav
asimetrije med snovjo in antisnovjo opaženo v vesolju, saj napove obstoj skalarjev,
barvnih tripletov, ki sprožijo prehod antileptonov v kvarke in antikvarkov v kvarke
ter obratne procese. Skalarni kondenzat dveh desnoročnih nevtrinov, ki zlomi CP
simetrijo, lahko povzroči asimetrijo snovi in antisnovi v vesolju, ki se razširja in je
v toplotnem neravnovesju. Ker napove dve skupini po štiri družine kvarkov in
leptonov, lahko morda pojasni pojav temne snovi.
Teorija fermionizacije/bozonizacije, ki pokaže, da ja vsaj za proste brezmasne delce
možno konstruirati bozonsko teorijo, ki je ekvivalentna (vsaj kar se tiče gibalne
količine in energije) fermionski teoriji, morda lahko pomaga razumeti, ali je teorija
spinov-nabojev-družin, ki je tako uspešna pri razlagi predpostavk standardnega
modela, sprejemljiv naslednji korak onkraj standardnega modela in kaj je morda
onkraj te teorije.
Modeli, kot je model supersimetrije v prisotnosti zelo majhne kozmološke kon-
stante, ki lahko v območju nizkih energij ponudi ujemanje napovedi modela z
meritvami, lahko pomagajo razumeti, kako se narava razvija v razširjajočem se
vesolju, zlasti če model pokaže povezavo s strunami in ostalimi modeli.
Akcija konformne teorije polja in njena povezava z akcijo Cherna in Simonsa, pred-
stavljena na delavnici, je demonstracija uporabe različnih matematičnih pristopov
ter povezav med njimi, ki mnogo prispevajo k boljšemu razumevanju narave.
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Matematični dokaz, prikazan na delavnici, pokaže ekvivalentnost predstavitve
umeritvenih vektorskih (in skalarnih) polj v d = 3 + 1 med vektorskimi svežnji
in polji spinskih povezav v teorijah Kaluze-Kleinovega tipa v poljubno razsežnih
prostorih.
Raziskave izvora družin, ki naj pojasnijo, zakaj se v naravi pojavijo pri nizkih
energijah družine kvarkov in leptonov z opaženimi lastnostmi, se na tej delavnici
lotimo na več načinov: poleg teorije spinov-nabojev-družin, ki lahko pojasni lastnosti
kvarkov in leptonov, še s pristopom s trojnim tenzorskim produktom Diracovih
spinorjev, katerega upodobitve lahko identificiramo s tremi poznanimi družinami
kvarkov in leptonov ter s še eno družino, ki pojasni temno snov. Na tej delavnici
je prikazan uspešen poskus takšne parametrizacije kvarkovskih masnih matrik, ki
so zelo blizu demokratičnima, tako da produkt unitarnih transformacij teh matrik
pojasni izmerjene lastnosti mešalne matrike kvarkov. V zborniku je predstavljen
poskus razširitve standardnega modela z novimi fermionskimi in bozonskimi polji z
družinskimi kvantnimi števili simetrije SU(3), kar lahko pojasni masne matrike
kvarkov in leptonov, njihove mase in mešalne matrike.
Obravnavamo tudi možnost, da temno snov sestavljajo delci z elektromagnetnim
nabojem −2, ki jih običajna Coulombska interakcija veže s prvotnim helijem v
OHe. Avtor obravnava rešene in odprte probleme v tem modelu.
Poročilo o vseh dosedaj narejenih meritvah na eksperimentu DAMA/NaI in
DAMA/LIBRA, ki kažejo izrazito letno modulacijo, skoraj ne dopušča dvoma,
da gre za interakcijo temne snovi naše galaksije s scintilatorji DAMA/NaI in
DAMA/LIBRA.
Zanimivo je tudi delo, ki prenaša izkušnje iskanja rešitev sistemov mnogih teles v
fiziki hadronov, na fiziko visokih energij. Kot se zgodi mnogokrat v fiziki, lahko
tudi tu izkušnje iz enega področja fizike prenesemo na drugo področje, kadar so
simetrije sistemov primerljive. Avtorji predlagajo uporabo efektivne akcije, razvito
za študij hadronskih resonanc, za študij sipanja dveh higgsov ali dveh težkih
bozonov v energijskem območju 1-3 TeV.
Avtor uporabe koordinatnega sistema na svetlobnem stožcu (light front) in z od
opazovalnega sistema neodvisnim formalizmom ponudi nov vpogled v masno
skalo hadronov, spekter hadronov in spremenljivo sklopitveno konstanto v neper-
turbacijskem območju kromodinamike.
Iskanje rešitev Diracovih delcev v ukrivljenih prostor-časih, ki jih povzročijo
različni potencali, ovrže domnevo, da v v globokih gravitacijskih potencialih
načelo šibke ekvivalencene velja.
Kot vsako leto nam tudi letos ni uspelo predstaviti v zborniku kar nekaj zelo obe-
tavnih diskusij, ki so tekle na delavnici. Premalo je bilo ča do zaključka redakcije.
Četudi so k uspehu ,,Blejskih delavnic” največ prispevali udeleženci, ki so na
Bledu omogočili prijateljsko in aktivno izmenjavo mnenj v osrčju slovenskih
Julijcev, so k uspehu prispevale tudi videokonference, ki so povezale delavnice z
laboratoriji po svetu. Vprašanja in odgovori ter tudi predavanja, ki jih je v zadnjih
letih omogočil M.Yu. Khlopov preko Virtual Institute of Astroparticle Physics
(viavca.in2p3.fr/site.html, APC, Pariz), so v izčrpnih diskusijah pomagali razčistiti
marsikatero dilemo.
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Bralec najde zapise vseh predavanj, objavljenih preko ”cosmovia” od leta 2009,
na viavca.in2p3.fr/site.html v povezavi Previous - Conferences. Šest letošnjih
predavanj,
L. Bonora (Regularization of conformal correlators), R. Cerulli (Particle Dark
Matter direct detection), N.S. Mankoč Borštnik (How many answers of the open
questions of the Standard Model can the Spin-Charge-Family theory offer?), S.
Brodsky (New perspectives for hadron physics and the cosmological constant
problem), M. Yu. Khlopov (Composite dark matter) in H.B.F. Nielsen (Fermioniza-
tion in an Arbitrary Number of Dimensions), je dostopnih na
http://viavca.in2p3.fr/what comes beyond the standard models xviii.html
Večino predavanj najde bralec na spletni strani delavnice na
http://bsm.fmf.uni-lj.si/.
Naj zaključimo ta predgovor s prisrčno in toplo zahvalo vsem udeležencem,
prisotnim na Bledu osebno ali preko videokonferenc, za njihova predavanja in še
posebno za zelo plodne diskusije in odlično vzdušje.
Delavnica poteka v hiši, ki jo je Društvu matematikov, fizikov in astronomov
Slovenije zapustil v last slovenski matematik Josip Plemelj, udeležencem delavnic,
ki prihajajo iz različnih koncev sveta, dobro poznan po svojem delu v kompleksni
algebri.

Norma Mankoč Borštnik, Holger Bech Nielsen, Maxim Y. Khlopov,
(Organizacijski odbor)

Norma Mankoč Borštnik, Holger Bech Nielsen, Dragan Lukman,
(uredniki)

Ljubljana, grudna (decembra) 2015
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75005 Paris, France
and Albert Einstein Center, Institute for Theoretical Physics,
Bern University, Sidlerstrasse 5, 3012 Bern, Switzerland

Abstract. We describe the phenomenology of a model of supersymmetry breaking in
the presence of a tiny (tunable) positive cosmological constant. It utilises a single chiral
multiplet with a gauged shift symmetry, that can be identified with the string dilaton (or
an appropriate compactification modulus). The model is coupled to the MSSM, leading to
calculable soft supersymmetry breaking masses and a distinct low energy phenomenology
that allows to differentiate it from other models of supersymmetry breaking and mediation
mechanisms.

Povzetek. Avtor obravnava lastnosti modela za zlom supersimetrije, ko majhno pozitivno
kozmološko konstanto prilagaja fenomenološkim lastnostim. Obravnava primer kiralnega
multipleta, ko postane umeritvena simetrija dilatacijska simetrija strune (uporabiti pa je
mogoče tudi kak drug model kompaktifikacije). Model poveže s standardnim modelom
z minimalno supersimetrijo, kar omogoči izračun mas pri mehki zlomitvi supersimetrije.
Model uspešno opiše fenomenološke lastnosti polj, kar ga loči od ostalih modelov za
zlomitev supersimetrije.

1.1 Introduction

If String Theory is a fundamental theory of Nature and not just a tool for studying
systems with strongly coupled dynamics, it should be able to describe at the
same time particle physics and cosmology, which are phenomena that involve
very different scales from the microscopic four-dimensional (4d) quantum gravity
length of 10−33 cm to large macroscopic distances of the size of the observable
Universe ∼1028 cm spanned a region of about 60 orders of magnitude. In particular,
besides the 4d Planck mass, there are three very different scales with very different
physics corresponding to the electroweak, dark energy and inflation. These scales
might be related via the scale of the underlying fundamental theory, such as string
theory, or they might be independent in the sense that their origin could be based
on different and independent dynamics. An example of the former constrained
and more predictive possibility is provided by TeV strings with a fundamental
scale at low energies due for instance to large extra dimensions transverse to a
? E-mail: ignatios.antoniadis@polytechnique.edu
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2 I. Antoniadis

four-dimensional braneworld forming our Universe [1]. In this case, the 4d Planck
mass is emergent from the fundamental string scale and inflation should also
happen around the same scale [2].

Here, we will adopt the second more conservative approach, assuming that all
three scales have an independent dynamical origin. Moreover, we will assume the
presence of low energy supersymmetry that allows for an elegant solution of the
mass hierarchy problem, a unification of fundamental forces as indicated by low
energy data and a natural dark matter candidate due to an unbroken R-parity. The
assumption of independent scales implies that supersymmetry breaking should
be realized in a metastable de Sitter vacuum with an infinitesimally small (tunable)
cosmological constant independent of the supersymmetry breaking scale that
should be in the TeV region. In a recent work [3], we studied a simple N = 1

supergravity model having this property and motivated by string theory. Besides
the gravity multiplet, the minimal field content consists of a chiral multiplet with a
shift symmetry promoted to a gauged R-symmetry using a vector multiplet. In the
string theory context, the chiral multiplet can be identified with the string dilaton
(or an appropriate compactification modulus) and the shift symmetry associated
to the gauge invariance of a two-index antisymmetric tensor that can be dualized
to a (pseudo)scalar. The shift symmetry fixes the form of the superpotential and
the gauging allows for the presence of a Fayet-Iliopoulos (FI) term, leading to a
supergravity action with two independent parameters that can be tuned so that
the scalar potential possesses a metastable de Sitter minimum with a tiny vacuum
energy (essentially the relative strength between the F- and D-term contributions).
A third parameter fixes the Vacuum Expectation Value (VEV) of the string dilaton
at the desired (phenomenologically) weak coupling regime. An important con-
sistency constraint of our model is anomaly cancellation which has been studied
in [5] and implies the existence of additional charged fields under the gauged
R-symmetry.

In a more recent work [6], we analyzed a small variation of this model which
is manifestly anomaly free without additional charged fields and allows to couple
in a straight forward way a visible sector containing the minimal supersymmetric
extension of the Standard Model (MSSM) and studied the mediation of super-
symmetry breaking and its phenomenological consequences. It turns out that an
additional ‘hidden sector’ field z is needed to be added for the matter soft scalar
masses to be non-tachyonic; although this field participates in the supersymmetry
breaking and is similar to the so-called Polonyi field, it does not modify the main
properties of the metastable de Sitter (dS) vacuum. All soft scalar masses, as well
as trilinear A-terms, are generated at the tree level and are universal under the
assumption that matter kinetic terms are independent of the ‘Polonyi’ field, since
matter fields are neutral under the shift symmetry and supersymmetry breaking
is driven by a combination of the U(1) D-term and the dilaton and z-field F-term.
Alternatively, a way to avoid the tachyonic scalar masses without adding the extra
field z is to modify the matter kinetic terms by a dilaton dependent factor.

A main difference of the second analysis from the first work is that we use
a field representation in which the gauged shift symmetry corresponds to an
ordinary U(1) and not an R-symmetry. The two representations differ by a Kähler
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1 Aspects of String Phenomenology in Particle Physics and Cosmology 3

transformation that leaves the classical supergravity action invariant. However, at
the quantum level, there is a Green-Schwarz term generated that amounts an extra
dilaton dependent contribution to the gauge kinetic terms needed to cancel the
anomalies of the R-symmetry. This creates an apparent puzzle with the gaugino
masses that vanish in the first representation but not in the latter. The resolution
to the puzzle is based to the so called anomaly mediation contributions [7,8] that
explain precisely the above apparent discrepancy. It turns out that gaugino masses
are generated at the quantum level and are thus suppressed compared to the scalar
masses (and A-terms).

1.2 Conventions

Throughout this paper we use the conventions of [9]. A supergravity theory is
specified (up to Chern-Simons terms) by a Kähler potential K, a superpotential
W, and the gauge kinetic functions fAB(z). The chiral multiplets zα, χα are enu-
merated by the index α and the indices A,B indicate the different gauge groups.
Classically, a supergravity theory is invariant under Kähler tranformations, viz.

K(z, z̄) −→ K(z, z̄) + J(z) + J̄(z̄),
W(z) −→ e−κ

2J(z)W(z), (1.1)

where κ is the inverse of the reduced Planck mass, mp = κ−1 = 2.4 × 1015 TeV.
The gauge transformations of chiral multiplet scalars are given by holomorphic
Killing vectors, i.e. δzα = θAkαA(z), where θA is the gauge parameter of the gauge
group A. The Kähler potential and superpotential need not be invariant under this
gauge transformation, but can change by a Kähler transformation

δK = θA [rA(z) + r̄A(z̄)] , (1.2)

provided that the gauge transformation of the superpotential satisfies δW =

−θAκ2rA(z)W. One then has from δW =Wαδz
α

Wαk
α
A = −κ2rAW, (1.3)

whereWα = ∂αW and α labels the chiral multiplets. The supergravity theory can
then be described by a gauge invariant function

G = κ2K + log(κ6WW̄). (1.4)

The scalar potential is given by

V = VF + VD

VF = eκ
2K
(
−3κ2WW̄ +∇αWgαβ̄∇̄β̄W̄

)

VD =
1

2
(Ref)−1 AB PAPB, (1.5)

where W appears with its Kähler covariant derivative

∇αW = ∂αW(z) + κ2(∂αK)W(z). (1.6)
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The moment maps PA are given by

PA = i(kαA∂αK − rA). (1.7)

In this paper we will be concerned with theories having a gauged R-symmetry, for
which rA(z) is given by an imaginary constant rA(z) = iκ−2ξ. In this case, κ−2ξ is
a Fayet-Iliopoulos [10] constant parameter.

1.3 The model

The starting point is a chiral multiplet S and a vector multiplet associated with a
shift symmetry of the scalar component s of the chiral multiplet S

δs = −icθ , (1.8)

and a string-inspired Kähler potential of the form −p log(s+ s̄). The most general
superpotential is either a constant W = κ−3a or an exponential superpoten-
tial W = κ−3aebs (where a and b are constants). A constant superpotential is
(obviously) invariant under the shift symmetry, while an exponential superpo-
tential transforms as W → We−ibcθ, as in eq. (1.3). In this case the shift sym-
metry becomes a gauged R-symmetry and the scalar potential contains a Fayet-
Iliopoulos term. Note however that by performing a Kähler transformation (1.1)
with J = κ−2bs, the model can be recast into a constant superpotential at the cost
of introducing a linear term in the Kähler potential δK = b(s+ s̄). Even though in
this representation, the shift symmetry is not an R-symmetry, we will still refer
to it as U(1)R. The most general gauge kinetic function has a constant term and a
term linear in s, f(s) = δ+ βs.

To summarise,1

K(s, s̄) = −p log(s+ s̄) + b(s+ s̄),

W(s) = a,

f(s) = δ+ βs , (1.9)

where we have set the mass units κ = 1. The constants a and b together with
the constant c in eq. (1.8) can be tuned to allow for an infinitesimally small cos-
mological constant and a TeV gravitino mass. For b > 0, there always exists a
supersymmetric AdS (anti-de Sitter) vacuum at 〈s + s̄〉 = b/p, while for b = 0

(and p < 3) there is an AdS vacuum with broken supersymmetry. We therefore
focus on b < 0. In the context of string theory, S can be identified with a compact-
ification modulus or the universal dilaton and (for negative b) the exponential
superpotential may be generated by non-perturbative effects.

1 In superfields the shift symmetry (1.8) is given by δS = −icΛ, where Λ is the superfield
generalization of the gauge parameter. The gauge invariant Kähler potential is then
given by K(S, S̄) = −pκ−2 log(S + S̄ + cVR) + κ−2b(S + S̄ + cVR), where VR is the gauge
superfield of the shift symmetry.
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The scalar potential is given by:

V = VF + VD

VF = a2e
b
l lp−2

{
1

p
(pl− b)2 − 3l2

}
l = 1/(s+ s̄)

VD = c2
l

β+ 2δl
(pl− b)2 (1.10)

In the case where S is the string dilaton, VD can be identified as the contribution
of a magnetized D-brane, while VF for b = 0 and p = 2 coincides with the tree-
level dilaton potential obtained by considering string theory away its critical
dimension [11]. For p ≥ 3 the scalar potential V is positive and monotonically
decreasing, while for p < 3, its F-term part VF is unbounded from below when
s + s̄ → 0. On the other hand, the D-term part of the scalar potential VD is
positive and diverges when s+ s̄→ 0 and for various values for the parameters
an (infinitesimally small) positive (local) minimum of the potential can be found.

If we restrict ourselves to integer p, tunability of the vacuum energy restricts
p = 2 or p = 1when f(s) = s, or p = 1when the gauge kinetic function is constant.
For p = 2 and f(s) = s, the minimization of V yields:

b/l = α ≈ −0.183268 , p = 2 (1.11)
a2

bc2
= A2(α) + B2(α)

Λ

b3c2
≈ −50.6602+O(Λ), (1.12)

where Λ is the value of V at the minimum (i.e. the cosmological constant), α is
the negative root of the polynomial −x5 + 7x4 − 10x3 − 22x2 + 40x+ 8 compatible
with (1.12) for Λ = 0 and A2(α), B2(α) are given by

A2(α) = 2e
−α −4+ 4α− α2

α3 − 4α2 − 2α
; B2(α) = 2

α2e−α

α2 − 4α− 2
(1.13)

It follows that by carefully tuning a and c, Λ can be made positive and arbitrarily
small independently of the supersymmetry breaking scale. A plot of the scalar
potential for certain values of the parameters is shown in figure 1.1.

At the minimum of the scalar potential, for nonzero a and b < 0, supersym-
metry is broken by expectation values of both an F and D-term. Indeed the F-term
and D-term contributions to the scalar potential are

VF|s+s̄=α
b
=
1

2
a2b2eα

(
1−

2

α

)2
> 0,

VD|s+s̄=α
b
=
b3c2

α

(
1−

2

α

)2
> 0 . (1.14)

The gravitino mass term is given by

(m3/2)
2 = eG =

a2b2

α2
eα . (1.15)

Due to the Stueckelberg coupling, the imaginary part of s (the axion) gets eaten by
the gauge field, which acquires a mass. On the other hand, the Goldstino, which is
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Fig. 1.1. A plot of the scalar potential for p = 2, b = −1, δ = 0, β = 1 and a given by
equation (1.12) for c = 1 (black curve) and c = 0.7 (red curve).

a linear combination of the fermion of the chiral multiplet χ and the gaugino λ gets
eaten by the gravitino. As a result, the physical spectrum of the theory consists
(besides the graviton) of a massive scalar, namely the dilaton, a Majorana fermion,
a massive gauge field and a massive gravitino. All the masses are of the same
order of magnitude as the gravitino mass, proportional to the same constant a (or
c related by eq. (1.12) where b is fixed by eq. (1.11)), which is a free parameter of
the model. Thus, they vanish in the same way in the supersymmetric limit a→ 0.

The local dS minimum is metastable since it can tunnel to the supersymmetric
ground state at infinity in the s-field space (zero coupling). It turns out however
that it is extremely long lived for realistic perturbative values of the gauge coupling
l ' 0.02 and TeV gravitino mass and, thus, practically stable; its decay rate is [5]:

Γ ∼ e−B with B ≈ 10300 . (1.16)

1.4 Coupling a visible sector

The guideline to construct a realistic model keeping the properties of the toy
model described above is to assume that matter fields are invariant under the
shift symmetry (1.8) and do not participate in the supersymmetry breaking. In
the simplest case of a canonical Kähler potential, MSSM-like fields φ can then be
added as:

K = −κ−2 log(s+ s̄) + κ−2b(s+ s̄) +
∑

ϕϕ̄,

W = κ−3a+WMSSM, (1.17)

where WMSSM(φ) is the usual MSSM superpotential. The squared soft scalar
masses of such a model can be shown to be positive and close to the square of
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the gravitino mass (TeV2). On the other hand, for a gauge kinetic function with a
linear term in s, β 6= 0 in eq. (1.9), the Lagrangian is not invariant under the shift
symmetry

δL = −θ
βc

8
εµνρσFµνFρσ. (1.18)

and its variation should be canceled. As explained in Ref. [5], in the ’frame’ with an
exponential superpotential the R-charges of the fermions in the model can give an
anomalous contribution to the Lagrangian. In this case the ‘Green-Schwarz’ term
ImsFF̃ can cancel quantum anomalies. However as shown in [5], with the minimal
MSSM spectrum, the presence of this term requires the existence of additional
fields in the theory charged under the shift symmetry.

Instead, to avoid the discussion of anomalies, we focus on models with a
constant gauge kinetic function. In this case the only (integer) possibility2 is p = 1.
The scalar potential is given by (1.10) with β = 0, δ = p = 1. The minimization
yields to equations similar to (1.11), (1.12) and (1.13) with a different value of α
and functions A1 and B1 given by:

b〈s+ s̄〉 = α ≈ −0.233153

bc2

a2
= A1(α) + B1(α)

Λ

a2b
≈ −0.359291+O(Λ) (1.19)

A1(α) = 2e
αα
3− (α− 1)2

(α− 1)2
, B1(α) =

2α2

(α− 1)2
,

whereα is the negative root of −3+(α−1)2(2−α2/2) = 0 close to −0.23, compatible
with the second constraint for Λ = 0. However, this model suffers from tachyonic
soft masses when it is coupled to the MSSM, as in (1.17). To circumvent this
problem, one can add an extra hidden sector field which contributes to (F-term)
supersymmetry breaking. Alternatively, the problem of tachyonic soft masses can
also be solved if one allows for a non-canonical Kähler potential in the visible
sector, which gives an additional contribution to the masses through the D-term.

Let us discuss first the addition of an extra hidden sector field z (similar to
the so-called Polonyi field [12]). The Kähler potential, superpotential and gauge
kinetic function are given by

K = −κ−2 log(s+ s̄) + κ−2b(s+ s̄) + zz̄+
∑

ϕϕ̄ ,

W = κ−3a(1+ γκz) +WMSSM(ϕ) ,

f(s) = 1 , fA = 1/g2A , (1.20)

where A labels the Standard Model gauge group factors and γ is an additional
constant parameter. The existence of a tunable dS vacuum with supersymmetry

2 If f(s) is constant, the leading contribution to VD when s + s̄ → 0 is proportional to
1/(s + s̄)2, while the leading contribution to VF is proportional to 1/(s + s̄)p. It follows
that p < 2; if p > 2, the potential is unbounded from below, while if p = 2, the potential is
either positive and monotonically decreasing or unbounded from below when s+ s̄→ 0

depending on the values of the parameters.
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breaking and non-tachyonic scalar masses implies that γ must be in a narrow
region:

0.5 <∼ γ <∼ 1.7 . (1.21)

In the above range of γ the main properties of the toy model described in the
previous section remain, while Rez and its F-auxiliary component acquire non
vanishing VEVs. All MSSM soft scalar masses are then equal to a universal value
m0 of the order of the gravitino mass, while the B0 Higgs mixing parameter is
also of the same order:

m20 = m23/2

[
(σs + 1) +

(γ+ t+ γt)2

(1+ γt)2

]
,

A0 = m3/2

[
(σs + 3) + t

(γ+ t+ γt2)

1+ γt

]
,

B0 = m3/2

[
(σs + 2) + t

(γ+ t+ γt2)

(1+ γt)

]
, (1.22)

where σs = −3+ (α− 1)2 with α and t ≡ 〈Re z〉 determined by the minimization
conditions as functions of γ. Also, A0 is the soft trilinear scalar coupling in the
standard notation, satisfying the relation [13]

A0 = B0 +m3/2 . (1.23)

On the other hand, the gaugino masses appear to vanish at tree-level since
the gauge kinetic functions are constants (see (1.20)). However, as mentioned in
Section 1.3, this model is classically equivalent to the theory3

K = −κ−2 log(s+ s̄) + zz̄+
∑
α

ϕϕ̄,

W =
(
κ−3a(1+ z) +WMSSM(ϕ)

)
ebs , (1.24)

obtained by applying a Kähler transformation (1.1) with J = −κ−2bs. All classical
results remain the same, such as the expressions for the scalar potential and the
soft scalar masses (1.22), but now the shift symmetry (1.8) of s became a gauged
R-symmetry since the superpotential transforms as W −→ We−ibcθ. Therefore,
all fermions (including the gauginos and the gravitino) transform4 as well under
this U(1)R, leading to cubic U(1)3R and mixed U(1) × GMSSM anomalies. These
anomalies are cancelled by a Green-Schwarz (GS) counter term that arises from a
quantum correction to the gauge kinetic functions:

fA(s) = 1/g
2
A + βAs with βA =

b

8π2
(TRA − TGA) , (1.25)

where TG is the Dynkin index of the adjoint representation, normalized to N
for SU(N), and TR is the Dynkin index associated with the representation R of

3 This statement is only true for supergravity theories with a non-vanishing superpotential
where everything can be defined in terms of a gauge invariant function G = κ2K +

log(κ6WW̄) [14].
4 The chiral fermions, the gauginos and the gravitino carry a charge bc/2, −bc/2 and
−bc/2 respectively.
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dimension dR, equal to 1/2 for the SU(N) fundamental. An implicit sum over
all matter representations is understood. It follows that gaugino masses are non-
vanishing in this representation, creating a puzzle on the quantum equivalence
of the two classically equivalent representations. The answer to this puzzle is
based on the fact that gaugino masses are present in both representations and are
generated at one-loop level by an effect called Anomaly Mediation [7,8]. Indeed, it
has been argued that gaugino masses receive a one-loop contribution due to the
super-Weyl-Kähler and sigma-model anomalies, given by [8]:

M1/2=−
g2

16π2

[
(3TG−TR)m3/2+(TG−TR)KαFα+2

TR

dR
(log detK|R ′′),αFα

]

(1.26)
The expectation value of the auxiliary field Fα, evaluated in the Einstein frame is
given by

Fα = −eκ
2K/2gαβ̄∇̄β̄W̄. (1.27)

Clearly, for the Kähler potential (1.20) or (1.24) the last term in eq. (1.26) vanishes.
However, the second term survives due to the presence of Planck scale VEVs
for the hidden sector fields s and z. Since the Kähler potential between the two
representations differs by a linear term b(s + s̄), the contribution of the second
term in eq. (1.26) differs by a factor

δmA =
g2A
16π2

(TG − TR)be
κ2K/2gαβ̄∇̄β̄W̄, (1.28)

which exactly coincides with the ‘direct’ contribution to the gaugino masses due to
the field dependent gauge kinetic function (1.25) (taking into account a rescaling
proportional to g2A due to the non-canonical kinetic terms).

We conclude that even though the models (1.20) and (1.24) differ by a (classi-
cal) Kähler transformation, they generate the same gaugino masses at one-loop.
While the one-loop gaugino masses for the model (1.20) are generated entirely by
eq. (1.26), the gaugino masses for the model (1.24) after a Kähler transformation
have a contribution from eq. (1.26) as well as from a field dependent gauge kinetic
term whose presence is necessary to cancel the mixed U(1)R ×G anomalies due to
the fact that the extra U(1) has become an R-symmetry giving an R-charge to all
fermions in the theory. Using (1.26), one finds:

M1/2 = −
g2

16π2
m3/2

[
(3TG − TR) − (TG − TR)

(
(α− 1)2 + t

γ+ t+ γt2

1+ γt

)]
.

(1.29)
For U(1)Y we have TG = 0 and TR = 11, for SU(2) we have TG = 2 and TR = 7,
and for SU(3) we have TG = 3 and TR = 6, such that for the different gaugino
masses this gives (in a self-explanatory notation):

M1 = 11
g2Y
16π2

m3/2

[
1− (α− 1)2 −

t(γ+ t+ γt)

1+ γt

]
,

M2 =
g22
16π2

m3/2

[
1− 5(α− 1)2 − 5

t(γ+ t+ γt2)

1+ γt

]
,

M3 = −3
g23
16π2

m3/2

[
1+ (α− 1)2 +

t(γ+ t+ γt2)

1+ γt

]
. (1.30)
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1.5 Phenomenology

The results for the soft terms calculated in the previous section, evaluated for
different values of the parameter γ are summarised in Table 1.1. For every γ,
the corresponding t and α are calculated by imposing a vanishing cosmological
constant at the minimum of the potential. The scalar soft masses and trilinear
terms are then evaluated by eqs. (1.22) and the gaugino masses by eqs. (1.30). Note
that the relation (1.23) is valid for all γ. We therefore do not list the parameter B0.

γ t α m0 A0 M1 M2 M3 tanβ tanβ
µ>0 µ<0

0.6 0.446 -0.175 0.475 1.791 0.017 0.026 0.027
1 0.409 -0.134 0.719 1.719 0.015 0.025 0.026
1.1 0.386 -0.120 0.772 1.701 0.015 0.024 0.026 46 29
1.4 0.390 -0.068 0.905 1.646 0.014 0.023 0.026 40 23
1.7 0.414 -0.002 0.998 1.588 0.013 0.022 0.025 36 19

Table 1.1. The soft terms (in terms ofm3/2) for various values of γ. If a solution to the RGE
exists, the value of tanβ is shown in the last columns for µ > 0 and µ < 0 respectively.

In most phenomenological studies, B0 is substituted for tanβ, the ratio be-
tween the two Higgs VEVs, as an input parameter for the renormalization group
equations (RGE) that determine the low energy spectrum of the theory. Since B0
is not a free parameter in our theory, but is fixed by eq. (1.23), this corresponds
to a definite value of tanβ. For more details see [15] (and references therein). The
corresponding tanβ for a few particular choices for γ are listed in the last two
columns of table 1.1 for µ > 0 and µ < 0 respectively. No solutions were found for
γ . 1.1, for both signs of µ. The lighest supersymmetric particle (LSP) is given by
the lightest neutralino and sinceM1 < M2 (see table 1.1) the lightest neutralino
is mostly Bino-like, in contrast with a typical mAMSB (minimal anomaly media-
tion supersymmetry breaking) scenario, where the lightest neutralino is mostly
Wino-like [16].

To get a lower bound on the stop mass, the sparticle spectrum is plotted in
Figure 1.2 as a function of the gravitino mass for γ = 1.1 and µ > 0 (for µ < 0 the
bound is higher). The experimental limit on the gluino mass forcesm3/2 & 15 TeV.
In this limit the stop mass can be as low as 2 TeV. To conclude, the lower end mass
spectrum consists of (very) light charginos (with a lightest chargino between 250
and 800 GeV) and neutralinos, with a mostly Bino-like neutralino as LSP (80− 230
GeV), which would distinguish this model from the mAMSB where the LSP is
mostly Wino-like. These upper limits on the LSP and the lightest chargino imply
that this model could in principle be excluded in the next LHC run. In order for
the gluino to escape experimental bounds, the lower limit on the gravitino mass is
about 15 TeV. The gluino mass is then between 1-3 TeV. This however forces the
squark masses to be very high (10− 35 TeV), with the exception of the stop mass
which can be relatively light (2− 15 TeV).



i
i

“proc15” — 2015/12/9 — 10:51 — page 11 — #27 i
i

i
i

i
i

1 Aspects of String Phenomenology in Particle Physics and Cosmology 11

20 25 30 35 40 45
m32 HTeVL

5

10

15

20

25

30

35
TeV

Fig. 1.2. The masses (in TeV) of the sbottom (yellow), stop (black), gluino (red), lightest
chargino (green) and lightest neutralino (blue) as a function of m3/2 for γ = 1.1 and for
µ > 0. No solutions to the RGE were found when m3/2 & 45 TeV. The lower bound
corresponds to a gluino mass of 1 TeV.

1.6 Non-canonical Kähler potential for the visible sector

As mentioned already in Section 4, an alternative way to avoid tachyonic soft
scalar masses for the MSSM fields in the model (1.17), instead of adding the extra
Palonyi-type field z in the hidden sector, is by introducing non-canonical kinetic
terms for the MSSM fields, such as:

K = −κ−2 log(s+ s̄) + κ−2b(s+ s̄) + (s+ s̄)−ν
∑

ϕϕ̄,

W = κ−3a+WMSSM,

f(s) = 1, fA(s) = 1/g
2
A , (1.31)

where ν is an additional parameter of the theory, with ν = 1 corresponding to
the leading term in the Taylor expansion of − log(s + s̄ − ϕϕ̄). Since the visible
sector fields appear only in the combination ϕϕ̄, their VEVs vanish provided
that the scalar soft masses squared are positive. Moreover, for vanishing visible
sector VEVs, the scalar potential and is minimization remains the same as in
eqs. (refbsalpha). Therefore, the non-canonical Kähler potential does not change
the fact that the F-term contribution to the soft scalar masses squared is negative.
On the other hand, the visible fields enter in the D-term scalar potential through
the derivative of the Kähler potential with respect to s. Even though this has no
effect on the ground state of the potential, the ϕ-dependence of the D-term scalar
potential does result in an extra contribution to the scalar masses squared which
become positive

ν > −
eα(σs + 1)α

A(α)(1− α)
≈ 2.6 . (1.32)



i
i

“proc15” — 2015/12/9 — 10:51 — page 12 — #28 i
i

i
i

i
i

12 I. Antoniadis

The soft MSSM scalar masses and trilinear couplings in this model are:

m20 = κ2a2
(
b

α

)(
eα(σs + 1) + ν

A(α)

α
(1− α)

)

A0 = m3/2(s+ s̄)
ν/2 (σs + 3) (1.33)

B0 = m3/2(s+ s̄)
ν/2 (σs + 2)

where σs is defined as in (1.22), eq. (1.20) has been used to relate the constants a
and c, and corrections due to a small cosmological constant have been neglected.
A field redefinition due to a non-canonical kinetic term gϕϕ̄ = (s + s̄)−ν is also
taken into account. The main phenomenological properties of this model are not
expected to be different from the one we analyzed in section 1.5 with the parameter
ν replacing γ. Gaugino masses are still generated at one-loop level while mSUGRA
applies to the soft scalar sector. We therefore do not repeat the phenomenological
analysis for this model.
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Abstract. The DAMA/LIBRA experiment consists of ∼ 250 kg of highly radio-pure NaI(Tl)
and it is in data taking in the underground Laboratory of Gran Sasso (LNGS). The data
collected in its first 7 annual cycles, corresponding to the so called DAMA/LIBRA–phase1,
have been released. Considering also of the former DAMA/NaI experiment (their cumula-
tive exposure is 1.33 ton× yr), the data of 14 independent annual cycles have been analysed
to exploit the model-independent Dark Matter (DM) annual modulation signature. An
annual modulation effect has been observed at 9.3 σ C.L., giving evidence for the presence
of DM particles in the galactic halo. No systematic or side reaction able to mimic the ex-
ploited DM signature has been found or suggested by anyone. At present DAMA/LIBRA
is running after an upgrade of the experiment in its phase2 with increased sensitivity. The
model independent result of DAMA is compatible with a wide set of scenarios regarding
the nature of the DM candidate and related astrophysical, nuclear and particle Physics.
Here, after briefly reporting the DAMA model independent results, the recent analysis in
terms of Mirror Dark Matter candidate will be mentioned.

Povzetek. Experiment DAMA/LIBRA, ki je postavljen v podzemeljskem laboratoriju Gran
Sasso (LNGS), uporablja ∼ 250 kg NaI(Tl) z visoko čistočo. Posebej predstavijo analizo
meritev Faze I iz zadnjih sedmih let, tem meritvam pa dodajo tudi meritve sedmih let pred-
hodnega experimenta DAMA/NaI (s kumulativno ekspozicijo 1.33 ton × let). Letno modu-
lacijo sipanih delcev potrdijo z zanesljivostjo 9.3 σ, kar je, ob sistematičnem iskanju drugih
vzrokov za izmerjeno modulacijo, mogoče pripisati samo prisotnosti delcev temne snovi v

† also Dip. di Ingegneria Civile e Ingegneria Informatica, Università di Roma “Tor Vergata”,
I-00133 Rome, Italy
‡ also University of Jing Gangshan, Jiangxi, China
? Talk delivered by R. Cerulli
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galaktičnem haloju. Zdaj teče posodobljen experiment, faza 2, s povečano občutljivostjo
merjenja ozadja. Rezultate poskusa je mogoče razložiti z različimi modeli, ki poskušajo
pojasniti temno snov v vesolju. Omenijo možnost, da pojasni prisotnost temne snovi delec,
ki pripada zrcalni temni snovi.

2.1 Introduction

The DAMA project is based on the development and use of low background
scintillators. In particular, the second generation DAMA/LIBRA apparatus [1–
15], as the former DAMA/NaI (see for example Refs. [8,16,17] and references
therein), is further investigating the presence of DM particles in the galactic halo
by exploiting the model independent DM annual modulation signature [18]. At
present DAMA/LIBRA is running in its phase2 with increased sensitivity.

The signature exploited by DAMA/LIBRA (the model independent DM
annual modulation) is a consequence of the Earth’s revolution around the Sun;
in fact, the Earth should be crossed by a larger flux of DM particles around ' 2
June (when the projection of the Earth orbital velocity on the Sun velocity with
respect to the Galaxy is maximum) and by a smaller one around ' 2 December
(when the two velocities are opposite). This DM annual modulation signature is
very effective since the effect induced by DM particles must simultaneously satisfy
many requirements: the rate must contain a component modulated according to
a cosine function (1) with one year period (2) and a phase peaked roughly ' 2
June (3); this modulation must only be found in a well-defined low energy range,
where DM particle induced events can be present (4); it must apply only to those
events in which just one detector of many actually “fires” (single-hit events), since
the DM particle multi-interaction probability is negligible (5); the modulation
amplitude in the region of maximal sensitivity must be ' 7% for usually adopted
halo distributions (6), but it can be larger (even up to ' 30%) in case of some
possible scenarios. Thus this signature is model independent and it allows the test
a large range of cross sections and halo densities. This DM signature might be
mimicked only by systematic effects or side reactions able to account for the whole
observed modulation amplitude and to simultaneously satisfy all the requirements
given above. No one is available [1–4,7,8,12,19,16,17,13].

2.2 The annual modulation results

The total exposure of DAMA/LIBRA–phase1 is 1.04 ton × yr in 7 annual cycles;
when including also the data collected by the first generation DAMA/NaI experi-
ment, the exposure is 1.33 ton × yr, corresponding to 14 annual cycles [2–4,8].

To investigate the presence of an annual modulation in the data many anal-
yses have been carried out. Here, as example, the time behaviour of the exper-
imental residual rate of the single-hit scintillation events for DAMA/NaI and
DAMA/LIBRA–phase1 in the (2–6) keV energy interval is plotted in Fig. 2.1. The
χ2 test excludes the hypothesis of absence of modulation in the data (P-value =
2.2 × 10−3). When fitting the single-hit residual rate of DAMA/LIBRA–phase1 to-
gether with the DAMA/NaI ones, with the function:A cosω(t− t0), considering a
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Fig. 2.1. Experimental residual rate of the single-hit scintillation events measured by
DAMA/NaI and DAMA/LIBRA–phase1 in the (2–6) keV energy interval as a function of
the time. The data points present the experimental errors as vertical bars and the associated
time bin width as horizontal bars. The superimposed curves are the cosinusoidal functions
expected for a Dark Matter signal (period 1 yr and phase June 2nd) and modulation am-
plitudes, A, as obtained by the fit on the data. The dashed vertical lines correspond to the
maximum expected for the DM signal (June 2nd), while the dotted vertical lines correspond
to the minimum.

period T = 2π
ω

= 1 yr and a phase t0 = 152.5 day (June 2nd) as expected by the DM
annual modulation signature, the following modulation amplitude is obtained:
A = (0.0110± 0.0012) cpd/kg/keV, corresponding to 9.2 σ C.L.. When the period,
and the phase are kept free in the fitting procedure, the modulation amplitude
is (0.0112± 0.0012) cpd/kg/keV (9.3 σ C.L.), the period T = (0.998± 0.002) year
and the phase t0 = (144 ± 7) day, values well in agreement with expectations
for a DM annual modulation signal. In particular, the phase is consistent with
about June 2nd and is fully consistent with the value independently determined
by Maximum Likelihood analysis [4]1. The run test and the χ2 test on the data
have shown that the modulation amplitudes singularly calculated for each annual
cycle of DAMA/NaI and DAMA/LIBRA–phase1 are normally fluctuating around
their best fit values [2–4].

We have also performed a power spectrum analysis of the single-hit residuals
of DAMA/LIBRA–phase1 and DAMA/NaI [8], obtaining a clear principal mode
in the (2–6) keV energy interval at a frequency of 2.737× 10−3 d−1, corresponding
to a period of ' 1 year, while only aliasing peaks are present in other energy
intervals.

Absence of any other significant background modulation in the energy spec-
trum has been verified in energy regions not of interest for DM [4]; it is worth
noting that the obtained results account for whatever kind of background and,
in addition, no background process able to mimic the DM annual modulation
signature (that is able to simultaneously satisfy all the peculiarities of the signature
and to account for the whole measured modulation amplitude) is available (see
also discussions e.g. in Refs. [1–4,7,8,12,13]).

1 For completeness, we recall that a slight energy dependence of the phase could be
expected in case of possible contributions of non-thermalized DM components to the
galactic halo, such as e.g. the SagDEG stream [20–22] and the caustics [23].
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A further relevant investigation in the DAMA/LIBRA–phase1 data has been
performed by applying the same hardware and software procedures, used to
acquire and to analyse the single-hit residual rate, to the multiple-hit one. In fact,
since the probability that a DM particle interacts in more than one detector is
negligible, a DM signal can be present just in the single-hit residual rate. Thus,
the comparison of the results of the single-hit events with those of the multiple-hit
ones corresponds practically to compare between them the cases of DM parti-
cles beam-on and beam-off. This procedure also allows an additional test of the
background behaviour in the same energy interval where the positive effect is
observed. In particular, the residual rates of the single-hit events measured over
the DAMA/LIBRA–phase1 annual cycles are reported in Ref. [4] together with
the residual rates of the multiple-hit events, in the (2–6) keV energy interval. A
clear modulation is present in the single-hit events, while the fitted modulation
amplitude of the multiple-hit residual rate in the same energy region (2–6) keV is
well compatible with zero: −(0.0005± 0.0004) cpd/kg/keV. Thus, again evidence
of annual modulation with the features required by the DM annual modulation
signature is present in the single-hit residuals (events class to which the DM particle
induced events belong), while it is absent in the multiple-hit residual rate (event
class to which only background events belong). Since the same identical hardware
and the same identical software procedures have been used to analyse the two
classes of events, the obtained result offers an additional strong support for the
presence of a DM particle component in the galactic halo.

By performing a maximum-likelihood analysis of the single-hit scintillation
events, it is possible to extract from the data the modulation amplitude, Sm, as a
function of the energy considering T =1 yr and t0 = 152.5 day. Again the results
have shown that positive signal is present in the (2–6) keV energy interval, while
Sm values compatible with zero are present just above; for details see Ref. [4].
Moreover, as described in Refs. [2–4,8], the observed annual modulation effect is
well distributed in all the 25 detectors, the annual cycles and the energy bins at
95% C.L. Further performed analyses confirm that the evidence for the presence
of an annual modulation in the data satisfy all the requirements of a DM signal.

Sometimes naive statements were put forward as the fact that in nature
several phenomena may show some kind of periodicity. The point is whether they
might mimic the annual modulation signature in DAMA/LIBRA (and former
DAMA/NaI), i.e. whether they might be not only quantitatively able to account
for the observed modulation amplitude but also able to satisfy at the same time all
the requirements of the DM annual modulation signature. The same is also for side
reactions. A deep investigation is reported in Refs. [1–4] and references therein;
additional arguments can be found in Refs. [7,8,12,13]. No modulation has been
found in any possible source of systematics or side reactions; thus, cautious upper
limits on possible contributions to the DAMA/LIBRA measured modulation
amplitude have been obtained (see Refs. [2–4]). It is worth noting that they do
not quantitatively account for the measured modulation amplitudes, and also
are not able to simultaneously satisfy all the many requirements of the signature.
Similar analyses have also been performed for the DAMA/NaI data [16,17]. In
particular, in Ref. [13] a simple and intuitive way why the neutrons, the muons



i
i

“proc15” — 2015/12/9 — 10:51 — page 17 — #33 i
i

i
i

i
i

2 Results on DAMA/LIBRA-Phase1 and Perspectives of the Phase2 17

and the solar neutrinos cannot give any significant contribution to the DAMA
annual modulation results is outlined.

In conclusion, DAMA give model-independent evidence (at 9.3σ C.L. over 14
independent annual cycles) for the presence of DM particles in the galactic halo.

As regards comparisons, we recall that no direct model independent com-
parison is possible in the field when different target materials and/or approaches
are used; the same is for the strongly model dependent indirect searches. In par-
ticular, the DAMA model independent evidence is compatible with a wide set
of scenarios regarding the nature of the DM candidate and related astrophysical,
nuclear and particle Physics; for examples some given scenarios and parameters
are discussed e.g. in Refs. [2,8,16] and references therein. Further large literature is
available on the topics. In conclusion, both negative results and possible positive
hints reported in literature are compatible with the DAMA model-independent
DM annual modulation results in various scenarios considering also the existing
experimental and theoretical uncertainties.

Recently an investigation of possible diurnal effects in the single-hit low energy
scintillation events collected by DAMA/LIBRA–phase1 has been carried out [12].
In particular, a model-independent diurnal effect with the sidereal time is expected
for DM because of Earth rotation. At the present level of sensitivity the presence of
any significant diurnal variation and of diurnal time structures in the data can be
excluded for both the cases of solar and sidereal time; in particular, the DM diurnal
modulation amplitude expected, because of the Earth diurnal motion, on the basis
of the DAMA DM annual modulation results is below the present sensitivity [12].
It will be possible to investigate such a diurnal effect with adequate sensitivity
only when a much larger exposure will be available; moreover better sensitivities
can also be achieved by lowering the software energy threshold as in the presently
running DAMA/LIBRA–phase2.

For completeness we recall that recently we have performed also an analysis
considering the so called “Earth Shadow Effect” [14]. Other rare processes have
also been searched for by DAMA/LIBRA-phase1; see for details Refs. [9–11].

2.3 The case of asymmetric mirror matter

The model independent annual modulation effect observed by the DAMA ex-
periments can be related to a variety of interaction mechanisms of DM particles
with the detector materials (see for example Ref. [8]). Among all the many possi-
bilities recently the case where the signal is induced by mirror-type dark matter
candidates in some scenarios has been considered in collaboration with A. Addazi
and Z. Berezhiani (see Ref. [15] and references therein). Here we just recall some
arguments.

In the framework of asymmetric mirror matter, the DM origiates from hidden
(or shadow) gauge sectors which have particles and interaction content similar to
that of ordinary particles. Such a dark sector would consist of elementary leptons
(similar to our electron) and baryons (similar to our proton or neutron) composed
of shadow quarks which are confined by strong gauge interactions like in our
QCD. These two types of particles can be combined in atoms by electromagnetic
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forces mediated by dark photons. The stability of the dark proton is guaranteed by
the conservation law of the related baryon number, as the stability of our proton is
related to the conservation of the ordinary baryon number. On the other hand, the
cosmological abundance of DM in the Universe can be induced by the violation
of such baryon number in the early Universe which could produce dark baryon
asymmetry by mechanisms similar to those considered for the primordial baryo-
genesis in the observable sector. In this respect, such type of DM is also known as
asymmetric dark matter [15]. In the asymmetric mirror matter considered scheme,
it is assumed that the mirror parity is spontaneously broken and the electroweak
symmetry breaking scale v ′ in the mirror sector is much larger than that in our
Standard Model, v = 174 GeV. In this case, the mirror world becomes a heavier
and deformed copy of our world, with mirror particle masses scaled in different
ways with respect to the masses of the ordinary particles. Taking the mirror weak
scale e.g. of the order of 10 TeV, the mirror electron would become two orders of
magnitude heavier than our electron while the mirror nucleons p ′ and n ′ only
about 5 times heavier than the ordinary nucleons. Then dark matter would exist
in the form of mirror hydrogen composed of mirror proton and electron, with
mass of about 5 GeV which is a rather interesting mass range for dark matter
particles. Owing to the large mass of mirror electron, mirror atoms should be more
compact and tightly bound with respect to ordinary atoms. Asymmetric mirror
model can be considered as a natural benchmark for more generic types of atomic
dark matter with ad hoc chosen parameters.

Fig. 2.2. DAMA allowed intervals for the
√
fε parameter, obtained by marginalizing all the

models for each considered scenario as given in Ref. [15]. The overall range is also reported
[15].

The annual modulation observed by DAMA in the framework of asymmetric
mirror matter has been analysed in the light of the very interesting interaction
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portal which is kinetic mixing ε
2
FµνF ′µν of two massless states, ordinary photon

and mirror photon. This mixing mediates the mirror atom (that are very com-
pact objects) scattering off the ordinary target nuclei in the NaI(Tl) detectors at
DAMA/LIBRA set-up with the Rutherford-like cross sections.

Fig. 2.3. Allowed regions for the
√
fε parameter as function ofMA ′ , mirror hydrogen mass,

obtained by marginalizing all the models for each considered scenario. TheMA ′ interval
from few GeV up to 50 GeV is explored. These allowed intervals identify the

√
fε values

corresponding to C.L. larger than 5σ from the null hypothesis, that is
√
fε = 0. The allowed

regions corresponding to the five different scenarios are depicted in different hatching; the
black line is the overall boundary [15].

The data analysis in the Mirror DM model framework allows the determina-
tion of the

√
fε parameter (where f is the fraction of DM in the Galaxy in form of

mirror atoms and epsilon ). In the analysis several uncertainties on the astrophys-
ical, particle physics and nuclear physics models have been taken into account in
the calculation. For detailed discussion see [15]. In particular in the analysis five
scenarios have been considered depending on: i) the adopted quenching factors;
ii) either inclusion or not of the channeling effect; iii) either inclusion or not of the
Migdal effect. For each scenario the 138 halo models and the relative uncertainties
have been considered. To estimate the free parameter of the analysis (e.g.

√
fε

in the DM model) a comparison of the expectations of the mirror DM with the
experimental results has been performed considering a χ2 analysis [15].

In Fig. 2.2 the cumulative allowed intervals of the
√
fε parameter selected by

the DAMA data for the mentioned scenario are depicted; the overall allowed band
is also shown. The obtained values of the

√
fε parameter are well compatible with

cosmological bounds.
Finally, releasing the assumptionMA ′ ' 5mp, the allowed regions for the

√
fε

parameter as function of MA ′ , mirror hydrogen mass, obtained by marginalizing
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all the models for each considered scenario, are shown in Fig. 2.3 where the
MA ′ interval from few GeV up to 50 GeV is explored. The five scenarios are
reported with different hatching of the allowed regions; the black line is the overall
boundary.

In conclusion, the allowed values for
√
fε in the case of mirror hydrogen atom,

Z ′ = 1, ranges between 7.7× 10−10 to 1.1× 10−7. The values within this overall
range are well compatible with cosmological bounds.

2.4 DAMA/LIBRA–phase2 and perspectives

After a first upgrade of the DAMA/LIBRA set-up in 2008, a more important
upgrade has been performed at the end of 2010 when all the PMTs have been
replaced with new ones having higher Quantum Efficiency (Q.E.), realized with
a special dedicated development by HAMAMATSU co.. Details on the devel-
opments and on the reached performances are reported in Ref. [6] where the
feasibility to decrease the software energy threshold below 2 keV has also been
demonstrated.

DAMA/LIBRA–phase2 is continuously running in order: (1) to increase the
experimental sensitivity lowering the software energy threshold of the experiment;
(2) to improve the corollary investigation on the nature of the DM particle and
related astrophysical, nuclear and particle physics arguments; (3) to investigate
other signal features. This requires long and heavy full time dedicated work for
reliable collection and analysis of very large exposures. Another upgrade at the
end of 2012 was concluded: new-concept pre-amplifiers were installed. Further
improvements are planned.

Finally, other possibility to further increase the sensitivity of the set-up can
be considered; in particular, the use of high Q.E. and ultra-low background PMTs
directly coupled to the NaI(Tl) crystals is an interesting possibility. This possible
configuration can allow a further large improvement in the light collection and a
further lowering of the software energy threshold. Moreover, efforts towards a pos-
sible “general purpose” experiment with highly radiopure NaI(Tl) (DAMA/1ton)
having full sensitive mass of 1 ton (we already proposed in 1996 as a general
purpose set-up) have been continued in various aspects.
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Abstract. We discuss the case of correlators in CFT made of pure contact terms, without a
corresponding bare part. We show two examples. The first is provided by the conformal
limits of a free massive fermion theory in 3d. We show that the (conserved) current correla-
tors are in one-to-one correspondence with the terms of the 3d gauge CS action. The second
is the Pontryagin trace anomaly. The corresponding 3-point correlator is nonvanishing even
though the corresponding untraced correlator vanishes.

Povzetek. Avtorja obravnavata korelatorje v konformni teoriji polja, ki vsebujejo le kontak-
tne člene, brez ustreznih ’golih’ členov. Obravnavata dva primera. Prvi je konformna limita
teorije masivnih prostih fermionov v 3d. Pokažeta, da so korelatorji (ohranjenih) tokov v bi-
jekciji s členi Chern-Simonsove akcije v 3d. Drugi primer je Pontrjaginova sledna anomalija.
Ustrezni 3-točkovni korelator je neničelen, čeprav je pridruženi nesledni korelator enak nič.

3.1 Introduction

Correlators in conformal field theories can be formulated both in configuration
space and, via Fourier transform, in momentum space. In the first form they may
happen to be singular at coincident insertion points and in need to be regularized.
In coordinate space they are therefore simply distributions. In the simplest cases
such distrubutions have been studied and can be found in textbooks. But in general
the correlators of CFT are very complicate expressions and their regularization
has to be carried out from scratch. This can be done directly in configuration
space, in which case a well known procedure is the differential regularization. An
alternative, and often more accessible, technique consists in formulating the same
problem in momentum space via Fourier transform and proceeding to regularize
the Fourier transform of the relevant correlators. This procedure produces various
types of terms, which we refer to as non-local, partially local and local terms. Local
terms are represented by polynomials of the external momenta in momentum
space, and by delta functions and derivatives of delta functions in configuration
space. The unregularized correlators will be referred to as bare correlators; they are
ordinary regular functions at non-coincident points and are classified as non-local
in the previous classification. While regularizing the latter one usually produces

? Talk delivered by L. Bonora
?? bonora@sissa.it

??? blima@sissa.it
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not only local terms, but also intermediate ones, which are product of bare func-
tions and delta functions or derivatives thereof. These are referred to as partially
local.

¿From the above introduction one might be led to think that local terms
(i.e. polynomials of the external momenta, in momentum space representation)
can come only from regularizing bare correlators. This is not the case, there are
important cases of local correlators that do not have a bare counterpart. We can say
that they consist only of the quantum part. This is the main subject of this article.
We will discuss two examples. The first, in 3d, is the case of pure contact terms in
the parity-odd sector of the 2-point function of currents. There exist no bare terms
corresponding to them. An important implication of these contact terms is that
they give rise to a Chern-Simons term in the effective action.

The second example is that of the 3-point function of the energy-momentum
tensor in 4d, in which one of the entries is the trace of the em tensor. Classically,
the trace of the em tensor is zero in a Weyl invariant theory. At the quantum level
this fact becomes a set of Ward identities that relate n-point functions with one
insertion of the trace of the em tensor with (n − 1)-point functions. When the
theory possesses trace anomalies these Ward identities are complemented by a set
of contact terms which reproduces the anomalies. What we would like to stress
here is that such correlators containing one trace insertion can be nonvanishing
even if there is no bare correlator corresponding to it. This is what happens with
the Pontryagin trace anomaly. The latter is puzzling at first, but, in fact, when
properly understood, it would be surprising if it did not exist.

There are of course other examples, beside the two above ones. All these
examples are characterized by the fact that they break parity. We are not aware of
any example of parity-even pure contact correlators.

The paper is organized as follows. In the next section we introduce some basic
CFT formulas in momentum space. In section 3 we work out the 3d example of
pure contact term correlators and its connection with gauge CS. In section 4 we
review the 4d example, which corresponds to the Pontryagin trace anomaly. In
section 5 we add some new remarks concerning this anomaly.

3.2 Conformal invariance in momentum space

In this section we will lay down some introductory material on conformal in-
variance and conformal field theories, which will be needed in the sequel. The
conformal group in d dimension encompasses the Poincaré transformations, the
dilatation and the special conformal transformations (SCTs). The latter is

x ′µ =
xµ + bµx2

1+ 2b·x+ b2x2 = xµ + bµx2 − 2b·x xµ +O(b2)

for infinitesimal bµ. In this paper we will mostly consider the effects of conformal
invariance in momentum space. If we Fourier transform the generators of the
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conformal algebra we get (a tilde represents the transformed generator and ∂̃ = ∂
∂k

)

P̃µ = −kµ,

D̃ = i(d+ kµ∂̃µ),

L̃µν = i(kµ∂̃ν − kν∂̃µ),

K̃µ = 2d ∂̃µ + 2kν∂̃
ν∂̃µ − kµ�̃.

Notice that P̃µ is a multiplication operator and K̃µ is a quadratic differential
operator. The Leibniz rule does not hold for K̃µ and P̃µ with respect to the ordinary
product. However it does hold for the convolution product:

K̃µ(f̃ ? g̃) = (K̃µf̃) ? g̃+ f̃ ? (K̃µ g̃)

where (f̃ ? g̃)(k) =
∫
dp f(k− p)g(p). Nevertheless these generators form a closed

algebra

[D̃, P̃µ] = iP̃µ,

[D̃, K̃µ] = iK̃µ,

[K̃µ, K̃ν] = 0,

[K̃µ, P̃ν] = 2i(ηµνD̃− L̃µν),

[K̃λ, L̃µν] = i(ηλµK̃ν − ηλνK̃µ),

[P̃λ, L̃µν] = i(ηλµP̃ν − ηλνP̃µ),

[L̃µν, L̃λρ] = i(ηνλL̃µρ + ηµρL̃νλ − ηµλL̃νρ − ηνρL̃µλ.

One should be aware that they do not generate infinitesimal transformation in
momentum space. This notwithstanding, in momentum space we can write down
the conformal Ward identities that the correlators must satisfy, see [3]. As an
example, let us consider the SCT for the 2-point function of a current Jµ and
the energy-momentum tensor Tµν in d dimensions. For the 2-point function of
currents we have the special conformal Ward identity

Kκ〈Jµ(k)Jν(−k)〉 = (2(∆− d)∂̃κ − 2k·∂̃ ∂̃κ + kκ�̃)〈Jµ(k)Jν(−k)〉
+ 2(ηκµ∂̃

α − δακ ∂̃µ)〈Jα(k)Jν(−k)〉 = 0, (3.1)

while for the 2-point function of the energy-momentum tensor we have

Kκ〈Tµν(k)Jρσ(−k)〉 = (2(∆− d)∂̃κ − 2k·∂̃ ∂̃κ + kκ�̃)〈Tµν(k)Tρσ(−k)〉
+ 2(ηκµ∂̃

α − δακ ∂̃µ)〈Tαν(k)Tρσ(−k)〉+ 2(ηκν∂̃α − δακ ∂̃ν)〈Tµα(k)Tρσ(−k)〉 = 0.
(3.2)

3.3 2- and 3-point functions and CS effective action

The first example announced in the introduction is mostly pedagogical. It arises
from a very simple model, a free massive fermion model in 3d coupled to a gauge
field, see [14–16]. The action is

S =

∫
d3x

(
iψ̄γµDµψ−mψ̄ψ

)
, Dµ = ∂µ +Aµ (3.3)
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where Aµ = Aaµ(x)T
a and Ta are the generators of a gauge algebra in a given

representation determined by ψ. The generators are antihermitean, [Ta, Tb] =
fabcTc, with normalization tr(TaTb) = n δab.

The current

Jaµ(x) = ψ̄γµT
aψ (3.4)

is (classically) covariantly conserved on shell

(DJ)a = (∂µδac + fabcAbµ)Jcµ = 0 (3.5)

The generating functional of the connected Green functions is given by

W[A] =

∞∑
n=1

in+1

n!

∫ n∏
i=1

d3xiA
a1µ1(x1) . . . A

anµn(xn)〈0|T Ja1µ1(x1) . . . Janµn(xn)|0〉

(3.6)

The full 1-point function of Jaµ in the presence of the source Aaµ is

〈〈Jaµ(x)〉〉 =
δW[A]

δAaµ(x)
= −

∞∑
n=1

in

n!

∫ n∏
i=1

d3xiA
a1µ1(x1) . . . A

anµn(xn)

〈0|T Jaµ(x)Ja1µ1(x1) . . . Janµn(xn)|0〉 (3.7)

The 1-loop conservation is

(Dµ〈〈Jµ(x)〉〉)a = ∂µ〈〈Jaµ(x)〉〉+ fabcAbµ(x)〈〈Jµc(x)〉〉 = 0 (3.8)

if there are no anomalies. By deriving this relation with respect to Awe find the
implications of conservation for the 2-point and 3-point correlators

kµJ̃abµν(k) = 0 (3.9)

−iqµJ̃abcµνλ(k1, k2) + f
abdJ̃dcνλ(k2) + f

acdJ̃dbλν(k1) = 0 (3.10)

where q = k1+ k2 and J̃abµν(k) and J̃abcµνλ(k1, k2) are Fourier transform of the 2- and
3-point functions, respectively.

The Feynman rules are easily extracted from the action. The propagator is
i

/p−m
and the gauge-fermion-fermion vertex is simply γµTa, where µ, a are the

labels of Aaµ Our next task will be to calculate the odd-parity 2- and 3-point
correlators in this model and study their behaviour in the IR and UV limit.

3.3.1 The 2-point current correlator

The relevant diagram is the bubble one, with external momentum k. Its Fourier
transform is

J̃abµν(k) = −

∫
d3p

(2π)3
Tr
(
γµT

a 1

/p−m
γνT

b 1

/p− /k−m

)
= −2n δab (3.11)

·
∫
d3p

(2π)3
pν(p− k)µ − p·(p− k)ηµν + pµ(p− k)ν + imεµνσk

σ +m2ηµν
(p2 −m2)((p− k)2 −m2)
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Let us focus from now on on the odd-parity part. After a Wick rotation and
integration we get

J̃ab(odd)µν (k) =
n
2π
δabεµνσk

σ m

k
arctan

k

2m
(3.12)

where k =
√
k2. The conservation law (3.9) is readily seen to be satisfied.

We are interested in the IR and UV limits of this expression. To this end we
notice that k is the total energy E of the process. Therefore the IR and UV limit
correspond to m

E
→∞ and 0, respectively. Therefore near the IR (3.12) becomes

J̃ab(odd)µν (k) =
n
2π
δabεµνσk

σ

(
1

2
−
1

24

(
k

m

)2
+

1

160

(
k

m

)4
+ . . .

)
(3.13)

and near the UV

J̃ab(odd)µν (k) =
n
2π
δabεµνσk

σ

(
π

2

m

k
− 2

(m
k

)2
+
8

3

(m
k

)4
+ . . .

)
(3.14)

In particular in the two limits we have

J̃ab(odd)µν (k) =
n
2π
δabεµνσk

σ

{
1
2

IR
π
2
m
k

UV
(3.15)

We notice that the UV limit is actually vanishing. However we could consider a
model made ofN identical copies of free fermions coupled to the same gauge field.
Then the result (3.15) would be

J̃ab(odd)µν (k) =
nN
4
δabεµνσk

σm

k
(3.16)

In this case we can consider the scaling limit m
k
→ 0 and N → ∞ in such a way

that Nm
k

is fixed. Then the UV limit (3.16) becomes nonvanishing.
Before discussing the implications of the previous results let us consider also

the 3-current correlator.

3.3.2 The 3-point current correlator

The 3-point correlator for currents is given by the triangle diagram. The three
external momenta are q, k1, k2. q is ingoing, while k1, k2 are outgoing and, of
course, momentum conservation implies q = k1 + k2. The Fourier transform is

J̃1,abcµνλ (k1, k2) = i

∫
d3p

(2π)3
Tr
(
γµT

a 1

/p−m
γνT

b 1

/p− /k1 −m
γλT

c 1

/p− /q−m

)

(3.17)

to which we have to add the cross graph corresponding to the exchange b ↔
c, ν↔ λ, 1↔ 2.
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We will not go through all the calculation, which is rather more complicated
than in 2-point case. For instance, near the IR fixed point we obtain a series
expansion of the type

J̃
1,abc(odd)
µνλ (k1, k2) ≈ i

n
32π

∞∑
n=0

(
E

m

)2n
fabcĨ

(2n)
µνλ (k1, k2) (3.18)

and, in particular,

I
(0)
µνλ(k1, k2) = −6εµνλ (3.19)

Let us pause to comment on this result. We expect the current (3.4) to be
conserved also at the quantum level, because no anomaly is expected in this case.
This should be true also in the IR limit. It would seem that conservation, if any,
should hold order by order in the expansions we have considered in (3.18). In order
to check conservation we have to verify (3.10). Conservation has a contribution
from the 2-point function, so the LHS of equation (3.10) reads

−
3

16π
nfabcqµεµνλ +

1

4π
fabcενλσk

σ
2 +

1

4π
fabcενλσk

σ
1 6= 0. (3.20)

Conservation is violated unless we add to I(0)µνλ(k1, k2) a term −2εµνλ. In order to
understand what is at stake here let us turn to the Chern-Simons action for the
gauge field A in 3d.

3.3.3 The CS action

The CS action for the gauge field A is

CS =
κ

4π

∫
d3xTr

(
A∧ dA+

2

3
A∧A∧A

)
(3.21)

=
nκ
4π

∫
d3xεµνλ

(
Aaµ∂νA

a
λ +

1

3
fabcAaµA

b
νA

c
λ

)

Now let us return to the 2- and 3-point functions obtained above. The Fourier
anti-transform of the 2-point function ∼ εµνσk

σ is

F−1[εµνσk
σ](x) = iεµνσ∂

σδ(x) (3.22)

The Fourier anti-transform of the 3-point function ∼ εµνλ is

F−1[εµνσ](x, y, z)

=

∫
d3q

(2π)3
e−iqx

∫
d3k1

(2π)3
e−ik1y

∫
d3k2

(2π)3
eik2zδ(q− k1 − k2)εµνλ

=

∫
d3k1

(2π)3

∫
d3k2

(2π)3
eik1(y−x)eik2(y−z)εµνλ = δ(y− x)δ(z− x)εµνλ (3.23)

Inserting this into the functional generatorW[A] and integrating with respect to
space time we obtain the two terms of the action (3.21). Therefore if we add to
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I
(0)
µνλ(k1, k2) a term −2εµνλ the effective action of our model in the IR gives back

the CS action with coupling κ = 1.
This corresponds to correcting the effective action by adding a counterterm

−2

∫
dxεµνλfabcAaµA

b
νA

c
λ (3.24)

This counterterm simultaneously guarantees conservation, see (3.20), and recon-
structs the correct CS action. We remark that for the effective action in the IR limit
the CS coupling κ = 1, see (3.15). This guarantees invariance of the action also
under large gauge transformations, [1].

Something similar can be done also for the UV limit. However in the UV
limit the resulting effective action has a vanishing coupling, unless we consider an
N → ∞ limit theory, as outlined above. In order to guarantee invariance under
large gauge transformations we have also to fine tune the limit in such a way that
the κ coupling be an integer.

Free fermions in 3d can be coupled also to a background metric. In this case
the relevant correlators are those of the energy-momentum tensor and the resulting
effective action in the UV and IR is the gravitational CS action, see [2].

A few remarks We would like to stress a few points of the above construction.
The first is the problem of non-conservation for the 3-point function we have met.
This is a consequence of the particular regularization procedure we have used, that
is of the fact the we have first computed the 3-point function of three currents and
then contracted the correlator with the external momentum qµ. We could have
proceeded in another way, that is we could have contracted the 3-point correlator
with qµ = kµ1 + kµ2 before doing the integration over p. The triangle diagram
contracted with qµ is:

qµJ̃abcµνλ(k1, k2) = −i

∫
d3p

(2π)3
Tr
(
/qT
a 1

/p−m
γνT

b 1

/p− /k1 −m
γλT

c 1

/p− /q−m

)
.

(3.25)

Replacing /q = (/p−m) − (/p− /q−m) considerably simplifies the calculation. The
final result for the odd parity part (after adding the cross diagram contribution,
1↔ 2, b→ c, ν↔ λ ) is

qµJ̃abcµνλ(k1, k2) = −
i

4π
fabcελνσk

σ
1

2m

k1
arcot

(
2m

k1

)

−
i

4π
fabcελνσk

σ
2

2m

k2
arcot

(
2m

k2

)
.

(3.26)

Therefore, as far as the odd part is concerned, the 3-point conservation (3.10) reads

− iqµJ̃
(odd)abc
µνλ (k1, k2) + f

abdJ̃
(odd)dc
νλ (k2) + f

acdJ̃
(odd)db
λν (k1)

= −
1

4π
fabcελνσ

(
kσ1
2m

k1
arcot

(
2m

k1

)
+ kσ2

2m

k2
arcot

(
2m

k2

))

+
1

4π
fabcελνσ

(
kσ1
2m

k1
arcot

(
2m

k1

)
+ kσ2

2m

k2
arcot

(
2m

k2

))
= 0. (3.27)
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Thus conservation is secured for any value of the parameter m. The fact that
in the UV or IR limit we find a violation of the conservation is an artefact of
the procedure we have used and we have to remedy by subtracting suitable
counterterms from the effective action. These subtractions are to be understood as
(part of) the definition of our regularization procedure.

The second remark concerns the odd-parity correlators we have obtained
above in the IR limit, the 2-point function ∼ δabεµνσk

σ and the 3-point function
∼ fabcεµνλ. As expected from the fact that they are correlators at a RG fixed point,
both satisfy the Ward identities of CFT, in particular the SCT one. They are both
purely local and at least the 2-point one does not come from the regularization
of any bare correlator. Ref.[4] provides a classification of all bare correlators in
3d CFT, both odd- and even-parity ones. These satisfy the simplest conservation
law, in which lower order correlators are not involved. It is clear that, a complete
classification of CFT correlators requires that we add also those considered above,
which satisfy the conservation law (3.10).

Another remark is that in many cases correlators can be constructed directly
from free field theory via the Wick theorem. It is evident that there is no conformal
free field theory in 3d that can give rise to the parity odd 2- and 3-point correlators
found above.

Finally let us remark that similar results are expected in other odd dimensional
spacetimes. Interesting cases will be 7d for free fermions coupled to gravity, and
5d and 7d for fermions coupled to a gauge field alone or to both gravity and gauge
fields.

3.4 The Pontryagin trace anomaly

The second example of a correlator made only of contact terms is in even di-
mension, specifically in 4d. It is provided by the parity-odd 3-point function of
the energy-momentum tensor in which one of the entries is the trace of the e.-
m. tensor. This 3-point function is the basic (but not exclusive) ingredient of the
trace anomaly. It is well-known that in 4d a theory coupled to external gravity
is generically endowed with an energy-momentum tensor whose trace takes the
form

Tµ
µ = aE+ cW2 + eP, (3.28)

where E is the Euler density,W2 the square Weyl density and P the density of the
Pontryagin class

P =
1

2

(
εnmlk√

|g|
RnmpqRlk

pq

)
(3.29)

where εnmlk is the numerical Levi-Civita symbol. Our interest here focus on this
term1. The obvious question is whether there are models where this term appears

1 Of course also the other anomalies, E andW2, are local terms, but they come from the
regularization of nonvanishing bare correlators.
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in the trace of the e.m. tensor, that is if there are models in 4d where the coefficient
e does not vanish. The natural candidates are models involving chiral fermions,
where the ε tensor may appear in the trace of γ matrices. The coefficient e has
been recently calculated [5,6], following an early work [10], (see also [9,7,8]) in a
model of free chiral fermions coupled to a background metric.

The model is the simplest possible one: a right-handed spinor coupled to
external gravity in 4d. The action is

S =

∫
d4x

√
|g| iψ̄Rγ

m

(
∇m +

1

2
ωm

)
ψR (3.30)

where γm = ema γ
a, ∇ (m,n, ... are world indices, a, b, ... are flat indices) is the co-

variant derivative with respect to the world indices andωm is the spin connection:

ωm = ωabm Σab

where Σab = 1
4
[γa, γb] are the Lorentz generators. Finally ψR = 1+γ5

2
ψ. Classi-

cally the energy-momentum tensor

Tµν =
i

2
ψ̄Rγµ

↔
∇νψR (3.31)

is both conserved and traceless on shell. At one loop, to make sense of the calcu-
lations one must introduce regulators. The latter generally break both diffeomor-
phism and conformal invariance. A careful choice of the regularization procedure
may preserve diff invariance, but anyhow breaks conformal invariance, so that the
trace of the e.m. tensor takes the form (3.28), with specific nonvanishing coefficients
a, c and e. There are various techniques to calculate the latter: cutoff, point split-
ting, dimensional regularization, and a few others. Here, for simplicity we limit
ourselves to a short summary of dimensional regularization. First one expands
the metric around a flat background: gµν ≈ ηµν + hµν, where hµν represent the
gravity fluctuation. Then one extracts from the action propagator and vertices. The
essential ones are the fermion propagator i

/p+iε and the two-fermion-one-graviton
vertex (Vffg)

−
i

8
[(p− p ′)µγν + (p− p ′)νγµ]

1+ γ5
2

(3.32)

where p, p ′ are the fermion momenta. The only contributing diagrams are the
triangle diagram together with the crossed one. The triangle diagram is constructed
by joining three vertices Vffg with three fermion lines. The external momenta are
q (ingoing) with labels σ and τ, and k1, k2 (outgoing), with labels µ, ν and µ ′, ν ′

respectively. Of course q = k1 + k2. The internal momenta are p, p − k1 and
p − k1 − k2, respectively. After contracting σ and τ the total contribution to the
3-point e.m. tensor correlator, in which one of the entries is the trace, is

−
1

256

∫
d4p

(2π)4
tr
[(
1

/p
((2p− k1)µγν + (µ↔ ν))

1

/p− /k1
(3.33)

· ((2p− 2k1 − k2)µ ′γν ′ + (µ ′ ↔ ν ′))
1

/p− /k1 − /k2
(2/p− /k1 − /k2)

)
1+ γ5
2

]
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to which we have to add the cross diagram where k1, µ, ν is exchanged with
k2, µ

′, ν ′. This integral is divergent. To regularize it we use dimensional regular-
ization, which consists in introducing additional components of the momentum
running in the loop: p→ p+ l, l = (l4, . . . , ln−4). This regulates the integral, and
one can now proceed to the integration. Full details of the calculation can be found
in [5,6]. The result is as follows. Calling T̃ (tot)µνµ ′ν ′(k1, k2) the overall contribution of
the two diagrams, with k21 = k

2
2 = 0, one has

T̃
(tot)
µνµ ′ν ′(k1, k2) =

1

3072π2

(
k1 · k2 tµνµ ′ν ′λρ − t

(21)
µνµ ′ν ′λρ

)
kλ1k

ρ
2 (3.34)

where

tµνµ ′ν ′κλ = ηµµ ′ενν ′κλ + ηνν ′εµµ ′κλ + ηµν ′ενµ ′κλ + ηνµ ′εµν ′κλ,

t
(21)
µνµ ′ν ′κλ = k2µk1µ ′ενν ′κλ + k2νk1ν ′εµµ ′κλ + k2µk1ν ′ενµ ′κλ + k2νk1µ ′εµν ′κλ.

Fourier transforming (3.34) and plugging the result in the full 1-point correlator of
the e.m. tensor trace

〈〈Tµµ (x)〉〉 = 2
∞∑
n=1

in+1

(n− 1)!

∫ n∏
i=2

dxi hµiνi(xi) 〈0|T Tµµ (x) . . . Tµnνn(xn)|0〉(3.35)

one obtains

〈〈Tµµ (x)〉〉 =
i

768π2
εµνλρ

(
∂µ∂σh

τ
ν ∂λ∂τh

σ
ρ − ∂µ∂σh

τ
ν ∂λ∂

σhτρ
)
+O(h3),(3.36)

which is the lowest order expansion in hµν of

〈〈Tµµ (x)〉〉 =
i

768π2
1

2
εµνλρRµν

στRλρστ, (3.37)

i.e. the Pontryagin trace anomaly. Changing chirality in (3.30) leads to a change of
sign in the RHS of (3.37). Therefore, in left-right symmetric models this anomaly
is absent. The surprising aspect of (3.37) is the i in the RHS. In other words the
coefficient e in (3.28) is imaginary. Before entering the discussion of this point
in the next section, let us recall that the odd-parity 3-point correlator, with three
(untraced) e.m. tensor insertions, in the model (3.30), calculated by means of the
Wick theorem, identically vanishes in configuration space, [6]. An unsurprising
result, because on the basis of a general theorem we know that the odd-parity
conformal covariant 3-point e.m. tensor bare correlator in 4d vanishes identically,
[11,12].

Finally let us remark that the one described in this section is not an isolated
case. Similar pure contact terms correlators (and similar anomalies) exist in 4k
dimensions, and mixed gauge-gravity pure contact terms correlators may exist
also in other even dimensions.

3.4.1 Comments on the Pontryagin anomaly

The Pontryagin anomaly is puzzling at first because it looks like a challenge for
many commonplaces. Several points have been already discussed in section 4 of
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[5] and in section 7 of [6]. We would like to add here a few additional remarks. One
surprising aspect of this anomaly is the appearance of an imaginary coefficient in
front of it, with the consequence that the energy-momentum tensor at one loop
becomes complex and may endanger unitarity, see [5]. The surprise is due to the
fact that the action of the model (3.30) is hermitean and one would not expect the
e.m. tensor to become complex at one loop. However this is a simple consequence
of the regularization. For regularizing an expression may require to trespass on
the complex plane, much in the same way as when one looks for solutions of a
real algebraic equation. The simplest example of this effect is the regularization of
the real function 1

x
in one dimension given by P 1

x
+ πiδ(x) (the first term is the

principal value). Something similar happens in our regularization of (3.33) and
leads to the imaginary coefficient of eq.(3.37). Therefore, finally, this result is not at
all surprising.

An important aspect of the anomaly we are considering, which was only
sketched in [6], is the following: if instead of regularizing (3.33) (let’s call it proce-
dure (a)), as we have done above, we first regularize the 3-point function of the
untraced e.m. tensor and then take the trace of one of the insertions (procedure
(b)), we get a vanishing result. It was pointed out in [6] that the latter is not the
correct way to proceed. However, although this statement was supported by ex-
plicit examples in 2d, it may leave the impression that our result in [6] and in the
previous section is scheme dependent. This is not the case and we would like now
to explain why. The point is that procedure (b), as just outlined, is incomplete. As
we have pointed out above regularizing may break not only Weyl symmetry but
also diffeomorphism covariance. This is in fact what happens with both procedure
(a) and (b). But while, as was shown in [6], this breaking in case (a) is innocuous
(one subtracts counterterms which restore covariance without modifying the trace
anomaly), in case (b) the breaking of covariance is more substantial. In order to
restore it one has to modify the (previously vanishing) trace anomaly. The explicit
calculation in scheme (b), which is very challenging, has not been done yet, but
we conjecture that the result will restore the Pontryagin anomaly with the same
coefficient as in (3.37). If this is true, as we believe, choosing scheme (a) instead of
(b) is only a matter of opportunity.

We would like to add also a few words on a frequent source of misunder-
standing, which stems from a reckless identification of Majorana and Weyl spinors
in 4d. In 4d they transform according to two different irreducible representations
of the Lorentz group. The first belong to a real representation and the second to a
complex one. Moreover, Weyl fermions have definite chirality while for Majorana
fermions chirality is not defined. Majorana fermion admit a massive term in the
action, whereas Weyl fermions are rigorously massless. The corresponding Dirac
operators are different, even in the massless case. So in no way can one confuse
Majorana and Weyl spinors, even when massless. However misnaming is very
frequent and not always innocuous, especially when anomalies are involved.

For instance, given a Weyl spinor χ, one can construct a Majorana spinor ψ as
follows

ψ = χ+ γ0Cχ
∗ (3.38)
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where C is the charge conjugation matrix (for notation, see [5]). If χ is left-handed,
the conjugate spinor γ0Cχ∗ is right-handed. Thus we can see the reason why for
Majorana fermions there is no Pontryagin anomaly. But, apart from this, (3.38) is
not much more than saying that the sum of a complex number and its conjugate is
real. In any case it is not a good reason to confuse Weyl and Majorana fermions.

On the other hand many theories, in particular the supersymmetric ones, are
conveniently formulated in terms of the two-component formalism, i.e. on the basis
of two-component spinors ξα and ξα̇ (α, α̇ = 1, 2). These two-component fields are
the building blocks of the theory and, a priori, they can be the components of either
a Weyl, Majorana or Dirac fermion. When the two-component formalism is used
one must know the full content of the theory in order to decide that2. However the
two-component formalism has many advantages, it serves well for many purposes
and there is no reason not to use it. However the problem of anomalies must be
dealt with carefully, anomalies come from a (regularized) variation of the fermion
determinant, i.e. the determinant of the relevant Dirac operator, which is different
in the different cases. So when anomalies are involved it is of course irrelevant
what formalism we use, provided we unambiguously distinguish the true chiral
nature of the fermions in the theory. For instance, it is a well known and important
fact that consistent gravitational (Einstein) and Lorentz anomalies in 4d vanish.
But this is not due to Weyl fermions being exchangeable with Majorana ones, but
rather because the third order symmetric invariant tensor of the Lorentz algebra
vanishes identically. If one understand this it is not difficult to understand the
origin of the Pontryagin anomaly. In particular what is decisive for the latter is the
overall balance of chirality.

3.5 Conclusion

Our purpose in this article was to show that in field theories, and in particular in
conformal field theories, there are correlators made of pure contact terms, without
a corresponding bare part. We have exhibited two examples. The first obtained
by considering the conformal limits of a free massive fermion theory in 3d and
the current correlators thereof; we have shown that such correlators are in one-
to-one correspondence with the terms of the 3d gauge CS action. The second
corresponds to the case of the Pontryagin trace anomaly. Such an anomaly appears
in e.m. tensor correlators containing one trace insertion. We have shown that the
corresponding 3-point correlator is nonvanishing even though the corresponding
untraced correlator vanishes (that is, there is no bare correlator underlying it). In
other words pure contact term correlators may live of their own.
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Abstract. Light-Front Quantization — Dirac’s “Front Form” — provides a physical, frame-
independent formalism for hadron dynamics and structure. Observables such as structure
functions, transverse momentum distributions, and distribution amplitudes are defined
from the hadronic LFWFs. One obtains new insights into the hadronic mass scale, the
hadronic spectrum, and the functional form of the QCD running coupling in the non-
perturbative domain using light-front holography. In addition, superconformal algebra
leads to remarkable supersymmetric relations between mesons and baryons. I also discuss
evidence that the antishadowing of nuclear structure functions is non-universal i.e., flavor
dependent, and why shadowing and antishadowing phenomena may be incompatible with
the momentum and other sum rules for the nuclear parton distribution functions.

Povzetek. Kvantizacija na svetlobnem stožcu — Diracove “frontne forme” —ponudi
formalizem za opis dinamike in strukture hadronov, ki je neodvisen od opazovalnega
sistema. Opazljivke — kot so strukturne funkcije, porazdelitev prečne gibalne količine
in porazdelitev amplitud — so definirane z valovnimi funkcijami na hadronov na svet-
lobnme stožcu. Uporaba holografije svetlobnega stožca ponudi nov vpogled v masno
skalo hadronov, hadronski spekter in funkcijsko obliko tekočih sklopitev v neperturba-
tivnem območju kromodinamike. Superkonformna algebra pokaě zanimive supersimetrične
povezave med mezoni in barioni. Avtor razpravlja tudi o tem, da ’antisenčenje’ strukturnih
funkcij jeder ni univerzalno, ampak je odvisno od okusnega števila, ter o tem, zakaj utegnejo
biti pojavi senčenja in antisenčenja neskladni z vsotnimi pravili, denimo za gibalno količino
in za porazdelitvene funkcije partonov v jedru.

4.1 Light-Front Wavefunctions and QCD

Measurements of hadron structure – such as the structure functions determined by
deep inelastic lepton-proton scattering (DIS) – are analogous to a flash photograph:
one observes the hadron at fixed τ = t + z/c along a light-front, not at a given

? sjbth@slac.stanford.edu
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instant of time t. The underlying physics follows from the the light-front wavefunc-

tions (LFWFs) ψn(xi,~k⊥i, λi) with xi =
k+
i

P+ =
k0i+k

z
i

P0+Pz
,
∑n
i x1 = 1,

∑n
i
~k⊥i = ~0⊥

and spin projections λi. The LFWFs are the Fock state projections of the eigenstates
of the QCD LF Hamiltonian HLF|Ψ >=M2|Ψ > [5], where the LF Hamiltonian is
the light-front time evolution operator defined directly from the QCD Lagrangian.
One can avoid ghosts and longitudinal gluonic degrees of freedom by choosing.to
work in the light-cone gauge A+ = 0. The LFWFs are boost invariant; i.e., they are
independent of the hadron’s momentum P+ = P0 + Pz,~P⊥. This contrasts with
the wavefunctions defined at a fixed time t – the Lorentz boost of an instant-form
wavefunction is much more complicated than a Melosh transform [1] – even the
number of Fock constituents changes under a boost. Current matrix element such
as form factors are simple overlaps of the initial-state and final-state LFWFs, as
given by the Drell-Yan West formula [2–4]. There is no analogous formula for the
instant form, since one must take into account the coupling of the external current
to connected vacuum-induced currents. Observables such as structure functions,
transverse momentum distributions, and distribution amplitudes are defined from
the hadronic LFWFs. Since they are frame-independent, the structure functions
measured in DIS are the same whether they are measured in an electron-proton
collider or in a fixed-target experiment where the proton is at rest. There is no
concept of length contraction of the hadron or nucleus at a collider – no collisions
of “pancakes” – since the observations of the collisions of the composite hadrons
are made at fixed τ, not at fixed time. The dynamics of a hadron is not dependent
on the observer’s Lorentz frame.

The LF Heisenberg equation can in principle be solved numerically by matrix
diagonalization using “Discretized Light-Cone Quantization” (DLCQ) [6] where
anti-periodic boundary conditions in x− render the k+ momenta discrete as well
as limiting the size of the Fock basis. In fact, one can easily solve 1+1 quantum
field theories such as QCD(1+ 1) [7] for any number if colors, flavors and quark
masses. Unlike lattice gauge theory, the nonpertubative DLCQ analysis is in
Minkowski space, is frame-independent and is free of fermion-doubling problems.
A new method for solving nonperturbative QCD “Basis Light-Front Quantization”
(BLFQ) [8], uses the eigensolutions of a color-confining approximation to QCD
(such as LF holography ) as the basis functions, rather than the plane-wave basis
used in DLCQ. The LFWFs can also be determined from covariant Bethe-Salpeter
wavefunction by integrating over k− [9].

Factorization theorems and DGLAP and ERBL evolution equations can be
derived using the light-front Hamiltonian formalism [10]. In the case of an electron-
ion collider, one can represent the cross section for e-p colisions as a convolution
of the hadron and virtual photon structure functions times the subprocess cross-
section in analogy to hadron-hadron colisions. This nonstandard description of
γ∗p → X reactions gives new insights into electroproduction physics – physics
not apparent using the usual usual infinite momentum frame description, such as
the dynamics of heavy quark-pair production. I intrinsic heavy quarks also play
an important role [11]. In the case of ep → e′X, one can consider the collisions
of the confining QCD flux tube appearing between the qandq̄ of the virtual
photon with the flux tube between the quark and diquark of the proton. Since the
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qq̄ plane is aligned with the scattered electron’s plane, the resulting “ridge” of
hadronic multiplicity produced from the γ∗p collision will also be aligned with
the scattering plane of the scattered electron. The virtual photon’s flux tube will
also depend on the photon virtualityQ2, as well as the flavor of the produced pair
arising from γ∗ → qq̄. The resulting dynamics [12] is a natural extension of the
flux-tube collision description of the ridge produced in p− p collisions [13].

4.2 Color Confinement and Supersymmetry in Hadron Physics
from LF Holography

A key problem in hadron physics is to obtain a first approximation to QCD which
predicts both the hadron spectrum and the hadronic LFWFs. If one neglects the
Higgs couplings of quarks, then no mass parameter appears in the QCD La-
grangian, and the theory is conformal at the classical level. Nevertheless, hadrons
have a finite mass. de Teramond, Dosch, and I [14] have shown that a mass gap
and a fundamental color confinement scale can be derived from a conformally co-
variant action when one extends the formalism of de Alfaro, Fubini and Furlan [15]
to light-front Hamiltonian theory. Remarkably, the resulting light-front potential
has a unique form of a harmonic oscillator κ4ζ2 in the light-front invariant impact
variable ζwhere ζ2 = b2⊥x(1−x). The result is a single-variable frame-independent
relativistic equation of motion for qq̄ bound states, a “Light-Front Schrödinger
Equation” [16], analogous to the nonrelativistic radial Schrödinger equation in
quantum mechanics. The Light-Front Schrödinger Equation incorporates color
confinement and other essential spectroscopic and dynamical features of hadron
physics, including a massless pion for zero quark mass and linear Regge trajec-
tories with the same slope in the radial quantum number n and internal orbital
angular momentum L. The same light-front equation for mesons of arbitrary spin
J can be derived [17] from the holographic mapping of the “soft-wall model”
modification of AdS5 space with the specific dilaton profile e+κ

2z2 , where one
identifies the fifth dimension coordinate zwith the light-front coordinate ζ. The
five-dimensional AdS5 space provides a geometrical representation of the con-
formal group. It is holographically dual to 3+1 spacetime using light-front time
τ = t+ z/c. The derivation of the confining LF Schrodinger Equation is outlined
in Fig. 4.1.

The combination of light-front dynamics, its holographic mapping to AdS5
space, and the dAFF procedure provides new insight into the physics underlying
color confinement, the nonperturbative QCD coupling, and the QCD mass scale.
A comprehensive review is given in ref. [19]. The qq̄ mesons and their valence
LF wavefunctions are the eigensolutions of a frame-independent bound state
equation, the “Light-Front Schrödinger Equation”. The mesonic qq̄ bound-state
eigenvalues for massless quarks areM2(n, L, S) = 4κ2(n+ L+ S/2). The equation
predicts that the pion eigenstate n = L = S = 0 is massless at zero quark mass, The
Regge spectra of the pseudoscalar S = 0 and vector S = 1 mesons are predicted
correctly, with equal slope in the principal quantum number n and the internal
orbital angular momentum. The predicted nonperturbative pion distribution
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Fig. 4.1. Derivation of the Effective Light-Front Schrödinger Equation from QCD. As in
QED, one reduces the LF Heisenberg equation HLF|Ψ >=M2|Ψ > to an effective two-body
eigenvalue equation for qq̄mesons by systematically eliminating higher Fock states. One
utilizes the LF radial variable ζ, where ζ2 = x(1 − x)b2⊥ is conjugate to the qq̄ LF kinetic

energy k2⊥
x(1−x)

for mq = 0. This allows the reduction of the dynamics to a single-variable
bound state equation acting on the valence qq̄ Fock state. The confining potential U(ζ),
including its spin-J dependence, is derived from the soft-wall AdS/QCD model with the
dilaton e+κ

2z2 ,where z is the fifth coordinate of AdS5 holographically dual to ζ. See ref. [14].
The resulting light-front harmonic oscillator confinement potential κ4ζ2 for light quarks is
equivalent to a linear confining potential for heavy quarks in the instant form [18].

amplitude φπ(x) ∝ fπ
√
x(1− x) is consistent with the Belle data for the photon-

to-pion transition form factor [20]. The prediction for the LFWF ψρ(x, k⊥) of the
ρ meson gives excellent predictions for the observed features of diffractive ρ
electroproduction γ∗p→ ρp′ [21].

These results can be extended [22–24] to effective QCD light-front equations
for both mesons and baryons by using the generalized supercharges of super-
conformal algebra [25]. The supercharges connect the baryon and meson spectra
and their Regge trajectories to each other in a remarkable manner: each meson
has internal angular momentum one unit higher than its superpartner baryon
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LM = LB + 1. See Fig. 4.2(A). Only one mass parameter κ appears; it sets the
confinement and the hadron mass scale in the chiral limit, as well as the length
scale which underlies hadron structure. “Light-Front Holography” not only pre-
dicts meson and baryon spectroscopy successfully, but also hadron dynamics:
light-front wavefunctions, vector meson electroproduction, distribution ampli-
tudes, form factors, and valence structure functions. The LF Schrödinger Equations
for baryons and mesons derived from superconformal algebra are shown in Fig.
4.2. The comparison between the meson and baryon masses of the ρ/ω Regge
trajectory with the spin-3/2 ∆ trajectory is shown in Fig. 4.2(B). Superconformal
algebra predicts the meson and baryon masses are identical if one identifies a
meson with internal orbital angular momentum LM with its superpartner baryon
with LB = LM − 1. Notice that the twist τ = 2+ LM = 3+ LB of the interpolating
operators for the meson and baryon superpartners are the same. Superconformal
algebra also predicts that the LFWFs of the superpartners are identical, and thus
they have identical dynamics, such their elastic and transition form factors. These
features can be tested for spacelike form factors at JLab12.

4.3 The QCD Coupling at all Scales

The QCD running coupling can be defined [27] at all momentum scales from
any perturbatively calculable observable, such as the coupling αsg1(Q

2) which is
defined from measurements of the Bjorken sum rule. At high momentum trans-
fer, such “effective charges” satisfy asymptotic freedom, obey the usual pQCD
renormalization group equations, and can be related to each other without scale
ambiguity by commensurate scale relations [28]. The dilaton e+κ

2z2 soft-wall mod-
ification of the AdS5 metric, together with LF holography, predicts the functional
behavior in the small Q2 domain [29]: αsg1(Q

2) = πe−Q
2/4κ2 . Measurements of

αsg1(Q
2) are remarkably consistent with this predicted Gaussian form. Deur, de

Teramond, and I [30,29,26] have also shown how the parameter κ, which deter-
mines the mass scale of hadrons in the chiral limit, can be connected to the mass
scale Λs controlling the evolution of the perturbative QCD coupling. The connec-
tion can be done for any choice of renormalization scheme, such as theMS scheme,
as seen in Fig. 4.3. The relation between scales is obtained by matching at a scale
Q20 the nonperturbative behavior of the effective QCD coupling, as determined
from light-front holography, to the perturbative QCD coupling with asymptotic
freedom. The result of this perturbative/nonperturbative matching is an effective
QCD coupling defined at all momenta.

4.4 Other Features of Light-Front QCD

There are a number of advantages if one uses LF Hamiltonian methods for
perturbative QCD calculations. Unlike instant form, where one must sum n!

frame-dependent amplitudes, only the τ-ordered diagrams where every line has
positive k+ = k0 + kz can contribute [31]. The number of nonzero amplitudes
is also greatly reduced by noting that the total angular momentum projection
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Fig. 4.2. (A). The LF Schrödinger equations for baryons and mesons for zero quark mass
derived from the Pauli 2× 2 matrix representation of superconformal algebra. The ψ± are
the baryon quark-diquark LFWFs where the quark spin Szq = ±1/2 is parallel or antiparallel
to the baryon spin Jz = ±1/2. The meson and baryon equations are identical if one identifies
a meson with internal orbital angular momentum LM with its superpartner baryon with
LB = LM − 1. See ref. [22–24]. (B). Comparison of the ρ/ω meson Regge trajectory with the
J = 3/2 ∆ baryon trajectory. Superconformal algebra predicts the degeneracy of the meson
and baryon trajectories if one identifies a meson with internal orbital angular momentum
LM with its superpartner baryon with LM = LB + 1. See refs. [22,23].
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Jz =
∑n−1
i Lzi +

∑n
i S

z
i and the total P+ are conserved at each vertex. In addition,

in a renormalizable theory the change in orbital angular momentum is limited
to ∆Lz = 0,±1 at each vertex. The calculation of a subgraph of any order in
pQCD only needs to be done once; the result can be stored in a “history” file,
since in LFPth the numerator algebra is independent of the process; the denomi-
nator changes, but only by a simple shift of the initial P−. Loop integrations are
three dimensional:

∫
d2~k⊥

∫1
0
dx. Renormalization can be done using the “alternate

denominator” method which defines the required subtraction counterterms [32].
The LF vacuum in LF Hamlitonian theory is defined as the eigenstate of HLF

with lowest invariant mass. Since propagation with negative k+ does not appear,
there are no loop amplitudes in the LF vacuum – it is is thus trivial up to possible
k+ = 0 “zero” modes. The usual quark and gluon QCD vacuum condensates of
the instant form =are replaced by physical effects, such as the running quark mass
and the physics contained within the hadronic LFWFs in the hadronic domain.
This is referred to as “in-hadron” condensates [33–35]. In the case of the Higgs
theory, the traditional Higgs vacuum expectation value (VEV) is replaced by a
zero mode analogous to a classical Stark or Zeeman field. [36] This again contrasts
with the traditional view of the vacuum based on the instant form.

The instant-form vacuum, the lowest energy eigenstate of the instant-form
Hamiltonian, is defined at one instant of time over all space; it is thus acausal and
frame-dependent. It is usually argued that the QCD contribution to the cosmologi-
cal constant – dark energy – is 1045 times larger that observed, and in the case of
the Higgs theory, the Higgs VEV is argued to be 1054 larger than observed [37],
estimates based on the loop diagrams of the acausal frame-dependent instant-form
vacuum. However, the universe is observed within the causal horizon, not at a
single instant of time. In contrast, the light-front vacuum provides a viable descrip-
tion of the visible universe [35]. Thus in agreement with Einstein, quantum effects
do not contribute to the cosmological constant. In the case of the HIggs theory,
the Higgs zero mode has no energy density, so again it gives no contribution to
the cosmological constant. However, it is possible that if one solves the Higgs
theory in a curved universe, the zero mode will be replaced with a field of nonzero
curvature which could give a nonzero contribution.

4.5 Is the Momentum Sum Rule Valid for Nuclear Structure
Functions?

Sum rules for DIS processes are analyzed using the operator product expansion of
the forward virtual Compton amplitude, assuming it depends in the limitQ2 →∞
on matrix elements of local operators such as the energy-momentum tensor. The
moments of the structure function and other distributions can then be evaluated as
overlaps of the target hadron’s light-front wavefunction, as in the Drell-Yan-West
formulae for hadronic form factors [4,38–40]. The real phase of the resulting DIS
amplitude and its OPE matrix elements reflects the real phase of the stable target
hadron’s wavefunction.

The “handbag” approximation to deeply virtual Compton scattering also de-
fines the “static” contribution [41,42] to the measured parton distribution functions
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(PDF), transverse momentum distributions, etc. The resulting momentum, spin
and other sum rules reflect the properties of the hadron’s light-front wavefunction.
However, final-state interactions which occur after the lepton scatters on the quark,
can give non-trivial contributions to deep inelastic scattering processes at leading
twist and thus survive at high Q2 and high W2 = (q + p)2. For example, the
pseudo-T -odd Sivers effect [43] is directly sensitive to the rescattering of the struck
quark. Similarly, diffractive deep inelastic scattering involves the exchange of a
gluon after the quark has been struck by the lepton [44]. In each case the corre-
sponding DVCS amplitude is not given by the handbag diagram since interactions
between the two currents are essential. These “lensing” corrections survive when
bothW2 andQ2 are large since the vector gluon couplings grow with energy. Part
of the phase can be associated with a Wilson line as an augmented LFWF [45]
which do not affect the moments.

The Glauber propagation of the vector system V produced by the diffractive
DIS interaction on the nuclear front face and its subsequent inelastic interaction
with the nucleons in the nuclear interior V + Nb → X occurs after the lepton
interacts with the struck quark. Because of the rescattering dynamics, the DDIS
amplitude acquires a complex phase from Pomeron and Regge exchange; thus
final-state rescattering corrections lead to nontrivial “dynamical” contributions
to the measured PDFs; i.e., they involve physics aspects of the scattering process
itself [46]. The I = 1 Reggeon contribution to diffractive DIS on the front-face
nucleon leads to flavor-dependent antishadowing [47,48]. This could explain why
the NuTeV charged current measurement µA→ νX scattering does not appear to
show antishadowing in contrast to deep inelastic electron nucleus scattering as
discussed in ref. [49]. Again the corresponding DVCS amplitude is not given by
the handbag diagram since interactions between the two currents are essential.

Diffractive DIS is leading-twist and is the essential component of the two-step
amplitude which causes shadowing and antishadowing of the nuclear PDF. It is
important to analyze whether the momentum and other sum rules derived from
the OPE expansion in terms of local operators remain valid when these dynamical
rescattering corrections to the nuclear PDF are included. The OPE is derived
assuming that the LF time separation between the virtual photons in the forward
virtual Compton amplitude γ∗A→ γ∗A scales as 1/Q2. However, the propagation
of the vector system V produced by the diffractive DIS interaction on the front face
and its inelastic interaction with the nucleons in the nuclear interior V +Nb → X

are characterized by a longer LF time which scales as 1/W2. Thus the leading-twist
multi-nucleon processes that produce shadowing and antishadowing in a nucleus
are evidently not present in the Q2 →∞ OPE analysis.

It should be emphasized that shadowing in deep inelastic lepton scattering
on a nucleus involves nucleons at or near the front surface; i.e, the nucleons facing
the incoming lepton beam. This geometrical orientation is not built into the frame-
independent nuclear LFWFs used to evaluate the matrix elements of local currents.
Thus the dynamical phenomena of leading-twist shadowing and antishadowing
appear to invalidate the sum rules for nuclear PDFs. The same complications occur
in the leading-twist analysis of deeply virtual Compton scattering γ∗A→ γ∗A on
a nuclear target.
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4.6 Elimination of Renormalization Scale Ambiguities

The “Principle of Maximum Conformality”, (PMC) [50] systematically eliminates
the renormalization scale ambiguity in perturbative QCD calculations, order-by-
order. The resulting scale-fixed predictions for physical observables using the
PMC are independent of the choice of renormalization scheme – a key requirement of
renormalization group invariance. The PMC predictions are also insensitive to
the choice of the initial renormalization scale µ0. The PMC sums all of the non-
conformal terms associated with the QCD β function into the scales of the coupling
at each order in pQCD. The resulting conformal series is free of renormalon resum-
mation problems. The number of active flavors nf in the QCD β function is also
correctly determined at each order. The Rδ scheme – a generalization of t’Hooft’s
dimensional regularization. systematically identifies the nonconformal β contribu-
tions to any perturbative QCD series, thus allowing the automatic implementation
of the PMC procedure [51]. The elimination of the renormalization scale ambiguity
greatly increases the precision, convergence, and reliability of pQCD predictions.
For example, PMC scale-setting has been applied to the pQCD prediction for tt̄
pair production at the LHC, where subtle aspects of the renormalization scale
of the three-gluon vertex and multi-gluon amplitudes, as well as large radiative
corrections to heavy quarks at threshold play a crucial role. The large discrepancy
of pQCD predictions with the tt̄ forward-backward asymmetry measured at the
Tevatron is significantly reduced from 3σ to approximately 1σ [52,53].
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Abstract. Within the framework of a Beyond Standard Model augmented with a local
SU(3) family symmetry, we report an updated fit of parameters, which account for the
known spectrum of quarks and charged lepton masses, and the quark mixing in a 4 × 4
non-unitary VCKM. In this scenario, ordinary heavy fermions, top and bottom quarks and
tau lepton, become massive at tree level from Dirac See-saw mechanisms implemented
by the introduction of a new set of SU(2)L weak singlet vector-like fermions, U,D, E,N,
with N a sterile neutrino. The NL,R sterile neutrinos allow the implementation of a 8× 8
general See-saw Majorana neutrino mass matrix with four massless eigenvalues at tree
level. Hence, light fermions, including light neutrinos obtain masses from loop radiative
corrections mediated by the massive SU(3) gauge bosons. SU(3) family symmetry is broken
spontaneously in two stages, whose hierarchy of scales yield an approximate SU(2) global
symmetry associated with the Z1, Y±1 gauge boson masses of the order of 2 TeV. A global fit
of parameters to include neutrino masses and lepton mixing is in progress.

Povzetek. Avtor poroča o prilagajanju vrednosti parametrov v razširjenem standardnem
modelu z dodano družinsko simetrijo SU(3), s katerim mu uspe pojasniti izmerjeni masni
spekter kvarkov in leptonov ter neunitarni mešalni matriki za kvarke in leptone. V svojem
scenariju doda običajnim fermionom še fermione (U,D, E,N), ki so šibki singleti SU(2)L
z vektorskim značajem. Težki fermioni postanejo masivni že na drevesnem nivoju z Dira-
covim mehanizmom ”see-saw”. Sterilni nevtriniNL,R poskrbijo v nevtrinski masni matriki
8× 8, na drevesnem nivoju, da so štiri lastne vrednosti enake 0. Maso lahkih kvarkov in
leptonov, vključno z nevtrini, določajo bozonska polja z družinskimi kvantnimi števili v
popravkih višjih redov. Avtor predvidi spontano zlomitev družinske simetrije SU(3) v dveh
korakih tako, da so mase Z1, Y±1 umeritvenih bozonov SU(2) reda 2TeV.

5.1 Introduction

The origen of the hierarchy of fermion masses and mixing is one of the most
important open problems in particle physics. Any attempt to account for this
hierarchy introduce a mass generation mechanism which distinguish among the
different Standard Model (SM) quarks and leptons.

After the discovery of the scalar Higgs boson on 2012, LHC has not found a
conclusive evidence of new physics. However, there are theoretical motivations
? E-mail: albino@esfm.ipn.mx
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to look for new particles in order to answer some open questions like; neutrino
ossccillations, dark matter, stability of the Higgs mass against radiative correc-
tions,,etc.

In this article, we address the problem of charged fermion masses and quark
mixing within the framework of an extension of the SM introduced by the author
in [1]. This Beyond Standard Model (BSM) proposal include a vector gauged SU(3)
family symmetry1 commuting with the SM group and introduce a hierarchical
massgeneration mechanism in which the light fermions obtain masses through
loop radiative corrections, mediated by the massive bosons associated to the SU(3)
family symmetry that is spontaneously broken, while the masses of the top and
bottom quarks as well as for the tau lepton, are generated at tree level from ”Dirac
See-saw”[3] mechanisms implemented by the introduction of a new set of SU(2)L
weak singlets U,D, E and N vector-like fermions. Due to the fact that these vector-
like quarks do not couple to the W boson, the mixing of U and D vector-like
quarks with the SM quarks gives rise to and extended 4 × 4 non-unitary CKM
quark mixing matrix [4].

5.2 Model with SU(3) flavor symmetry

5.2.1 Fermion content

Before ”Electroweak Symmetry Breaking”(EWSB) all ordinary, ”Standard Model”(SM)
fermions remain massless, and the global symmetry in this limit of all quarks and
leptons massless, including R-handed neutrinos, is:

SU(3)qL ⊗ SU(3)uR ⊗ SU(3)dR ⊗ SU(3)lL ⊗ SU(3)νR ⊗ SU(3)eR

⊃ SU(3)qL+uR+dR+lL+eR+νR ≡ SU(3) (5.1)

We define the gauge symmetry group

G ≡ SU(3)⊗ SU(3)C ⊗ SU(2)L ⊗U(1)Y (5.2)

where SU(3) is the gaged family symmetry among families, eq.(5.1) , and GSM
is the ”Standard Model” gauge group, with gH, gs, g and g′ the corresponding
coupling constants. The content of fermions assumes the ordinary quarks and
leptons assigned under G as:

Ordinary Fermions: qoiL =

(
uoiL
doiL

)
, loiL =

(
νoiL
eoiL

)
, Q = T3L +

1
2
Y

Ψoq = (3, 3, 2,
1

3
)L =



qo1L
qo2L
qo3L


 , Ψol = (3, 1, 2,−1)L =



lo1L
lo2L
lo3L




1 See [1,2] and references therein for some other SU(3) family symmetry model proposals.
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Ψou = (3, 3, 1,
4

3
)R =



uoR
coR
toR


 , Ψod = (3, 3, 1,−

2

3
)R =



doR
soR
boR




Ψoe = (3, 1, 1,−2)R =



eoR
µoR
τoR




where the last entry corresponds to the hypercharge Y, and the electric charge is
defined by Q = T3L +

1
2
Y. The model also includes two types of extra fermions:

Right Handed Neutrinos: ΨoνR = (3, 1, 1, 0)R =



νeR
νµR
ντR


 ,

and the SU(2)L weak singlet vector-like fermions

Sterile Neutrinos: NoL, N
o
R = (1, 1, 1, 0) ,

The Vector Like quarks:

UoL, U
o
R = (1, 3, 1,

4

3
) , DoL, D

o
R = (1, 3, 1,−

2

3
) (5.3)

and

The Vector Like electrons: EoL, E
o
R = (1, 1, 1,−2)

The transformation of these vector-like fermions allows the mass invariant
mass terms

MU Ū
o
L U

o
R + MD D̄

o
L D

o
R + ME Ē

o
L E

o
R + h.c. , (5.4)

and

mD N̄
o
LN

o
R + mL N̄

o
L (N

o
L)
c + mR N̄

o
R (N

o
R)
c + h.c (5.5)

The above fermion content make the model anomaly free. After the defini-
tion of the gauge symmetry group and the assignment of the ordinary fermions
in the usual form under the standard model group and in the fundamental 3-
representation under the SU(3) family symmetry, the introduction of the right-
handed neutrinos is required to cancel anomalies[5]. The SU(2)L weak singlets
vector-like fermions have been introduced to give masses at tree level only to the
third family of known fermions through Dirac See-saw mechanisms. These vector
like fermions play a crucial role to implement a hierarchical spectrum for quarks
and charged lepton masses, together with the radiative corrections.

5.3 SU(3) family symmetry breaking

To implement a hierarchical spectrum for charged fermion masses, and simultane-
ously to achieve the SSB of SU(3), we introduce the flavon scalar fields: ηi, i = 2, 3,
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ηi = (3, 1, 1, 0) =



ηoi1
ηoi2
ηoi3


 , i = 2, 3

and acquiring the ”Vacuum ExpectationValues” (VEV’s):

〈η2〉T = (0,Λ2, 0) , 〈η3〉T = (0, 0,Λ3) . (5.6)

The above scalar fields and VEV’s break completely the SU(3) flavor symmetry.
The corresponding SU(3) gauge bosons are defined in Eq.(5.20) through their
couplings to fermions. Thus, the contribution to the horizontal gauge boson masses
from Eq.(5.6) read

• η2 :
g2H2

Λ22
2

(Y+1 Y
−
1 + Y+3 Y

−
3 ) +

g2H2
Λ22
4

(Z21 +
Z22
3

− 2Z1
Z2√
3
)

• η3 :
g2H3

Λ23
2

(Y+2 Y
−
2 + Y+3 Y

−
3 ) + g

2
H3
Λ23

Z22
3

These two scalars in the fundamental representation is the minimal set of scalars to break
down completely the SU(3) family symmetry. Therefore, neglecting tiny contributions
from electroweak symmetry breaking, we obtain the gauge boson mass terms.

M2
2 Y

+
1 Y

−
1 +M2

3 Y
+
2 Y

−
2 + (M2

2 +M
2
3) Y

+
3 Y

−
3 +

1

2
M2
2 Z

2
1 +

1

2

M2
2 + 4M

2
3

3
Z22

−
1

2
(M2

2)
2√
3
Z1 Z2 (5.7)

M2
2 =

g2HΛ
2
2

2
, M2

3 =
g2HΛ

2
3

2
, y ≡ M3

M2
=
Λ3

Λ2
(5.8)

Z1 Z2

Z1 M2
2 −

M22√
3

Z2 −
M22√
3

M22+4M
2
3

3

Table 5.1. Z1 − Z2 mixing mass matrix

Diagonalization of the Z1 − Z2 squared mass matrix yield the eigenvalues

M2
− =

2

3

(
M2
2 +M

2
3 −

√
(M2

3 −M
2
2)
2 +M2

2M
2
3

)

−

(5.9)

M2
+ =

2

3

(
M2
2 +M

2
3 +

√
(M2

3 −M
2
2)
2 +M2

2M
2
3

)

+

(5.10)
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M2
2 Y

+
1 Y

−
1 +M2

3 Y
+
2 Y

−
2 + (M2

2 +M
2
3) Y

+
3 Y

−
3 +M2

−

Z2−
2

+M2
+

Z2+
2

(5.11)

M2
2 Y

+
1 Y

−
1 +M2

2 y
2 Y+2 Y

−
2 +M2

2(1+ y
2) Y+3 Y

−
3 +M2

2 y−
Z2−
2

+M2
2 y+

Z2+
2

(5.12)

where
(
Z1
Z2

)
=

(
cosφ − sinφ
sinφ cosφ

)(
Z−

Z+

)
(5.13)

cosφ sinφ =

√
3

4

M2
2√

M4
2 +M

2
3(M

2
3 −M

2
2)

Due to the Z1 − Z2 mixing, we diagonalize the propagators involving Z1 and
Z2 gauge bosons according to Eq.(5.13)

Z1 = cosφ Z− − sinφ Z+ , Z2 = sinφ Z− + cosφ Z+

〈Z1Z1〉 = cos2φ 〈Z−Z−〉+ sin2φ 〈Z+Z+〉

〈Z2Z2〉 = sin2φ 〈Z−Z−〉+ cos2φ 〈Z+Z+〉

〈Z1Z2〉 = sinφ cosφ (〈Z−Z−〉− 〈Z+Z+〉)

So, in the one loop diagrams contribution:

FZ1 = cos2φF(M−) + sin2φF(M+) , FZ2 = sin2φF(M−) + cos2φF(M+)

Therefore, in the tree level single exchange diagrams

1

M2
Z1

=
cos2φ
M2

−

+
sin2φ
M2

+

,
1

M2
Z2

=
sin2φ
M2

−

+
cos2φ
M2

+

Notice that in the limit y = M3

M2
� 1, sinφ → 0, cosφ → 1, and there exist a

SU(2) global symmetry for the Z1, Y±1 degenerated gauge boson masses.
It is worth to emphasize that the hierarchy of scales in the SSB yields an

approximate SU(2) global symmetry in the spectrum of SU(3) gauge boson masses.
Actually this approximate SU(2) symmetry plays the role of a custodial symmetry
to suppress properly the tree level ∆F = 2 processes mediated by the M1 lower
scale Z1, Y11 , Y

2
1 horizontal gauge bosons.
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5.4 Electroweak symmetry breaking

Recently ATLAS[6] and CMS[7] at the Large Hadron Collider announced the
discovery of a Higgs-like particle, whose properties, couplings to fermions and
gauge bosons will determine whether it is the SM Higgs or a member of an
extended Higgs sector associated to a BSM theory. The electroweak symmetry
breaking in the SU(3) family symmetry model involves the introduction of two
triplets of SU(2)L Higgs doublets, namely;

Φu = (3, 1, 2,−1) =




(
φo

φ−

)u

1

(
φo

φ−

)u

2

(
φo

φ−

)u

3




, Φd = (3, 1, 2,+1) =




(
φ+

φo

)d

1

(
φ+

φo

)d

2

(
φ+

φo

)d

3




,

with the VEV?s

Φu〉 =



〈Φu1 〉
〈Φu2 〉
〈Φu3 〉


 , 〈Φd〉 =



〈Φd1 〉
〈Φd2 〉
〈Φd3 〉


 ,

where

Φui 〉 =
1√
2

(
vui
0

)
, 〈Φdi 〉 =

1√
2

(
0

vdi

)
.

The contributions from 〈Φu〉 and 〈Φd〉 yield the W and Z gauge boson masses
and mixing with the SU(3) gauge bosons
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g2

4
(v2u + v2d)W

+W− +
(g2 + g′

2
)

8
(v2u + v2d)Z

2
o

+
1

4

√
g2 + g′2 gH Zo

[
(v21u − v22u − v21d + v22d)Z1

+(v21u + v22u − 2v23u − v21d − v22d + 2v23d)
Z2√
3

+2 (v1uv2u − v1dv2d)
Y+
1 + Y−

1√
2

+ 2 (v1uv3u − v1dv3d)
Y+
2 + Y−

2√
2

+2 (v2uv3u − v2dv3d)
Y+
3 + Y−

3√
2

]

+
g2H
4

{
1

2
(v21u + v22u + v21d + v22d)Z

2
1 +

1

2
(v21u + v22u + 4v23u + v21d + v22d + 4v23d)

Z22
3

+(v21u+v
2
2u+v

2
1d+v

2
2d) Y

+
1 Y

−
1 +(v21u+v

2
3u+v

2
1d+v

2
3d) Y

+
2 Y

−
2 +(v22u+v

2
3u+v

2
2d+v

2
3d) Y

+
3 Y

−
3

+ (v21u − v22u + v21d − v22d)Z1
Z2√
3
+ (v2uv3u + v2dv3d) (Y

+
1 Y

−
2 + Y−

1 Y
+
2 )

+ (v1uv2u + v1dv2d) (Y
+
2 Y

−
3 + Y−

2 Y
+
3 ) + (v1uv3u + v1dv3d) (Y

+
1 Y

+
3 + Y−

1 Y
−
3 )

+2 (v1uv2u + v1dv2d)
Z2√
3

Y+
1 + Y−

1√
2

+ (v1uv3u + v1dv3d) (Z1 −
Z2√
3
)
Y+
2 + Y−

2√
2

−(v2uv3u + v2dv3d) (Z1 +
Z2√
3
)
Y+
3 + Y−

3√
2

}
(5.14)

v2u = v21u+v
2
2u+v

2
3u , v2d = v21d+v

2
2d+v

2
3d. Hence, if we define as usualMW = 1

2
gv,

we may write v =
√
v2u + v2d ≈ 246 GeV.

Y1j =
Y+
j + Y−

j√
2

, Y±j =
Y1j ∓ iY2j√

2
(5.15)

The mixing of Zo neutral gauge boson with the SU(3) gauge bosons modify the
couplings of the standard model Z boson with the ordinary quarks and leptons

5.5 Fermion masses

5.5.1 Dirac See-saw mechanisms

Now we describe briefly the procedure to get the masses for fermions. The analysis
is presented explicitly for the charged lepton sector, with a completely analogous
procedure for the u and d quarks and Dirac neutrinos. With the fields of particles
introduced in the model, we may write the gauge invariant Yukawa couplings, as
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h ψ̄ol Φ
d EoR + h2 ψ̄

o
e η2 E

o
L + h3 ψ̄

o
e η3 E

o
L + M ĒoL E

o
R + h.c (5.16)

where M is a free mass parameter ( because its mass term is gauge invariant)
and h, h2 and h3 are Yukawa coupling constants. When the involved scalar fields
acquire VEV’s we get, in the gauge basis ψoL,R

T = (eo, µo, τo, Eo)L,R, the mass
terms ψ̄oLMoψoR + h.c, where

Mo =




0 0 0 h v1
0 0 0 h v2
0 0 0 h v3
0 h2Λ2 h3Λ3 M


 ≡




0 0 0 a1
0 0 0 a2
0 0 0 a3
0 b2 b3 M


 . (5.17)

Notice thatMo has the same structure of a See-saw mass matrix, here for Dirac
fermion masses. So, we callMo a ”Dirac See-saw” mass matrix.Mo is diagonal-
ized by applying a biunitary transformation ψoL,R = VoL,R χL,R. The orthogonal
matrices VoL and VoR are obtained explicitly in the Appendix 5.9 A. From VoL and
VoR , and using the relationships defined in this Appendix, one computes

VoL
TMo VoR = Diag(0, 0,−λ3, λ4) (5.18)

VoL
TMoMoT VoL = VoR

TMoTMo VoR = Diag(0, 0, λ23, λ
2
4) . (5.19)

where λ23 and λ24 are the nonzero eigenvalues defined in Eqs.(5.53-5.54), λ4 being
the fourth heavy fermion mass, and λ3 of the order of the top, bottom and tau
mass for u, d and e fermions, respectively. We see from Eqs.(5.18,5.19) that at tree
level the See-saw mechanism yields two massless eigenvalues associated to the
light fermions:

5.6 One loop contribution to fermion masses

Subsequently, the masses for the light fermions arise through one loop radiative
corrections. After the breakdown of the electroweak symmetry we can construct
the generic one loop mass diagram of Fig. 5.1. Internal fermion line in this diagram
represent the Dirac see-saw mechanism implemented by the couplings in Eq.(5.16).
The vertices read from the SU(3) flavor symmetry interaction Lagrangian

iLint =
gH

2
(ēoγµe

o − µ̄oγµµ
o)Zµ1 +

gH

2
√
3
(ēoγµe

o + µ̄oγµµ
o − 2τ̄oγµτ

o)Zµ2

+
gH√
2

(
ēoγµµ

oY+1 + ēoγµτ
oY+2 + µ̄oγµτ

oY+3 + h.c.
)
, (5.20)

where gH is the SU(3) coupling constant, Z1, Z2 and Yji , i = 1, 2, 3 , j = 1, 2 are the
eight gauge bosons. The crosses in the internal fermion line mean tree level mixing,
and the massM generated by the Yukawa couplings in Eq.(5.16) after the scalar
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eo
jR eo

kR

Y

Eo
L Eo

R eo
fL eo

iL

M

< ηk > < Φd >

Fig. 5.1. Generic one loop diagram contribution to the mass termmij ē
o
iLe

o
jR

fields get VEV’s. The one loop diagram of Fig. 1 gives the generic contribution to
the mass termmij ē

o
iLe

o
jR

cY
αH

π

∑
k=3,4

mok (V
o
L )ik(V

o
R)jkf(MY ,m

o
k) , αH ≡

g2H
4π

(5.21)

where MY is the gauge boson mass, cY is a factor coupling constant, Eq.(5.20),

mo3 = −
√
λ23 and mo4 = λ4 are the See-saw mass eigenvalues, Eq.(5.18), and

f(x, y) = x2

x2−y2
ln x2

y2
. Using the results of Appendix 5.9, we compute∑

k=3,4

mok (V
o
L )ik(V

o
R)jkf(MY ,m

o
k) =

ai bjM

λ24 − λ
2
3

F(MY) , (5.22)

i = 1, 2, 3 , j = 2, 3, and F(MY) ≡ M2
Y

M2
Y
−λ2
4

ln M2
Y

λ2
4

−
M2
Y

M2
Y
−λ2
3

ln M2
Y

λ2
3

. Adding up all the

one loop SU(3) gauge boson contributions, we get the mass terms ψ̄oLMo
1ψ

o
R+h.c.,

Mo
1 =




D11 D12 D13 0

0 D22 D23 0

0 D32 D33 0

0 0 0 0



αH

π
, (5.23)

D11 = µ11(
FZ1
4

+
FZ2
12

+ Fm) +
1

2
(µ22F1 + µ33F2)

D12 = µ12(−
FZ1
4

+
FZ2
12

)

D13 = −µ13(
FZ2
6

+ Fm)

D22 = µ22(
FZ1
4

+
FZ2
12

− Fm) +
1

2
(µ11F1 + µ33F3)

D23 = −µ23(
FZ2
6

− Fm)

D32 = −µ32(
FZ2
6

− Fm)

D33 = µ33
FZ2
3

+
1

2
(µ11F2 + µ22F3) ,
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Here,

F1 ≡ F(MY1) , F2 ≡ F(MY2) , F3 ≡ F(MY3) , FZ1 ≡ F(MZ1) , FZ2 ≡ F(MZ2)

M2
Y1

=M2
2 , M2

Y2
=M2

3 , M2
Y3

=M2
2 +M

2
3

Fm =
cosφ sinφ
2
√
3

[ F(M−) − F(M+) ]

withM2,M3,MZ1 andMZ2 the horizontal boson masses, Eqs.(5.8-5.10),

µij =
ai bjM

λ24 − λ
2
3

=
ai bj

a b
λ3 cα cβ , (5.24)

and cα ≡ cosα , cβ ≡ cosβ , sα ≡ sinα , sβ ≡ sinβ, as defined in the Ap-
pendix 5.9, Eq.(5.55). Therefore, up to one loop corrections we obtain the fermion
masses

ψ̄oLMo ψoR + ψ̄oLMo
1 ψ

o
R = χ̄LM χR , (5.25)

withM≡
[
Diag(0, 0,−λ3, λ4) + V

o
L
TMo

1 V
o
R

]
.

Using VoL , VoR from Eqs.(5.51-5.52) we get the mass matrix:

M =




m11 m12 cβm13 sβm13

m21 m22 cβm23 sβm23

cαm31 cαm32 (−λ3 + cαcβm33) cαsβm33

sαm31 sαm32 sαcβm33 (λ4 + sαsβm33)




, (5.26)

where

m11 =
1

2

a2

a′
Π1 , m12 = −1

2
a1b3
a′b

(Π2 − 6µ22Fm) (5.27)

m21 =
1

2

a1a3

a′a
Π1 , m31 =

1
2
a1
a
Π1 (5.28)

m13 = −
1

2

a1b2

a′b
[Π2 + 2(2

b23
b22

− 1)µ22Fm] (5.29)

m22 =
1

2

a3b3

ab

[
a2

a′
(Π2 − 6µ22Fm) +

a′b2
a3b3

(Π3 + ∆)

]
(5.30)
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m23 =
1

2

a3b3

ab

[
a2b2

a′b3
(Π2 + 2(2

b23
b22

− 1)µ22Fm) −
a′

a3
(Π3 −

b22
b23
∆ + 2

b2

b23
µ33Fm)

]
(5.31)

m32 =
1

2

a3b3

ab

[
a2

a3
(Π2 − 6µ22Fm) −

b2

b3
(Π3 −

a′2

a23
∆− 2

a2

a23
µ33Fm)

]
(5.32)

m33 =
1

2

a3b3

ab

[
a2b2

a3b3
(Π2 − 2µ22Fm) + Π3 +

a′2b22
a23b

2
3

∆−
1

3

a2b2

a23b
2
3

µ33FZ2

+2(
b22
b23

+ 2
a22
a23

−
a′2

a23
)µ33Fm

]
(5.33)

Π1 = µ22F1 + µ33F2 , Π2 = µ22FZ1 + µ33F3

Π3 = µ22F3 + µ33FZ2 , ∆ = 1
2
µ33(FZ2 − FZ1) (5.34)

Notice that themij mass terms depend just on the ratio ai
aj

and bi
bj

of the tree level
parameters.

a′ =
√
a21 + a

2
2 , a =

√
a′2 + a23 , b =

√
b22 + b

2
3 , (5.35)

The diagonalization ofM, Eq.(5.26) gives the physical masses for u, d, e and ν
fermions. Using a new biunitary transformation χL,R = V

(1)
L,R ΨL,R; χ̄L M χR =

Ψ̄L V
(1)
L

T
M V

(1)
R ΨR, with ΨL,RT = (f1, f2, f3, F)L,R the mass eigenfields, that is

V
(1)
L

T
MMT V

(1)
L = V

(1)
R

T
MTM V

(1)
R = Diag(m21,m

2
2,m

2
3,M

2
F) , (5.36)

m21 = m
2
e,m22 = m

2
µ,m23 = m

2
τ andM2

F =M
2
E for charged leptons. Therefore, the

transformation from massless to mass fermions eigenfields in this scenario reads

ψoL = VoL V
(1)
L ΨL and ψoR = VoR V

(1)
R ΨR (5.37)
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5.6.1 Quark (VCKM)4×4 and Lepton (UPMNS)4×8 mixing matrices

Within this SU(3) family symmetry model, the transformation from massless to
physical mass fermion eigenfields for quarks and charged leptons is

ψoL = VoL V
(1)
L ΨL and ψoR = VoR V

(1)
R ΨR ,

Recall now that vector like quarks, Eq.(5.3), are SU(2)L weak singlets, and hence,
they do not couple toW boson in the interaction basis. In this way, the interaction
of L-handed up and down quarks; fouL

T = (uo, co, to)L and fodL
T = (do, so, bo)L,

to theW charged gauge boson is

g√
2
f̄ouLγµf

o
dLW

+µ =
g√
2
Ψ̄uL [(VouL V

(1)
uL )3×4]

T (VodL V
(1)
dL )3×4 γµΨdL W

+µ ,

(5.38)
g is the SU(2)L gauge coupling. Hence, the non-unitary VCKM of dimension 4× 4
is identified as

(VCKM)4×4 = [(VouL V
(1)
uL )3×4]

T (VodL V
(1)
dL )3×4 (5.39)

5.7 Numerical results

To illustrate the spectrum of masses and mixing, let us consider the following fit of space
parameters at theMZ scale [8]

Taking the input values

M1 = 2TeV , M2 = 2000TeV ,
αH

π
= 0.2

for theM1,M2 horizontal boson masses, Eq.(5.8), and the SU(3) coupling constant,
respectively, and the ratio of the electroweak VEV’s: viu from Φu and vid from
Φd,

v1u = 0 ,
v2u

v3u
= 0.1

v1d

v2d
= 0.23257 ,

v2d

v3d
= 0.08373

5.7.1 Quark masses and mixing

u-quarks:

Tree level see-saw mass matrix:

Mo
u =




0 0 0 0.

0 0 0 29834.

0 0 0 298340.

0 1.49495× 107 −730572. 1.58511× 107


 MeV , (5.40)
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the mass matrix up to one loop corrections:

Mu =




1.38 0. 0. 0.

0. −532.587 −2587.14 −2442.42

0. 7064.64 −172017. 31927.1

0. 70.6499 338.204 2.18023× 107


 MeV (5.41)

and the u-quark masses

(mu , mc , mt , MU ) = ( 1.38 , 638.22 , 172181 , 2.18023× 107 )MeV (5.42)

d-quarks:

Mo
d =




0 0 0 13375.7

0 0 0 57510.3

0 0 0 686796.

0 723708. −37338.1 6.89219× 107


 MeV (5.43)

Md =




2.82461 0.0338487 −0.656039 −0.00689715

0.65453 −25.1814 −217.369 −2.28527

0.0562685 423.166 −2820.62 46.5371

0.000562713 4.23187 44.2671 6.89291× 107


 MeV (5.44)

(md , ms , mb , MD ) = ( 2.82368 , 57.0005 , 2860 , 6.89291× 107 ) MeV
(5.45)

and the quark mixing

VCKM =




0.97362 0.225277 −0.0362485 0.000194044

−0.226684 0.973105 −0.040988 −0.000310055

0.0260403 0.0481125 0.998387 −0.00999333

−0.000234396 −0.000826552 −0.011432 0.000114632


 (5.46)

5.7.2 Charged leptons:

Mo
e =




0 0 0 37956.9

0 0 0 189784.

0 0 0 1.93543× 106
0 548257. −30307.4 1.94497× 108


 MeV (5.47)
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Me =




−0.486368 −0.00536888 0.0971221 0.000274163

−0.0967909 −34.7536 −250.305 −0.706579

−0.0096786 485.768 −1661.27 10.8107

−0.0000967909 4.85792 38.2989 1.94507× 108


 MeV (5.48)

fit the charged lepton masses:

(me , mµ , mτ , ME) = (0.486095 , 102.7 , 1746.17 , 3.15956× 108 )MeV

and the charged lepton mixing

VoeL V
(1)
eL =




0.973942 0.221206 0.050052 0.000194

−0.226798 0.949931 0.214927 0.0008342

−2.90427× 10−6 −0.220675 0.975296 0.009963

2.62189× 10−7 0.0013632 −0.009906 0.99995


 (5.49)

5.8 Conclusions

We reported recent numerical analysis on charged fermion masses and mixing
within a BSM with a local SU(3) family symmetry, which combines tree level
”Dirac See-saw” mechanisms and radiative corrections to implement a successful
hierarchical mass generation mechanism for quarks and charged leptons.

In section 5.7 we show a parameter space region where this scenario account
for the hierarchical spectrum of ordinary quarks and charged lepton masses, and
the quark mixing in a non-unitary (VCKM)4×4 within allowed values2 reported in
PDG 2014 [9].

Let me point out here that the solutions for fermion masses and mixing reported in
section 5.7 suggest that the dominant contribution to Electroweak Symmetry Breaking
comes from the weak doublets which couple to the third family.

It is worth to comment here that the symmetries and the transformation of the fermion
and scalar fields, all together, forbid tree level Yukawa couplings between ordinary standard
model fermions. Consequently, the flavon scalar fields introduced to break the symmetries:
Φu, Φd, η2 and η3, couple only ordinary fermions to their corresponding vector like
fermion at tree level. Thus, FCNC scalar couplings to ordinary fermions are suppressed
by light-heavy mixing angles, which as is shown in (VCKM)4×4, Eq.(5.46), may be small
enough to suppress properly the FCNC mediated by the scalar fields within this scenario.

2 except (VCKM)13 and (VCKM)31



i
i

“proc15” — 2015/12/9 — 10:51 — page 61 — #77 i
i

i
i

i
i

5 Charged Fermion Masses and Mixing from a SU(3) Family Symmetry Model 61

5.9 Appendix: Diagonalization of the generic Dirac See-saw
mass matrix

Mo =




0 0 0 a1
0 0 0 a2
0 0 0 a3
0 b2 b3 c


 (5.50)

Using a biunitary transformation ψoL = VoL χL and ψoR = VoR χR to diagonalizeMo,
the orthogonal matrices VoL and VoR may be written explicitly as

VoL =




a2
a′

a1a3
a′a

a1
a

cosα a1
a

sinα

−a1
a′

a2a3
a′a

a2
a

cosα a2
a

sinα

0 −a
′

a
a3
a

cosα a3
a

sinα

0 0 − sinα cosα




(5.51)

VoR =




1 0 0 0

0 b3
b

b2
b

cosβ b2
b

sinβ

0 −b2
b
b3
b

cosβ b3
b

sinβ

0 0 − sinβ cosβ




(5.52)

λ23 =
1

2

(
B−

√
B2 − 4D

)
, λ24 =

1

2

(
B+

√
B2 − 4D

)
(5.53)

are the nonzero eigenvalues ofMoMoT (MoTMo), and

B = a2 + b2 + c2 = λ23 + λ
2
4 , D = a2b2 = λ23λ

2
4 , (5.54)

cosα =

√
λ24 − a

2

λ24 − λ
2
3

, sinα =

√
a2 − λ23
λ24 − λ

2
3

,

(5.55)

cosβ =

√
λ24 − b

2

λ24 − λ
2
3

, sinβ =

√
b2 − λ23
λ24 − λ

2
3

.
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6 Gravitational Effects for Dirac Particles ?
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Abstract. We present an update on recent advances in the theory of Dirac particles in
curved space-times. The basic formulation behind the covariant coupling of the Dirac
bispinor to space-time geometry is briefly reviewed including the appropriate covariant
action principle. A number of central-field problems have recently been analyzed; all of
these depend on a concrete, explicit evaluation of the spin connection matrices for particular
space-time geometries; the relevant results are discussed. The generalization of the formal-
ism to tachyonic spin-1/2 particles is rather straightforward and allows the identification of
the leading interaction terms for high-energy tachyons, which approach the light cone. The
combination of quantum electrodynamics on curved space-time backgrounds may seem
like a far-fetched field of research, but recent claims in the field have shaken the foundations
of fundamental principles of general relativity. We show that a careful consideration of the
vacuum polarization integral, with a gravitational effective mass, restores the validity of
the weak equivalence principle in deep gravitational potentials.

Povzetek. Poročava o nedavnem napredku v teoriji Diracovih delcev v ukrivljenem prostoru-
času. Na kratko predstaviva kovariantno sklopitev Diracovega bispinorja z geometrijo
prostor-časa s in ustrezno kovariantno akcijo. Na kratko predstaviva nove dosžke pri
iskanju rešitev za Diracov delec v več različnih centralnih potencialih, ki so se pojavili v
zadnjem času. Vsi uporabijo matrike spinskih povezav. Ta pristop posplošiva na tahionske
delce s spinom 1/2, kar nama omogoči prepoznati vodilne člene interakcije za skoraj brez-
masne tahione na svetlobnemu stožcu. Povezava kvantne elektrodinamike v ukrivljenem
prostoru-času se zdi zanimiva ob trditvah o morebitni neveljavnosti splošne teorije rela-
tivnosti. Vendar s skrbno obravnavo polarizacije vakuuma (z gravitacijsko efektivno maso)
pokaževa veljavnost načela šibke ekvivalence v globokih gravitacijskih potencialih in s tem
zmotnost teh trditev.

6.1 Introduction

The coupling of a spin-1/2 particle to the gauge fields via the covariant derivative,
within the Dirac equation, has been central to the formulation of the Standard
Model of Elementary Interactions, and to the understanding of the properties
of antiparticles. It is much less common wisdom how to couple a Dirac parti-
cle to a curved space-time geometry. Some naive guesses fail. In flat space, the
Clifford algebra of Dirac matrices was formulated [1,2] to fulfill the fundamental
anticommutator relation

{γµ, γν} = ηµν (6.1)
? Talk delivered by U.D. Jentschura
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where ηµν is the flat space-time metric ηµν = diag(1,−1,−1,−1). In curved space,
this relation has to be generalized to

{γµ(x), γν(x)} = gµν(x) , (6.2)

where gµν(x) is the curved space-time metric, and the Dirac matrices become
coordinate-dependent. (We choose to denote the curved-space metric by g in order
to avoid confusion with the flat-space counterpart, which is usually denoted by g
in elementary physics.)

However, one would be mistaken to simply replace γµ → γµ in the Dirac
equation in order to couple the Dirac particle to space-time curvature, or, to sim-
ple insert the gravitational potential V = −Gm1m2/r into the Dirac equation by
hand. Both approaches fail because they are not covariant with respect to Lorentz
transformations of curved space-time. In particular, the simple insertion of the
gravitational potential into the Dirac equation would lead to a different equation of
motion for the Dirac particle under a change of the space-time coordinates, which
is unacceptable. The requirement of covariance under local Lorentz transforma-
tions leads to the definition of the spin connection matrices, and to the covariant
derivative for a spinor in curved space time.

Here, we briefly review some recent works on related topics, which are based
on the concrete evaluation of the spin connection matrices for particular space-time
geometries, and discuss an application to quantum electrodynamics in curved
space-time, namely, the gravitational correction to vacuum polarization. We use
units with ~ = c = ε0 = 1 and employ the standard representation for the
Dirac matrices [3,4] (the “standard” speed of light is sometimes denoted as c0, for
reasons apparent from the context of the discussion on conceivable tiny deviations
induced by quantum phenomena).

6.2 Dirac Particles and Curved Space–Time

In order to fix ideas [5], let us recall that the vierbein eAµ (the “square root of the
metric”) describes the connection of the curved-space and flat-space metrics,

gµν(x) = e
A
µ e

B
ν ηAB , ηAB = diag(1,−1,−1,−1) . (6.3)

The completeness of the vierbein implies that both the “local” (nonholonomic)
as well as the “global” (holonomic) indices can be raised and lowered using the
metric(s) η and g. In particular, one has

eµA eµB = ηAB , eAµ eνA = gµν(x) (6.4)

The connection of the flat-space (γ̃) and curved-space (γ) Dirac matrices is given
as follows,

γµ(x) = e
A
µ γ̃A , {γ̃A, γ̃B} = ηAB , {γµ(x), γν(x)} = gµν(x) . (6.5)

Local Lorentz transformations lead to a reparameterization of the “internal” space,

e ′µA(x) = ΛAB(x) e
νB(x) , e ′µA (x) = ΛA

B(x) eνB(x) , (6.6)
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The Ricci rotation coefficientωABν is obtained from the covariant derivative of an
anholonomic basis vector,

~eA = eµA ~eµ , ~eB = eµB ~eµ ,

∂ν~e
B =

(
∇ν eµB

)
~eµ = eAµ

(
∇ν eµB

)
~eA ≡ ωABν ~eA . (6.7)

It is given, in terms of the vierbein and Christoffel symbols, as follows,

ωABν = eAµ ∇ν eµB = eAµ ∂ν e
µB + eAµ Γ

µ
νλ e

λB . (6.8)

A local spinor Lorentz transformation with generators ΩAB(x) transforms the
bispinor ψ according to

ψ ′(x ′) = S(Λ(x))ψ(x) =

(
1−

i
4
ΩAB(x) σ̃AB

)
ψ(x) (6.9)

The flat-space spin matrices σ̃AB are given as

σ̃AB =
i
2
[γ̃A, γ̃B] (6.10)

The covariant derivative∇µ of a spinor contains the spin connection matrix Γµ(x),

Γµ(x) =
i
4
ωµ

AB(x) σ̃AB ,

∇µψ(x) =
(
∂µ −

i
4
ωµ

AB(x) σ̃AB

)
ψ(x) = (∂µ − Γµ)ψ(x) (6.11)

A change of the vierbein according to Eq. (6.6) leads to a different form of the Ricci
rotation coefficients, and of the spin connection matrices,

∇ ′µψ(x) =
(
∂µ −

i
4
ω ′µ

AB
(x) σ̃AB

)
ψ(x) =

(
∂µ − Γ ′µ

)
ψ(x) (6.12)

but the covariance with respect to the local Lorentz transformation is ensured by
the relationship [5],

∇ ′µ [S(Λ(x))ψ(x)] = S(Λ(x))∇µψ(x) , (6.13)

in accordance with the underlying idea of the covariant derivative. From the action

S =

∫
d4x

√
−detg(x) ψ(x)

(
i
2
γµ(x)

←→∇ µ −m

)
ψ(x) ,

one derives the gravitationally coupled Dirac equation

(iγµ∇µ −m)ψ(x) = 0 . (6.14)

It is straightforward to generalize this formalism to tachyons, which in flat space-
time are described by the tachyonic Dirac equation,

(iγ̃µ∇µ − γ̃5m)ψ(x) = 0 . (6.15)



i
i

“proc15” — 2015/12/9 — 10:51 — page 66 — #82 i
i

i
i

i
i

66 U.D. Jentschura and J.H. Noble

In curved space-time [6,7], the generalization of the γ5 matrix reads as

γ5(x) =
i
4!

εµνρδ√
−detg(x)

γ̃µ(x) γ̃ν(x) γ̃ρ(x) γ̃δ(x) , (6.16)

the action becomes

S =

∫
d4x

√
−detg(x) ψ(x)γ5(x)

(
i
2
γρ(x)

←→∇ ρ − γ5(x)m)ψ(x) ,
from which one derives the gravitationally coupled tachyonic Dirac equation as

[
iγµ∇µ − γ5(x)m

]
ψ(x) = 0 . (6.17)

Based on this formalism, a number of very concrete and definite problems
have recently been investigated [8–10,7], mainly for time-independent, central-
field curved-spacetime configurations. The Dirac bispinor ψ describes both parti-
cle (“electron”) as well as antiparticle (“positron”) states. A symmetry of particle
and anti-particle solutions has been uncovered in Ref. [8] for the Schwarzschild
space-time geometry; it implies that, on the level of Newtonian and Einsteinian
geometrodynamics, antiparticles are attracted in central gravitational fields in
the same way as particles are (including all relativistic corrections of motion, and
within a quantum dynamical formalism). A conceivable deviation of the gravita-
tional interactions for particles and antiparticles therefore would be indicative of
a fifth fundamental force [8]. We also found the nonrelativistic limit of the Dirac-
Schwarzschild Hamiltonian and identified the gravitational spin-orbit coupling,
and gravitational zitterbewegung term [9]. The leading relativistic corrections
terms are obtained after a Foldy–Wouthuysen transformation [11], and read [9]

HFW = β

(
m+

~p 2

2m
−

~p 4

8m3

)
− β

mrs

2 r
(6.18)

+ β

(
−
3rs

8m

{
~p 2,

1

r

}
+
3πrs

4m
δ(3)(~r) +

3rs

8m

~Σ · ~L
r3

)
.

Here, rs = 2GM is the Schwarzschild radius. The spectrum of a purely gravitation-
ally coupled bound state in a central field was studied, including the relativistic
corrections [12], and the analogue of the electromagnetic fine-structure constant
for gravity was identified [12]. Furthermore, it has recently been clarified, based
on tachyonic gravitationally coupled Dirac equation (6.17), that the leading term
in gravitational central fields actually is attractive for tachyons, in full agreement
with the fact that tachyons become “luxons” in the high-energy domain (they
approach the light cone), and they thus are attracted to gravitational centers much
like photons. However, several correction terms are repulsive for tachyons, in
contrast to their attractive counterparts for tardyons [7]. Namely, according to
Ref. [7], One finds for tardyons (in the high-energy limit, with E = −~Σ · ~p)

Hds = β

(
E + m2

2E −
1

2

{
E , rs
r

}
+
9

32

{
E , r

2
s

r2

}
−
7m2

64

{
1

E ,
r 2s
r2

}
+
3m2

16

rs

r

1

E
rs

r

)
, (6.19)
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while for tachyons

Htg = β

(
E − m2

2E −
1

2

{
E , rs
r

}
+
9

32

{
E , r

2
s

r2

}
+
7m2

64

{
1

E ,
r 2s
r2

}
−
3m2

16

rs

r

1

E
rs

r

)
. (6.20)

Here, “ds” and “tg” refer to the identifications of the Hamiltonians as “Dirac
Schwarzschild” and “tachyonic gravitational”, respectively. The final two terms in
these Hamiltonians have opposite signs, indicating a difference in the gravitational
interaction for tachyons and tardyons.

We should clarify that, in order to couple a Dirac particle to space-time cur-
vature, it is not necessary to quantize space-time. The spin connection matrices
mediate the coupling to the “classical” (not quantum) space-time geometry, and
they ensure the covariance of the covariant derivative under local Lorentz trans-
formations (in a nonholonomic basis).

6.3 Speed of Light in Deep Gravitational Potentials

First, it’s necessary to remember that the speed of light is not as “constant” as one
would a priori assume, when expressed in global coordinates. According to Eq. (5)
of Ref. [13], the space-time metric for static, weak gravitational fields reads as

ds2 = (1+ 2ΦG(~r)) dt2 − (1− 2ΦG(~r)) d~r 2 , (6.21)

where ΦG is the gravitational potential. Light travels on a null geodesic, with
ds2 = 0, and so (

d~r
dt

)2
=
1+ 2ΦG(~r)

1− 2ΦG(~r)
≈ 1+ 4ΦG(~r) . (6.22)

The local speed of light, expressed in terms of the global coordinates, thus is
∣∣∣∣
d~r
dt

∣∣∣∣ = 1+ 2ΦG(~r) , ∆c = 2ΦG(~r) = (1+ γ)ΦG(~r) < 0 . (6.23)

In a central field, we have ΦG(~r) = −GM/r. Deviations from γ = 1 parameterize
departures from standard geometrodynamics [14–16]. For further discussion, we
also refer to Chap. 4.4 on page 196 ff. of Ref. [17], Eq. (4.43) of Ref. [18] and Sec. 4.5.2
of Ref. [18], as well as Ref. [19]. The effect parameterized by Eq. (6.23) is known as
the Shapiro time delay [20–24].

Some attention [25] was recently directed to a recent paper [26] where it
was claimed that quantum electrodynamics, when considering the gravitational
correction to the fermion propagators, yields an additional correction to the speed
of light, parameterized as

δcγ =
9

64
α
ΦG(~r)

c20
< 0 , (6.24)
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slowing down photons as compared to other high-energy particles, which ap-
proach the “unperturbed light cone”. The reason for the special role of photons is
claimed to be due to the fact that vacuum polarization, on shell, receives a tiny
correction due to the gravitational interactions of the fermions in the loop, which
in turn displaces the photon ever so slightly from the flat space-time mass shell.

First doubts arise because the value

γ− 1 = χα =
9α

64
= 1.03× 10−3 . (6.25)

is in disagreement with the bounds set by radar reflection from the the Cassini
observations [27] in superior conjunction, which reads as follows,

γ− 1 = (2.1± 2.3)× 10−5 . (6.26)

Further conceptual difficulties result because, one might otherwise perform a
thought experiment and enter a region of deep gravitational potential with three
freely falling, propagating wave packets, one describing a photon, the others de-
scribing a very highly energetic neutrino and a very highly energetic electron. The
latter two propagate at a velocity (infinitesimally close to) the flat-space speed
of light c0. If a correction of the form δcγ exists, then photons will have been
decelerated to a velocity c0 − |δcγ| within the gravitational potential, whereas both
fermions retain a velocity (infinitesimally close to) c0. If we regard the photons
as particles, then we could argue that a “force” must have acted onto the photon,
causing deceleration, even though the particles were in free fall, leading to violat-
ing of the weak equivalence principle. However, the claim (6.24) is of quantum
origin and therefore beyond the realm of applicability of standard classical general
relativity; it is thus hard to refute based on first principles.

It thus remains to calculate the leading correction to vacuum polarization in
gravitational fields using the gravitationally coupled Dirac equation. According to
Eq. (12) of Ref. [8], the leading term is

H = ~α · ~p+ βmw(~r) , w(~r) ≈ 1+ΦG , (6.27)

leading to an effective mass of the fermion,

meff = mw(r) ≈ m (1+ΦG) , (6.28)

which needs to be inserted into the covariant representation of the one-loop
vacuum insertion into the photon propagator,

gµν

k2
→ gµν

k2 [1+ωR(k2)]
, k2 = ω2 − ~k2 , (6.29)

ωR(k2) =
αk2

3π

∞∫
4m2eff

dk ′2

k ′2
1+ 2m2eff/k

′2

k ′2 − k2

√

1−
4m2eff

k ′2
. (6.30)
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The asymptotic forms

ωR(k2) =
α

15π

k2

m2eff
+O(k4) , k2 → 0 , (6.31a)

ωR(k2) = −
α

3π
ln
(
−
k2

m2eff

)
+
5α

3π
+O

(
ln(−k2)
k2

)
,

k2 →∞ , (6.31b)

imply that the correction on the mass shell, ωR(0) = 0, invalidating the claim
made in Ref. [26].

6.4 Conclusions

In Sec. 6.2, we have studied the gravitational coupling of Dirac particles to curved
space-time backgrounds, and found that the covariant coupling to space-time
implies the use of spin connection matrices; naive prescriptions based on the
insertion of the gravitational potential into the Dirac equation can only be valid
in an approximate sense. The central idea behind the covariant coupling is the
covariance of the covariant derivative in spinor space, given in Eq. (6.13), from
which by an explicit evaluation of the spin connection matrices, the results given
in Eqs. (6.18), (6.19) and (6.20) can be derived.

The gravitational correction to vacuum polarization is discussed in Sec. 6.3,
and a recent claim [26] regarding an additional modification of the speed of light in
deep gravitational potentials [parameterized by the γ parameter, see Eq. (6.25)] is
refuted. The vacuum polarization tensor in gravitational backgrounds is obtained,
within the leading approximation, by a substitution of the gravitationally shifted
effective electron mass into the fermion propagator of the one-loop vacuum polar-
ization integral [see Eq. (6.29)]. In summary, we have shown that one can apply the
gravitational coupling of Dirac particles in order to solve a number of problems
of practical interest, including central-field problems and variations thereof, and
potential gravitational corrections to quantum-field theoretical phenomena, like
vacuum polarization.
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Abstract. In 2005 Sheldon Glashow has proposed his sinister model, opening the path to
composite-dark-matter scenarios, in which heavy stable electrically charged particles bound
in neutral atoms play the role of dark matter candidates. Though the general problem of
new stable single charged particles, forming with ordinary electrons anomalous isotopes of
hydrogen, turned out to be unresolvable in Glashow’s scenario, this scenario stimulated
development of composite dark matter models, which can avoid the trouble of anomalous
isotope overproduction. In the simplest case composite dark matter may consist of -2
charged particles, bound by ordinary Coulomb interaction with primordial helium in OHe
dark matter model. The advantage and open problems of this model are discussed.

Povzetek. Sheldon Glashow je leta 2005 predlagal model, ki je odprl pot modelom, v
katerih so kandidati za temno snov nevtralni atomi sestavljeni iz (novih) težkih stabilnih
delcev z električnim nabojem. Glashowih stabilnih delcev z električnim nabojem 1 sicer ni
mogoče povezati z elektroni v anomalne izotope vodika, ki bi pojasnili lastnosti temne snovi.
Je pa ta model spodbudil razvoj modelov, ki naj pojasnijo temno snov s gručami težkih
delcev in se hkrati izognejo težavam s preobiljem anomalnih izotopov. Avtor obravnava
model, v katerem temno snov sestavljajo delci z nabojem −2, ki jih Coulombska interakcija
veže s helijem v OHe, ter predstavi prednosti in odprte probleme tega modela.

7.1 Introduction

The existence of dark matter, constituting dominant fraction of the matter content
of the Universe, is one of the cornerstones of the modern cosmology, but its physi-
cal nature is still elusive. The results of direct searches for dark matter are reviewed
in [1]. Though the apparent contradiction of these results comes from the uncritical
comparison of the data, obtained with the use of different techniques, and even
their interpretation in the terms of Weakly Interacting Massive Particles (WIMPs)
is still not ruled out [1], a more general approach to a possible solution of the dark
matter problem is appealing. Here we concentrate on a possibility that in the same
way as the ordinary matter is composed by atoms, which consist of electrically
charged electrons and nuclei, bound by Coulomb forces, new electrically charged

?? khlopov@apc.univ-paris7.fr
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stable particles may be bound by ordinary Coulomb field in the dark atoms of
the dark matter. The electrically charged constituents of dark atoms may be not
only elementary particles, but can be composite objects, as are ordinary nuclei and
nucleons.

In 2005 the idea of such a multi-composite dark matter was put forward by
Sheldon Glashow in his sinister model [2]. The model assumed a set of million
times heavier partners of ordinary quarks and leptons related by a strict symmetry.
The lightest of these partners (tera-electron and tera-U-quark) were stable and
could form a stable tera-helium atom (UUU)EE, in which +2 charged quark cluster
(UUU) was bound by ordinary Coulomb force with two tera-electrons. It was
proposed that in the early Universe the excessive U-quarks first bind in (UUU)
cluster, which recombines then with excessive tera-electrons to form tera-helium
atom. The unrecoverable problem of this scenario, revealed in [3], was inevitable
overproduction of +1 and +2 charged remnants of incomplete binding, like (Uud),
(UUu) hadrons or (UUU)E ions, which bind with ordinary electrons in atomic
states that look like anomalous isotopes of hydrogen and helium. Moreover all
the free tera-electrons turned to bind with primordial helium, as soon as it was
formed in Big Bang Nucleosynthesis, in +1 charged ion (EHe), increasing the list
of undesirable +1 charged species and preventing any possible reduction of their
abundance. It makes impossible to realize the dark atom scenario not only in
Glashow’s sinister model, but also in any other model predicting stable +1 and -1
charged species. However these studies stimulated further development of the
idea of composite dark matter particles both in the form of stable heavy quark
clusters and dark atoms, in which new stable charged particles are bound.

Starting from 2006 various realizations of possible solution for dark atom
scenario were proposed [4–10], in which the important role of stable -2 charged
species was revealed. These species are bound with primordial helium in neutral
OHe atoms, which play important catalyzing role in reduction of all the undesir-
able positively charged heavy species that can give rise to anomalous isotopes,
as well as can be the candidate for composite dark matter, dominating in the
matter density of the Universe. Such candidates for dark matter should consist
of negatively doubly-charged heavy (with the mass ∼ 1 TeV) particles, which are
called O−−, coupled to primordial helium. Lepton-like technibaryons, technilep-
tons, AC-leptons or clusters of three heavy anti-U-quarks of 4th generation with
strongly suppressed hadronic interactions are examples of such O−− particles
(see [4–6,8–10] for a review and for references). Another direction of composite
dark matter scenario is to consider neutral stable heavy quark clusters as it is
proposed in the approach of [11]. However, even in this approach heavy stable -2
charged clusters (ū5ū5ū5) of stable antiquarks ū5 of 5th generation can also find
their physical basis [7].

Here we briefly outline the advantages of the OHe dark atom scenario in
its ability to explain some puzzles of direct and indirect dark matter searches,
specifying collider and non-collider probes for this scenario as well as its open
problems.
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7.2 OHe solutions for puzzles of dark matter searches

It is assumed that together with generation of baryon asymmetry the excess of O−−

particles is generated. This assumption finds natural basis in Walking Technicolor
models, which provide proper ratio of baryon and O−− excess due to sphaleron
transitions in the early Universe. Similar relationship can take place in any other
model with O−− coupling to electroweak sphalerons.

As soon as primordial helium is produced in Big Bang nucleosynthesis, it
captures all the free O−− forming OHe atoms. These atoms catalyze binding and
annihilation of all the undesirable positively charged species. Before OHe gas
starts to dominate on matter dominated stage, it decouples from plasma and
radiation, what is necessary for its role of proper dark matter candidate. It leads to
scenario of Warmer than Cold Dark Matter (WtCDM) with a slight suppression of
small scale fluctuations. This suppression is less pronounced than in the Warm
Dark Matter scenario, but still it can be of interest for solution of small scale cusp
problem of the standard CDM. In spite of its strong nuclear interaction OHe gas is
collisionless at galactic scale, but all the dense matter objects like stars or planets
are opaque for it. Due to this opacity the infalling flux of OHe is captured and
thermalized in the terrestrial matter.

It is assumed that the effective potential between OHe and a normal nucleus
would have a barrier, preventing He and/or O−− from falling into the nucleus.
Under these conditions elastic collisions dominate in OHe interactions with matter,
and lead to a successful OHe scenario. The cosmological and astrophysical effects
of such composite dark matter (dark atoms of OHe) are dominantly related to the
helium shell of OHe and involve only one parameter of new physics − the mass
of O−−.

7.2.1 OHe solution for puzzles of direct dark matter search

Dark atom interpretation of the puzzles of direct dark matter search is based
on the specifics of OHe nuclear interaction. If dark matter can bind to normal
matter, the observations could come from radiative capture of thermalized OHe
and could depend on the detector composition and temperature. In the matter
of the underground detector local concentration of OHe is determined by the
equilibrium between the infalling cosmic OHe flux and its diffusion towards the
center of Earth. Since the infalling flux experiences annual changes due to Earth’s
rotation around Sun, this local OHe concentration possess annual modulations.

The positive results of the DAMA/NaI and DAMA/LIBRA experiments are
then explained by the annual modulations of the rate of radiative capture of OHe
by sodium nuclei. Such radiative capture to a low energy OHe-nucleus bound state
is possible only for intermediate-mass nuclei: this explains the negative results of
the XENON100 and LUX experiments. The rate of this capture can be calculated by
the analogy with radiative capture of neutron by proton, taking into account the
scalar and isoscalar nature of He nucleus, what makes possible only E1 transition
with isospin violation in this process. In the result this rate is proportional to the
temperature (to the square of relative velocity in the absence of local thermal
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equilibrium): this leads to a suppression of this effect in cryogenic detectors, such
as CDMS.

7.2.2 OHe solution for positron line excess in the galactic bulge

The timescale of OHe collisions in the Galaxy exceeds the age of the Universe,
what proves that the OHe gas is collisionless. However the rate of such collisions
is nonzero and grows in the regions of higher OHe density, particularly in the
central part of the Galaxy, where these collisions lead to OHe excitations. De-
excitations of OHe with pair production in E0 transitions can explain the excess
of the positron-annihilation line, observed by INTEGRAL in the galactic bulge
[9,10,12–16]. The calculated rate of collisions and OHe excitation in them strongly
depends on OHe density and relative velocity and the explanation of positron
excess was found to be very sensitive to the dark matter density in the central
part of Galaxy, where baryonic matter dominates and theoretical estimations are
very uncertain. The latest analysis of dark matter distribution favors more modest
values of dark matter central density, what fixes the explanation of the excess of
the positron-annihilation line by OHe collisions and de-excitation in a very narrow
range of the mass of O−− near 1.25 TeV.

7.2.3 OHe solution for high energy positron excess

In a two-component dark atom model, based on Walking Technicolor, a sparse
WIMP-like component of atom-like state, made of positive and negative doubly
charged techniparticles, is present together with the dominant OHe dark atom and
the decays of doubly positive charged techniparticles to pairs of same-sign leptons
can explain the excess of high-energy cosmic-ray positrons, found in PAMELA
and AMS02 experiments [17]. This explanation is possible for the mass of decaying
+2 charged particle below 1 TeV and depends on the branching ratios of leptonic
channels. Since even pure lepton decay channels are inevitably accompanied
by gamma radiation the important constraint on this model follows from the
measurement of cosmic gamma ray background in FERMI/LAT experiment. The
multi-parameter analysis of decaying dark atom constituent model is under way in
order to determine the maximal model independent value of the mass of decaying
+2 charge particle, at which this explanation is possible.

7.2.4 The LHC probes for OHe solutions for cosmic positron excess

These astroparticle data can be fitted, avoiding many astrophysical uncertainties
of WIMP models, for a mass of O−− ∼ 1 TeV, which stimulates searches for stable
doubly charged lepton-like particles at the LHC as a test of the composite-dark-
matter scenario. The search for stable multi-charge particles in ATLAS and CMS
experiments gives the lower value for double charged particles around 700 GeV
[18]. This search will continue in the current Run of the LHC, giving the hope
on the complete experimental test of composite dark matter explanation for the
observed low and high energy positron excess.
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7.3 Open problems of OHe scenario

7.3.1 The problem of OHe nuclear barrier

The crucial problem of OHe scenario is the existence of a dipole barrier in OHe
nuclear interaction. The scenario in which such a barrier does not appear was
considered in [19]. This lead to a significant role of inelastic reactions for OHe,
and strongly modified the main features of the OHe scenario. In the period of
Big Bang Nucleosynthesis, when OHe was formed, it captured an additional He
nucleus, so that the dominant form of dark matter became charged, recombin-
ing with electrons in anomalous isotopes of helium and heavier elements. The
resulting over-abundance of anomalous isotopes in terrestrial matter seems to be
unavoidable in this case.

This makes the full solution of OHe nuclear physics, started in [20], vital.
The answer to the possibility of the creation of a dipole Coulomb barrier in OHe
interaction with nuclei is crucial. Without that barrier one gets no suppression of
inelastic reactions, in which O−− binds with nuclei. These charged species form
atoms (or ions) with atomic cross sections, and that strongly suppresses their
mobility in terrestrial matter, leading to their storage and over-abundance near
the Earth’s surface and oceans. Hence, the model cannot work if no repulsive
interaction appears at some distance between OHe and the nucleus, and the
solution to this question of OHe nuclear physics is vital for the composite-dark-
matter OHe scenario.

7.3.2 The problem of the Earth’s shadowing

The terrestrial matter is opaque for OHe, what should inevitably lead to an effect of
Earth matter shadowing for the OHe flux and corresponding diurnal modulation.
This effect needs special study in the confrontation with the constraints, recently
obtained in DAMA/LIBRA experiment [21].

7.4 Conclusion

The existence of new stable electrically charged particles poses an immediate
question on their presence in the surrounding matter in the form of anomalous
isotopes, whose possible abundance is severely constrained by the experimental
data. The original approach of the sinister model [2] could not overcome the
trouble of overproduction of anomalous hydrogen and helium [3]. However, this
approach revealed two important aspects of composite dark matter: possibility of
clusters of heavy stable quarks with suppressed QCD interaction and a possibility
of stable charged particles hidden in neutral dark atoms. The development of dark
atom scenario during the past decade gave rise to the OHe composite-dark-matter
scenario.

The advantages of this scenario is that it is minimally related to the parameters
of new physics and is dominantly based on the effects of known atomic and nuclear
physics. However, the full quantum treatment of this problem turns out to be rather
complicated and remains an open (see [22] for the most recent review).
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At the mass of long living stable double charged particles near 1 TeV dark
atom scenario can explain the observed excess of low energy positrons in the
galactic bulge and the excess of high energy positrons above 10 GeV, challenging
experimental search for such particles at the LHC.
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Abstract. The LHC is now exploring the 1-3 TeV scale where resonances of the Electroweak
Symmetry Breaking Sector might exist. If so, Unitarized Effective Theory can be used
to describe the data with all the constraints of unitarity, causality and global-symmetry
breaking, and to find the resonance positions in the complex s-plane. From any resonances
found, one can infer the parameters of the universal Effective Lagrangian, and those may
be used to inform higher-energy theories (UV completions) that can be matched to it.
We exemplify with two-body resonances in the coupled channels hh andWLWL − ZLZL
employing the Equivalence Theorem and comment on the apparent excess in the ATLAS
dijet data at 2 TeV.

Povzetek. Pričakuje se, da bodo meritve na pospeševalniku LHC potrdile obstoj resonanc
pri energijah od 1–3TeV. Avtorji uporabijo unitarni efektivni model za opis dvodelčnih
resonanc v dvodelčnih kanalih (hh inWLWL − ZLZL), ki uspešno opiše te vrste resonanc v
energijskem območju nekaj sto GeV, v novem energijskem območju. Komentirajo rezultate
meritev z dvema curkoma na merilniku Atlas pri energiji 2TeV.

8.1 Non-linear EFT forWLWL and hh

The LHC has found a scalar boson with mh = 125 GeV and not much more.
It is natural to describe the Electroweak Symmetry Breaking Sector of the Stan-
dard Model (SM) in terms of the low-energy spectrum alone. The resulting effec-
tive Lagrangian for the Higgs-like particle h and the longitudinal gauge bosons
WL, ZL ∼ ωa in the non-linear representation appropriate for the global symmetry
breaking scheme SU(2) × SU(2) → SU(2)c (leaving the approximate custodial
subgroup as a good isospin symmetry) is as given by us [1], the Barcelona group
[2] and others [3,4],

L =
1

2

[
1+ 2a

h

v
+ b

(
h

v

)2]
∂µω

i∂µωj
(
δij +

ωiωj

v2

)
+
1

2
∂µh∂

µh

+
4a4

v4
∂µω

i∂νω
i∂µωj∂νωj +

4a5

v4
∂µω

i∂µωi∂νω
j∂νωj +

g

v4
(∂µh∂

µh)2

+
2d

v4
∂µh∂

µh∂νω
i∂νωi +

2e

v4
∂µh∂

νh∂µωi∂νω
i (8.1)
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The parameters of this Lagrangian, neglecting the masses of all quasi-Goldstone
bosonsωa and of the Higgs h, adequate to explore the energy region 1-3 TeV�
100 GeV, are seven. Their status is given in table 8.1.

a b a4 a5 g d e

(0.88, 1.34) ∈ (−1, 3)a2 (this work) 0? 0? 0? 0? 0?

Table 8.1. From the ATLAS and CMS reported [5] hWW, hZZ couplings we infer the
approximate 2σ level constraint on a shown (a recent communication to the LHCP2015
conf. finds similar results [8]). In our recent work [6,7] on unitarized perturbation theory we
could also put a coarse constraint on b due to the absence of a coupled-channel resonance in
hh−ωω (the second channel is visible while the first is much harder). Basically no bounds
have been reported on the NLO parameters: their SM value is zero.

We emphasize that with seven parameters, this is a reasonably manageable
Lagrangian for LHC exploration of electroweak symmetry breaking, granted,
under the approximation ofMW 'MZ ' mh ' 0which is fair enough in the TeV
region, and this is in contrast to the very large parameter space of the fully fledged
effective theory [3].

The perturbative scattering amplitudes AJI(s) = A
(LO)
IJ (s) +A

(NLO)
IJ (s) . . . for

ωω and hh, projected into partial waves, are given to NLO in [6]. For example, the
LO amplitudes of I = 0, 1 and 2, proportional to (1−a2), and the channel-coupling
amplitudeωω→ hh, to (a2 − b),

A00(s) =
1

16πv2
(1− a2)s

A11(s) =
1

96πv2
(1− a2)s

A02(s) = −
1

32πv2
(1− a2)s

M0(s) =

√
3

32πv2
(a2 − b)s

show how a tiny separation of the parameters from the SM value leads to an
energy-growing, eventually strongly interacting set of amplitudes.

Including the NLO, these amplitudes take a form characteristic of chiral
perturbation theory

A
(LO+NLO)
IJ (s) = Ks+

(
B(µ) +D log

s

µ2
+ E log

−s

µ2

)
s2 (8.2)

with a left cut carried by theDs2 log s term, a right cut in the Es2 log(−s) term, and
the Ks+Bs2 tree-level polynomial. B,D and E have been calculated, reported in [6]
and allow for perturbative renormalizability, where the chiral counterterms con-
tained in B absorb one-loop divergences from iterating the tree-level Lagrangian
and run to make Eq. (8.2) scale invariant.

The energy reach of the Effective Theory with the Lagrangian density in
Eq. (8.1) is nominally 4πv ∼ 3 TeV. If the LHC finds no clear new phenomenon
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through this scale, experimental data on WLWL spectra can eventually be com-
pared with the effective theory predictions. In this precision work, separations of
a from 1 or of b from a2 or any NLO parameter from 0 can then be used to predict
the scale of new physics, or if measurements are null, at least to constrain it.

8.2 Resonances

On the other hand, if the LHC finds new resonances that couple to two longi-
tudinal gauge bosons (and potentially also to two Higgs bosons), then a purely
perturbative approach is inadequate. A deffect of the amplitudes in Eq. (8.2) is
that they violate the unitarity relation ImAIJ = |AIJ|

2, which is satisfied only order
by order in perturbation theory, namely ImA(NLO)

IJ = |A
(LO)
IJ |2. This introduces

an error which is only acceptably small when s is much smaller than the mass
of the first resonance in the IJ channel. But of course, since near resonances the
imaginary part of the amplitude is large, the effective theory is of no use there.
The solution is sometimes called Unitarized Effective Theory and is described in
subsection (8.2.1).

8.2.1 Unitarization

Unitarization of effective theory amplitudes is a technique well-known [9] in
hadron physics that we describe only briefly. It is possible because scattering
amplitudes in field theory are very constrained functions due to Lorentz invariance,
causality and unitarity. Dispersion relations, known from old in optics, are a way
of incorporating all the constraints [10] leaving little freedom to determine the
amplitudes, though they remain ambiguous without dynamical knowledge. To
fully obtain them though, one needs a few key numbers which are provided
by the effective theory at low-energy (see the lectures [11] for an introduction).
This powerful method of combining dispersion relations with effective theory,
which basically exhausts all underlying-model independent information in the
experimental data for two-body channels, was deployed for the electroweak
symmetry breaking sector early on [12]. Usually the resulting amplitudes for
WLWL ∼ ωω scattering are encoded in simple algebraic forms that avoid the
complications of the dispersion relations, such as the K-matrix [4] that introduce a
small amount of model dependence in the discussion.

To address this, we have compared [6] three unitarization methods that agree
in predicting the same resonances at the same positions within 1 to 10% when all
three can be used. These are the Inverse Amplitude Method, the N/D method,
and an improved version of the K-matrix method that ensures complex-plane
analyticity where appropriate. Table 8.2 shows the IJ channels where each one is
currently applicable in the Electroweak sector.

As an example, consider the Inverse Amplitude Method. In its simplest form
it requires two orders of the perturbative expansion, that are combined in the
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Table 8.2. Channels where each unitarization method can currently be used.

IJ 00 02 11 20 22
Method All N/D, IK IAM All N/D, IK

following simple formula,

AIJ =

(
A

(LO)
IJ

)2

A
(LO)
IJ −A

(NLO)
IJ

. (8.3)

To obtain it, one realizes that a dispersion relation for A(s) may be exact but
of little use because of insufficient low-energy information. On the contrary, a
dispersion relation for the perturbative A(LO) +A(NLO) can be fully studied, but
it is trivial because the perturbative amplitude is known everywhere. The trick
is to write one for

(
A(LO)

)2
A−1 (hence the name “Inverse Amplitude Method”)

because the integral over the right, unitarity cut of 1/A is exactly calculable when
only two-body channels are important. The result is the formula in Eq. (8.3).
Its generalization to two (massless) channels is straightforward by turning the
quantities therein into matrices, each element being an elasticωω→ ωω, hh→
hh or a cross-channel ωω → hh amplitude. In Fig. 8.1 we show the IAM and
also the other two methods with NLO parameters set to 0 at a scale of µ = 3 TeV
and with LO parameters a = 0.88 and b = 3. This set generates a characteristic
coupled-channel resonance seen in all three amplitudes.

Fig. 8.1. Comparison of three unitarization
methods for the imaginary parts of the IJ =
00 amplitudes. Clockwise from top left,ωω,
hh and channel-coupling ωω → hh (pa-
rameters in the text). A scalar resonance is
visible in all, and the unitarization meth-
ods with correct analytic properties closely
agree.



i
i

“proc15” — 2015/12/9 — 10:51 — page 82 — #98 i
i

i
i

i
i

82 F.J. Llanes-Estrada, A. Dobado and R.L. Delgado

The variable s in Eq. (8.3) may be extended to the complex plane, allowing to
search for resonances in its second Riemann sheet. We locate the pole positions
and report selected ones below in subsection 8.2.3.

8.2.2 ATLAS excess in two-jet events

The interest in TeV-scale resonances has recently rekindled because of an apparent
excess in ATLAS data [13] plotted in Fig. 8.2 together with comparable, older CMS
data [16] that does not show such an enhancement.

Fig. 8.2. Left: rerendering of the ATLAS data[13] forWZ→ 2 jet in pp collisions at the LHC,
that shows a slight excess at 2 TeV (same in the other isospin combinationsWW and ZZ,
not shown). Criticism on the jet analysis has been presented in [15]. Right: CMS data [16] in
the same 2-jet channel with jets tagged as vector bosons. Here the collaboration provides
the absolute normalization of the cross-section. No excess is visible at 2 TeV (if at all, a tiny
one at 1.8-1.9 TeV).

The excess is seen in two-jet events, each one containing the entire debris of a
respective gauge boson. Their invariant mass reconstruction allows the assignment
of aW or of a Z tag (82 and 91 GeV respectively) but the experimental error makes
the identification loose, so that the three-channels cross-feed and we should not
take seriously the excess to be seen in all three yet. Because WZ is a charged
channel, an I = 0 resonance cannot decay there. Likewise ZZ cannot come from an
I = 1 resonance because the corresponding Clebsch-Gordan coefficient 〈1010|10〉
vanishes. A combination of both isoscalar and isovector could explain all three
signals simultaneously, as would also an isotensor I = 2 resonance. In the isotensor
case, the resonance should be visible in the doubly charged channel W+W+

whereas not in the other (to tag the charge requires to study leptonic decays
instead of jets, so it is a whole other measurement, but worth carrying out).

Numerous models have been proposed to explain the presumed excess, but
the model-independent information is still sparse [14].

One statement that we can make, based on the so-called KSFR relation that
the IAM naturally incorporates (as do broad classes of theories such as Composite
Higgs models [17] with vector resonances [18]), is that if a ρ-like isovector reso-
nance is in the ATLAS data, it will be quite narrower than the bump seen (perhaps
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broadened due to experimental resolution). The relation, given here in the absence
of further channels [7], links the mass and width of the isovector resonance with
the low-energy constants v and a in a quite striking manner,

Γ IAM =
M3

IAM

96πv2
(1− a2) . (8.4)

ForM ∼ 2 TeV and Γ ∼ 0.2 TeV as obtained by rule of thumb in Fig. 8.2, one gets
a ∼ 0.73which is in tension with the ATLAS-deduced bound a|2σ > 0.88 at 4-5σ
level; Eq. (8.4) predicts that an isovectorWLWL resonance at 2 TeV, with present
understanding of the low-energy constants, needs to have a width of order 50 GeV
at most.

8.2.3 IAM parameter map

At last, we map out part of the seven-parameter space in search for resonances at
2 TeV that can be brought to bear on the new ATLAS data.

For a < 1 the scalar-isoscalar channel can be resonant from the LO Lagrangian
alone (generating a σ-like resonance that was described in [1]). In fact, even for
a = 1, there is a resonance generated for large enough b that oscillates between
theωω and hh, a “pinball” resonance, reported in [6]. This can be seen in the left
plot of Fig. 8.3, where, for a < 1 so that (1− a2) > 1 there is a pole in the second
Riemann sheet.
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Fig. 8.3. We explore the ab parameter space
in search for resonant poles of ωω scatter-
ing; clockwise from top left, IJ = 00, 11 and
20.

The isoscalar wave resonates for a broad swipe of ab parameter space, and
near 2 TeV (the thin band), though the structure is generally broad, and feeds
theWW and ZZ channels seen in the ATLAS data. In that case, the chargedWZ
experimental excess must be ascribed to misidentification of one of the two bosons,
since an isoscalar resonance is of necessity neutral.

For a > 1 an isotensor resonance exists (see again Fig. 8.3, bottom plot).
This is possible for a > 1 (light gray band marked ”LHC compatible”) as the
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LO amplitude in Eq. (8.2) becomes attractive. Of course, for this negative sign of
(1− a2), as seen in Eq. (8.2), the usual roles of the isoscalar and isotensor waves
are reversed, with the first now being repulsive.

In a narrow curved strip (middle gray, immersed in that band) this resonance
appears at about 2 TeV and can decay to all ofWW,WZ and ZZ charge-channels.
The darkest area corresponds here to “LHC ruled out” and means that the reso-
nance is light and might already be excluded.

We need to make sure that the other waves don’t present causality-violating
poles in the first Riemann sheet that rule out a certain parameter region. Returning
to Fig. 8.3 we see that the isovector wave indeed violates causality for much of the
parameter space where the isotensor resonance exists, though there are perhaps
small patches where the isotensor resonance is still allowed, for not too large
values of b.

Since this allowed parameter space is so small and because, even if the isoten-
sor resonance were there its production cross-section would be smaller (requiring
two intermediateW bosons) than the production of an isovector one as reported
in [19], we proceed to the NLO amplitude.

We likewise look for poles in the complex s plane as function of the a4, a5
parameters with fixed a = 0.95 and b = 1, as shown in Fig. 8.4. The bottom plot
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Fig. 8.4. Searches for complex-plane poles
as function of the NLO parameters a4 and
a5 for fixed a = 0.95 and b = a2. Clockwise
from left top, IJ = 00, 11, 20.

shows how a large swath of parameter space towards negative a4 is excluded by
displaying a pole in the first Riemann sheet of the 20 channel. Because here we
chose a < 1, this channel does not resonate in the second sheet, whereas the scalar
one (left, top plot) does, as well as the 11 channel (that is seen, by comparing with
Fig. 8.3, to present “intrinsic” resonances driven by the NLO counterterms).

The two diagonal bands in the 00 and 11 channels that support poles at
around 2 TeV intersect for slightly negative a5 and a4 of order 5× 10−4. There, we
find both isoscalar and isovector poles, that jointly could explain all of the extant
WW,WZ and ZZ excesses in two-jet data.
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8.3 Conclusion

The LHC is now taking data at 13 TeV and production cross-sections sizeably
increase. This is necessary as the typical σ for ωω resonances are currently at
or below the LHC sensitivity limit as shown in Fig. 8.5. The large rate at which
a resonance would have to be produced to explain the ATLAS excess is a bit
puzzling.

Fig. 8.5. Tree-levelW production of
ωω [19] with final-state resonance;
non-zero parameters are a = 0.9,
b= a2, a4 = 7×10−4 (at µ= 3 TeV).
Also shown is the CMS upper bound
on the cross-section obtained from
fig 8.2.

We hope that this ATLAS excess will soon be confirmed or refuted. In any case,
the combination of effective theory and unitarity, as encoded for example in the
IAM, is a powerful tool to describe data up to 3 TeV of energy in the electroweak
sector if new, strongly interacting phenomena appear, with only few independent
parameters. The content of new, Beyond the Standard Model theories, can then be
matched onto those parameters for quick tests of their phenomenological viability.
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Abstract. The spin-charge-family theory, which is a kind of the Kaluza-Klein theories, but
with two kinds of the spin connection fields — the gauge fields of the two kinds of spins [1–
5] — is offering the explanation for the appearance and properties of family members
(quarks and leptons), of families, of vector gauge fields (weak, hyper, colour), of scalar
higgs and Yukawa couplings and gravity. It also explains the appearance of the dark
matter and matter/anti-matter asymmetry. In this talk the achievements of this theory, its
predictions and also its not yet solved problems are briefly presented and discussed.

Povzetek. Teorija spinov-nabojev-družin [1–5] ponuja odgovor na vsa odprta vprašanja stan-
dardnega modela fizike osnovnih delcev in polj, pa tudi na marsikatero odprto vprašanje v
kozmologiji. Pojasni lastnosti ene družine kvarkov in leptonov, nastanek družin, nastanek
barvnega, šibkega in hiper polja, nastanek skalarnih polj, ki pojasnijo pojav Higgsovega
polja in Yukavinih sklopitev. Pojasni tudi pojav temne snovi in asimetrijo med snovjo
in antisnovjo v vesolju. Teorija, ki ima marsikaj skupnega s Kaluza-kleinovimi teorijami,
ponudi dve vrsti spinov. Ena vrsta določa vse naboje osnovnih delcev, druga družinska
kvantna števila. V predavanju predstavim dosedanje dosežke te teorije, njene napovedi, pa
tudi še nerešena odprta vprašanja.

9.1 Introduction

More than 40 years ago the standard model offered the elegant new step in under-
standing elementary fermion and boson fields. It postulated:

• The existence of the massless family members - coloured quarks and colourless
leptons, both left and right handed, the left handed members distinguishing
from the right handed ones in the weak and hyper charges and correspond-
ingly mass protected.

• The existence of massless families to each of a family member.
• The existence of the massless gauge fields (colour octet, weak triplet, hyper

singlet) to the observed (colour, weak and hyper) charges of the family mem-
bers. They all are vectors in d = (3 + 1), in the adjoint representations with
respect to the weak, colour and hyper charges.
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• The existence of a massive self interacting scalar field carrying the weak
charge ±1

2
and the hyper charge ∓1

2
, respectively, obviously doublets (in the

fundamental representation with respect to the weak charge - like fermions),
with the ”nonzero vacuum expectation values”, what breaks the weak and the
hyper charge, breaking correspondingly the mass protection of fermions and
weak and hyper bosons.
• The existence of the Yukawa couplings, which together with (the gluons and)

the scalar higgs take care of the properties of the fermions and heavy bosons,
after the break of the weak and the hyper charge.

The standard model offers no explanation for the assumptions, suggested by the phe-
nomenology. Its assumptions have been confirmed without offering surprises. The
last unobserved field, the higgs scalar, was detected in June 2012 and confirmed in
March 2013.

There are several attempts in the literature, offering the extensions of the
standard model, but do not really offer the explanation for the standard model as-
sumptions. The SU(5) and SU(10) grand unified theories unify all the charges, but
neither they explain why the spin (the handedness) is connected with the (weak
and hyper) charges nor why and from where do families appear. Supersymmetric
theories, assuming the existence of bosons with the charges of quarks and leptons
and fermions with the charges of the gauge vector fields, although having several
nice properties, do not explain the occurrence of families except by assuming
larger groups. Also the theories of strings and membranes, again having desired
features with respect to several requirements, like renormalizability, also do not
offer the explanation for the appearance of families, although they do have fami-
lies, if assuming a large enough group. TheKaluza-Klein theories do unify spin and
charges, but do not offer the explanation for the appearance of families.

To see the next step beyond the standard model one should be able to answer
the following questions:
i. Where do families originate and why there exist families at all? How many
families are there?
ii. How are the origin of the scalar field - the higgs - and the Yukawa couplings
connected with the origin of families?
iii. How many scalar fields determine properties of the so far (and others possibly
be) observed fermions and masses of the heavy bosons?
iv. Why is the higgs, or are all the scalar fields, if there are several, doublets with
respect to the weak and the hyper charge, while all the other bosons have charges
in the adjoint representations of the group?
v. Why do the left and the right handed family members distinguish so much in
charges and why do they - quarks and leptons - manifest so different properties if
they all start as massless? vi. Are there also scalar bosons with the colour charge
in the fundamental representation of the colour group and where, if they are, do
they manifest?
vii. Where does the dark matter originate?
viii. Where does the matter/anti-matter asymmetry originate?
ix. Where do the charges and correspondingly the so far (and others possibly be)
observed gauge fields originate?



i
i

“proc15” — 2015/12/9 — 10:51 — page 89 — #105 i
i

i
i

i
i
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x. Where does the dark energy originate and why is it so small?
xi. And several other questions, like: What is the dimension of space-time?

My statement is: An elegant trustworthy step beyond the standard model must
offer answers to several of the above open questions, explaining: o the origin
of the charges of the fermions, o the origin of the families of the fermions and
their properties, o the origin of the vector gauge fields and their properties,
o the origin of the scalar field, its properties and the Yukawa couplings, o the
origin of the dark matter, o the origin of the ”ordinary” matter/anti-matter
asymmetry.

Inventing a next step, which covers only one of the open questions, can hardly
be the right step.

The spin-charge-family theory [1–14] does offer the explanation for all the
assumptions of the standard model, offering answers to many of the above cited
open questions. The more I am working (together with the collaborators) on the
spin-charge-family theory, the more answers to the open questions of the elementary
fermion and boson fields and cosmology the theory is offering. Although still
many theoretical proofs, more precise, and first of all the experimentally confirmed,
predictions are needed, the theory is becoming more and more trustworthy.

I shall briefly present the achievements of the spin-charge-family theory, still
open questions and answers to some of the most often posed questions and
criticisms.

9.2 Spin-charge-family theory, action and assumptions

I present in this section, following a lot the similar one from Refs. [1,5], the assump-
tions of the spin-charge-family theory, on which the theory is built.

A i. In the action [1,4,2,5] fermions ψ carry in d = (13+ 1) as the internal degrees
of freedom only two kinds of spins (no charges), which are determined by the two
kinds of the Clifford algebra objects (there exist no additional Clifford algebra
objects) (9.7)) - γa and γ̃a - and interact correspondingly with the two kinds of the spin
connection fields -ωabα and ω̃abα, the gauge fields of Sab = i

4
(γaγb − γbγa), the

generators of SO(13, 1) and S̃ab = i
4
(γ̃aγ̃b − γ̃bγ̃a) (the generators of S̃O(13, 1))

- and the vielbeins fαa.

A =

∫
ddx E Lf +

∫
ddx E (αR+ α̃ R̃) ,

Lf =
1

2
(ψ̄ γap0aψ) + h.c.,

p0a = fαap0α +
1

2E
{pα, Ef

α
a}−, p0α = pα −

1

2
Sabωabα −

1

2
S̃abω̃abα,

R =
1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c. ,

R̃ =
1

2
{fα[afβb] (ω̃abα,β − ω̃caα ω̃

c
bβ)}+ h.c. . (9.1)
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Here 1 fα[afβb] = fαafβb − fαbfβa. R and R̃ are the two scalars (R is a curvature).

A ii. The manifold M(13+1) breaks first into M(7+1) times M(6) (manifesting
as SO(7, 1) ×SU(3) ×U(1)), affecting both internal degrees of freedom - the one
represented by γa and the one represented by γ̃a. Since the left handed (with
respect to M(7+1)) spinors couple differently to scalar (with respect to M(7+1))
fields than the right handed ones, the break can leave massless and mass protected
2((7+1)/2−1) massless families (which decouple into twice four families). The rest
of families get heavy masses 2.

A iii. The manifoldM(7+1) breaks further intoM(3+1)×M(4).

A iv. The scalar condensate (Table 9.1) of two right handed neutrinos with the
family quantum numbers of one of the two groups of four families, brings masses
of the scale of unification (∝ 1016 GeV) to all the vector and scalar gauge fields,
which interact with the condensate [1].

A v. There are nonzero vacuum expectation values of the scalar fields with the
space index s = (7, 8), conserving the electromagnetic and colour charge, which
cause the electroweak break and bring masses to all the fermions and to the heavy
bosons.

Comments on the assumptions:
C i.: This starting action enables to represent the standard model as an effec-
tive low energy manifestation of the spin-charge-family theory [1–13]. It offers
the explanation for all the standard model assumptions: a. One representa-
tion of SO(13, 1) contains, if analyzed with respect to the standard model groups
(SO(3, 1)× SU(2)×U(1) ×SU(3)) all the members of one family (Table 9.4), left
and right handed, with the quantum numbers required by the standard model 3. b.
The action explains the appearance of families due to the two kinds of generators

1 fαa are inverted vielbeins to eaα with the properties eaαfαb = δab, e
a
αf
β
a = δβα, E =

det(eaα). Latin indices a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while
Greek indices α, β, .., µ, ν, ..σ, τ, .. denote an Einstein index (a curved index). Letters from
the beginning of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ),
from the middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and
µ, ν, ..), indices from the bottom of the alphabets indicate the compactified dimensions
(s, t, .. and σ, τ, ..). We assume the signature ηab = diag{1,−1,−1, · · · ,−1}.

2 A toy model [20,21] was studied in d = (5 + 1) with the same action as in Eq. (9.1).
The break from d = (5 + 1) to d = (3 + 1)× an almost S2 was studied. For a particular
choice of vielbeins and for a class of spin connection fields the manifoldM(5+1) breaks
into M(3+1) times an almost S2, while 2((3+1)/2−1) families remain massless and mass
protected. Equivalent assumption, its proof is is in progress, is made in the d = (13 + 1)

case.
3 It contains the left handed weak (SU(2)I) charged and SU(2)II chargeless colour triplet

quarks and colourless leptons (neutrinos and electrons), and the right handed weak
chargeless and SU(2)II charged coloured quarks and colourless leptons, as well as the
right handed weak charged and SU(2)II chargeless colour anti-triplet anti-quarks and
(anti)colourless anti-leptons, and the left handed weak chargeless and SU(2)II charged
anti-quarks and anti-leptons. The anti-fermion states are reachable from the fermion
states by the application of the discrete symmetry operator CN PN , presented in Ref. [22].
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of groups, the infinitesimal generators of one being Sab, of the other S̃ab 4. c.
The action explains the appearance of the gauge fields of the standard model [1,5].
(In Ref [5] the proof is presented, that gauge fields can in the Kaluza-Klein theories
be equivalently represented with either the vielbeins or spin connection fields.) 5.
d. It explains the appearance of the scalar higgs and Yukawa couplings 6. e.
The starting action contains also additional SU(2)II (from SO(4)) vector gauge
fields (one of the components contributes to the hyper charge gauge fields as
explained above), as well as the scalar fields with the space index s ∈ (5, 6) and
t ∈ (9, 10, . . . , 14). All these fields gain masses of the scale of the condensate (Ta-
ble 9.1), which they interact with. They all are expressible with the superposition
of fµmωabµ or of fµm ω̃abµ 7.

C ii., C iii.: There are many ways of breaking symmetries from d = (13+ 1) to
d = (3 + 1). The assumed breaks explain the connection between the weak and
the hyper charge and the handedness of spinors, manifesting correspondingly
the observed properties of the family members - the quarks and the leptons, left
and right handed (Table 9.4) - and of the observed vector gauge fields. After
the break from SO(13, 1) to SO(3, 1) ×SU(2)×U(1)× SU(3) the anti-particles are
accessible from particles by the application of the operator CN ·PN , as explained
in Refs. [22,23] 8.

4 There are before the electroweak break two massless decoupled groups of four families of
quarks and leptons, in the fundamental representations of S̃U(2)

R,S̃O(3,1)× S̃U(2)II,S̃O(4)

and S̃U(2)
L,S̃O(3,1)× S̃U(2)I,S̃O(4) groups, respectively - the subgroups of S̃O(3, 1) and

S̃O(4) (Table 9.5). These eight families remain massless up to the electroweak break due to
the ”mass protection mechanism”, that is due to the fact that the right handed members
have no left handed partners with the same charges.

5 Before the electroweak break are all observable gauge fields massless: the gravity, the
colour octet vector gauge fields (of the group SU(3) from SO(6)), the weak triplet vector
gauge field (of the group SU(2)I from SO(4)), and the hyper singlet vector gauge field (a
superposition of U(1) from SO(6) and the third component of SU(2)II triplet).All are the
superposition of the fαc ωabα spinor gauge fields

6 There are scalar fields with the space index (7, 8) and with respect to the space index
with the weak and the hyper charge of the Higgs’s scalar. They belong with respect to
additional quantum numbers either to one of the two groups of two triplets, (either to
one of the two triplets of the groups S̃U(2)

R S̃O(3,1) and S̃U(2)
II S̃O(4), or to one of the

two triplets of the groups S̃U(2)
L S̃O(3,1) and S̃U(2)

I S̃O(4), respectively), which couple
through the family quantum numbers to one (the first two triplets) or to another (the
second two triplets) group of four families - all are the superposition of fσs ω̃abσ, or they
belong to three singlets, the scalar gauge fields of (Q,Q ′, Y ′), which couple to the family
members of both groups of families - they are the superposition of fσs ωabσ. Both kinds
of scalar fields determine the fermion masses (Eq. (9.6)), offering the explanation for the
higgs, the Yukawa couplings and the heavy bosons masses.

7 In the case of free fields (if no spinor source, carrying their quantum numbers, is present)
both fµmωabµ and fµm ω̃abµ are expressible with vielbeins, correspondingly only one
kind of the three gauge fields are the propagating fields.

8 The discrete symmetry operator CN ·PN , Refs. [22,23], does not contain γ̃a’s degrees
of freedom. To each family member there corresponds the anti-member, with the same
family quantum number.
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C iv.: It is the condensate (Table 9.1) of two right handed neutrinos with the
quantum numbers of one group of four families, which makes massive all the scalar
gauge fields (with the index (5, 6, 7, 8), as well as those with the index (9, . . . , 14))
and the vector gauge fields, manifesting nonzero τ4, τ23, τ̃4, τ̃23, Ñ3R [1,5]. Only
the vector gauge fields of Y, SU(3) and SU(2) remain massless, since they do not
interact with the condensate.

C v.: At the electroweak break the scalar fields with the space index s =

(7, 8) - originating in ω̃abs, as well as some superposition of ωs ′s"s with the
quantum numbers (Q,Q ′, Y ′), conserving the electromagnetic charge - change
their mutual interaction, and gaining nonzero vacuum expectation values change
correspondingly also their masses. They contribute to mass matrices of twice the
four families, as well as to the masses of the heavy vector bosons.

All the rest scalar fields keep masses of the scale of the condensate and are
correspondingly unobservable in the low energy regime.

The fourth family to the observed three ones is predicted to be observed at the
LHC. Its properties are under consideration [13,14], the baryons of the stable family
of the upper four families is offering the explanation for the dark matter [12].

Let us (formally) rewrite that part of the action of Eq.(9.1), which determines
the spinor degrees of freedom, in the way that we can clearly see that the action
does in the low energy regime manifest by the standard model required degrees of
freedom of the fermions, vector and scalar gauge fields [2–13].

Lf = ψ̄γm(pm −
∑
A,i

gAτAiAAim )ψ+

{
∑
s=7,8

ψ̄γsp0s ψ}+

{
∑

t=5,6,9,...,14

ψ̄γtp0t ψ} , (9.2)

where p0s = ps − 1
2
Ss
′s"ωs ′s"s −

1
2
S̃abω̃abs, p0t = pt − 1

2
St
′t"ωt ′t"t −

1
2
S̃abω̃abt,

with m ∈ (0, 1, 2, 3), s ∈ (7, 8), (s ′, s") ∈ (5, 6, 7, 8), (a, b) (appearing in S̃ab)
run within either (0, 1, 2, 3) or (5, 6, 7, 8), t runs ∈ (5, . . . , 14), (t ′, t") run either
∈ (5, 6, 7, 8) or ∈ (9, 10, . . . , 14). The spinor function ψ represents all family mem-
bers of all the 2

7+1
2

−1 = 8 families.
The first line of Eq. (9.2) determines (in d = (3+1)) the kinematics and dynam-

ics of spinor (fermion) fields, coupled to the vector gauge fields. The generators
τAi of the charge groups are expressible in terms of Sab through the complex
coefficients cAiab 9.

τAi =
∑
a,b

cAiab S
ab , (9.3)

9 ~τ1 := 1
2
(S58 − S67, S57 + S68, S56 − S78) ,~τ2 := 1

2
(S58 + S67, S57 − S68, S56 + S78),

~τ3 := 1
2
{S9 12−S10 11 , S9 11+S10 12, S9 10−S11 12 , S9 14−S10 13, S9 13+S10 14 , S11 14−

S12 13 , S11 13 + S12 14, 1√
3
(S9 10 + S11 12 − 2S13 14)} , τ4 := − 1

3
(S9 10 + S11 12 + S13 14).

After the electroweak break the charges Y := τ4 + τ23 , Y ′ := −τ4 tan2 ϑ2 + τ23 , Q :=

τ13 + Y ,Q ′ := −Y tan2 ϑ1 + τ13 manifest. θ1 is the electroweak angle, breaking SU(2)I,
θ2 is the angle of the break of the SU(2)II from SU(2)I × SU(2)II.
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fulfilling the commutation relations

{τAi, τBj}− = iδABfAijkτAk . (9.4)

They represent the colour, the weak and the hyper charge. The corresponding
vector gauge fields AAim are expressible with the spin connection fieldsωstm, with
(s, t) either ∈ (5, 6, 7, 8) or ∈ (9, . . . , 14), in agreement with the assumptions A ii.
and A iii.. I demonstrate in Ref. [5] the equivalence between the usual Kaluza-
Klein procedure leading to the vector gauge fields through the vielbeins and the
procedure with the spin connections proposed by the spin-charge-family theory.

All vector gauge fields, appearing in the first line of Eq. (9.2), except A2±m
and AY

′

m (= cos ϑ2A23m − sin ϑ2A4m, Y ′ and τ4 are defined in 10, are massless
before the electroweak break. ~A3m carries the colour charge SU(3) (originating in
SO(6)), ~A1m carries the weak charge SU(2)I (SU(2)I and SU(2)II are the subgroups
of SO(4)) and AYm (= sin ϑ2A23m + cos ϑ2A4m ) carries the corresponding U(1)
charge, Y = τ23 + τ4, τ4 originates in SO(6) and τ23 is the third component
of the second SU(2)II group, A4m and ~A2m are the corresponding vector gauge
fields). The fields A2±m and AY

′

m get masses of the order of the condensate scale
through the interaction with the condensate of the two right handed neutrinos
with the quantum numbers of one of the group of four families (the assumption
iv., Table 9.1). (See Ref. [5].)

Since spinors (fermions) carry besides the family members quantum numbers
also the family quantum numbers, determined by S̃ab = i

4
(γ̃aγ̃b − γ̃bγ̃a), there

are correspondingly 2(7+1)/2−1 = 8 families [5], which split into two groups of
S̃U(2)

S̃O(3,1)
×S̃U(2)

S̃O(4)
families.

If there are no fermions present then the vector gauge fields of the family
members and family charges - ωabm and ω̃abm - are all expressible with the
vielbeins [1,5], which are then the only propagating fields.

The scalar fields, the gauge fields with the space index ≥ 5, which are either
the superposition of ω̃abs or the superposition of ωs ′ts, determine, when gaining
nonzero vacuum expectation values (the assumption v.), masses of fermions (be-
longing to two groups of four families of family members of spinors) and weak
bosons.

The condensate (the assumption iv.), Table 9.1, gives masses of the order of
the scale of its appearance to all the scalar gauge fields, presented in the second
and the third line of Eq. (9.2).

The vector gauge fields of the (before the electroweak break) conserved
charges (~τ3, ~τ1, Y) do not interact with the condensate and stay correspondingly
massless. After the electroweak break - when the scalar fields (those with the
family quantum numbers and those with the family members quantum numbers
(Q,Q ′, Y ′)) with the space index s = (7, 8) start to self interact and gain nonzero
vacuum expectation values - only the charges ~τ3 andQ = Y+τ13 are the conserved
charges. No family quantum numbers are conserved, since all scalar fields with
the family quantum numbers and the space index s = (7, 8) gain nonzero vacuum
expectation values.

10 Y ′ := −τ4 tan2 ϑ2 + τ23, τ4 = − 1
3
(S9 10 + S11 12 + S13 14).
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state S03 S12 τ13 τ23 τ4 Y Q τ̃13 τ̃23 τ̃4 Ỹ Q̃ Ñ3L Ñ
3
R

(|νVIII
1R >1 |νVIII

2R >2) 0 0 0 1 −1 0 0 0 1 −1 0 0 0 1

(|νVIII1R >1 |e
VIII
2R >2) 0 0 0 0 −1 −1 −1 0 1 −1 0 0 0 1

(|eVIII1R >1 |e
VIII
2R >2) 0 0 0 −1 −1 −2 −2 0 1 −1 0 0 0 1

Table 9.1. This table is taken from [1]. The condensate of the two right handed neutrinos νR,
with the VIIIth family quantum numbers, coupled to spin zero and belonging to a triplet
with respect to the generators τ2i, is presented, together with its two partners. The right
handed neutrino has Q = 0 = Y. The triplet carries τ4 = −1, τ̃23 = 1, τ̃4 = −1, Ñ3R = 1,
Ñ3L = 0, Ỹ = 0, Q̃ = 0. The family quantum numbers are presented in Table 9.5.

Quarks and leptons have the ”spinor” quantum number (τ4, originating in
SO(6) presented in Table 9.4) equal to 1

6
and −1

2
, respectively. In the Pati-Salam

model [24] twice this ”spinor” quantum number is named B−L
2

quantum number,
for quarks equal to 1

3
and for leptons to −1.

Let me introduce a common notation AAis for all the scalar fields, indepen-
dently of whether they originate in ωabs or ω̃abs, s ≥ 5. In the case that we are
interested in the scalar fields which contribute to masses of fermions and weak
bosons, then s = (7, 8). If AAis represent ωabs, Ai = (Q,Q ′, Y ′), while if AAis rep-
resent ω̃ãb̃s, all the family quantum numbers of all eight families contribute to
Ai.

AAis ∈ (AQs , A
Q ′

s , AY
′

s ,
~̃A1̃s ,

~̃A
ÑL̃
s , ~̃A2̃s ,

~̃A
ÑR̃
s ) ,

τAi ⊃ (Q, Q ′, Y ′, ~̃τ1, ~̃NL, ~̃τ
2, ~̃NR) . (9.5)

Here τAi represent all the operators, which apply on the spinor states. These
scalars, the gauge scalar fields of the generators τAi and τ̃Ai, are expressible in
terms of the spin connection fields.

9.3 Achievements of the spin-charge-family theory and its
predictions

The achievements of the spin-charge-family theory.

I. The spin-charge-family theory does offer the explanation for all the assumptions
of the standard model:
I A. It explains all the properties of family members of one family - their spins
and all the charges - clarifying the relationship between the spins and charges, Ta-
ble 9.4 11.
I B. It explains the properties of the vector fields, the gauge fields of the corre-
sponding charges. They are in the spin-charge-family theory represented by the
superposition of the spin connection fieldsωstm. It is proven in Sect. II of Ref. [5]

11 The spin-charge-family theory explains, why the left handed and the right handed quarks
and leptons differ in the weak and the hyper charge. It also explains, why quarks and
leptons differ in the colour charge.
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that the spin connection fields representation is equivalent to the usual Kaluza-
Klein representation with the vielbeins fσm = ~τAσ~AAm, where ~τA = ~τAσpσ, ~τA

determine symmetry properties of the space with s ≥ 5 and ~AAm are the corre-
sponding gauge fields.
I C. The scalar fields with the space index s ∈ (7, 8) belong to two doublets with
respect to the space index s, while they belong with respect to additional quan-
tum numbers either to three singlets with one of the family members charges
(Y, Y ′, Q ′) or to twice two triplets of the family charges belonging to the groups
S̃U(2)

S̃O(3,1)
× S̃U(2)

S̃O(4)
. These scalar fields explain the appearance of the higgs

and Yukawa couplings.
I D. The theory explains why these scalar fields, and consequently the higgs,
which is the superposition of several scalar fields [4,5], have the weak and the
hyper charge equal to (±1

2
, ∓1

2
), respectively, although they are bosons. They

do transform as bosons with respect to Sab 12, but due to the fact that they be-
long with respect to the space index s = (5, 6, 7, 8) to two SU(2) groups with
τ13 = 1

2
(S56 − S78) and τ23 = 1

2
(S56 + S78), respectively, their weak (τ13) and

hyper charge (τ23 + τ4, where τ4 = −1
3
(S9 10 + S11 12 + S13 14) does not influence

s = (7, 8)) are the ones required by the standard model. Table 9.2 presents these two
doublets and their quantum numbers.
I E. There are the nonzero vacuum expectation values of the scalar gauge fields

state τ13 τ23 spin τ4 Q
AAi78

(−)

AAi7 + iAAi8 + 1
2
− 1
2

0 0 0

AAi56
(−)

AAi5 + iAAi6 − 1
2
− 1
2

0 0 -1

AAi78
(+)

AAi7 − iAAi8 − 1
2
+ 1
2

0 0 0

AAi56
(+)

AAi5 − iAAi6 + 1
2
+ 1
2

0 0 +1

Table 9.2. The two scalar weak doublets, one with τ23 = − 1
2

and the other with τ23 = + 1
2

,
both with the ”spinor” quantum number τ4 = 0, are presented. In this table all the scalar
fields carry besides the quantum numbers determined by the space index also the quantum
numbers Ai, which represent either the family members quantum numbers (Q,Q ′, Y ′) or
the family quantum numbers (twice two triplets), AAi78

(±)

= AAi7 ± iAAi8 , Eq. (9.5)

.

with the space index s = (7, 8), (with the weak charge equal to ±1
2

and the hyper
charge correspondingly equal to ∓1

2
, both with respect to the space index), and

with the family (twice two triplets) and family member quantum numbers (three
singlets) in adjoint representations, which start to interact among themselves, gain
nonzero vacuum expectation values, causing the break of the weak and the hyper

12 Sab, which applies on the spin connections ωbde (= fαe ωbdα) and ω̃b̃d̃e (= fαe
ω̃b̃d̃α), on either the space index e or the indices (b, d, b̃, d̃), is equal to SabAd...e...g =

i (ηaeAd...b...g − ηbeAd...a...g), or equivalently, in the matrix notation, (Sab)ceAd...e...g

= i(ηacδbe− η
bcδae )A

d...e...g .
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charge symmetry.

II. The spin-charge-family theory does offer the explanation for the dark matter
and for matter/anti-matter asymmetry:

II A. Neutral clusters of the members of the stable among the upper four families
explain the appearance of the dark matter [12].
II B. The scalar fields with the space index s ∈ (9, . . . , 14) belong with respect to
the space index s to a triplet or an anti-triplet, Table 9.3. They cause transitions
of anti-leptons into quarks and anti-quarks into quarks and back, transforming
matter into anti-matter and back. The condensate breaks CP symmetry. In the
expanding universe, fulfilling the Sakharov request for appropriate non thermal
equilibrium, these colour triplet and anti-triplet scalars have a chance to explain
the matter/anti-matter asymmetry in the universe [1], as well as the proton decay.
II C. It is the scalar condensate of two right handed neutrinos (Table 9.1), which

state τ33 τ38 spin τ4 Q

AAi9 10
(+)

AAi9 − iAAi10 + 1
2

1

2
√
3

0 − 1
3
− 1
3

AAi11 12
(+)

AAi11 − iAAi12 − 1
2

1

2
√
3

0 − 1
3
− 1
3

AAi13 14
(+)

AAi13 − iAAi14 0 − 1√
3

0 − 1
3
− 1
3

AAi9 10
(−)

AAi9 + iAAi10 − 1
2
− 1

2
√
3

0 + 1
3
+ 1
3

AAi11 12
(−)

AAi11 + iAAi12
1
2

− 1

2
√
3

0 + 1
3
+ 1
3

AAi13 14
(−)

AAi13 + iAAi14 0 1√
3

0 + 1
3
+ 1
3

Table 9.3. The triplet and the anti-triplet scalar gauge fields, the triplet with the ”spinor”
quantum number equal to S4 = − 1

3
, S4 = − 1

3
(S9 10+ S11 12 +S13 14) and the anti-triplet

with the ”spinor” quantum number equal to S4 = + 1
3

. In this table all the scalar fields carry,
besides the quantum numbers determined by the space index, (only) the family quantum
numbers, not pointed out in this table. The table is taken from Ref. [1].

gives masses to all the vector and scalar gauge fields appearing in the spin-charge-
family theory, except to the gravity, colour vector gauge fields, weak vector gauge
fields and hyper U(1) gauge field, since they do not interact with the condensate.
II D. The scalar fields, the members of the weak doublets (Table 9.2) with the
space index s = (5, 6), and the colour triplets and anti-triplets with the space index
t = (9, . . . , 14) [1], which contribute to transitions of anti-particles into particles
and to proton decay, keep masses of the condensate scale, as also do A2±m and
AY

′

M = cos θ2A2mm − sin θA4m.

III. The theory might have a chance to explain the hierarchy of the fermion and
boson masses.
III A. By the theory predicted existence of the fourth family to the observed
three families with the masses of the fourth family members at 1 TeV or even
above [13,14] makes the mass matrices of the family members very close to the
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democratic matrix, which suggests that the lower four families masses expand in
the interval from less than eV to 1012 eV. Correspondingly would the interval of
the higher four families be within the interval from ≈ 100 TeV [12] to ≈ 100× 1012
TeV, which is above the unification scale 1016 GeV) (1013 TeV), explaining why are
the masses of fermions spreading from few orders of magnitude below eV to TeV
and above up to the unification scale.

Predictions of the spin-charge-family theory.

I. The spin-charge-family theory predicts in the low energy regime two decoupled
groups of four families. The scalar fields with the space index s = (7, 8), which are
the gauge fields of the family charges, the superposition of S̃ab belonging to the
subgroups S̃U(2)

IIS̃O(3,1)
×S̃U(2)

IIS̃O(4)
, determine the symmetry of each of the

two groups of families.
I A. The symmetry of mass matrices

Mα =




−a1 − a e d b

e −a2 − a b d

d b a2 − a e

b d e a1 − a




α

,

enables to tell what are the masses and matrix elements of the fourth family
quarks and leptons within the interval of the accuracy of the experimental data.
Any (n − 1) × (n − 1) submatrix of the n × n unitary matrix, n ≥ 4 determines
uniquely the n× n unitary matrix.

Present experimental data for the mixing matrices are not accurate enough
even for quarks to tell, what are the fourth family masses. The estimation: most
probably they are above 1 TeV. We can, however, for the chosen fourth family
masses, predict the mixing matrix elements of quarks [13,14]. It comes out that the
fourth family matrix elements are not very sensitive either to the lower three or to
the fourth family quark masses. Our calculations [14] show that the new experi-
mental data are in better agreement with the spin-charge-family theory predictions
than the old ones.

For leptons the experimental data are less accurate and correspondingly the
estimated mixing matrix elements for the fourth family leptons are less predictable.

The higher are the fourth family members masses, the closer are the mass ma-
trices to the democratic matrices for either quarks or leptons - which is expected.
The fourth of the lower four families will be measured at the LHC.
I B. Scalar fields, which cause electroweak phase transition and are responsible
for masses of the lower four families of quarks and leptons and weak bosons,
determine the higss and the Yukawa couplings.
Besides the higgs, additional superposition of scalar fields are predicted to be measured at
the LHC.
I C. The properties of the upper four family members, (almost) decoupled from
the lower four families (their mass matrices still manifest the S̃U(2)

IIS̃O(3,1)

×S̃U(2)
IIS̃O(4)

symmetry, provided that the condensate respect this symmetry,
and are influenced by the family scalar fields of the upper four families, by the
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family members scalar field with the quantum numbers (Q,Q ′, Y ′) and by the
interaction with the condensate), can be evaluated within this theory by following
the evolution of the universe [12].
The masses of the lowest of the upper four families are estimated [12] to be in the interval
of several 10 TeV to several 104 TeV.
I D. Very heavy dark matter baryons are opening an interesting new ”fifth family
nuclear” dynamics.

III. There are besides the scalar fields, which are, like higgs, SU(2) doublets,
also the scalar fields, which are SU(3) triplets, involved and responsible for the
matter/anti-matter asymmetry of our universe.

9.4 Most common questions about the spin-charge-family theory

Let me present and offer a brief answers to the most common questions and com-
plains about the validity and the ability that thespin-charge-family theory might
be the right answer to the open questions of the standard model by attentive par-
ticipants of the conferences, readers or referees. To most of such questions the
answers can be found by carefully reading papers [5,4,1–3,6–14], some of them are
discussed in special sections of these papers or in contributions to the Discussion
section of the Bled 2015 workshop.

There are also the assumptions in this theory, represented in this talk, chosen
in order that the theory manifests in the low energy regime the standard model
properties, which also need, and want for better answer than the one, that obvi-
ously our universe has chosen among many other possibilities, those required by
the assumptions.

The most needed are, of course, the experimental data confirmation of the
predictions of this theory, making it trustworthy as the right next step beyond
the standard model. But what does speak for this theory is that the simple starting
action (Eq. (9.1)) and only a few assumptions explain all the assumptions of the
standard model, offering the explanation also for the existence of the dark matter
and the matter/anti-matter asymmetry, and might be for more open questions in
the elementary particle physics and cosmology.

The order of questions presented below have no special meaning.

1. Can the fourth family (to the observed three ones) with the masses close to
or larger than 1 TeV exist at all, since the masses of the higgs, top quark and
heavy bosons are all below 200 GeV?

2. If there are so many scalar fields carrying the weak and the hyper charges of
the higss (three singlets with the quantum numbers (Q,Q ′, Y ′) and two times
two triplets carrying the family quantum numbers), how can the masses of
the heavy bosons, to which all the scalars contribute, be so low, ≈ 100 GeV?

3. If there are two kinds of charges, the family and the family members ones,
why after the electroweak break the colour and the electromagnetic charges
are the only conserved charges ?

4. Can there be at all two kinds of the spin connection fields and only one kind
of the vielbeins?
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5. How can the vector gauge fields at all be represented by spin connection fields
and not, like in the Kaluza-Klein ordinary procedure, by vielbeins [5,1]?

6. The two SO(d− 1, 1) groups - SO(13, 1) and S̃O(13, 1) - have so many repre-
sentations that there is not difficult to make a choice of the needed ones, but
there are many more left.

7. Can the higher loops contributions, making all the off diagonal matrix elements
of the mass matrices depending on the scalar singlets with the quantum
numbers (Q,Q ′, Y ′) keep the symmetry of the three level (Eq. 9.6)?

8. And several others.

Let me try to answer the above questions.

1. Due to not accurate enough experimental data the prediction for the fourth
family masses is, that they might be at around one TeV or above. Since for
the masses of the fourth families the theory predicts the mass matrices which
are very close to the democratic ones, although still keeping the symmetry
of Eq. (9.6), the matrix elements of the mixing matrices for the fourth family
members are very small. Correspondingly the predictions can hardly be incon-
sistent with the so far made measurements. I expect that the new experiments
on the LHC will confirm the existence of the fourth family of quarks and
leptons.

2. The question, which remains to be answered, is, whether the scalar fields
belonging to either the three singlets with the quantum numbers (Q,Q ′, Y) ′

or to the two times two triplets with respect to the family charges, all carrying
the weak and the hyper charge of the higgs, do all together contribute only
≈ 100 GeV to the masses of heavy bosons after the electroweak break (Ref. [5],
Eq. (14)). Although it looks like that under certain conditions (the masses and
nonzero vacuum expectation values of these scalars) this is possible, the study
is not yet finished and the answer is not yet convincing.

3. The answer to the third questions is that all the scalar fields with the space
index s = (7, 8) - all having the weak and the hyper charges of the higgs -
with the family quantum numbers gain nonzero vacuum expectation values,
causing correspondingly the breaking of all the family charges, while their
weak and hyper charges cause the breaking of the weak and hyper charge.
Correspondingly the only conserved charges after the electroweak break are
the electromagnetic and colour charges.

4. The answer to the question number 4. is explained in details in Ref. [5], Sect.
IV., and in App. A., Sect. 2.. A short answer to this question is that either γa’s or
γ̃a’s transform in the flat space under the Lorentz transformations as vectors.
The curved coordinate space is only one, while both kinds of spin connection
fields are expressible in terms of the vielbeins, if there are no spinors (fermion)
sources present, while spin connections of both kinds differ among themselves
and are not expressible by vielbeins, if there are spinor sources present (Ref. [5],
App. C., Eq. (C9)).

5. The relation of the vector gauge fields when they are expressed with the spin
connection fields (as it is done in the spin-charge-family theory) and the vector
gauge fields when they are expressed with the vielbeins (as it is usually in the
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Kaluza-Klein theories) is explained in Refs. [5,1]. The vector (as well as the
scalar) gauge fields -AAim =

∑
st c

Aistωstm - are (Ref. [5], Eq. (C9)) expressible
with vielbeins. In Sect. II. of this Ref. the proof is presented that the vielbein
fσm = i xτ ~τAστ

~AAm, where AAim =
∑
st c

Aistωstm and ~τA = ~τAσ pσ = ~τAστ
xτ pσ (Eqs. (5-13) of Ref [5]). This is true when the space with d ≥ 5 has the
rotational symmetry, x ′µ = xµ, x ′σ = xσ − i~α1(xµ) ~τA(xτ) xσ. This symmetry
manifests in fσs = δσs f, for any f, which is the scalar function of the coordinates
xσ in d ≥ 5.
For f = (1+ ρ2

2ρ2
0

) the space is an almost Sd−4 sphere, with one point missing,
and the curvature R is equal to

R =
d(d− 1)

(ρ0)2
. (9.6)

6. One representation of SO(13, 1) contains just all the members of one family
of quarks and leptons, left and right handed with respect to d = (3+ 1), with
the quantum numbers required by the standard model. Although it contains
also anti-quarks and anti-leptons, after the break of the symmetry of space
from SO(13, 1) (and simultaneously of S̃O(13, 1)) to SO(7, 1) ×SU(3) × U(1)
the transformations of quarks into leptons as well as those, which transform
spins to charges, are at low energies not possible. All the scalar fields, which
would cause such transformations, become too massive.
All the scalar fields with the space index s ≥ 5 have phenomenological mean-
ing, either as scalars causing the electroweak break (s = (7, 8)) or as scalars
which contribute to the matter/anti-matter asymmetry of our universe. All
the scalar, as well as the vector gauge fields, with the quantum numbers of
the condensate, gain masses through the interaction with the condensate as
discussed in Sect. II. of this talk and in Ref. [1,5].

7. In Ref. [30] the authors discussed this problem. Although in this paper the
proof is not yet done, later studies show that the U(1)× SU(2)× SU(2) sym-
metry remains in all orders of loop corrections.

9.5 Conclusions

I represent in this talk very briefly the so far obtained achievements of the spin-
charge-family theory, which offers the explanation for all the assumptions of the
standard model, with the families included, as well as some answers to the open
questions in cosmology. Answering so far to so many open questions of the
elementary particles and fields physics, this theory might be the right next step
beyond the standard model.

The theory predicts that there are two triplet (with respect to the family
quantum numbers) and three singlet (with respect to the family members quantum
numbers) scalar fields, all with the weak and hyper charges of the higgs (∓1

2
,

±1
2

, respectively, with respect to the space index s = (7, 8)), which explain the
appearance of the scalar higgs and the Yukawa couplings. Some superposition
of these scalar fields will be observed at the LH. The LHC will measure also the
fourth family to the observed three ones.
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I present in this talk also the most often asked questions about the validity
of this theory, replying briefly to these questions and discuss the not yet solved
problems of this theory.

9.6 Appendix: Short presentation of spinor technique [4,8,17,18]

This appendix is a short review (taken from [4]) of the technique [8,19,17,18],
initiated and developed in Ref. [8], while proposing the spin-charge-family the-
ory [2–4,6–13,1,29]. All the internal degrees of freedom of spinors, with family
quantum numbers included, are describable in the space of d-anticommuting
(Grassmann) coordinates [8], if the dimension of ordinary space is also d. There
are two kinds of operators in the Grassmann space fulfilling the Clifford algebra
and anticommuting with one another.The technique was further developed in the
present shape together with H.B. Nielsen [19,17,18].

In this last stage we rewrite a spinor basis, written in Ref. [8] as products of
polynomials of Grassmann coordinates of odd and even Grassmann character,
chosen to be eigenstates of the Cartan subalgebra defined by the two kinds of the
Clifford algebra objects, as products of nilpotents and projections, formed as odd
and even objects of γa’s, respectively, and chosen to be eigenstates of a Cartan
subalgebra of the Lorentz groups defined by γa’s and γ̃a’s.

The technique can be used to construct a spinor basis for any dimension d
and any signature in an easy and transparent way. Equipped with the graphic
presentation of basic states, the technique offers an elegant way to see all the
quantum numbers of states with respect to the two Lorentz groups, as well as
transformation properties of the states under any Clifford algebra object.

App. B of Ref. [5]briefly represents the starting point [8] of this technique in
order to better understand the Lorentz transformation properties of both Clifford
algebra objects, γa’s and γ̃a’s, as well as of spinor, vector, tensor and scalar fields,
appearing in the spin-charge-family theory, that is of the vielbeins and spin connec-
tions of both kinds, ωabα and ω̃abα, and of spinor fields, family members and
families.

The objects γa and γ̃a have properties

{γa, γb}+ = 2ηab , {γ̃a, γ̃b}+ = 2ηab , , {γa, γ̃b}+ = 0 , (9.7)

If B is a Clifford algebra object, let say a polynomial of γa, B = a0 + aa γ
a +

aab γ
aγb + · · ·+ aa1a2...ad γa1γa2 . . . γad , one finds

(γ̃aB : = i(−)nB Bγa ) |ψ0 >,

B = a0 + aa0γ
a0 + aa1a2γ

a1γa2 + · · ·+ aa1···adγa1 · · ·γad , (9.8)

where |ψ0 > is a vacuum state, defined in Eq. (9.22) and (−)nB is equal to 1 for the
term in the polynomial which has an even number of γb’s, and to −1 for the term
with an odd number of γb’s, for any d, even or odd, and I is the unit element in
the Clifford algebra.

It follows from Eq. (9.8) that the two kinds of the Clifford algebra objects are
connected with the left and the right multiplication of any Clifford algebra objects
B.
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The Clifford algebra objects Sab and S̃ab close the algebra of the Lorentz
group

Sab : = (i/4)(γaγb − γbγa) ,

S̃ab : = (i/4)(γ̃aγ̃b − γ̃bγ̃a) , (9.9)

{Sab, S̃cd}− = 0 , {Sab, Scd}− = i(ηadSbc+ηbcSad−ηacSbd−ηbdSac) , {S̃ab, S̃cd}−
= i(ηadS̃bc + ηbcS̃ad − ηacS̃bd − ηbdS̃ac) .

We assume the “Hermiticity” property for γa’s

γa† = ηaaγa , (9.10)

in order that γa are compatible with (9.7) and formally unitary, i.e. γa † γa = I.
One finds from Eq. (9.10) that (Sab)† = ηaaηbbSab.
Recognizing from Eq.(9.9) that the two Clifford algebra objects Sab, Scd with

all indices different commute, and equivalently for S̃ab, S̃cd, we select the Cartan
subalgebra of the algebra of the two groups, which form equivalent representations
with respect to one another

S03, S12, S56, · · · , Sd−1 d, if d = 2n ≥ 4,
S03, S12, · · · , Sd−2 d−1, if d = (2n+ 1) > 4 ,

S̃03, S̃12, S̃56, · · · , S̃d−1 d, if d = 2n ≥ 4 ,
S̃03, S̃12, · · · , S̃d−2 d−1, if d = (2n+ 1) > 4 . (9.11)

The choice for the Cartan subalgebra in d < 4 is straightforward. It is useful to
define one of the Casimirs of the Lorentz group - the handedness Γ ({Γ, Sab}− = 0)
in any d

Γ (d) : = (i)d/2
∏
a

(
√
ηaaγa), if d = 2n,

Γ (d) : = (i)(d−1)/2
∏
a

(
√
ηaaγa), if d = 2n+ 1 . (9.12)

One proceeds equivalently for Γ̃ (d), subtituting γa’s by γ̃a’s. We understand the
product of γa’s in the ascending order with respect to the index a: γ0γ1 · · ·γd. It
follows from Eq.(9.10) for any choice of the signature ηaa that Γ † = Γ, Γ2 = I.We
also find that for d even the handedness anticommutes with the Clifford algebra
objects γa ({γa, Γ }+ = 0) , while for d odd it commutes with γa ({γa, Γ }− = 0).

To make the technique simple we introduce the graphic presentation as fol-
lows

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

[k]:=
1

2
(1+

i

k
γaγb) , (9.13)

where k2 = ηaaηbb. It follows then

γa =
ab

(k) +
ab

(−k) , γb = ikηaa (
ab

(k) −
ab

(−k)) ,

Sab =
k

2
(
ab

[k] −
ab

[−k]) (9.14)
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One can easily check by taking into account the Clifford algebra relation (Eq. (9.7))

and the definition of Sab and S̃ab (Eq. (9.9)) that the nilpotent
ab

(k) and the projector
ab

[k] are ”eigenstates” of Sab and S̃ab

Sab
ab

(k)=
1

2
k
ab

(k) , Sab
ab

[k]=
1

2
k
ab

[k] ,

S̃ab
ab

(k)=
1

2
k
ab

(k) , S̃ab
ab

[k]= −
1

2
k
ab

[k] , (9.15)

which means that we get the same objects back multiplied by the constant 1
2
k in

the case of Sab, while S̃ab multiply
ab

(k) by k and
ab

[k] by (−k) rather than (k). This

also means that when
ab

(k) and
ab

[k] act from the left hand side on a vacuum state
|ψ0〉 the obtained states are the eigenvectors of Sab. We further recognize that γa

transform
ab

(k) into
ab

[−k], never to
ab

[k], while γ̃a transform
ab

(k) into
ab

[k], never to
ab

[−k]

γa
ab

(k)= ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k)= −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k], γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) .

(9.16)

From Eq.(9.16) it follows

Sac
ab

(k)
cd

(k) = −
i

2
ηaaηcc

ab

[−k]
cd

[−k] , S̃ac
ab

(k)
cd

(k)=
i

2
ηaaηcc

ab

[k]
cd

[k] ,

Sac
ab

[k]
cd

[k] =
i

2

ab

(−k)
cd

(−k) , S̃ac
ab

[k]
cd

[k]= −
i

2

ab

(k)
cd

(k) ,

Sac
ab

(k)
cd

[k] = −
i

2
ηaa

ab

[−k]
cd

(−k) , S̃ac
ab

(k)
cd

[k]= −
i

2
ηaa

ab

[k]
cd

(k) ,

Sac
ab

[k]
cd

(k) =
i

2
ηcc

ab

(−k)
cd

[−k] , S̃ac
ab

[k]
cd

(k)=
i

2
ηcc

ab

(k)
cd

[k] .

(9.17)

From Eq. (9.17) we conclude that S̃ab generate the equivalent representations with
respect to Sab and opposite.

Let us deduce some useful relations

ab

(k)
ab

(k) = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,
ab

(−k)
ab

(k)= ηaa
ab

[−k] ,
ab

(−k)
ab

(−k)= 0 ,
ab

[k]
ab

[k] =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,
ab

[−k]
ab

[k]= 0 ,
ab

[−k]
ab

[−k]=
ab

[−k] ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(−k)
ab

[k]=
ab

(−k) ,
ab

(−k)
ab

[−k]= 0 ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

[k]
ab

(−k)= 0,
ab

[−k]
ab

(k)= 0 ,
ab

[−k]
ab

(−k)=
ab

(−k) .

(9.18)



i
i

“proc15” — 2015/12/9 — 10:51 — page 104 — #120 i
i

i
i

i
i

104 N.S. Mankoč Borštnik

We recognize in Eq. (9.18) the demonstration of the nilpotent and the projector

character of the Clifford algebra objects
ab

(k) and
ab

[k], respectively. Defining

ab
˜(±i)= 1

2
(γ̃a ∓ γ̃b) ,

ab
˜(±1)= 1

2
(γ̃a ± iγ̃b) , (9.19)

one recognizes that

ab
˜(k)
ab

(k) = 0 ,
ab
˜(−k)

ab

(k)= −iηaa
ab

[k] ,
ab
˜(k)
ab

[k] = i
ab

(k) ,
ab
˜(k)

ab

[−k]= 0 . (9.20)

Recognizing that

ab

(k)

†
= ηaa

ab

(−k) ,
ab

[k]

†
=
ab

[k] , (9.21)

we define a vacuum state |ψ0 > so that one finds

<
ab

(k)

†
ab

(k) >= 1 ,

<
ab

[k]

†
ab

[k] >= 1 . (9.22)

Taking into account the above equations it is easy to find a Weyl spinor
irreducible representation for d-dimensional space, with d even or odd.

For d even we simply make a starting state as a product of d/2, let us say,

only nilpotents
ab

(k), one for each Sab of the Cartan subalgebra elements (Eq.(9.11)),
applying it on an (unimportant) vacuum state. For d odd the basic states are
products of (d − 1)/2 nilpotents and a factor (1 ± Γ). Then the generators Sab,
which do not belong to the Cartan subalgebra, being applied on the starting state
from the left, generate all the members of one Weyl spinor.

0d

(k0d)
12

(k12)
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >
0d

[−k0d]
12

[−k12]
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >
0d

[−k0d]
12

(k12)
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >

...
0d

[−k0d]
12

(k12)
35

(k35) · · ·
d−1 d−2

[−kd−1 d−2] |ψ0 >
od

(k0d)
12

[−k12]
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) |ψ0 >

... (9.23)

All the states have the same handedness Γ , since {Γ, Sab}− = 0. States, belonging
to one multiplet with respect to the group SO(q, d− q), that is to one irreducible
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representation of spinors (one Weyl spinor), can have any phase. We made a choice
of the simplest one, taking all phases equal to one.

The above graphic representation demonstrates that for d even all the states
of one irreducible Weyl representation of a definite handedness follow from a

starting state, which is, for example, a product of nilpotents
ab

(kab), by transforming

all possible pairs of
ab

(kab)
mn

(kmn) into
ab

[−kab]
mn

[−kmn]. There are Sam, San, Sbm, Sbn,
which do this. The procedure gives 2(d/2−1) states. A Clifford algebra object γa

being applied from the left hand side, transforms a Weyl spinor of one handedness
into a Weyl spinor of the opposite handedness. Both Weyl spinors form a Dirac
spinor.

We shall speak about left handedness when Γ = −1 and about right handed-
ness when Γ = 1 for either d even or odd.

While Sab which do not belong to the Cartan subalgebra (Eq. (9.11)) gener-
ate all the states of one representation, S̃ab which do not belong to the Cartan
subalgebra (Eq. (9.11)) generate the states of 2d/2−1 equivalent representations.

Making a choice of the Cartan subalgebra set (Eq. (9.11)) of the algebra Sab

and S̃ab

S03, S12, S56, S78, S9 10, S11 12, S13 14 ,

S̃03, S̃12, S̃56, S̃78, S̃9 10, S̃11 12, S̃13 14 , (9.24)

a left handed (Γ (13,1) = −1) eigenstate of all the members of the Cartan subalgebra,
representing a weak chargeless uR-quark with spin up, hyper charge (2/3) and
colour (1/2 , 1/(2

√
3)), for example, can be written as

03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) |ψ0〉 =
1

27
(γ0 − γ3)(γ1 + iγ2)|(γ5 + iγ6)(γ7 + iγ8)||

(γ9 + iγ10)(γ11 − iγ12)(γ13 − iγ14)|ψ0〉 . (9.25)

This state is an eigenstate of all Sab and S̃ab which are members of the Cartan
subalgebra (Eq. (9.11)).

The operators S̃ab, which do not belong to the Cartan subalgebra (Eq. (9.11)),
generate families from the starting uR quark, transforming the uR quark from
Eq. (9.25) to the uR of another family, keeping all of the properties with respect
to Sab unchanged. In particular, S̃01 applied on a right handed uR-quark from
Eq. (9.25) generates a state which is again a right handed uR-quark, weak charge-
less, with spin up, hyper charge (2/3) and the colour charge (1/2 , 1/(2

√
3))

S̃01
03

(+i)
12

(+) |
56

(+)
78

(+) ||
910

(+)
1112

(−)
1314

(−)=

−
i

2

03

[ +i]
12

[ + ] |
56

(+)
78

(+) ||
910

(+)
1112

(−)
1314

(−) . (9.26)
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Below some useful relations [6] are presented

N±+ = N1+ ± iN2+ = −
03

(∓i)
12

(±) , N±− = N1− ± iN2− =
03

(±i)
12

(±) ,

Ñ±+ = −
03
˜(∓i)

12
˜(±) , Ñ±− =

03
˜(±i)

12
˜(±) ,

τ1± = (∓)
56

(±)
78

(∓) , τ2∓ = (∓)
56

(∓)
78

(∓) ,

τ̃1± = (∓)
56
˜(±)

78
˜(∓) , τ̃2∓ = (∓)

56
˜(∓)

78
˜(∓) . (9.27)

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet, Γ(1,7) = (−1) 1 , Γ(6) = (1) − 1

of (anti)quarks and (anti)leptons

1 uc1
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) 1 1

2
1 0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

2 uc1
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) 1 − 1

2
1 0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

3 dc1
R

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) 1 1

2
1 0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

4 dc1
R

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) 1 − 1

2
1 0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

5 dc1
L

03
[−i]

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) -1 1

2
-1 − 1

2
0 1

2
1
2
√
3

1
6

1
6

− 1
3

6 dc1
L

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) -1 − 1

2
-1 − 1

2
0 1

2
1
2
√
3

1
6

1
6

− 1
3

7 uc1
L

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) -1 1

2
-1 1

2
0 1

2
1
2
√
3

1
6

1
6

2
3

8 uc1
L

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) -1 − 1

2
-1 1

2
0 1

2
1
2
√
3

1
6

1
6

2
3

9 uc2
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
(−) 1 1

2
1 0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

10 uc2
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
(−) 1 − 1

2
1 0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

· · ·

17 uc3
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
[+] 1 1

2
1 0 1

2
0 − 1√

3
1
6

2
3

2
3

18 uc3
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
[+] 1 − 1

2
1 0 1

2
0 − 1√

3
1
6

2
3

2
3

· · ·

25 νR

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] 1 1

2
1 0 1

2
0 0 − 1

2
0 0

26 νR

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] 1 − 1

2
1 0 1

2
0 0 − 1

2
0 0

27 eR

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] 1 1

2
1 0 − 1

2
0 0 − 1

2
−1 −1

28 eR

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] 1 − 1

2
1 0 − 1

2
0 0 − 1

2
−1 −1

29 eL

03
[−i]

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] -1 1

2
-1 − 1

2
0 0 0 − 1

2
− 1
2

−1

30 eL

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] -1 − 1

2
-1 − 1

2
0 0 0 − 1

2
− 1
2

−1

31 νL

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] -1 1

2
-1 1

2
0 0 0 − 1

2
− 1
2

0

32 νL

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] -1 − 1

2
-1 1

2
0 0 0 − 1

2
− 1
2

0

33 d̄c̄1
L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] -1 1

2
1 0 1

2
− 1
2

− 1
2
√
3

− 1
6

1
3

1
3

34 d̄c̄1
L

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] -1 − 1

2
1 0 1

2
− 1
2

− 1
2
√
3

− 1
6

1
3

1
3

35 ūc̄1
L

03
[−i]

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] -1 1

2
1 0 − 1

2
− 1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

36 ūc̄1
L

03
(+i)

12
[−] |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] -1 − 1

2
1 0 − 1

2
− 1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

37 d̄c̄1
R

03
(+i)

12
(+) |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] 1 1

2
-1 1

2
0 − 1

2
− 1
2
√
3

− 1
6

− 1
6

1
3

38 d̄c̄1
R

03
[−i]

12
[−] |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] 1 − 1

2
-1 1

2
0 − 1

2
− 1
2
√
3

− 1
6

− 1
6

1
3

39 ūc̄1
R

03
(+i)

12
(+) |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] 1 1

2
-1 − 1

2
0 − 1

2
− 1
2
√
3

− 1
6

− 1
6

− 2
3

40 ūc̄1
R

03
[−i]

12
[−] |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] 1 − 1

2
-1 − 1

2
0 − 1

2
− 1
2
√
3

− 1
6

− 1
6

− 2
3

Continued on next page
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i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet, Γ(1,7) = (−1) 1 , Γ(6) = (1) − 1

of (anti)quarks and (anti)leptons

41 d̄c̄2
L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
[+] -1 1

2
1 0 1

2
1
2

− 1
2
√
3

− 1
6

1
3
1
3

· · ·

49 d̄c̄3
L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
(−) -1 1

2
1 0 1

2
0 − 1√

3
− 1
6

1
3
1
3

· · ·

57 ēL

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) -1 1

2
1 0 1

2
0 0 1

2
1 1

58 ēL

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) -1 − 1

2
1 0 1

2
0 0 1

2
1 1

59 ν̄L

03
[−i]

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) -1 1

2
1 0 − 1

2
0 0 1

2
0 0

60 ν̄L

03
(+i)

12
[−] |

56
[−]

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) -1 − 1

2
1 0 − 1

2
0 0 1

2
0 0

61 ν̄R
03

(+i)
12
(+) |

56
[−]

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) 1 1

2
-1 − 1

2
0 0 0 1

2
1
2
0

62 ν̄R
03

[−i]
12
[−] |

56
[−]

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) 1 − 1

2
-1 − 1

2
0 0 0 1

2
1
2
0

63 ēR

03
(+i)

12
(+) |

56
(+)

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) 1 1

2
-1 1

2
0 0 0 1

2
1
2
1

64 ēR

03
[−i]

12
[−] |

56
(+)

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) 1 − 1

2
-1 1

2
0 0 0 1

2
1
2
1

Table 9.4. The left handed (Γ (13,1) = −1) (= Γ (7,1)× Γ (6)) multiplet of spinors - the members
of the SO(13, 1) group, manifesting the subgroup SO(7, 1) - of the colour charged quarks
and anti-quarks and the colourless leptons and anti-leptons, is presented in the massless
basis using the technique presented in App. 9.6. It contains the left handed (Γ (3,1) = −1)
weak charged (τ13 = ± 1

2
) and SU(2)II chargeless (τ23 = 0) quarks and the right handed

weak chargeless and SU(2)II charged (τ23 = ± 1
2

) quarks of three colours (ci = (τ33, τ38))
with the ”spinor” charge (τ4 = 1

6
) and the colourless left handed weak charged leptons

and the right handed weak chargeless leptons with the ”spinor” charge (τ4 = − 1
2

). S12

defines the ordinary spin ± 1
2

. It contains also the states of opposite charges, reachable
from particle states by the application of the discrete symmetry operator CN PN , presented
in Refs. [22,23]. The vacuum state, on which the nilpotents and projectors operate, is not
shown. The reader can find this Weyl representation also in Refs. [1,29,4].

I present at the end one Weyl representation of SO(13 + 1) and the family
quantum numbers of the two groups of four families.

One Weyl representation of SO(13 + 1) contains left handed weak charged
and the second SU(2) chargeless coloured quarks and colourless leptons and right
handed weak chargeless and the second SU(2) charged quarks and leptons (elec-
trons and neutrinos). It carries also the family quantum numbers, not mentioned
in this table. The table is taken from Ref. [22].

The eight families of the first member of the eight-plet of quarks from Table 9.4,
for example, that is of the right handed u1R quark, are presented in the left column
of Table 9.5 [4]. In the right column of the same table the equivalent eight-plet of
the right handed neutrinos ν1R are presented. All the other members of any of the
eight families of quarks or leptons follow from any member of a particular family
by the application of the operators N±R,L and τ(2,1)± on this particular member.

The eight-plets separate into two group of four families: One group contains
doublets with respect to ~̃NR and ~̃τ2, these families are singlets with respect to ~̃NL

and ~̃τ1. Another group of families contains doublets with respect to ~̃NL and ~̃τ1,
these families are singlets with respect to ~̃NR and ~̃τ2.

The scalar fields which are the gauge scalars of ~̃NR and ~̃τ2 couple only to the
four families which are doublets with respect to these two groups. The scalar fields
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which are the gauge scalars of ~̃NL and ~̃τ1 couple only to the four families which
are doublets with respect to these last two groups.
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Lukman, DMFA Založništvo, Ljubljana December 2013, p. 31-51, [arxiv:1403.4441],
[arxiv1412.5866v2].
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25. Milutin Blagojević, Gravitation and gauge symmetries, IoP Publishing, Bristol 2002.
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30. A. Hernandez-Galeana, N.S. Mankoč Borštn, ”Masses and Mixing matrices of families
of quarks and leptons within the Spin-Charge-family theory, Predictions beyond the
tree level”, Proceedings to the 14th Workshop ”What comes beyond the standard
models”, Bled, 11 -21 of July, 2011, Ed. N.S. Mankoč Borštnik, H.B. Nielsen, D. Lukman,
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Abstract. One purpose of this proceedings-contribution is to show that at least for free
massless particles it is possible to construct an explicit boson theory which is exactly
equivalent in terms of momenta and energy to a fermion theory. The fermions come as
2d/2−1 families and the to this whole system of fermions corresponding bosons come as a
whole series of the Kalb-Ramond fields, one set of components for each number of indexes
on the tensor fields.

Since Kalb-Ramond fields naturally (only) couple to the extended objects or branes, we
suspect that inclusion of interaction into such for a bosonization prepared system - except
for the lowest dimensions - without including branes or something like that is not likely to
be possible.

The need for the families is easily seen just by using the theorem long ago put forward
by Aratyn and one of us (H.B.F.N.), which says that to have the statistical mechanics
of the fermion system and the boson system to match one needs to have the number
of the field components in the ratio 2d−1−1

2d−1 = #bosons
#fermions , enforcing that the number of

fermion components must be a multiple of 2d−1, where d is the space-time dimension. This
”explanation” of the number of dimension is potentially useful for the explanation for the
number of dimension put forward by one of us (S.N.M.B.) since long in the Spin-Charge-
Family theory, and leads like the latter to typically (a multiple of) 4 families.

And this is the second purpose for our work on the fermionization in an arbitrary
number of dimensions - namely to learn how ”natural” is the inclusion of the families in
the way the Spin-Charge-Family theory does.

Povzetek. Eden od namenov tega prispevka je pokazati, da je za brezmasne bozone mogoče
postaviti teorijo, ki je glede na energijo in gibalno količino lahko tudi teorija brezmasnih
fermionov v poljubno razsežnih prostorih. Bozoni so v tej teoriji opisani z 2d−1 − 1 realnimi
polji Kalb-Ramond-ove vrste, za ekvivalentna fermionska polja, ki so kompleksi Weylovi
spinorji, pa Aratyn-Nielsen-ov teorem zahteva, da se pojavijo v sodo razsežnih prostor-čas-
ih d v 2d/2−1 družinah, ker mora biti po tem teoremu razmerje bozonskih in fermionskih
polj enako 2d−1−1

2d−1 = #bozonov
#fermionov .

Pojav sodega števila družin, ki ga zahteva ta teorija fermionizacije bozonov (ali ekvi-
valentno bozonizacije fermionov), pritrjuje teoriji spinov-nabojev-družin, ki jo je postavila
soavtorica tega prispevka, in ki napoveduje, da je število družin cel mnogokratnik števila 4.
Ta prispevek pritrdi teoriji spinov-nabojev-družin, da je pojav družin fermionov v naravi
osnovnega pomena.
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10.1 Introduction

This is the first draft to the paper, prepared so far only to appear in the Proceedings
as the talk of one of the authors (H.B.F.N.). Although many things are not yet
strictly proven, the fermionization/bosonization seems, hopefully, to work in any
dimensional space-time and also, hopefully, in the presence of a weak background
field. We hope, that the fermionization/bosonization procedure might help to
better understand why nature has made of choice of spins, charges and families of
fermions and of the corresponding gauge and scalar fields, observed in the low
energy regime and why the Spin-Charge-Family theory [7,6] might be the right
explanations for all the assumptions of the Standard Model.

This talk demonstrates that:

• Bosonization/fermionization is possible in an arbitrary number of dimensions
(although the fermions theories are non-local due to the anticommuting nature
of fermions, while bosons commute).

• The number of degrees of freedom for fermions versus bosons obeys in our
procedure in any d the Aratyn-Nielsen theorem [1].
• The number of families in four dimensional space-time is (a multiple of) four

families.

To prove for massless fermions and bosons that the bosonization/fermionization
is possible in an arbitrary number of dimensions we use the Jacoby’s triple product
formula, presented by Leonhard Euler in 1748 [3] and is a special case of Glaisher’s
theorem [5]

1

2

∏
n=0,1,2,...

(1+ xn) =
∏

m=1,3,5,...

1

1− xm
. (10.1)

Let the reader notices that the product on the left hand side runs over 0 and all
positive integers, while on the right hand side it runs only over odd positive
integers. One can recognize also that for all positive numbers the number of
partitions with odd parts equals the number of partitions with distinct parts. Let
us demonstrate this in a special case:

Among the 22 partitions of the number 8 there are 6 that contain only odd
parts, namely

(7 + 1, 5 + 3, 5 + 1 + 1 + 1, 3 + 3 + 1 + 1, 3 + 1 + 1 + 1 + 1 + 1,
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1).
If we count partitions of 8, in which no number occurs more than once, that is

with distinct parts, we obtain again 6 such partitions, namely
(8, 7 + 1, 6 + 2, 5 + 3, 5 + 2 + 1, 4 + 3 + 1).
For every type of restricted partition there is a corresponding function for

the number of partitions satisfying the given restriction. An important example is
q(n), the number of partitions of n into distinct parts [4]. The generating function
for q(n), partitions into distinct parts, is given by

∞∑
n=0

q(n)xn =

∞∏
k=1

(1+ xk) =

∞∏
k=1

1

1− x2k−1
. (10.2)
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The first few values of q(n) are (starting with q(0)=1):
(1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10,
The pentagonal number theorem can be applied giving a recurrence for q [4]:

q(k) = ak+q(k−1)+q(k−2)−q(k−5)−q(k−7)+q(k−12)+q(k−15)−q(k−22)−...

(10.3)
where ak is (1)m, if k = (3m2 −m) for some integer m, and is 0 otherwise.

Fig. 10.1. Bosonization Illustrating Formula: the dspace space dimensional version (for only
a “quadrant”) is presented.

1

2

∏
(m1,m2,...,mdspace)∈N

dspace
0

(1+ xm11 xm22 · · · xmdspacedspace
) =

=
∏

(n1,n2,...,ndspace)∈N
dspace
0

but not all ni’s even

1

1− xn11 x
n2
2 · · · x

ndspace
dspace

(10.4)

1

2

∏
(m1,m2,...,mdspace)∈Zdspace

(1+ xm11 xm22 · · · xmdspacedspace
z

√
m2
1
+m2

2
+...+m2

dspace ) =

=
∏

(n1,n2,...,ndspace)∈Zdspace

but not all ni’s even

1

1− xn11 x
n2
2 · · · x

ndspace
dspace

z

√
n2
1
+n2

2
+...+n2

dspace

. (10.5)

The Idea for the Procedure for a Proof of the Multidimensional Bosonization
Formula
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• 1. Divide the whole system of all the discretized momentum vectors into
”classes” of proportional vector (meaning in practice vectors deviating by a
rational factor only), or rays (we might call them the rays of the module).

• 2. For each “class” the proof is given by the 1+1 dimensional case which
means by just using the formula by Euler and extending it to both positive
and negative integers.

Thinking of the Formulas of Bosonization as Products over Rays/Classes

∏
c∈rays

∏
m∈Z,m6=0

(1+ x
m1(c)∗m
1 x

m2(c)∗m
2 · · · xmdspace(c)∗mdspace

z

√
m2
1
(c)+m2

2
(c)+...+m2

dspace
(c) ∗|m|

) =

=
∏

c∈rays

∏
n odd

1

1− x
n1(c)∗n
1 x

n2(c)∗n
2 · · · xndspace(c)∗ndspace

z

√
n2
1
(c)+n2

2
(c)+...+n2

dspace
(c) ∗|n|

.

where c runs over the set rays of the dspace-tuples of non-negative integers, that
cannot be written as such a tuple multiplied by an over all integer factor.

Fig. 10.2. Splitting the Fock space into Cartesian Product Factors from Each Ray c.

Denoting the Fock space for the theory - it be a boson or a fermion one - asH
for the dspace-dimensional theory, and byHc the Fock space for the - essentially 1
+ 1 dimensional theory associated with the ray/or class c describing the particles
with momenta being an integer (though not 0) times the representative for c,
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namely (m1(c),m2(c), ...,mdspace(c)) - it is suggested that we write the full Fock
space as the product

H = ⊗c∈RAYSHc. (10.6)

Introduction of Creation and Annihilation Operators

We shall introduce for a boson interpretation of the Hilbert space the Fock
spaceH:

a(n1, n2, ..., ndspace) annihilates a boson with momentum (n1, n2, ..., ndspace) ,

a†(n1, n2, ..., ndspace) creates a boson with momentum (n1, n2, ..., ndspace) ,

where the integers can be any, except that they must not all dspace ones be even.
Similarly for fermions:

f(n1, n2, ..., ndspace) annihilates a fermion with momentum (n1, n2, ..., ndspace) ,

f†(n1, n2, ..., ndspace) creates a fermion with momentum (n1, n2, ..., ndspace) ,

where now the ni numbers can be any integers.

Boson Operators Dividable into rays or classes c, also Fermions Except for one
Type

We can write any ”not all even” (discretized) momentum (n1, n2, ..., ndspace)

as an odd integer n times a representative for a class/ray c

a(n1, n2, ..., ndspace) = a(n1(c) ∗ n,n2(c) ∗ n, ..., ndspace(c) ∗ n) ,
a†(n1, n2, ..., ndspace) = a

†(n1(c) ∗ n,n2(c) ∗ n, ..., ndspace(c) ∗ n)

The boson momentum with a given even/odd combination for its momentum
components (say oe...o) goes to a ray/class c with the same combination of even/odd-
ness.

Similarly one can proceed also for fermions with not all momentum compo-
nents even; but the fermion momenta that have all components even get divided
into rays/classes with different even/odd combinations. There are no rays with the even
combination ee...e, of course, because a tuple of only even numbers could be
divided by 2.

10.2 Thoughts on Construction of Fermion Operators

We have made an important step arriving at a model suggesting how it could
be possible to match momenta and energies for a system with either fermions
or bosons. To completely show the existence of fermionization (or looking the
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opposite way, bosonization) we should, however, write down the formula for
how the fermion (boson) creation and annihilation operators are constructed in
terms of the boson (fermion) operators, so that it can become clear (be proven)
that the phase conventions and identification of the specific states with a given
total momentum and energy for fermions can be identified with specific states for
the boson system.

Such a construction is well known for 1+1 dimensions, where it looks like

ψe(x) + iψo(x) = exp(iφR(x)) (10.7)

in the ”position” representation, meaning that

ψe(x) =
∑

m even
exp(imx) be(m) (10.8)

ψo(x) =
∑

m odd
exp(imx) be(m) (10.9)

φo(x) =
∑

m odd
exp(imx) ae(m) . (10.10)

Let us think of the case of making the field operators in position space

φe(x), φo(x), ψo(x)

Hermitean by assumming

ao(m) = a†o(−m); for allm odd, (10.11)

bo(m) = b†o(−m); for allm odd, (10.12)

be(m) = b†e(−m); for allm even . (10.13)

10.2.1 Problem of Extending to Higher Dimensions Even if we Have
Bosonization Ray for Ray

At first one might naively think that - since each of our rays (or classes) c functions
as the 1+1 dimensional system and we can write the whole fermion, as well as
the whole boson, space according to (10.6) - it would be trivial to obtain the
bosonization for the whole system and thereby have achieved the bosonization in
the arbitrary dimension, which is the major goal of this article.

However, one should notice that constructing in a simple way a system
composed from several independent subsystems such it is the whole system H,
composed from the subsystems Hc (for c ∈ rays), one obtains commutation be-
tween operators acting solely inside one subsystem c, say, and operators acting
solely inside another subsystem c ′, say. But we want for the fermions the anticom-
mutation relations rather than the commutation ones, and thus some (little ?) trick
is needed to achieve this anticommutation.

First we shall show how this anticommutation can be achieved by means of
an ordering of all the rays c ∈ rays by some ordering inequality being chosen
between these rays: >. But this is a very ugly procedure and we shall develop
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a slightly more general attempt in which we construct a phase δ(c, c ′) for each
pair of rays c and c ′. Then we shall go on seeking to make the choice of this
phase δ(c, c ′) in a continuous and more elegant way. Since that shall turn out to
be non-trivial, we shall develop the ideas by first seeking for such a construction
of the phase for the odd dimensional space of d = 3, meaning dspace = 2, to learn
the idea, although we are most keen on even space-time dimensions, such it is the
experimentally observed number of space-time dimensions, d = 4.

10.2.2 The > Ordered Rays Construction

Let us suppose that we have a formal way of constructing the fermion creation and
annihilation operators in terms of the boson operators. We do indeed have such
a construction, since we can Fourier transform back and forth the construction
in the position representation (10.7) and the 1+1 dimensional bosonization is so
well understood. Since for the present problem the details of this 1+1 dimensional
bosonization relations are not so important, we shall just assume that we are able
to deduce for each ray or class c a series of fermion creation - b†naive o(m, c) and
b†naive e(m, c) - and annihilation - bnaive o(m, c) and bnaive e(m, c) - operators,
that function well as fermion operators inside the ray c, so to speak. o and e denotes
odd and even respectively. The only important thing is that these operators can be
expressed in terms of the bosons annihilation and creation operators belonging to the same
ray c:

b†naive o(m, c) = b
†
naive o(m, c;ao(n, c) , for n odd), (10.14)

bnaive o(m, c) = bnaive o(m, c;ao(n, c) , for n odd), (10.15)

b†naive e(m, c) = b
†
naive e(m, c;ao(n, c) , for n odd), (10.16)

bnaive e(m, c) = bnaive e(m, c;ao(n, c) , for n odd) . (10.17)

For these operators we know form the 1+1 dimensional bosonization that we can
take them to obey the usual anticommutation rules provided we keep to only one ray
c:

{b†naive o(m, c;ao(n, c) , for n odd), b†naive o(p, c;ao(n, c) , for n odd)}−
= δn,−p , form,p both odd ,

{bnaive o(m, c;ao(n, c) , for n odd), b†naive o(p, c;ao(n, c) , for n odd)}−
= δn,p , form,p both odd ,

{bnaive o(m, c;ao(n, c) , for n odd), bnaive o(p, c;ao(n, c) , for n odd)}−
= δn,−p , form,p both odd .

We have similar anticommutation rules for annihilation and creation operators if
exchanging the index o (meaning odd) by the index e (meaning even), but now
we should take into account that the fermion operators with zero momentum, i.e.
m,p = 0, are not constructed from a single ray c. Rather there are - referring to our
little problem with the explicit factor 1

2
in the state counting formulae - not enough

degrees of freedom in the 1+1 dimensional boson system to deliver a fermion
operator with a zero momentum.
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118 N.S. Mankoč Borštnik and H.B.F. Nielsen

We should therefore imagine that we do not have these zero momentum
fermion operators attached to our rays either. This is actually good for our hopes
of bosonizing in higher dimensions because the zero momentum fermion operators
would have had to be common for the infinitely many rays and we would have
had too many candidates for the zero momentum fermion mode. Now instead
we totally miss the zero momentum creation and annihilation fermion operators
for the many dimensional system. That is, however, not at all so bad as it would
have been to get an infinity of them, because we fundamentally can not expect
to produce all fermion operators from boson ones because we cannot possibly
build up a sector with an odd number of fermions from boson operators acting on
say some vacuum with an even number. Therefore one fermion operator must be
missing. This becomes the zero momentum one and that is o.k..

Our real problem remains that these naive fermion operators taken for two
different rays c and c ′ will commute

{b†naive o(m, c;ao(n, c) , for n odd), b†naive o(p, c
′;ao(n, c

′) , for n odd)}−
= 0 form,p both odd

etc. . (10.18)

We could define an (−1)F-operator, where F is the fermion number operator.
It sounds at first very easy just to write

Fc =
∑
m

b†naive o(m, c) bnaive o(m, c) +
∑
m

b†naive e(m, c) bnaive e(m, c),

(10.19)
where the sums run over respectively the odd and the even positive values form
for the o and the e components. But now this fermion number operator- as taken
as a function of the naive operators - ends necessarily up being an expression in
purely boson operators (from the ray c), and thus it looks at first as being valid
except when the expression (−1)Fc , which we are interested in, is equal to 1 on
all states that can truly be constructed from boson operators. If it were indeed
so, our idea of using (−1)Fc to construct the multidimensional fermion operators,
would not be so good. However, there is a little detail that we did not have enough
bosonic degrees of freedom to construct the zero momentum fermion operator
in 1+1 dimensions. Therefore we can not really include in the definition of the
”fermion number operator for the ray c”, Fc, the term coming from m = 0. This
term would formally have been b†naive e(m = 0, c) bnaive e(m = 0, c), but we
decided to leave it out. This then means that the fermion number operator, for
which we decide to use Fc as the number of fermions operator in the ray c is not
the full fermion number operator for the corresponding 1+1 dimensional theory, but rather
only for those fermions, that avoid the zero momentum state. To require this avoidance
of the zero momentum is actually very attractive for defining a fermion number
operator for the ray c as far as the momentum states included in such a ray really
must exclude the zero momentum state in a similar way as a ray in a vector space
is determined from the set of vectors in the ray not being zero.

But this precise definition avoiding the zero-momentum fermion operator
contribution to the fermion number operator Fc leads to the avoidance of the just
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mentioned problem that this fermion number Fc looked as always having to be
even when constructed in terms of boson operators.

Now there should namely be enough boson degrees of freedom that one
should be able to construct by boson operators all the different possible combi-
nations for fermion states being filled or unfilled (still not the zero momentum
included). Thus one does by pure bosons construct both - the even Fc and the odd
Fc - states and thus the Fc with the zero momentum fermion state not counted can
indeed be a function of the boson operators and can take on both even and odd values
for momentum, depending on the boson system state. So, we can have - using this
leaving out the zero momentum fermion state in the rays - an operator

Fc = Fnaive c(ae(n) , for n odd) (10.20)

The operator (−1)Fc for each ray c counts if the number of fermions in the 1+1
dimensional system is even, then (−1)Fc = 1, or odd, then (−1)Fc = −1. We
construct the following improved fermion operator (annihilation or creation),

be(m, c) = bnaive e(m, c)
∏
c ′<c

(−1)Fc ′ . (10.21)

The inclusion of this extra operator factor helps to convert the commutation
relations between the fermion annihilation and creation operators for different
rays into anticommutation relations, as it can easily be seen

be (m, c) be (p, c
′) =

bnaive e (m, c) ·
∏
c ′′<c

(−1)Fc ′′ bnaive e (p, c
′) ·

∏
c ′′′<c ′

(−1)Fc ′′′ =

bnaive e (m, c) ·
∏

c ′≤c ′′<c
(−1)Fc ′′ bnaive e (p, c

′) =

−bnaive e (m, c) bnaive e (p, c
′) ·

∏
c ′<c ′′<c

(−1)Fc ′′ =

−bnaive e (p, c
′) bnaive e (m, c) ·

∏
c ′<c ′′<c

(−1)Fc ′′ =

−bnaive e (p, c
′) ·

∏
c ′′′<c ′

(−1)Fc ′′′ bnaive e (m, c) ·
∏
c ′′<c

(−1)Fc ′′

= −be(p, c
′) be(m, c) , still for c > c ′ . (10.22)

Thus we deduced, for c > c ′ in our in fact at first just chosen ordering of <,
that the fermion operators do anticommute. It is not difficult to show similarly
also in the case c ′ > c, that the fermion operators anticommute. The crux of
the matter is that when e.g. c ′ > c there is the factor (−1)Fc contained in the
product

∏
c ′′<c ′(−1)

Fc ′′ , which is attached to bnaive o (m, c ′) in order to correct
it into bo (m, c ′), while there is no analogous factor (−1)Fc ′ contained in the factor∏
c ′′<c(−1)

fc ′′ attached at bnaive o (m, c) in order to bring it into bo (m, c). In this
way one gets just the one extra minus sign in the product of the fermion operators
that makes them anticommute.
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10.2.3 Slight Generalization to have a Phase Factor

It is not difficult to see that the idea of using such an ordering < could be slightly
generalized to have instead of the factors only minus or plus phase factors of the
form exp(δ(c, c ′))

b†e (m, c) = b
†
naive e (m, c)

∏
c ′ 6=c, but c ′∈rays

e(iδ(c,c
′)Fc ′) . (10.23)

It is also not difficult to see that, in order to obtain the anticommutation relations
instead of the commutation ones (which we have for b†naive e (m, c)), the phases
must obey the rule

δ(c, c ′) − δ(c ′, c) = π(mod 2π) . (10.24)

We may in fact seek to evaluate the product of two fermion creation operators
with the ansatz (10.23)

b†e (m, c) b
†
e (m

′, c ′) =

= b†naive e (m, c)
∏
c ′′ 6=c,

but
c ′′∈rays

eiδ(c,c
′′) Fc ′′ b†naive e (m

′, c ′)
∏

c ′′′ 6=c ′,
but

c ′′′∈rays

eiδ(c
′,c ′′′)Fc ′′′

+b†naive e (m, c) e
iδ(c,c ′)

∏
c ′′ 6=c

nor c ′,but c ′′∈rays

ei(δ(c,c
′′)+δ(c ′,c ′′))Fc ′′ b†naive e (m

′, c ′)

= b†naive e (m, c) e
iδ(c,c ′)Fc ′ b†naive e (m

′, c ′) eiδ(c
′,c)Fc

·
∏
c ′′ 6=c

nor c ′, but c ′′∈rays

ei(δ(c,c
′′)+δ(c ′,c ′′))Fc ′′

= ei(δ(c,c
′)−δ(c ′,c)) b†naive e (m

′, c ′) eiδ(c
′,c)Fc b†naive e (m, c) e

iδ(c,c ′)Fc ′

·
∏
c ′′ 6=c
nor c ′,

but c ′′∈rays

ei(δ(c,c
′′)+δ(c ′,c ′′)Fc ′′) = e

i(δ(c,c ′)−δ(c ′,c)) b†e (m
′, c ′) b†e (m, c) =

= −b†e(m
′, c ′) b†e(m, c) , (10.25)

where in the last step we used (10.24). Thus we see that in this way we can get -
really in infinitely many ways - some algebraicly defined fermion operators that
do indeed anticommute as they should. But it should be had in mind that both
these procedure, by choosing δ(c, c ′) and the forgoing proposal with the ordering
<, are a priori discontinuous and arbitrary.

We expect, however, that the latter method with δ(c, c ′) can be lead to a
smooth and attractive scheme in the case of dspace = 2 or equivalently d = 3.

10.2.4 Exercise with Next to Simplest Case dspace = 2

In the case of dspace = 2 we can say that the set of our rays rays form a kind
of a set of ”rational angles” in the sense that each ray specifies modulo π (rather
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than modulo 2π as for an oriented arrow it would specify) an angle, but that one
only obtains those angles which rationalize tangenses. But the fact that they are
after all implemented as angles - although only modulo π, means that they are at
least locally ordered as numbers along a real or rather rational axis. So apart from
troubles at the end and beginning we have an ordering and we could attempt to
use it even for the implementation of the ordered set of rays method by proposing
a ”nice”< ordering. However, we think we get a better chance by using the δ(c, c ′)
method in this d = 3 and thus dspace = 2 case.

We have to think about what topological properties we shall and can achieve
for the function δ(c, c ′) depending on a pair of rays c and c ′.

Since the classes or rays are ”a kind of rational” directions, though without
orientation, the topological space of the rays is like the sphere Sdspace−1 with
opposite points identified. This topological space obtained by the identification of
the opposite point on the Sdspace−1 sphere is actually topologically identical to
the projective space of dspace− 1 dimensions. For the case d = 3 or dspace = 2 the
topological space rays thus becomes simply the projective line (using real num-
bers), but that is topologically just the S1 circle. Had this topological space been
naturally orderable we could have used the ordering as the < above. However,
it is a circle S1 and not a simple line with plus and minus infinity; the infinities
have so to speak been identified to only one point in the projective line. This
means that using the method to define the fermion fields/operators by means
of <-method would be very non-elegant, and would probably violate almost
everything wanted.

Let us now think about a slight generalization by using the δ(c, c ′). We need
to make a choice of a function δ(·, ·) defined on the cross product of two projective
spaces of dimension dspace − 1 each. Since it shall obey the condition (10.24), it
cannot at all be a smooth or continuous function at the points where c = c ′. Let us,
for a while, take care that this method works well for d = 3 only.

In this d = 3 case the cross product of the two projective lines becomes
topologically simply a two-dimensional torus. So we face topologically to define
δ(c, c ′) on a two-dimensional torus. However, we are forced to give up having
continuity along the ”diagonal” - meaning the set of points on this torus with
c = c ′ - and it is thus rather a δ(c, c ′) defined as a continuous function on the torus
minus its ”diagonal”, which we must choose/find.

This two dimensional torus minus its ”diagonal” is rather like a belt. I.e., it is
topologically like the outer surface of a finite piece of a tube. It has two separate
edges, each being topologically an S1 circle, namely two images of the ”diagonal”
seen from the two sides. In between there is then the two-dimensional bulk area
of the topological shape of the surface of the finite piece of a tube. It is inside this
bulk region that we shall attempt to construct δ(c, c ′) to be smooth and ”nice”.
Choosing

δ(c, c ′) = 2“clock average angle”(c, c ′) (10.26)

might be a good choice. directions c and c ′ forms with some coordinate axis (in
momentum space). The precise way of defining this ”clock average angle”(c, c ′)
is illustrated on the figure 10.3 and consists in the following (let us remind the
reader that we are still in the d = 3;dspace = 2 case):
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Fig. 10.3. Examples of clock average directions.

• a. We introduce a ”clockwise rotation orientation” in the spatial momentum
plane.
• b. We draw a circle arrow from one of the two ”ends” (half lines) of which the

line c (the ray c is basically just a line) in this clockwise direction, and note the
angle between this end of c and the first ”end” (=half line) of c ′ (met in the
following the circular arrow), which measures less than 1800.

• c. We draw a line, that divide this under b. noted angular region into halves.
This line through the (momentum space) origo is denoted ”clock average” (as
marked on the figure).

• d. Such an unoriented line as the ”clock average” defines relative to a coordi-
nate system in spatial momentum space an angle-value modulo π. We call this
angle-value “clock average angle”(c, c ′) and it is as just said defined modulo
π (but only modulo π, because the line “clock average” is unoriented).

• e. Multiplying this angle - “clock average angle”(c, c ′) - by 2 its ambiguity to
be only defined modulo π becomes instead an ambiguity modulo 2π. Thus
our proposed expression (10.26) for δ(c, c ′) is defined modulo 2π, and that is
what we need, since in our construction we exponentiate δ(c, c ′) after multi-
plication by i and an operator Fc ′ that has only integer eigenvalues. Thus the
expression, which we use, exp(iδ(c, c ′)Fc ′) becomes well defined even though
2”clock average angle” (c, c ′) makes sense only modulo 2π.

Let us see whether this proposal is indeed is a good one. To see that our
proposal (10.26) is a good one we must first of all check that it obeys (10.24).
That is we must see what happens to the expression when we permute the two
independent variables c and c ′. Since by definition the circular arrow constructed
in step b. goes out from the c-line, the first of the two arguments in δ(c, c ′), we
must draw this circle-arrow after the permutation from c ′ instead. Therefore the
half-angle noted under point b. above will after the permutation differ from the one
before the permutation. This means that the line (through the origo) ”clock average”
gets after the permutation perpendicular to its direction before the permutation of
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c and c ′. Ttherefore ”clock average angle”(c ′, c) = “clock average angle”(c, c ′) +
π/2(mod π), which means that this angle gets shifted modulo π with π/2. After
the multiplication by 2 (point e.) it means that δ(c ′, c) = δ(c, c ′) + π(mod 2π),
which is just (10.24). Thus we got indeed by proposal (10.26) the condition (10.24)
fulfilled.

We can now remark that quite obviously our proposal (10.26) is continuous
as function of the directions c and c ′ except where c and c ′ just coincide - what means
that it is zero (mod π) angle between them.

Let us note that had we not chosen the clock-wise rule, but instead taken, say,
the smallest angle between c and c ′ and just found the halfening line between those
”ends”, we would have got a discontinuity when c and c ′ were perpendicular
to each other. But by our precise choice we avoided that singularity. (For a point
close to the diagonal the two arguments, c and c ′, are approximately the same ray.
Permuting them will for a continuous function δ(c, c ′) make almost no difference,
and thus it cannot possibly change by π, while crossing the ”diagonal” the function
δwould ask to jump by π.)

10.3 A Guess for Arbitrary Dimension

We propose the generalization of Eq. (10.7) to an arbitrary dimension, due to our
experience with the Clifford objects (apart from some modifications due to whether
we choose Weyl or Majorana fermions for family or for geometrical components),
by using the relation

(ψ+ψµγ
µ +ψµνγ

µγν + ...+ψ1235...d Γ
(d−1) =

eφµγ
µ+φµνγ

µγν+...+φ1235...d Γ
(d−1)

. (10.27)

10.4 Outlook on Supporting the Spin-Charge-Family
theory [7,6]

We started with massless noninteracting bosons or fermions. But we like to work
with the interacting fields. There are many Kalb-Ramond fields appearing in our
type of fermionizable boson model in higher dimensions and correspondingly it
is not easy to see how to make an interacting theory.

There are many ways to come from noninteracting bosonisable (fermionizable)
fermion (boson) fields, which might lead to the fermion fields interacting with the
boson fields as it is in the spin-charge-family theory.

But on the level of our fermionizable (bosonizable) boson (fermion) model
with many Kalb-Ramond fields we must keep in mind that the conserved charges
in the Kalb-Ramond theories are vectorial and thus one gets very many vectorial
conserved quantities. This makes scattering processes (unless all the scattering
particles are without these vectorial charges) very non-trivial.

One chance would be to let either fermion or boson fields to interact with
gravity. Crudely speaking gravity couples to energy and momentum, and since
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124 N.S. Mankoč Borštnik and H.B.F. Nielsen

in the free bosonization procedure we have at least sought to get the total d-
momentum be the same in the corresponding states of fermions and bosons there
might be a chance that we fermionize a theory with both - the bosons of the Kalb-
Ramond type and gravity through the vierbein formulation - and correspondingly
obtain a theory with both fermions and bosons, the later would be the gravity
degrees of freedom. This might lead to exactly the theory [6,7] that one of us
(N.S.M.B.) has postulated as the true model for Nature beyond the standard model
(the spin-charge-family theory).

Since our scheme a priori looks to require the Majorana fermions to have real
fields like the bosons - at least in the simplest version - we only expect to get chiral
fermions in those dimensions wherein Majorana fermions can simultaneously
be Weyl (=chiral)as in d=2,6,10,14,... It is therefore even a slight support for the
spin-charge-family theory that its phenomenologically favoured dimension is just
13+1 =14.

One should for appreciating this idea of adding gravity without fermionizing
it have in mind that one does not have to bosonize all degrees of freedom, but rather
can - if one wishes - decide to fermionize some degrees of freedom but not all.
Especially, if the motivation were to make all fermions from bosons because one
claims that fermions are not properly local and should not be allowed to exist, then
of course it is enough that we start with a purely boson theory as the fundamental
one - and then we better only fermionize a part of bosons unless we could identify
a purely fermionic theory with nature. But of course there seemingly are bosons in
nature and we thus must end phenomenologically with a theory with both bosons
and fermions.

Starting from fundamental bosons only that is only achievable by only a
partial fermionization.

Hope for the Progress

The hope is, which is evidently from we haveproposed in this contribution, that
we shall construct formulas for the higher dimensional cases by generalizing
the formulas we already have for the one dimensional case, generalizing as well
the ”classes” to higher dimensions. In the spirit of seeking to identify the fields
characterized by their ”odd/even” indices with spin components, we hope to
derive from the bosonization formula a scheme formally stating the relation
between the boson and the fermion second quantized fields, 2dspace − 1 boson
field components, while there will be 2dspace fermion components.

10.5 Outlook on the Connection to the Spin-Charge-Family
Theory

Let us try to clarify how the here discussed fermionization procedure is supposed
to be, so to speak, the root for a theory beyond the Spin-Charge-Family theory of
Norma Susana Mankoč Borštnik [7,6] (and her collaborators), The (one of) way
we see as a very promising hope that one could justify this Spin-Charge-Family
theory by the hoped fermionization is as follows:
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We build up a model with only bosons as the fundamental theory in say - 13 +1
dimensions - in the sense that this 13 +1 dimensional purely bosonic theory with a
series of the Kalb-Ramond fields and with usual 13+1 dimensional gravity should be the
fundamental choice of nature (not necessarily starting in d=13+1). Then this theory
should be partly fermionized in the sense that only the series of Kalb Ramond
fields get fermionized, but not the gravity (bosonic) degres of freedom. The latter
remain gravitational degrees of freedom hopefully now functioning as gravity for
the fermions that came out of the fermionization. The Spin-Charge-Family theory
will show up out of the Kalb-Ramond components.

1. The first assumption of our new scheme, which might be the pre-scheme of
the Spin-Charge-Family theory, is that fermions a priori do not obey proper locality.
The accusation towards all the theories with fermions which are fundamental
fermions rather than fermionized bosons is that the axiom of locality in a
quantum field theory is for the fermions

{ψα(x), ψβ(y)}+ = 0 , for the space like separation of y and x, (10.28)

while true physical locality should have been a commutation rule like the one
obeyed by the boson fields

{φ(x), φ(y)}− = 0 , for the space like separation of x and y. (10.29)

True locality means, one would think, that each little region in space is ap-
proximately a completely separate system that only interacts very indirectly
with a far away different little region. If so, the physical operators describing
the situation in one little region should commute with those describing the
situation in a different little region, and not anticommute as the fermion fields
do. One might like to assume that only products of an even number of fermion
fields are considered as proper operators describing the little system region,
what satisfies the requirement of getting commutation relations between the
field variables describing the situation in different regions. But such an as-
sumption must be justified as a physical assumption, discussing seriously also
odd products of fermion fields.
The point of view we suggest here is that we admit that we cannot have
fermions at all in a truly local way! This then means that the fundamental
physics should be a model without fermions so that all fermions come from
bosons that become fermionized.

2. Since it is not easy to find so terribly many systems of bosons that can be
fermionized, and thus if one finds some way of fermionizing, then this way is
presumably already likely to be almost the only one possible.
At least we expect that the fermionization of a boson system of fields can only
be made provided the number of fermions and the number of bosons agree
with the theorem which one of us and Aratyn [1] put forward many years ago.
For massless free fermions on the one side and massless free bosons on the
other side we obtained that the number of components for the bosons and
the fermions counted in the same way with respect to the fields being real or
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126 N.S. Mankoč Borštnik and H.B.F. Nielsen

complex, should be in the ratio

#fermion components
#boson components

=
2dspace

2dspace − 1
, (10.30)

where the dimension is d = dspace + 1, or the spatial dimension is dspace.
The number of components - at least the number of real counted components
- must of course be positive integer or zero. Thus the minimal number of
fermion components must be 2dspace , while the number of boson components
must be 2dspace − 1 or the numbers must be an integer multiplum of these
numbers.
Alone this theorem of ours [1] makes appreciable restriction for when bosoniza-
tion/fermionization is at all possible.

3. We are suggesting here the starting point with the bosonic degrees of freedom
only, consisting of ”series of the Kalb-Ramond fields, all the chain through,
except for one (pseudo)scalar”. By this we mean that we have as the bosons a
series of separate fields Aµν···ρ with all the values of the number of indexes,
antisymmetric with respect to all their indexes.
There is a simple way in which one could get the number 2dspace − 1 of boson
components, if we arrange to have - by some gauge choice - only spatial values
of the indexes µ, ν,... on the A-fields, removing the A field with zero indexes.
The number of components become equal to the number of subsets of dspace
letters, which is 2dspace . Removing pure scalar, we get this number 2dspace −1,
as we want for the theorem of[1].

4. From the 2dspace − 1 bosons represented by the Kalb-Ramond fields with the
scalar removed, then according to the Aratyn et al. theorem [1] theorem there
must be the 2dspace components of fermion fields. This means for the Weyl
spinor representation of fermion fields in even d = dspace + 1, with 2d/2−1

members that there are 2× 2d/2−1 real fermion fields. To get 2dspace real Weyl
spinor representation fermion fields there must be 2dspace

2(dspace+1)/2
= 2d/2−1 =

2dspace/2−1/2 families.
5. From the bosonization requirement we obviously get out that there must exist

an even number of families as it also comes out from the Spin-Charge-Family
theory of one of us [7,6].

6. But now there is correction due to the components of the KalbRamond fields
with time indices, the 0. This gives very interesting corrections as we may
postpone till later.

10.5.1 A Hope for that the Gravity Interaction Can Be Added

There is an interesting hope for that actually our at first free bosons being fermion-
ized to free fermions could be generalized to have an universal coupling to a
gravitational field - the bosonic field, which we do not fermionize, keeping it as
gravitation, interactiing with the fermions - so that we finally arrive at a theory
with several families of fermions and gravity.

Above we wrote down a formula for counting the number of states for
the fermion and the boson systems having the same number of Fock states



i
i

“proc15” — 2015/12/9 — 10:51 — page 127 — #143 i
i

i
i

i
i

10 Fermionization in an Arbitrary Number of Dimensions 127

with given momentum and energy for the free massless case of our bosoniza-
tion/fermionization.

We used in reality an infrared cut off that meant that we in fact considered a
torus world with for different components different periodicity conditions: Some
components of fields had antiperiodicity while the others had periodicity property
along various coordinate directions.

We shall note now that we could consider these momentum eigenstates for
the single particles with given periodicity restriction as topologically specified in
the following sense:

The wave functions for the momentum eigenstates are as is well known all
along taking on only pure phase factor values, i.e. they obey |φ(x)| = 1 all along.
The number of turns around zero, which they perform when one goes around the
torus along the different coordinates, is an integer (or a half integer depending on
the boundary condition). We can consider this number of turns going around the
torus in different ways (along different coordinates) a topological quantity in the
sense that it as an integer cannot change under a small deformation.

Our main idea is at this point that we in this way can introduce at least a
not too strong gravitational field and still have single particle solutions to the
equations of motion characterized by the same system of (topological) quantum
numbers.

That should suggest that we have the same set up for making the in this
work studied bosonization in a not too strong gravitational field as in the free case.
We namely should be able to classify the single particle states as functions of the
space-time variables x on the by gravitational fields deformed torus (torus due to
infra red cut off) according to a topological classification in terms of the number
of times the wave function encircles the value zero in the complex plane when
the one follows a closed curve, following, say, the coordinates of the deformed
torus. For the massless theory we have scale-invariance for the matter fields -
the series of the Kalb-Ramond fields or the fermions - so, as long as we consider
the gravitational field as a background field, i.e. we ignore the dynamics of the
gravitational field itsef - we can scale up the momenta of the single particles by just
letting the phase of an eigen-solution be scaled up by a factor. Only the periodicity
conditions will enforce such scalings to be by integer factors, just as they must be
also in the free flat case.

So we argue that with a background gravitational field, that is with a not too
strong field, we have a possible description in terms of a discretized enumeration
quite in the correspondence with the one for the flat case.

Remembering that we obtained the bosonization w.r.t. state counting in fact
class c for class, meaning that the momentum eigenstates in the classes correspond-
ing to rays went separately from boson to fermion or oppositely, we may have
given arguments at least suggesting that a corresponding bosonization correspon-
dence as the one in the free flat case also applies to the case with some (may be
not too large though) gravitational field as a background field.

This may require further study but we take it that there is at least a hope for
that the bosonization/fermionization procedure can also be performed in a background
gravitational field.
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Since we now with our expansions in power series seek to guarantee that
we shall make the bosonization or fermionizations just in such a way that the
d-momentum will be the same for the fermion configuration and the boson config-
uration corresponding to each other, we might hope that we could formulate the
exact correspondence and the interpretations in terms of fields with spin indexes
so that indeed the momentum densities would be the same for the fermions and for
the corresponding bosons. If we succeed in that then the action on the gravitational
fields which only feel the matter via the energy momentum tensor Tµν would be
the same for the bosons and the fermions in the corresponding states. In that case
the development of the gravitational fields would be the same for the correspond-
ing fermion and boson configurations. Thus the bosonization/fermionization
procedure would truly have been made also in the with gravity interacting models.
Just the gravity field itself should not be fermionized.
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Abstract. Multi-spinor fields which behave as triple-tensor products of the Dirac spinors
and form reducible representations of the Lorentz group describe three families of ordinary
quarks and leptons in the visible sector and an additional family of exotic dark quarks and
leptons in the dark sector of the Universe. Apart from the ordinary set of the gauge and
Higgs fields in the visible sector, another set of gauge and Higgs fields belonging to the
dark sector are assumed to exist. Two sectors possess channels of communication through
gravity and a bi-quadratic interaction between the two types of Higgs fields. A candidate
for the main component of the dark matter is a stable dark hadron with spin 3/2, and the
upper limit of its mass is estimated to be 15.1GeV/c2.

Povzetek. Avtor obravnava spinorje, ki se obnašajo kot trojni tenzorski produkt Diracovih
spinorjev in tvorijo nerazcepno upodobitev Lorentzove grupe. Z njimi uspe opisati tri
izmerjene družine kvarkov in leptonov, upodobitve pa ponudijo obstoj še četrte družine
(imenuje jo ”nevidno”). Umeriotvenim poljem izmerjenih clanov družin in Higgsovega
skalarnega polja doda ustrezna umeritvena vektorska polja in skalarno polje, s katerimi se
sklopi ”nevidna” družina. Gravitacija in bikvadratna interakcij poskrbita za interakcijo med
med obema tipoma Higgsovih polj. Kot kandidata za poglavitno sestavino temne snovi
predlaga hadron s spinom 3/2. Zgornjo mejo za njegovo maso oceni na 15.1GeV/c2.

11.1 Introduction

The Standard Model (SM) has been accepted as an almost unique effective scheme
for phenomenology of particle physics in the energy region around and lower
than the electroweak scale. Nevertheless it should be considered that the SM is still
in an incomplete stage, since its fermionic and Higgs parts are full of unknowns.
It is not yet possible to answer the question why quarks and leptons exist in
the modes of three families with the color and electroweak gauge symmetry
G = SUc(3) × SUL(2) × UY(1), and we have not yet found definite rules to
determine their interactions with the Higgs field. It is also a crucial issue to inquire
whether the SM can be extended so as to accommodate the degrees of freedom of
dark matter.

To extend the SM to a more comprehensive theory which can elucidate its
unknown features, we introduce the algebra, called triplet algebra, consisting of
? sogami@cc.kyoto-su.ac.jp
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triple-tensor products of the Dirac algebra and construct a unified field theory with
the multi-spinor field, called triplet field, which behaves as triple-tensor products of
the four-component Dirac spinor [1,2]. The chiral triplet fields forming reducible
representations of the Lorentz group include the three families of ordinary quarks
and leptons and also an additional fourth family of exotic quarks and leptons
which are assumed to belong to the dark sector of the Universe.

The bosonic part of the theory consists of the ordinary gauge and Higgs
fields of the G symmetry and also the dark gauge and Higgs fields of the new
G? = SUc?(3) × SUR(2) × UY?(1) symmetry. While the gauge fields of the G
symmetry interact with the ordinary quarks and leptons of the three families, the
gauge fields of the G? symmetry are presumed to interact exclusively with the
quarks and leptons of the fourth family in the dark sector. The gauge fields of the
extra color symmetry SUc?(3) work to confine the dark quarks into dark hadrons.
Apart from the ordinary Higgs field ϕ which breaks the electroweak symmetry
GEW = SUL(2)×UY(1) at the scale Λ, another Higgs field ϕ? is assumed to exist
to break the left-right twisted symmetry GEW? = SUR(2)×UY?

(1) at the scale Λ?

(Λ? > Λ).
Our theory predicts existence of a stable dark hadron with spin 3/2 as a

candidate for the main component of the dark matter. From a heuristic argument,
we estimate the upper limit of its mass to be 15.1 GeV/c2.

11.2 Triplet field and triplet algebra

To describe all fermionic species of the SM, we introduce the triplet field Ψ(x)
which behaves as triple-tensor products of the Dirac spinors as

Ψabc ∼ ψaψbψc (11.1)

where ψ is the four-component Dirac spinor. Operators acting on the triplet field
belong to the triplet algebra AT composed of the triple-tensor products of the
Dirac algebra Aγ = 〈γµ 〉 = { 1, γµ, σµν, γ5γµ, γ5 } as follows:

AT = {p⊗ q⊗ r : p, q, r ∈ Aγ }

= 〈γµ ⊗ 1⊗ 1, 1⊗ γµ ⊗ 1, 1⊗ 1⊗ γµ 〉.
(11.2)

The triplet algebra AT is too large for all its elements to acquire physical
meanings. To extract its subalgebras being suitable for physical description in the
SM energy region, we impose the criterion [1] that the subalgebra bearing physical
interpretation is closed and irreducible under the action of the permutation group
S3 which works to exchange the order of Aγ elements in the tensor product.
With this criterion, the triplet algebra can be decomposed into three mutually
commutative subalgebras, i.e., an external algebra defining external properties of
fermions and two internal subalgebras that have the respective roles of prescribing
family and color degrees of freedom.

The four elements

Γµ = γµ ⊗ γµ ⊗ γµ ∈ AT , (µ = 0, 1, 2, 3) (11.3)
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satisfy the anti-commutation relations ΓµΓν + ΓνΓµ = 2ηµνI where I = 1⊗ 1⊗ 1.
With them, let us construct an algebra AΓ by

AΓ = 〈 Γµ 〉 = { I, Γµ, Σµν, Γ5Γµ, Γ5 } (11.4)

where Σµν = − i
2
(ΓµΓν − ΓνΓµ) = σµν ⊗ σµν ⊗ σµν and Γ5 = −iΓ0Γ1Γ2Γ3 = Γ5 =

γ5 ⊗ γ5 ⊗ γ5. The algebra AΓ being isomorphic to the original Dirac algebra Aγ
fulfills the S3 criterion and works to specify the external characteristics of the triplet
field. Namely, we postulate that the operatorsMµν = 1

2
Σµν generate the Lorentz

transformations for the triplet field Ψ(x) in the four dimensional Minkowski
spacetime { xµ } where we exist as observers. The subscripts of operators Γµ are
related and contracted with the superscripts of the spacetime coordinates xµ.

Under the proper Lorentz transformation x′µ = Ωµνx
ν, the triplet field and

its adjoint field Ψ(x) = Ψ†(x)Γ0 are transformed as

Ψ′(x′) = S(Ω)Ψ(x), Ψ
′
(x′) = Ψ(x)S−1(Ω) (11.5)

where the transformation matrix is given by

S(Ω) = exp
(
−
i

2
Mµνω

µν

)
(11.6)

with the angles ωµν in the µ–ν planes. The Lorentz invariant scalar product is
formed as

Ψ(x)Ψ(x) =
∑
abc

Ψabc(x)Ψabc(x). (11.7)

For discrete transformations such as space inversion, time reversal and the charge
conjugation, the present scheme retains exactly the same structure as the ordinary
Dirac theory. The chirality operators are given by

L =
1

2
(I− Γ5), R =

1

2
(I+ Γ5) ∈ AΓ (11.8)

which are used to assemble algebras for electroweak symmetries.
Note that the Dirac algebra Aγ possesses two su(2) subalgebras

Aσ = {σ1 = γ0, σ2 = iγ0γ5, σ3 = γ5 } (11.9)

and
Aρ = { ρ1 = iγ2γ3, ρ2 = iγ3γ1, ρ3 = iγ1γ2 } (11.10)

which are commutative and isomorphic with each other. By taking the triple-tensor
products of elements of the respective subalgebrasAσ andAρ inAT , we are able to
construct two sets of commutative and isomorphic subalgebras with compositions
‘‘su(3) plus u(1)’’ which satisfy the criterion of S3 irreducibility. Those algebras
are postulated to have the roles to describe internal family and color degrees of
freedom of the triplet fields.
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11.3 Algebra for extended family degrees of freedom

From the elements of the algebra Aσ = {σ1, σ2, σ3 } in Eq.(11.9), we can make up
eight elements of AT as follows:

π1 =
1
2
(σ1 ⊗ σ1 ⊗ 1+ σ2 ⊗ σ2 ⊗ 1) ,

π2 =
1
2
(σ1 ⊗ σ2 ⊗ σ3 − σ2 ⊗ σ1 ⊗ σ3) ,

π3 =
1
2
(1⊗ σ3 ⊗ σ3 − σ3 ⊗ 1⊗ σ3) ,

π4 =
1
2
(σ1 ⊗ 1⊗ σ1 + σ2 ⊗ 1⊗ σ2) ,

π5 =
1
2
(σ1 ⊗ σ3 ⊗ σ2 − σ2 ⊗ σ3 ⊗ σ1) ,

π6 =
1
2
(1⊗ σ1 ⊗ σ1 + 1⊗ σ2 ⊗ σ2) ,

π7 =
1
2
(σ3 ⊗ σ1 ⊗ σ2 − σ3 ⊗ σ2 ⊗ σ1) ,

π8 =
1

2
√
3
(1⊗ σ3 ⊗ σ3 + σ3 ⊗ 1⊗ σ3 − 2σ3 ⊗ σ3 ⊗ 1) .

(11.11)

which are proved to obey the commutation and anti-commutation relations of the
Lie algebra su(3) as

[πj, πk ] = 2f
(3)
jklπl, {πj, πk } =

4

3
δjkΠ(v) + 2d

(3)
jklπl (11.12)

where

Π(v) =
1

4
(3I− 1⊗ 1⊗ σ3 ⊗ σ3 − 1⊗ σ3 ⊗ 1⊗ σ3 − 1⊗ σ3 ⊗ σ3 ⊗ 1) (11.13)

and

Π(d) =
1

4
(I+ 1⊗ 1⊗ σ3 ⊗ σ3 + 1⊗ σ3 ⊗ 1⊗ σ3 + 1⊗ σ3 ⊗ σ3 ⊗ 1) (11.14)

are projection operators satisfying the relations

Π(a)Π(b) = δabΠ(a), Π(a)πj = δavπj (11.15)

for (a, b = v, d) and (j = 1, · · · , 8).
Here we impose a crucial postulate that the operators Π(v) and Π(d) work to

divide the triplet field into the orthogonal component fields as

Ψ(v)(x) = Π(v)Ψ(x), Ψ(d)(x) = Π(d)Ψ(x) (11.16)

which represent, respectively, fundamental fermionic species belonging to the
visible and dark sectors of the Universe. The visible part Ψ(v)(x) can be further
decomposed into the sum of the three component fields as follows:

Ψ(v)(x) =
∑

j=1,2,3

Ψj(x) =
∑

j=1,2,3

ΠjΨ(x) (11.17)
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where the projection operators Πj are defined symmetrically by
Π1 =

1
4
(I+ 1⊗ 1⊗ σ3 ⊗ σ3 − 1⊗ σ3 ⊗ 1⊗ σ3 − 1⊗ σ3 ⊗ σ3 ⊗ 1) ,

Π2 =
1
4
(I− 1⊗ 1⊗ σ3 ⊗ σ3 + 1⊗ σ3 ⊗ 1⊗ σ3 − 1⊗ σ3 ⊗ σ3 ⊗ 1) ,

Π3 =
1
4
(I− 1⊗ 1⊗ σ3 ⊗ σ3 − 1⊗ σ3 ⊗ 1⊗ σ3 + 1⊗ σ3 ⊗ σ3 ⊗ 1) .

(11.18)

which obey the relations
∑3
j=1Πj = Π(v) and ΠjΠk = δjkΠj. The component fields

Ψj(x) (j = 1, 2, 3) are interpreted to be the fields for three ordinary families of
quarks and leptons in interaction modes.

With the operators πj and Π(a), let us construct the set of the su(3) and u(1)

algebras by
A(v) = { Π(v), π1, π2, · · · , π8 }, A(d) = { Π(d) } (11.19)

which are closed and irreducible under the action of S3 permutation. The algebras
A(v) andA(d) specify, respectively, the characteristics of the three ordinary families
of the visible sector and the exotic family of the dark sector. Accordingly, the set
Af = {A(v), A(d)} is the algebra of operators specifying the family structure in the
triplet field theory.

Rich varieties observed in flavor physics are presumed in the SM to result from
the Yukawa couplings of quarks and leptons with the Higgs field. In low energy
regime of flavor physics, quarks and leptons manifest themselves in both of the
dual modes of electroweak interaction and mass eigen-states. It is the elements of
the algebraA(v) in Eq.(11.19) that determine the structures of the Yukawa coupling
constants which brings about varieties in the mass spectra and the electroweak
mixing matrices.

It is the algebra A(d) consisting of the single element Π4 ≡ Π(d) and the
fourth component field Ψ4 ≡ Ψ(d) of the triplet field that determine characteristics
of exotic quarks and leptons belonging to the dark sector of the Universe. The
projection operators Πj (j = 1, 2, 3, 4) satisfy the relations

∑4
j=1Πj = I and ΠjΠk =

δjkΠj.

11.4 Algebra for extended color degrees of freedom

In parallel with the arguments in the preceding section, it is possible to construct
another set of ‘‘su(3) plus u(1)’’ subalgebras from the algebra Aρ = { ρ1, ρ2, ρ3 }

in Eq.(11.10). Replacing σa with ρa in Eq.(11.11), we obtain a new set of operators
λj (j = 1, · · · 8) in place of πj. Likewise, corresponding to Π(a) (a = v, d) in
Eqs.(11.13) and (11.14), we obtain operators Λ(a) (a = q, `) which play respective
roles to project out component fields representing the quark-like and lepton-like
modes of the triplet field.

Then, from Eqs.(11.12) and (11.15), we find that the operators λj and Λ(a)

satisfy the relations

[ λj, λk ] = 2f
(3)
jklλl, { λj, λk } =

4

3
δjkΛ

(q) + 2d
(3)
jklλl (11.20)
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and
Λ(a)Λ(b) = δabΛ(a), Λ(a)λj = δ

aqλj (11.21)

for (a, b = q, `) and (j = 1, · · · , 8). The operators λj and Λ(a) enable us to build
up the new set of su(3) and u(1) algebras as follows:

A(q) = { Λ(q), λ1, λ2, · · · , λ8 }, A(`) = { Λ(`) }. (11.22)

It is readily proved that these algebras A(a) satisfy the criterion of S3 irreducibility
and are commutative with the algebras AΓ , A(v) and A(d).

The operator for the “baryon number minus lepton number” defined by

QB−L=
1
3
Λ(q) −Λ(`)

=−1
3
(1⊗ 1⊗ ρ3 ⊗ ρ3 + 1⊗ ρ3 ⊗ 1⊗ ρ3 + 1⊗ ρ3 ⊗ ρ3 ⊗ 1)

(11.23)

obeys the minimal equation

(QB−L + I)

(
QB−L −

1

3
I

)
= 0 (11.24)

and has the eigenvalues 1
3

and -1. Therefore, Λ(q)Ψ and Λ(`)Ψ form, respectively,
the quark-like and lepton-like modes of the triplet field.

At this stage, we construct the generators for extended color gauge symme-
tries SUc(3) and SUc?(3) which act, respectively, to the visible and dark fields Ψ(v)

and Ψ(d). Combining the elements of the core algebras A(q) with the projection
operators Π(a), we can make up the operators as

Λ
(q)
(a) = Π(a)Λ

(q), λ(a)j = Π(a)λj (11.25)

which form the algebras

A
(q)
(a) = {Λ

(q)
(a), λ(a)j : j = 1, · · · , 8 } (11.26)

where a = v, d. The elements of the algebras A(q)
(a) satisfy the commutation and

anti-commutation relations

[ λ(a)j, λ(a)k ] = 2f
(3)
jklλ(a)l, { λ(a)j, λ(a)k } =

4

3
δjkΛ

(q)
(a) + 2d

(3)
jklλ(a)l (11.27)

for a = v, d and j, k, l = 1, 2, · · · , 8.
In this formalism, the quark-like species in the visible and dark sectors are

presumed to be confined separately by different color gauge interactions associated
with the groups SUc(3) and SUc?(3). Those gauge groups are defined by the
exponential mappings of the algebras A(q)

(a) (a = v, d) as

SUc(3)× SUc?(3) =

exp


−

i

2

∑
a=v, d

∑
j

λ(a)jθ
j
(a)(x)


Λ(q)

 (11.28)
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where θj(a)(x) are arbitrary real functions of space-time. In addition to the ordinary

gauge fields A(3)j
µ (x) with coupling constant g(3) of the SUc(3) symmetry, our

theory necessitates the new gauge fields A(3)j
?µ (x) with coupling constant g(3)? of

the SUc?(3) symmetry.
For the lepton-like species also, we have to introduce the algebras

A
(`)
(a) = {Λ

(`)
(a) ≡ Π(a)Λ

` }. (11.29)

with a = v, d, which act to the visible and dark sectors, respectively. The set Ac =
{A

(q)
(v) , A

(`)
(v); A

(q)
(d), A

(`)
(d)} is the algebra of operators characterizing the extended

color degrees of freedom in the triplet field theory. The operators Q(a)
B−L (a = v, d)

of “baryon number minus lepton number” in the visible and dark sectors are
defined, respectively, by

Q
(v)
B−L = Π(v)QB−L, Q

(d)
B−L = Π(d)QB−L. (11.30)

11.5 Fundamental representation of the groupG× G?

The triplet field Ψwith 4× 4× 4 spinor-components is decomposed as

Ψ = Ψ(v) + Ψ(d) =
[
Ψ

(q)
(v) + Ψ

(`)
(v)

]
+
[
Ψ

(q)
(d) + Ψ

(`)
(d)

]
(11.31)

where Ψ(c)
(a) = Λ(c)Π(a)Ψ (a = v, d; c = q, `) are the four component fields of

Dirac-type with degrees of freedom of (3+ 1)-families and (3+ 1)-colors. Hence
the triplet field Ψ which is considered to be the basic unit of fermionic species has
no more freedom.

In order to incorporate the Weinberg-Salam symmetry GEW and its left-right
twisted symmetry GEW? in the visible and dark sectors, respectively, we have to
postulate that there exists a two-storied compound fieldΨ consisting of two triplet
fields. The compound field Ψ forms the fundamental representations of the gauge
group G×G? as

Ψ = ΨL +ΨR =

(
Ψ(v)

U(d)

D(d)

)

L

+

(
U(v)

D(v)

Ψ(d)

)

R

(11.32)

whereΨ(v)L,U(v)L andD(v)L (Ψ(d)R,U(d)R andD(d)R) are, respectively, the chiral
multi-spinor fields of the doublet, the up singlet and the down singlet of the
SUL(2) (SUR(2)) symmetry. We interpret that all fermionic species in the visible
and dark sectors of the Universe are described by the component fields of the
single compound field Ψ.

To name the fermionic species in the dark sector, let us assign new symbols u?

and d? for up and down dark quarks, and ν? and e? for up and down dark leptons.
Then, the quark parts of the chiral compound fields ΨL and ΨR are schematically
expressed, respectively, by

Ψ
(q)
(v) =

(
u c t

d s b

)

L

, U
(q)
(d) = (u?)L , D

(q)
(d) = (d?)L (11.33)
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and

U
(q)
(v) =

(
u c t

)
R
, D

(q)
(v) =

(
d s b

)
R
, Ψ

(q)
(d) =

(
u?

d?

)

R

. (11.34)

Similarly, the lepton parts have the following expressions as

Ψ
(`)
(v) =

(
νe νµ ντ
e µ τ

)

L

, U
(`)
(d) = (ν?)L , D

(`)
(d) = (e?)L (11.35)

and

U
(`)
(v) =

(
νe νµ ντ

)
R
, D

(`)
(v) =

(
e µ τ

)
R
, Ψ

(`)
(d) =

(
ν?
e?

)

R

. (11.36)

The kinetic and gauge parts of the Lagrangian density for all fermions can
now be written down in terms of the chiral compound fields ΨL and ΨR by

Lkg = Ψ̄LiΓ
µDµΨL + Ψ̄RiΓµDµΨR (11.37)

in which the covariant derivatives act as follows:

iDµΨL =
{
i∂µ −

[
g(3)A

(3)j
µ

1
2
λ(v)j + g

(2)A
(2)j
µ

1
2
τLj + g

(1)A
(1)
µ
1
2
Y
]
Π(v)

−
[
g
(3)
? A

(3)j
?µ

1
2
λ(d)j + g

(1)
? A

(1)
?µ
1
2
Y?

]
Π(d)

}
ΨL

(11.38)

and

iDµΨR =
{
i∂µ −

[
g(3)A

(3)j
µ

1
2
λ(v)j + g

(1)A
(1)
µ
1
2
Y
]
Π(v)

−
[
g
(3)
? A

(3)j
?µ

1
2
λ(d)j + g

(2)
? A

(2)j
?µ

1
2
τRj + g

(1)
? A

(1)
?µ
1
2
Y?

]
Π(d)

}
ΨR

(11.39)

where A(2)j
µ and A(1)

µ (A(2)j
?µ and A(1)

?µ ) are gauge fields of the GEW (GEW?) sym-
metry with coupling constants g(2) and g(1) (g(2)? and g(1)? ). The operators 1

2
τLj

(1
2
τRj) are the generators of the visible (dark) SUL(2) (SUR(2)) symmetry, and the

hypercharge Y (Y?) in the visible (dark) sector can be expressed by

Y = Q
(v)
B−L + y, Y? = Q

(d)
B−L + y? (11.40)

in which y (y?) takes 0, 1 and -1 for the doublet Ψ, the up singlet U and the down
singlet D.

To break down the gauge symmetries GEW and GEW?, we require two types
of Higgs doublets ϕ and ϕ? which, respectively, have the hypercharges (Y = 1,
Y? = 0) and (Y = 0, Y? = 1). The Lagrangian density of the Yukawa interaction is
given as follows:

LY = Ψ̄L {Higgs fields }ΨR + h.c.

= Ψ̄(v)ϕ̃YUU(v) + Ψ̄(v)ϕYDD(v) + yu?Ū(d)ϕ̃
†
?Ψ(d) + yd?D̄(d)ϕ

†
?Ψ(d) + h.c.

(11.41)
where ϕ̃ = iτL2ϕ

∗ and ϕ̃? = iτR2ϕ
∗
?. The operators YU and YD consisting of

elements of the algebra A(v) in Eq.(11.19) determine the patterns of Yukawa
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interactions among the fermions in the visible sector [2], and yu? and yd? are the
Yukawa coupling constants of the fermions in the dark sector.

The Lagrangian density of the visible and dark Higgs fields takes the form

LH = (Dµϕ)†(Dµϕ) + (Dµϕ?)
†(Dµϕ?) − VH (11.42)

in which the covariant derivatives act as follows:

iDµϕ =

(
i∂µ − g(2)A(2)a

µ

1

2
τLa − g(1)A(1)

µ

1

2

)
ϕ (11.43)

and

iDµϕ? =

(
i∂µ − g

(2)
? A

(2)a
?µ

1

2
τRa − g

(1)
? A

(1)
?µ
1

2

)
ϕ?. (11.44)

The Higgs potential is generally given by

VH = V0−µ
2ϕ†ϕ+λ(ϕ†ϕ)2−µ2?ϕ

†
?ϕ?+λ?(ϕ

†
?ϕ?)

2+ 2λI(ϕ
†
?ϕ?)(ϕ

†ϕ) (11.45)

where λ, λ? and λI are the constants of self-coupling and bi-quadratic mutual
interaction.

11.6 A scenario for dark matter

If the quarks u? and d? acquire close masses like the u and d quarks of the first
family when the GEW? symmetry is spontaneously broken at the energy scale
Λ? (Λ? > Λ), many kinds of dark nuclei and a variety of dark elements come
necessarily into existence. Thereby, the dark sector with such quarks u? and d? is
destined to follow a rich and intricate path of thermal history of evolution like the
visible sector of our Universe.

Here we consider a situation that, just like the case of the t and b quarks of
the third family, the dark up quark u? is much heavier than the dark down quark
d? as [1,3]

mu? � md? +me? +mν? . (11.46)

In such a case, the u? quark disappears quickly through the process u? → d? +

ē? + ν? leaving the d? quark as the main massive components of the dark sector.
Consequently, the gauge fields A(3)

?µ of SUc?(3) symmetry act to confine the d?
quark into the dark color-singlet hadron

∆−
? = [d? d? d?] =

1√
6
εijkd

i
? d
j
? d
k
? (11.47)

which has the dark electric charge Q? = −1 and the spin angular momentum 3
2

due to the Fermi statistics.
In this scenario, ∆−

? is the stable dark hadron which can exist as the only
nucleus in the dark sector. Therefore, no rich nuclear reaction can occur and only a
meager history of thermal evolution can take place. The stable atom which can
exist in the matter-dominant stage of the dark sector is limited to be

H̄? = (∆−
? + ē?). (11.48)
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It can be speculated that the dark molecule

(H̄?)2 = H̄?H̄? (11.49)

in the spin 1 or 0 states can be stable entities prevailing over a broad spatial
region of the late stage of the Universe. These features seem to be consistent
with the characteristics of the dark matter which has the tendency to spread out
rather monotonically over broad spatial regions as inferred by the observations of
gravitational lensing.

11.7 Discussion

By generalizing the concept of Dirac spinor, we have developed a unified theory
of multi-spinor fields that can describe the whole spectra of fermionic species
in the visible and dark sectors of the Universe. The physical subalgebras of the
triplet algebra satisfying the criterion of the S3 irreducibility have the unique
feature of the ‘‘su(3) plus u(1)’’ structure for both of the color and family degrees
of freedom. The triplet compound field in Eq.(11.32) possessing the component
fields of the three visible and one dark family modes with the tri-color quarks and
colorless leptons enables us to formulate a unified theory that can describe the
flavor physics in the visible sector and cosmological phenomena related to both
the visible and dark sectors.

To develop the present theory further, it is necessary to examine the thermal
history of the dark sector and to confirm that the present scheme is consistent with
the well-established standard theory of astrophysics and cosmology. In this note,
we make heuristic analyses to estimate the mass of the stable dark hadron ∆? from
the cosmological parameters for the densities of the cold dark matter and baryonic
matter determined by WMAP [4] and Planck [5] observations.

The visible fermionic and bosonic fields can interact with the dark fermionic
and bosonic fields through virtual loop corrections induced by the bi-quadratic
interaction between the Higgs fieldsϕ andϕ? in Eq.(11.45). Therefore, it is possible
to assume that quanta of all fields of the visible and dark sectors constitute a
common soup of inseparable phase in an early reheating period. Expansion of the
Universe decreasing its temperature breaks both of the dark electroweak symmetry
GEW? and the visible electroweak symmetryGEW symmetry in the quantum soup.

At present, there exists no reliable theory which can describe consistently the
cosmic baryogenesis. So we set a simple working hypothesis 1 that the process
of baryogenesis takes place cooperatively through the two-step breakdowns of
GEW? and GEW symmetries in such a way that the excess of quark numbers is
created and preserved equally for all families in the visible and dark sectors. The
quarks getting heavy masses decay down to the lighter quarks. While the u? quark
disappears leaving only the d? quark in the dark sector, four types of the heavy
quarks decay into the u and d quarks which have almost degenerate masses in
the visible sector. The SUc?(3) gauge interaction works to confine the d? quarks

1 Technical details of some scenarios of ‘Two-Step Electroweak Baryogenesis’ can be found
in the articles [6,7].
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into the dark hadron ∆? with 4 spin degrees of freedom, and the SUc(3) gauge
interaction confine the u and d quarks into the nucleon possessing 2 iso-spin
(proton and neutron) states with 2 spin degrees of freedom.

Remark that the quark numbers are separately conserved in the dark and
visible sectors after the decoupling of the two sectors. Therefore, the observed
ratio of the densities of cold dark matter and baryonic matter can be identified
with the ratio of energies (masses/c2) stored by the stable particles in the dark and
visible sectors. By assuming that the dark hadron ∆? is the dominant component
of the cold dark matter, we obtain the following relation for the masses of ∆? and
nucleon,m∆? andmN, as

2m∆?
: 6mN = Ωch

2 : Ωbh
2 = 0.11889 : 0.022161 (11.50)

where the values for the cosmological parameters Ωch2 and Ωbh2 taken from
the Table 10 of the reference [5] are the Planck best-fit including external data set.
Consequently, the upper limit of the mass of the dark hadron ∆? is estimated to be
m∆? = 16.1mN = 15.1GeV/c2.

Until now no affirmative result has been found by either of the direct and
indirect dark matter searches. The recent observation by the LUX group [8] has
proved that the background-only hypothesis is consistent with their data on spin-
independent WIMP-nucleon elastic scattering with a minimum upper limit on
the cross section of 7.6× 10−46cm2 at a WIMP mass of 33 GeV/c2. More stringent
experiments must be performed to confirm the possibility of scenarios for dark
matter including stable particles with comparatively small masses such as the
dark hadron ∆? of our theory.
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Discussion Section

The discussion section is reserved for those open problems discussed during
the workshop. They might start new collaboration among participants or at least
stimulate participants to start to think about possible solutions of particular open
problems in a different way. Since the time between the workshop and the deadline
for contributions for the proceedings is very short and includes for most of partici-
pants also their holidays, it is not so easy to prepare besides their presentation at
the workshop also the common contributions to the discussion section. However,
the discussions, even if not presented as a contribution to this section, influenced
participants’ contributions, published in the main section.

As it is happening every year also this year quite a lot of started discussions
have not succeeded to appear in this proceedings. Organizers hope that they will
be developed enough to appear among the next year talks, or will just stimulate
the works of the participants.

Some of the discussion contributions are proofs of the statements, that is the
mathematical support of some of the proposed theories offering a step beyond the
standard models, or the contribution to better understanding the degrees of freedom
in a generalized action, both concern the spin-charge-family theory.

One of them presents improvements on the previous works on the topic on
almost democratic mass matrices of quarks.

This year we have started the discussion, which would connect the experi-
ences from the hadron physics to possible new physics, which has already been
measured at the LHC but not yet analysed. We also have started the discussions
connecting many experiences in the many body systems in the hadron physics
and the equivalent systems in the high energy physics. The organizers hope that
this kind of discussions might continue up to the next workshop by emails. Felipe
has summarized the starting point of these discussions in his contribution to this
section.

All discussion contributions are arranged alphabetically with respect to the
authors’ names.



i
i

“proc15” — 2015/12/9 — 10:51 — page 142 — #158 i
i

i
i

i
i

Ta razdelek je namenjen odprtim vprašanjem, o katerih smo med delavnico
izčrpno razpravljali. Problemi, o katerih smo razpravljali, bodo morda privedli do
novih sodelovanj med udeleženci, ali pa so pripravili udeležence, da razmislijo o
možnih rešitvah odprtih vprašanj na drugačne načine. Ker je čas med delavnico
in rokom za oddajo prispevkov zelo kratek, vmes so pa poletne počitnice, je
zelo težavno poleg prispevka, v katerem vsak udeleženec predstavi lastno delo,
pripraviti še prispevek k temu razdelku.

Tako se velik del diskusij ne bo pojavil v letošnjem zborniku. So pa gotovo
vplivale na prispevek marsikaterega udeleženca. Organizatorji upamo, da bodo
te diskusije do prihodnje delavnice dozorele do oblike, da jih bo mogoče na njej
predstavit.

Eden od prispevkov je dokaz trditve, to je matematična podpora predla-
gani teoriji, ki ponuja (zanesljiv) korak onkraj standardnih modelov, drugi ponudi
nadgradnjo tej teoriji. Oba se nanašata na teorijo spina-nabojev-družin.

Eden od prispevkov je nadgradnja dela o simetrijah skoraj demokratičnih
masnih matrik.

To leto smo začeli diskusijo, ki naj bi povezala izkušnje iz hadronske fizike z
morebitno novo fiziko, že izmerjeno na LHC, vendar analiza rezultatov meritev še
ni dokončna. Začeli smo tudi z diskusijami, ki povezuje izkušnje v sistemih več
teles v hadronski fiziki z ustreznimi sistemi v fiziki visokih energij. Organizatorji
upamo, da se bodo te diskusije nadaljevale v času do naslednje delavnice po
e-pošti.

Prispevki v tej sekciji so, tako kot prispevki v glavnem delu, urejeni po abeced-
nem redu priimkov avtorjev.
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12 A Democratic Suggestion

A. Kleppe ?

SACT, Oslo

Abstract. Within the framework of quark mass matrices with a democratic texture, the
unitary rotation matrices that diagonalize the quark matrices are obtained by a specific
parametrization of the Cabibbo-Kobayashi-Maskawa mixing matrix. Different forms of
democratic quark mass matrices are derived from slightly different parametrizations.

Povzetek. Avtorica predstavi masne matrike kvarkov s skoraj demokratičnimi matrikami.
Izbere različno parametrizacijo, ki preko unitarne transformacije vodijo do izmerjene
mešalne matrike Cabibba-Kobayashija-Maskawe. Komentira sprejemljivost različnih parametrizacij.

12.1 Introduction

A main weakness of the Standard Model is the large number of free parameters.
There is at present no explanation for their origin, and we don’t know if there is
some connection between them.

Most of the free parameters reside in “flavour space” - with six quark masses,
six lepton masses, four quark mixing angles and ditto for the leptonic sector, as
well as the strong CP-violating parameter Θ̄. The structure of flavour space is
determined by the fermion mass matrices, i.e. by the form that the mass matrices
take in the “weak interaction basis” where mixed fermion states interact weakly,
in contrast to the “mass bases”, where the mass matrices are diagonal.

One may wonder how one may ascribe such importance to the different bases
in flavour space, considering that the information content of a matrix is contained
in its matrix invariants, which in the case of aN×NmatrixM are theN sums and
products of the eigenvalues λj, such as traceM, detM,

I1 =
∑
j λj = λ1 + λ2 + λ3...

I2 =
∑
jk λjλk = λ1λ2 + λ1λ3 + λ1λ4 + ...

I3 =
∑
jkl λjλkλl = λ1λ2λ3 + λ1λ2λ4 + ...

...
IN = λ1λ2 · · · λN

(12.1)

These expressions are invariant under permutations of the eigenvalues, which in
the context of mass matrices means that they are flavour symmetric, and obviously
independent of any choice of flavour space basis.

? astri@snofrix.org
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Even if the information content of a matrix is contained in its invariants, the
form of a matrix may also carry information, albeit of another type. The idea -
the hope - is that the form that the mass matrices have in the weak interaction
basis can give some hint about the origin of the unruly masses. There is a certain
circularity to this reasoning; to make a mass matrix ansatz is in fact to define what
we take as the weak interaction basis in flavour space. We denote the quark mass
matrices of the up- and down-sectors in the weak interaction basis byM andM ′,
respectively. We go from the weak interaction basis to the mass bases by rotating
the matrices by the unitary matrices U and U ′,

M→ UMU† = D = diag(mu,mc,mt) (12.2)

M ′ → U ′M ′U ′† = D ′ = diag(md,ms,mb)

The lodestar in the hunt for the right mass matrices is the family hierarchy,
with two lighter particles in the first and second family, and a much heavier
particle in the third family. This hierarchy is present in all the charged sectors,
with fermions in different families exhibiting very different mass values, ranging
from the electron mass to the about 105 times larger top mass. It is still an open
question whether the neutrino masses also follow this pattern [1].

12.2 “Democratic” mass matrices

In the “democratic” approach [2], [3], [4] the hierarchical pattern is taken very
seriously. The basic assumption is that in the weak interaction basis the fermion
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mass matrices are next to “democratic”, in the sense that they have a structure
close to the S(3)L × S(3)R symmetric “democratic” matrix

N = k



1 1 1

1 1 1

1 1 1


 (12.3)

The underlying philosophy is that in the Standard Model, where the fermions
get their masses from the Yukawa couplings by the Higgs mechanism, there is no
reason why there should be a different Yukawa coupling for each fermion. The
couplings to the gauge bosons of the strong, weak and electromagnetic interactions
are identical for all the fermions in a given charge sector, it thus seems like a natural
assumption that they should also have identical Yukawa couplings. The difference
is that the weak interactions take place in a specific flavour space basis, while the
other interactions are flavour independent.

The democratic assumption is thus that the fermion fields of the same charge
initially have the same Yukawa couplings. With three families, the quark mass
matrices in the weak interaction basis then have the (zeroth order) form

M(0) = ku



1 1 1

1 1 1

1 1 1


 , M ′(0) = kd



1 1 1

1 1 1

1 1 1


 (12.4)

where ku and kd have dimension mass. The corresponding mass spectra (m1,m2,m3) ∼
(0, 0, 3kj) reflect the family hierarchy with two light families and a third much
heavier family, a mass hierarchy that can be interpreted as the representation
1⊕ 2 of S(3). In order to obtain realistic mass spectra with non-zero masses, the
S(3)L × S(3)R symmetry must obviously be broken, and the different democratic
matrix ansätze correspond to different schemes for breaking the democratic sym-
metry.

12.2.1 The lepton sector

We can apply the democratic approach to the lepton sector as well, postulating
democratic (zeroth order) mass matrices for the charged leptons and the neutrinos,
whether they are Fermi-Dirac or Majorana states,

M
(0)
l = kl



1 1 1

1 1 1

1 1 1


 , M(0)

ν = kν



1 1 1

1 1 1

1 1 1


 (12.5)

Relative to the quark ratio ku/kd ∼ mt/mb ∼ 40− 60, the leptonic ratio kν/kl <
10−8 is so extremely small that it seems unnatural. One way out is to simply
assume that kν vanishes, meaning that the neutrinos get no mass contribution
in the democratic limit [5]. According to the democratic philosophy, then there
would be no reason for a hierarchical pattern à la the one observed in the charged
sectors; the neutrino masses could even be of the same order of magnitude.
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Data are indeed compatible with a much weaker hierarchical structure for
the neutrino masses than the hierarchy displayed by the charged quark fermion
masses.

Unlike the situation for the quark mixing angles, in lepton flavour mixing
there are two quite large mixing angles and a third much smaller mixing angle,
these large mixing angles can be interpreted as indicating weak hierachy of the
neutrino mass spectrum. The neutrino mass spectrum hierarchy could even be
inverted; if the solar neutrino doublet (ν1, ν2) has a mean mass larger than the
remaining atmospheric neutrino ν3, the hierarchy is called inverted, otherwise it
is called normal.

Supposing that the neutrino masses do not emerge from a democratic scheme,
a (relatively) flat neutrino mass spectrum could be taken as a support for the idea
that the masses in the charged sectors emerge from a democratic scheme.

12.3 The democratic basis

At the level of the zeroth order mass matrices the quark mixing matrix is V =

UU ′† = UdemU
†
dem = 1, where

Udem =
1√
6



√
3 −
√
3 0

1 1 −2√
2
√
2
√
2


 (12.6)

We use this to define the the democratic basis, meaning the flavour space basis
where the mass matrices are diagonalized by (12.6) and the mass Lagrangian is
symmetric under permutations of the fermion fields (ϕ1, ϕ2, ϕ3) of a given charge
sector.

In the democratic basis the mass Lagrangian

Lm = ϕ̄M(democratic basis)ϕ = k

3∑
jk=1

ϕ̄jϕk

is symmetric under permutations of the fermion fields (ϕ1, ϕ2, ϕ3), while in the
mass basis with

M(mass basis) =



λ1
λ2
λ3




the mass Lagrangian has the form

Lm = λ1ψ̄1ψ1 + λ2ψ̄2ψ2 + λ3ψ̄3ψ3 (12.7)

which is clearly not invariant under permutations of the eigenvalues, nor under
permutations of (ψ1,ψ3,ψ3). We can perform a shift of the democratic matrix, by
just adding a unit matrix diag(a, a, a), so we getM0 →M1,

M1 = k



1 1 1

1 1 1

1 1 1


+



a

a

a


 =



k+ a k k

k k+ a k

k k k+ a


 (12.8)
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corresponding to the mass spectrum (a, a, 3a+ 3k). The matrixM1 has a demo-
cratic texture, both because it is diagonalized by Udem, and because the mass
Lagrangian is invariant under permutations of the quark fields,

LM1
= (k+ a)

∑
ϕ̄jϕj + k

∑
j6=k

ϕ̄jϕj (12.9)

.
If M1 and M ′1 both have a texture like (12.8), there is no CP-violation. This

is independent of how many families there are, because of the degeneracy of the
mass values. CP-violation only occurs once there are three or more non-degenerate
families, because only then the phases can no longer be defined away.

We can repeat the democratic scheme with a number n of families, where
the fermion mass matrices again are proportional to the S(n)L × S(n)R symmetric
democratic matrix which is diagonalized by a unitary matrix analogous to Udem
in (12.6). To the n× n-dimensional democratic matrix term, we can again add a
n× n-dimensional diagonal matrix diag(a, a, ..., a), and get a n× n-dimensional
mass spectrum with n massive states, and n − 1 degenerate masses. The mass
matrix still has a democratic texture, and there is still no CP-violation.

12.4 Breaking the democratic symmetry

In order to obtain non-degenerate, non-vanishing masses for the physical flavours
(ψ1, ψ2, ψ3), the permutation symmetry of the democratic fermion fields (ϕ1, ϕ2, ϕ3)
must be broken. The proposal here is to derive the perturbed unitary rotation
matrices U, U ′ for the up and down sectors from a specific parameterisation of the
weak mixing matrix V = UU

′†.
The idea is to embed the assumption of democratic symmetry into the Stan-

dard Model mixing matrix, by expressing the mixing matrix as a product

V = UU ′† = (ŨUdem)(U†demŨ
′†) (12.10)

Since both the mixing matrix and its factors, according to the “standard” param-
eterisation [6], are so close to the unit matrix, the rotation matrices U, U ′ are
effectively perturbations of the the democratic diagonalising matrix (12.6). In this
way, the weak interaction basis remains close to the democratic basis.

12.4.1 Factorizing the mixing matrix

The Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix [7] can of course be
parametrized - and factorized - in many different ways, and different factoriza-
tions correspond to different rotation matrices U and U ′. The most obvious and
“symmetric” factorization of the CKM mixing matrix is, following the “standard”
parametrization [6] with three Euler angles α, β, 2θ,

V =




cβc2θ sβc2θ s2θe
−iδ

−cβsαs2θe
iδ − sβcα −sβsαs2θe

iδ + cβcα sαc2θ
−cβcαs2θe

iδ + sβsα −sβcαs2θe
iδ − cβsα cαc2θ


 = UU

′† (12.11)
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with the diagonalizing rotation matrices for the up- and down-sectors

U =



1 0 0

0 cosα sinα
0 − sinα cosα





e−iγ

1

eiγ






cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ







1√
2
− 1√

2
0

1√
6

1√
6

− 2√
6

1√
3

1√
3

1√
3




(12.12)
and

U ′ =




cosβ − sinβ 0
sinβ cosβ 0

0 0 1





e−iγ

1

eiγ






cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ







1√
2
− 1√

2
0

1√
6

1√
6

− 2√
6

1√
3

1√
3

1√
3


 ,

respectively, where α, β, θ and γ correspond to the parameters in the standard
parametrization of the CKM mixing matrix, in such a way that γ = δ/2, δ =

1.2±0.08 rad, and 2θ = 0.201±0.011◦, while α = 2.38±0.06◦ and β = 13.04±0.05◦.
¿From the rotation matrices U and U ′ we then obtain the mass matrices

M = U†diag(mu,mc,mt)U andM ′ = U ′†diag(md,ms,mb)U ′, such that

M =
1

6




X+H M̂12 Z+W

M̂∗12 X−H Z−W

Z∗ +W∗ Z∗ −W∗ 6T − 2X


 (12.13)

where T is the trace T = mu + mc + mt, and with D =
√
3sθ −

√
2cθ, C =√

3sθ +
√
2cθ, F = cαsα(mt −mc),

X = 1
2
(mcs

2
α +mtc

2
α −mu)(D

2 + C2 − 2) + F(D− C) cosγ+ T + 3mu
H = 1

2
(mcs

2
α +mtc

2
α −mu)(D

2 − C2) + F cosγ(D+ C)

W = 1
4
(mcs

2
α +mtc

2
α −mu) (D

2 − C2) − F (D+ C) e−iγ

Z = (mcs
2
α+mtc

2
α−mu)

[
2+ 1

4
(D− C)2

]
+ F
2
(D−C) (eiγ−2 e−iγ)−2T+6 mu

M̂12 = −(mcs
2
α +mtc

2
α −mu) (D C+ 1) − F (C eiγ −D e−iγ) + T − 3 mu

Similarly for the down-sector,

M ′ =
1

6




X ′ +H ′ M̂ ′12 Z ′ +W ′

M̂
′∗
12 X ′ −H ′ Z ′ −W ′

Z
′∗ +W

′∗ Z
′∗ −W

′∗ 6T ′ − 2X ′


 (12.14)

with the parameters T ′ = md +ms +mb, G =
√
2sθ −

√
3cθ, J =

√
2sθ +

√
3cθ

and F ′ = cβsβ(mb −ms), and

X ′ = 1
2
(mss

2
β +mbc

2
β −md)(G

2 + J2 − 2) − F ′(J+G) cosγ+ T ′ + 3mb
H ′ = 1

2
(mss

2
β +mbc

2
β −md)(G

2 − J2) + F ′(J−G) cosγ
W ′ = 1

4
(mss

2
β +mbc

2
β −md)(G

2 − J2) + F ′(G− J)eiγ

Z ′ = (mss
2
β+mbc

2
β−md)

[
2+ 1

4
(J+G)2

]
+ F ′

2
(J+G)(2eiγ−e−iγ)−2T ′+6mb

M̂ ′12 = (mss
2
β +mbc

2
β −md) (G J− 1) − F

′ (J eiγ −G e−iγ) + T ′ − 3 mb
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In order to evaluate to what degree these rather opaque matrices are “demo-
cratic”, we evaluate the matrix elements by inserting numerical mass values. For
the up-sector we get the (nearly democratic) matrix texture

M = Cu





1

k e−i(α+β)

kp e−iα





1 1 1

1 1 1

1 1 1





1

k ei(α+β)

kp eiα


+Λ




(12.15)
where the “small” matrix

Λ =



0 0 0

0 ε ε ′e−iβ

0 ε ′eiβ η


 ,

with ε ∼ ε ′ � η < k, p, is what breaks the democratic symmetry, supplying the
two lighter families with non-zero masses. With mass values calculated at µ =MZ

(Jamin 2014) [8],

(mu(MZ),mc(MZ),mt(MZ)) = (1.24, 624, 171550)MeV,

we get α ∼ 2.7895o, β ∼ 2.7852o, Cu = 54240.36MeV ≈ mt/3, and

k ≈ 1.00438, p ≈ 1.06646, ε ′ ≈ 0.0000505,
ε ≈ 0.00004596 ≈ 2mu/Cu, η = 0.018154 ≈ 1

2
mt
Cu

mc
Cu

.

For the down-sector, with

(md(MZ),ms(MZ),mb(MZ)) = (2.69, 53.8, 2850)MeV

we get another democratic texture,

M ′ = Cd



X+A Ye−iµ e−iρ

Yeiµ X−A (1+ 2A)eiκ

eiρ (1+ 2A)e−iκ X+ Y −A− 1


 (12.16)

where

Cd = 966.5MeV , A = 0.0056, X = 1.0362, Y = 1.0305 and
µ ≤ κ ∼ 0.22o < ρ ∼ 0.226o.

Just like in the up-sector mass matrix, the matrix elements inM ′ display a nearly
democratic texture. In both the up-sector and the down-sector the mass matrices
are thus approximately democratic.

12.5 Calculability

In the mass matrix literature there is an emphasis on “calculability”. The ideal is
to obtain mass matrices that have a manageable form, but there is nothing that
forces nature to serve us such user-friendly formalism. It is however tempting to
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speculate that there are relations between the elements that could make the demo-
cratic matrices more calculable, and in the search for matrices that are reasonably
transparent and calculable, we look at a more radical factorization of the mixing
matrix, viz.

U =



1 0 0

0 cosα sinα
0 − sinα cosα






cosω 0 sinω e−iδ

0 1 0

− sinω eiδ 0 cosω







1√
2
− 1√

2
0

1√
6

1√
6

− 2√
6

1√
3

1√
3

1√
3


 (12.17)

and

U ′ =




cosβ − sinβ 0
sinβ cosβ 0

0 0 1







1√
2
− 1√

2
0

1√
6

1√
6

− 2√
6

1√
3

1√
3

1√
3




where, as before, δ = 1.2 ± 0.08 rad, and ω = 2θ = 0.201 ± 0.011◦, while α =

2.38±0.06◦, and β = 13.04±0.05◦. These rotation matrices are still “perturbations”
of the democratic diagonalizing matrix (12.6), and the up-sector mass matrix has a
texture similar to (12.13),

M =
1

6



R+Q+ S cos δ R−Q− iS sin δ A− Be−iδ

R−Q+ iS sin δ R+Q− S cos δ A+ Be−iδ

A− Beiδ A+ Beiδ T − 2(R+Q)


 (12.18)

where T is the trace, T = mu +mc +mt, and

R = N (2 cω cω − 1) + T − 2
√
2 cω F, Q = 3 sω sω N+ 3 mu,

S = −2
√
6 cω sω N+ 2

√
3sω F

A = N (2 cω cω + 2) − 2 T +
√
2 cω F+ 6 mu, B =

√
6 cω sω N+ 2

√
3 F sω

with N = mc sα sα +mt cα cα −mu, F = cα sα (mt −mc). This matrix can be
reformulated in a form similar to (12.15),

Mu = Cu





1

k e−iα

kp e−i(α−β)





1 1 1

1 1 1

1 1 1





1

k eiα

kp ei(α−β)


+Λ




where α = arctan(S sin δ/(R−Q)), β = arctan(B sin δ/(A+ B cos δ)), and

Λ =



0 0 0

0 ε ε ′e−iβ

0 ε ′eiβ η




with

k = |M12|/M11 =
|R−Q−iS sin δ|
R+Q+S cos δ , p = |M13|/|M12| =

|A−Be−iδ|
|R−Q−iS sin δ| ,

ε = (|M22||M11|− |M12|
2)/|M11|

2 = 4RQ−S2

|R+Q+S cos δ|2 ≈ 2m1/A,
ε ′ = (|M23||M11|− |M13||M12|)/|M11|

2,
η = (|M33||M11|− |M13|

2)/|M11|
2 ≈ 1

2
mc
A
mt
A

Inserting the masses (mu(MZ),mc(MZ),mt(MZ)) = (1.24, 624, 171550) MeV, we
get Cu = 53723.5MeV , k = 1.00318, p = 1.0828, and
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ε = 0.00004646 ≈ 2(mu/Cu), ε ′ = 0.0000444, η = 0.0185 ≈ 1
2
(mt/Cu)(mc/Cu)

For the down-sector, with

U ′ =




cosβ − sinβ 0
sinβ cosβ 0

0 0 1







1√
2
− 1√

2
0

1√
6

1√
6

− 2√
6

1√
3

1√
3

1√
3


 ,

the mass matrix U ′†diag(md,ms,mb)U ′ reads

M ′ = Cd



X+A Y 1

Y X−A 1+ 2A

1 1+ 2A X+ Y −A− 1




where

Cd = 2(mdc
2
β +mss

2
β) − 2

√
3cβsβ(ms −md)) + 2(mb −ms −md)

X = (2mb +ms +md + 2(mdc
2
β +mss

2
β) + 2

√
3cβsβ(ms −md))/Cd

Y = (2mb +ms +md − 4(mdc
2
β +mss

2
β))/Cd,

A = 2
√
3cβsβ(ms −md))/Cd.

Inserting the masses (md(MZ),ms(MZ),mb(MZ)) = (2.69, 53.8, 2850) MeV, we
moreover get the numerical values

Cd = 926.448MeV ≈ mb/3, X = 1.0375, A = 0.0070, Y = 1.0318.

12.6 Conclusion

By including the democratic rotation matrix in the parametrization of the weak
mixing matrix, we obtain mass matrices with specific democratic textures. In this
way we make contact between the democratic hypothesis and the experimentally
derived parameters of the CKM mixing matrix, avoiding the introduction of
additional concepts.
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Abstract. We report on exchanges entertained and new developments reported and dis-
cussed at the workshop “What Comes Beyond the Standard Models” held in Bled, Slovenia,
July 11th-19th 2015.

New LHC data, various unification schemes with and without gravity, the nature
of fermions, flavor and the number of families, condensates, and other topics of current
interest were all heatedly discussed.

Povzetek. Avtor poroča o diskusijah med predavanji in v diskusijskih sekcijah na izbrane
teme, ter o napredku, ki ga je prinesla letošnja blejska delavnica “What Comes Beyond
the Standard Models” . Posebej omenja zadnje analize meritev na LHC, o teorijah, ki
prinašajo enotno sliko lastnosti fermionov, pomagajo razumeti pojav ustreznih bozonskih
polj, vključno z gravitacijo, o napovedih o številu družin fermionov, o skalarnih poljih in
lastnostih fermionov, o pojavu kondenzatov in ostalih temah na tem področju.

13.1 SM Electroweak Symmetry Breaking Sector

The LHC starts run II after having found a relatively light scalar particle that
could be the predicted Standard Model Higgs at 125 GeV and not much more
(to the disappointment of a part of the community that firmly expected TeV-
scale supersymmetry). Still, this summer the ATLAS collaboration reported [1] a
two-gauge boson spectrum in dijet searches (see talk by Llanes-Estrada in these
proceedings) that shows an excess at 2 TeV not confirmed by CMS data.

We discussed whether this could be just a statistical fluctuation. Should
increased data taking consolidate the excess, an interesting scenario to analyze
was proposed, whether a top-ball [2] made of 6 top quarks and 6 top antiquarks
all in an s-wave (with wavefunction antisymmetry allowed by the color and flavor
degrees of freedom) might have been produced. The 2 TeV mass of the excess could
be about right, since 12×mt ' 2.1 TeV which allows for some Higgs-exchange
induced binding, though its production cross-section needed for the low-statistics
LHC run-I would need to be very large. This cross-section needs to be estimated
by theorists.

Independently of whether new resonances coupling to the Electroweak Sym-
metry Breaking Sector (EWSBS) are found, this can be studied by means of Effective
Field Theory for the currently observed particles h (the new 125 GeV scalar) and
ωi ∼WL, ZL.
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In the non-linear realization of SU(2)L × SU(2)R → SU(2)V , and neglecting
masses of O(100GeV) as appropriate to study the 1-3 TeV region, the correspond-
ing next-to-leading order (NLO) Lagrangian density is

L =
1

2

[
1+ 2a

h

v
+ b

(
h

v

)2]
∂µω

i∂µωj
(
δij +

ωiωj

v2

)
+
1

2
∂µh∂

µh

+
4a4

v4
∂µω

i∂νω
i∂µωj∂νωj +

4a5

v4
∂µω

i∂µωi∂νω
j∂νωj +

g

v4
(∂µh∂

µh)2

+
2d

v4
∂µh∂

µh∂νω
i∂νωi +

2e

v4
∂µh∂

νh∂µωi∂νω
i (13.1)

that was described in [3,4]. (Other researchers [5–7] are also pursuing this ap-
proach.) This Lagrangian has seven-parameters (a, b, a4, a5, g, d, e), with the first
two being LO and the other five NLO in the derivative expansion.

Two strategies can be followed. If the LHC run-II finds no new physics, it
can conduct precision work to try to see a separation of the Standard Model
(1, 1, 0, 0, 0, 0, 0). Currently only a ∈ (0.88, 1.3) is known at 2σ confidence level.
Norma Mankoc triggered discussion on how Effective Theory is philosophically
not too satisfactory as its predictivity is moderate and it cannot “solve” the various
puzzles of the Standard Model. It remains a powerful descriptive tool to classify
data. Full theories will manifest themselves as separations from the SM values
of one of those parameters, and matching those UV completions to the Effective
Theory allows to classify them and quickly discard or constrain families thereof.
Example theories that can soon be tested include for example Left-Right models
or Composite Higgs models that include spin-1 resonances within reach of the
LHC [8,9].

If the LHC confirms resonant structures inWLWL in the 2 TeV region, Effective
Theory fails, since a derivative expansion cannot saturate unitarity. The second
strategy then activates: the use of Unitarized Chiral Perturbation Theory based on
the Lagrangian of Eq. (13.1) is appropriate to describe resonances [10–12].

13.2 The flavor problem and the SM parameters

The largest number of parameters in the Standard Model comes from the flavor
sector. There is at present no compelling theory explaining them.

At the workshop, strong arguments were presented in favor of the existence
of a fourth family. For example, the Ljubljana unified theory of spin and charge
based on SO(1, 13) predicts such a fourth fermion family. Also the concept of
fermionization, by which SM fermions can be constructed from boson fields alone,
was discussed by H. Nielsen and matching the number of degrees of freedom for
the fundamental bosons and the generated fermions required that fourth family.

At present, strong phenomenological obstacles to this fourth family exist that
require all its members to have high masses.

For a start, CKM unitarity closes very well with three families, so that the
parameters of the unitarity triangle ρ̄ and η̄ are known to 20% and 3% respec-
tively [13].



i
i

“proc15” — 2015/12/9 — 10:51 — page 154 — #170 i
i

i
i

i
i

154 F.J. Llanes-Estrada

Second, direct searches at the LHC put excited quarks above the 3 TeV
scale [14] so that they start being irrelevant for electroweak-scale physics.

Another hurdle for fourth-family extensions of the SM is that the number of
relativistic degrees of freedom is tightly constrained from cosmology. For example,
the Planck collaboration [15] reports an analysis of Baryon Acoustic Oscillations
and the Cosmic Microwave Background that yields Neff = 3.30 ± 0.27 for the
effective number of relativistic degrees of freedom. This clearly excludes a fourth
light neutrino, in agreement with LEP bounds at the Z-pole. The presumed fourth
family therefore comes with an additional hierarchy problem in which mν4 �
mν1,2,3 . (Planck finds that the sum of the three light neutrino masses is 0.23 eV.)

13.3 Other physics at very high scales: unification, condensates
and gravity

13.3.1 Gauge symmetry groups

A topic widely discussed at the workshop is why nature chose the symmetry
group U(1) × SU(2)L × SU(3)c to charge the Standard Model fermions. Several
possibilities were discussed. A widely accepted one is that the symmetry group
at a very high energy scale is larger and we only perceive a remainder subgroup.
Well-known are the SU(5) and SO(10) extensions [16] of the Standard Model, in
strong tension with proton lifetime bounds. SO(1, 13) has also been presented as an
important alternative because of the entailed unification of spins and charges [17]
under a common framework.

The first type of groups under discussion do not involve space-time and thus
make no statement about gravity. The unification happens at the level of internal
degrees of freedom only on a fixed space-time background. The scale must then
be smaller than the Planck scale and is usually taken around 1015 to 1016 GeV
where the running couplings of the U(1), SU(2) and SU(3) SM subgroups are all
approximately equal (see fig. 13.1).

The second possibility entails unification of internal and space-time symme-
tries and is a more general concept.

Many questions remain open. One is why given a large groupG, the symmetry
breaking pattern brings us to the SM group, i.e. G → U(1) × SU(2)L × SU(3).
Currently we know of no good argument why fermion condensates perform
exactly this breaking and not something else. (Arranging symmetry breaking by
fundamental scalar fields is equally ad-hoc as the potentials must be tuned to
produced the wanted results.) One recent alley of investigation [19] addresses the
smallness of the SM group dimension. Should there be larger unbroken groups
under which certain fermions would be charged, and all couplings being equal
at the GUT scale, the finding is that these fermions would be very massive and
beyond reach of current collider experiments. This comes about because the large
antiscreening for 1-flavor of fermions charged under a large-dimension group
(left plot of figure 13.2) forces chiral symmetry breaking at a much larger scale
than QCD’s SU(3). The corresponding fermion mass is proportional to that scale,
M(0) ∝ ΛχSB (right plot of figure 13.2) and out of reach. Fermions charged under
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Fig. 13.1. Running coupling constants of U(1), SU(2)L and SU(3)c in the absence of new
physics through the GUT scale. Reprinted with permission of Particle Data Group [18]
.

SU(4) would have masses of O(10) TeV and be not too far in the energy scale, but
larger groups yet would yield hopelessly heavy masses.

Fig. 13.2. Left: 1-loop running coupling constants for several groups (all equal at the GUT
scale). Right: corresponding fermion masses due to chiral symmetry breaking. Were there
fermions charged under SU(4) or larger groups, their large mass would have impeded their
production at colliders.

13.3.2 Condensates

Probably the biggest current embarrassment of physics is the smallness of the
cosmological constant. The Planck collaboration [15] quotesΩΛ = 0.686(20) which
is more than two thirds of the total energy density in the universe, but only slightly
above 3 GeV per cubic meter in absolute value, or about 3× 10−47 GeV4. This is
an absurdly small number by all SM measures. For example, the QCD condensate
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is typically found to be (0.77(4)ΛM̄S)
3 with the scale at 0.31(2) GeV [20], or about

0.023 GeV3. The entailed energy density is 45 orders of magnitude off.
A solution for confining gauge theories such as QCD is to argue that this

condensate is active only inside hadrons [21], that is, that the condensate itself
is confined around quarks themselves. Dynamical studies of the corresponding
domain walls between the condensed and uncondensed phases have to our knowl-
edge not been carried out.

For the electroweak symmetry breaking sector the situation is worse since
the corresponding vacuum energy density scale v4 = (246GeV)4 is now off by 56
orders of magnitude. And it is not obvious that the fundamental scalar Higgs field
reported so far will have anything to do with a confining gauge theory, so that
the same mechanism can be invoked. In fact, technicolor theories were already
discarded at the time of LEP. Likewise, condensates breaking higher symmetry
groups will bring about energy densities disparate from the tiny number found by
cosmologists.
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Abstract. This contribution is to prove that in the Kaluza-Klein like theories the vielbeins
and the spin connection fields — as used in the spin-charge-family theory — lead in d =

(3+ 1) space to equivalent vector (and scalar) gauge fields. The authors demonstrate this
equivalence in spaces with the symmetry: gαβ = ηαβe, for any scalar function e of the
coordinates xα.

Povzetek. Prispevek dokazuje na posebnem primeru izometričnih prostorov, da vodijo
v teorijah Kaluza-Kleinovega tipa vektorski svežnji in spinske povezave (uporabljene v
teoriji spinov-nabojev-družin) v prostoru z d = (3 + 1) do ekvivalentnih vektorskih (in
skalarnih) umeritvenih polj. Avtorja demonstrirata enakovrednost obeh pristopov za pros-
tore s simetrijo: gαβ = ηαβ e, kjer je e poljubna skalarna funkcija koordinat xα.

14.1 Introduction

This contribution is to demonstrate that in spaces with the symmetry of metric
tensor gαβ = ηαβe, where ηαβ is the diagonal matrix and e any scalar function
of the coordinates, both procedures - the ordinary Kaluza-Klein procedure with
vielbeins and the procedure with the spin connections used in the spin-charge-family
theory - lead in d = (3+ 1) to the same gauge vector and scalar fields.

In the starting action of the spin-charge-family theory[1–3] fermions interact
with the vielbeins fαa and the two kinds of the spin-connection fields -ωabα and
ω̃abα - the gauge fields of Sab = i

4
(γa γb − γb γa) and S̃ab = i

4
(γ̃a γ̃b − γ̃b γ̃a),

respectively.

A =

∫
ddx E

1

2
(ψ̄ γap0aψ) + h.c.+∫

ddx E (αR+ α̃ R̃) , (14.1)

here p0a = fαap0α + 1
2E

{pα, Ef
α
a}−, p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα, R =

1
2
{fα[afβb] (ωabα,β−ωcaαω

c
bβ)}+h.c., R̃ = 1

2
{fα[afβb] (ω̃abα,β−ω̃caα ω̃

c
bβ)}+

h.c.. The action introduces two kinds of the Clifford algebra objects, γa and γ̃a,

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ . (14.2)
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fαa are vielbeins inverted to eaα, Latin letters (a, b, ..) denote flat indices, Greek let-
ters (α,β, ..) are Einstein indices, (m,n, ..) and (µ, ν, ..) denote the corresponding
indices in (0, 1, 2, 3), (s, t, ..) and (σ, τ, ..) denote corresponding indices in d ≥ 5:

eaαf
β
a = δβα , eaαf

α
b = δab , (14.3)

E = det(eaα). The action A offers the explanation for all the properties of the
observed fermions and their families and of the observed vector gauge fields, the
scalar higgs and the Yukawa couplings.

The spin connection fields and the vielbeins are related fields, and if there are
no spinor (fermion) sources both kinds of the spin connection fields are expressible
with the vielbeins. In Ref. [2] (Eq. (C9)) the expressions related the spin connection
fields of both kinds with the vielbeins and the spinor sources are presented.

We prove in this contribution that in the spaces with the maximal number of
the Killing vectors [4] (p. 333–340) and no spinor sources either the vielbeins or the
spin connections can be used in Kaluza-Klein theories [5] to derive all the vector
and scalar gauge fields. We present below the relation among the ωabα fields and
the vielbeins with no sources present, which is relevant for our discussions ([2],
Eq. (C9)).

ωab
e =

1

2E
{eeα ∂β(Ef

α
[af
β
b]) − eaα ∂β(Ef

α
[bf
βe])

− ebα∂β(Ef
α[efβa])}

−
1

d− 2
{δea

1

E
edα∂β(Ef

α
[df
β
b]) − δ

e
b

1

E
edα∂β(Ef

α
[df
β
a])} , (14.4)

(The expression for the spin connection fields carrying family quantum numbers
is in the case that there are no spinor sources identical with the right hand side
of Eq. 14.4.) One notices that if there are no spinor sources, carrying the spinor
quantum numbers Sab, then ωabc is completely determined by the vielbeins (and
so is ω̃abc).

14.2 Proof that spin connections and vielbeins lead to the same
vector gauge fields in d = (3+ 1)

We discuss relations between spin connections and vielbeins when there are no
spinor sources present in order to prove that both ways, either using the vielbeins
or using the spin connection, lead to equivalent vector gauge fields.

Let the space manifest the rotational symmetry, determined by the infinitesi-
mal coordinate transformations of the kind

x ′µ = xµ , x ′σ = xσ + εst(xµ)Eσst(x
τ) = xσ − iεst(xµ)Mst x

σ , (14.5)

whereMst = Sst+Lst, Lst = xspt−xtps, Sst concern internal degrees of freedom
of boson and fermion fields, {Mst,Ms ′t ′ }− = i(ηst

′
Mts ′ +ηts

′
Mst ′ −ηss

′
Mtt ′ −

ηtt
′
Mss ′). From Eq. (14.5) then follows that

−iMst x
σ = Eσst = xs f

σ
t − xt f

σ
s , (14.6)
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and correspondingly Mst = Eσstpσ. One derives, when taking into account the
last relation and the commutation relations among generators of the infinitesimal
rotations, the relation

EσstpσE
τ
s ′t ′pσ − Eσs ′t ′pσE

τ
stpσ = −i(ηst ′E

τ
ts ′ + ηts ′E

τ
st ′ − ηss ′E

τ
tt ′ − ηtt ′E

τ
ss ′)pσ .

(14.7)

Let the corresponding background field (gαβ = eaα e
a
β) be

eaα =

(
δmµ e

m
σ = 0

esµ esσ

)
, fαa =

(
δµm fσm
0 = fµs f

σ
s

)
, (14.8)

so that the background field in d = (3+ 1) is flat. From eaµf
σ
a = δσµ = 0 it follows

esµ = −δmµ e
s
σf
σ
m . (14.9)

This leads to

gαβ =

(
ηmn + fσmfτne

s
σesτ −fτme

s
τesσ

−fτne
s
τesσ esσesτ

)
. (14.10)

One can check properties of fσmδmµ under general coordinate transformations

x ′µ = x ′µ(xν), x ′σ = x ′σ(xτ)
(
g ′αβ = ∂xρ

∂x ′α
∂xδ

∂x ′β
gρδ

)

f ′σmδ
m
µ =

∂xν

∂x ′µ
∂x ′σ

∂xτ
fτν . (14.11)

Let us introduce the fieldΩstm(xν) as follows

fσm : = −
1

2
Eσst(x

τ)Ωstm(xν) . (14.12)

From Eqs. (14.11,14.12) follow the transformation properties ofΩstm under the
coordinate transformations of Eq. (14.5)

−Eσst δ0Ωstm = −Eσst{− εst,m + i2(εs
s ′ Ωs ′tm − εt

s ′ Ωs ′sm)} . (14.13)

If we look for the transformation properties of the superpositions of the fields
Ωstm, which are the gauge fields of let say τAi with the commutation relations
{τAi, τBj}− = iδAB f

AijkτAk, where τAi = CAistM
st, under the coordinate trans-

formations of Eq. (14.5), one finds for the corresponding superposition of the fields
Ωstm the transformation properties

δ0A
Ai
m = εAi,m + ifAijkAAjm εAk . (14.14)

Let us use the expression for fσm from Eq. (14.12) in Eq. (14.4) to see the relation
amongωstm and fσm. One finds

ωstm =
1

2E
{fσm [etσ∂τ(Ef

τ
s) − esσ ∂τ(Ef

τ
t)]

+esσ∂τ[E(f
σ
mf
τ
t − f

τ
mf
σ
t)] − etσ∂τ[E(f

σ
mf
τ
s − f

τ
mf
σ
s)]} .(14.15)
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For Ωstm = Ωstm(xn) (as assumed above) and for fσs = fδσs (which requires
esσ = f−1δsσ) it follows for any f

ωstm = Ωstm. (14.16)

Statement: Let the space with s ≥ 5 have the symmetry allowing the infinitesimal
transformations of the kind

x ′µ = xµ , x ′σ = xσ − i
∑
A,i,s,t

εAi(xµ) cAi
stMst x

σ , (14.17)

then the vielbein fσm in Eq. (14.8) manifest in d = (3+ 1) the vector gauge fields
AAim

fσm = i
∑
A

~τAστ ~AAmxτ, (14.18)

where

τAi =
∑
Ai

cAistM
st ,

{τAi, τBj}− = ifAijkτAk δAB ,

~τA = ~τAσ pσ = xτ~τAστ pσ

AAim =
∑
st

cAistω
st
m x

τ , (14.19)

whileωstm is determined in Eq. (14.15).
We shall prove this statement in the case, when the space SO(7, 1) breaks into

SO(3, 1)× SU(2)× SU(2). One finds for the two SU(2) generators

~τ1 =
1

2
(M58 −M67,M57 +M68,M56 −M78)

~τ2 =
1

2
(M58 +M67,M57 −M68,M56 +M78) , (14.20)

and for the corresponding gauge fields

~A1a =
1

2
(ω58a −ω67a,ω57a +ω68a,ω56a −ω78a)

~A2a =
1

2
(ω58a +ω67a,ω57a −ω68a,ω56a +ω78a) . (14.21)

One derives (Ref. [2], Eq. (11))

~τ1 = ~τ1σ pσ = ~τ1στx
τ pσ ,

~τ2 = ~τ2σ pσ = ~τ2στx
τ pσ ,

~τ1στ =
i

2
(e5τf

σ8 − e8τf
σ5 − e6τf

σ7 + e7τf
σ6,

e5τf
σ7 − e7τf

σ5 + e6τf
σ8 − e8τf

σ6,

e5τf
σ6 − e6τf

σ5 − e7τf
σ8 + e8τf

σ7),

~τ2στ =
i

2
(e5τf

σ8 − e8τf
σ5 + e6τf

σ7 − e7τf
σ6,

e5τf
σ7 − e7τf

σ5 − e6τf
σ8 + e8τf

σ6,

e5τf
σ6 − e6τf

σ5 + e7τf
σ8 − e8τf

σ7) . (14.22)
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The expressions for fσm are correspondingly as follows

fσm = i (~τ1στ ~A1m + ~τ2στ ~A2m) xτ . (14.23)

Expressing the two SU(2) gauge fields, ~A1m and ~A2m, with ωstm as required in
Eqs. (14.21), and then using for eachωstm the expression presented in Eq. (14.15),
in which fσm is replaced by the relation in Eq. (14.23), while one takes for fσs
= fδσs , for any f, while then esµ = −δmµ e

s
σf
σ
m, Eq. (14.9), it follows after a longer

but straightforward calculation that

~A1m = ~A1m ,
~A2m = ~A2m . (14.24)

One obtains this result of any component of A1imandA2im, i = 1, 2, 3 separately.
It is not difficult to generalize this poof to any isometry of the space with

s ≥ 5 of any dimensional space, where then

fσm = −i
∑
A

~AAm~τAστx
τ , (14.25)

where ~AAm are the superposition ofωstm, AAim = cAistω
st
m, which demonstrate

the symmetry of the space with s ≥ 5.
This completes the proof of the above statement.

14.3 Conclusions

We presented the proof, that in spaces without fermion sources either the vielbeins
or the spin connections lead in d = (3+ 1) to the equivalent vector gauge fields.
The proof offers indeed no surprise due to the fact that the spin connection fields
ωabc are expressible with the vielbeins as presented in (Eq. (14.4). This is true also
for the scalar gauge fields, although not discussed in this contribution.

The proof is true for any f which is a scalar function of the coordinates
xσ, σ ≥ 5. We have shown in Ref. [7,6] that for f = (1+ ρ2

(2ρ0)2
) the symmetry of the

space with the coordinate xσ, σ = (5), (6), is a surface S2, with one point missing.

14.4 Appendix: Derivation of the equality ~A1m = ~A1m

We demonstrate for the particular case A11m , equal toω58a−ω67a, Eq. (14.21), that
this A11m is equal to A11m , appearing in Eq. (14.23)

fσm = i
∑
A

AAim τAiστxτ . (14.26)
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When using Eq. (14.15) forA11m = ω58a−ω67a we end up with the expression

A11m =
i2

2

1

2E

{
fσm[e8σ∂τ(Ef

τ5) − e5σ∂τ(EF
τ8)]

−fσm[e7σ∂τ(Ef
τ6) − e6σ∂τ(EF

τ7)]

+e5σ∂τ[E(f
σ
mf
τ8) − fτmf

σ8] − e6σ∂τ[E(f
σ
mf
τ7) − fτmf

σ7]

−e8σ∂τ[E(f
σ
mf
τ5) − fτmf

σ5] + e7σ∂τ[E(f
σ
mf
τ6) − fτmf

σ6]

}
.

(14.27)

We must insert for fσm the expression from Eq. (14.23). We obtain

A11m = −
1

2

1

2E

∑
i

A1im
{
τ1iστ ′x

τ ′ [e8σ∂τ(Ef
τ5) − e5σ∂τ(EF

τ8)

−e7σ∂τ(Ef
τ6) + e6σ∂τ(EF

τ7)]

+e5σδ
τ ′

τ E(f
τ8τ1iστ ′ − f

σ8τ1iστ ′) + e
5
σx
τ ′∂τ[E(f

τ8τ1iστ ′ − f
σ8τ1iστ ′)]

−e6σE(f
τ7τ1iστ ′ − f

σ7τ1iστ ′) − e
6
σx
τ ′∂τ[E(f

τ7τ1iστ ′ − f
σ7τ1iστ ′)]

−e8σE(f
τ5τ1iστ ′ − f

σ5τ1iστ ′) − e
8
σx
τ ′∂τ[E(f

τ5τ1iστ ′ − f
σ5τ1iστ ′)]

+e7σE(f
τ6τ1iστ ′ − f

σ6τ1iστ ′) + e
7
σx
τ ′∂τ[E(f

τ6τ1iστ ′ − f
σ6τ1iστ ′)]

}
.

(14.28)

We can write Eq. (14.28) in a compact way as follows

A11m = −
1

2

1

2E

∑
i

A1imC1i , (14.29)

where C1i can be read off Eq. (14.28). Taking into account in Eqs. (14.22, 14.28) that
fσs = fδ

σ
s and esσ = fδsσ we find that most of terms in C11 cancel each other. The

only term, which remains, originates in terms from coordinate derivatives, leading
to

C11 = 0+ Ef(τ11 58 − τ11 67 − τ11 85 + τ11 76) , (14.30)

while we found that C12 = 0 = C13.
Recognizing that C2i contribute toA11m nothing, we can conclude thatA11m =

A11m.
One easily see that to the expressions for AAim only CAi contribute, while all

CBj, B 6= A and j 6= i contribute nothing. This completes the proof that ~AAm =
~AAm, for all the gauge fields ~AAm of the charges ~τA, Eq. (14.22).
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Abstract. This is a discussion on degrees of freedom of massless fermion and boson fields,
if they are free or weakly interacting. We generalize the gauge fields of the spin-charge-family
to the gauge fields of all possible products of γa’s and of all possible products of γ̃a’s,
the first taking care in the spin-charge-family theory of the spins and charges (Sabωabc) of
fermions, the second (S̃ab ω̃abc) taking care of families.

Povzetek. Avtorja diskutirata v prispevku prostostne stopnje brezmasnih prostih ali šibko
sklopljenih fermionskih in ustreznih bozonskih polj, v primeru, da dovolita, da so bozonska
polja umeritvena polja vseh produktov Cliffordovih operatorjev γa in umeritvena polja vseh
operatorjev γ̃a. Produkti dveh Cliffordovih operatorjev γa določajo v teoriji spina-nabojev-
družin naboje ene družine kvarkov in leptonov, produkti dveh Cliffordovih operatorjev γ̃a

pa družine kvarkov in leptonov.

15.1 Introduction

The purpose of this contribution to the Discussion section of this Proceedings to
the Bled 2015 workshop is to hopefully better understand: : a. Why is the simple
starting action of the spin-charge-family theory doing so well in manifesting the
observed properties of the fermion and boson fields? b. Under which condition
would more general action lead to the starting action of Eq. (15.1)? c. What would
more general action, if leading to the same low energy physics, mean for the
history of our Universe? d. Could the fermionization procedure of boson fields or
the bosonization procedure of fermion fields, discussed in this Proceedings for any
dimension d (by the authors of this contribution, while one of them, H.B.F.N. [5],
has succeeded with another author to do the fermionization for d = (1+ 1)), help
to find the answers to the questions under a. b. c.?

In the spin-charge-family theory of one of us (N.S.M.B.) [1–4], which offers the
possibility to explain all the assumptions of the standard model, with the appearance
of families, the scalar higgs and the Yukawa couplings included, as well as the
matter-antimatter asymmetry in our universe and the appearance of the dark
matter, a very simple starting action for massless fermions and bosons in d =
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(1+ 13) is assumed. In this action

A =

∫
ddx E

1

2
(ψ̄ γap0aψ) + h.c.+∫

ddx E (αR+ α̃ R̃) , (15.1)

where p0a = fαap0α + 1
2E

{pα, Ef
α
a}−, p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα,

R = 1
2
{fα[afβb] (ωabα,β − ωcaαω

c
bβ)} + h.c., R̃ = 1

2
{fα[afβb] (ω̃abα,β −

ω̃caα ω̃
c
bβ)}+ h.c., the two kinds of the Clifford algebra objects, γa and γ̃a,

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ , (15.2)

which anticommute, {γa, γ̃b}+ = 0 and determine one of them spins and charges of
spinors, another determines families. Here 1 fα[afβb] = fαafβb−fαbfβa. There are
correspondingly for spinors two kinds of the infinitesimal generators of the groups
- Sab for SO(13, 1) and S̃ab for S̃O(13, 1). The generators Sab = i

4
(γa γb−γb γa) ,

S̃ab = i
4
(γ̃a γ̃b− γ̃b γ̃a), determine in the theory the spin and charges of fermions,

Sab, and the family quantum numbers, S̃ab.
The curvature R and R̃ determine dynamics of gauge fields.
The infinitesimal generators of the Lorentz transformations for bosons operate

as follows SabAd...e...g = i (ηaeAd...b...g − ηbeAd...a...g).
We discuss in what follows properties of free massless fermion fields, Sect. 15.1.1,

of free massless boson fields and suggest the interaction among fermions and
bosons, which fulfill the Aratyn-Nielsen theorem [5], but is in general not gauge
invariance.

15.1.1 Properties of general fermion fields

Let us make a choice of one kind of the Clifford algebra objects, let say γa’s, and
express correspondingly the linear vector space of fermions as follows

Ψ̄(γ) = ψ+

d∑
k=1

ψa1a2...ak γ
a1γa2 . . . γak , ai ≤ ai+1 . (15.3)

We could as well make a choice of γ̃a’s instead of γa’s. We define that oper-
ation of γa and γ̃a on such a vector space is understood as the left and the right
multiplication, respectively, of any Clifford algebra object. Let f(γ) be one of the (or-
thogonal) fermion states in the Hilbert space. The left and the right multiplication

1 fαa are inverted vielbeins to eaα with the properties eaαfαb = δab, e
a
αf
β
a = δβα, E =

det(eaα). Latin indices a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while
Greek indices α, β, .., µ, ν, ..σ, τ, .. denote an Einstein index (a curved index). Letters from
the beginning of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ),
from the middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and
µ, ν, ..), indexes from the bottom of the alphabets indicate the compactified dimensions
(s, t, .. and σ, τ, ..). We assume the signature ηab = diag{1,−1,−1, · · · ,−1}.
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can be understood as follows

γa f(γ) |ψ0 >: = (a0 γ
a + aa1 γ

a γa1 +

aa1a2 γ
a γa1γa2 + aa1···ad γ

a γa1 · · ·γad ) |ψ0 > ,
γ̃a f(γ) |ψ0 >: = ( i a0γ

a − i aa1γ
a1 γa + i aa1a2γ

a1γa2 γa + · · ·+
i (−1)d aa1···adγ

a1 · · ·γad γa ) |ψ0 > , (15.4)

where |ψ0 > is a vacuum state.
Eq. (15.3) represents 2d internal degrees of freedom, that is 2d basic states. Let

us arrange the basis to be orthogonal in a way that operators Sab transform 2
d
2
−1

members of these basic states among themselves. They represent one family. The
operators S̃ab transform each family member into the same family member of one
of 2

d
2
−1 families.

There are obviously four such groups of 2
d
2
−1 families with 2

d
2
−1 family

members (2
d
2
−1 × 2d2−1×22 = 2d). These four groups differ in the eigenvalues of

the two operator of handedness, Γ (1+(d−1)) and Γ̃ (1+(d−1)),

Γ (1+(d−1)) = (−i)
d−2
2 γa1γa2 . . . γad ,

Γ̃ (1+(d−1)) = (−i)
d−2
2 γ̃a1 γ̃a2 . . . γ̃ad ,

ak < ak+1 . (15.5)

The eigenvalues of [(Γ (1+(d−1)), Γ̃ (1+(d−1))] are = [(+,+), (−,+), (+,−), (−,−)].
Each of the groups can be extracted from the basis due to requirement

A. (1− Γ̃ (1+(d−1))) (1− Γ (1+(d−1))) Ψ̄ = 0 ,

B. (1− Γ̃ (1+(d−1))) (1+ Γ (1+(d−1))) Ψ̄ = 0 ,

C. (1+ Γ̃ (1+(d−1))) (1− Γ (1+(d−1))) Ψ̄ = 0 ,

D. (1+ Γ̃ (1+(d−1))) (1+ Γ (1+(d−1))) Ψ̄ = 0 . (15.6)

In (d = 4n)-dimensional spaces the first and the last condition share the space
of spinors determined by an even number of γa’s in each product, Eq. (15.3), while
the second and the third share the rest half of the spinor space determined by
an odd number of γa’s in each product. In (d = 2(2n + 1))-dimensional spaces
is opposite: The first and the last condition determine spinor space of and odd
number of γa’s in each product, while the second and the third require an even
number of γa’s in each product.

Let us denote these four groups of states, defined in Eqs. (15.3,15.6) with the
values of [(Γ (1+(d−1)), Γ̃ (1+(d−1))] = [(+,+), (−,+), (+,−), (−,−)], by (Ψ̄++, Ψ̄−+,
Ψ̄+−, Ψ̄−−), respectively.

States of each group can be chosen to fulfill the Weyl dynamical equation for
free massless spinors

γ0 γapaΨ̄ij = 0 ,

(i, j) ∈ {(+,+), (−,+), (+,−), (−,−)} . (15.7)

In the spin-charge-family theory one family contains, if analyzed with respect
to the spin and charges of the standard model: the left handed weak charged quarks
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and the leptons - electrons and neutrinos - and the right handed weak chargeless
quarks and leptons, with by the standard model assumed hyper charges, as well
as the right handed weak charged quarks and leptons and left handed weak
chargeless quarks and leptons. The break of the starting symmetry than leads to
two groups of four families, which gain masses at the electroweak break. All the
rest families (2

14
2

−1 −8) gain masses interacting with the scalar fields.
These 2d orthogonal basic states can be reached from any one of them by

applying on such a state the products of operators: a constant, γa1 , γ̃a1 , and
products of γai and products of γ̃b1 .

Let us see on the case of d = 2, how do these four groups of families and
family members distinguish among themselves.

We shall check also conditions under which these fermion states fulfill the
Weyl equation, (Eq. (15.7)), for free (massless) fermions.

Properties of four groups of fermion states defined in Eq. (15.6) To better under-
stand the meaning of the four groups (Eq. (15.6)) of families and family members
let start with the simplest case: d = (1+ 1) - dimensional spaces.

o d=(1+1) case.

The requirement A. of Eq. (15.6) ((1 − Γ̃ (1+1)) (1 − Γ (1+1)) Ψ̄Ψ̄ = 0, Ψ̄++ =

ψ + γ0ψ0 + γ
1ψ1 + γ

0γ1ψ01) leads to ψ0 + ψ1 = 0, or consequently Ψ̄++ =

ψ++ (γ0−γ1). This state fulfills the Weyl equation provided that (p0−p1)ψ++ = 0.
The requirement B. of Eq. (15.6) ((1 − Γ̃ (1+1)) (1 + Γ (1+1)) Ψ̄ = 0) leads to

ψ+ψ01 = 0, or consequently Ψ̄+− = ψ+− (1− γ0γ1). This state fulfills the Weyl
equation provided that (p0 + p1)ψ+− = 0.

The requirement C. of Eq. (15.6) ((1 + Γ̃ (1+1)) (1 − Γ (1+1)) Ψ̄ = 0) leads to
ψ−ψ01 = 0, or consequently Ψ̄−+ = ψ−+ (1+ γ0γ1). This state fulfills the Weyl
equation provided that (p0 − p1)ψ−+ = 0.

The requirement D. of Eq. (15.6) ((1 − Γ̃ (1+1)) (1 − Γ (1+1)) Ψ̄ = 0) leads to
ψ0 − ψ1 = 0, or consequently Ψ̄−− = ψ−− (γ0 + γ1). This state fulfills the Weyl
equation provided that (p0 + p1)ψ−− = 0.

Making a choice of p1 showing in the positive direction, the first and the third
choice correspond to the positive energy solution, while the second and the fourth
choice correspond to the negative energy solution of the Weyl equation (15.7).

Each of the four groups of states contains 2
d
2
−1 = 1 state and 2

d
2
−1 = 1

familiy. The operators (1, γ0γ1, γ̃0γ̃1) are diagonal, the operators (γ0, γ1, γ̃0, γ̃1)
are off diagonal. Let us present the matrices for, let say, γ0, γ̃0 and γ0γ̃0 for the

basic states, arranged as follows
01

(+i)= 1
2
(γ0 − γ1) (the case A.),

01

(−i)= 1
2
(γ0 + γ1)

(the case D.),
01

[+i]= 1
2
(1 + γ0γ1) (the case C.),

01

[−i]= 1
2
(1 − γ0γ1) (the case B.).

Let us notice that Γ (1+1) (
01

(+i),
01

(−i),
01

[+i],
01

[−i]) = (
01

(+i),−
01

(−i),
01

[+i],−
01

[−i]), while

Γ̃ (1+1) (
01

(+i),
01

(−i),
01

[+i],
01

[−i]) = (
01

(+i),−
01

(−i),−
01

[+i],
01

[−i]). One finds the matrix
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representation for γ0 and γ̃0 and γ0γ̃0

γ0 =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


 , γ̃0 =




0 0 i 0

0 0 0 i

−i 0 0 0

0 −i 0 0


 , γ0γ̃0 =




0 −i 0 0

−i 0 0 0

0 0 0 i

0 0 i 0


 . (15.8)

While γ0 causes the transformations among states, which have the oppo-
site handedness Γ (1+1), while they have the same handedness Γ̃ (1+1), transforms
γ̃0 among states of opposite handedness Γ̃ (1+1), leaving handedness Γ (1+1) un-
changed. The operator γ0γ̃0 causes transformations among the states, which differ
in both handedness. Interaction of the type Sabωabc and S̃abω̃abc, appearing in
the action Eq.(15.1) do not cause in this d = (1+ 1) case transformations among

the basic states (
01

(+i),
01

(−i),
01

[+i],
01

[−i]).

o d=(13+1) case.

In the case of d = (13 + 1)-dimensional space the operators Sab transform
all the members of one family among themselves. Table IV of Ref. [4] represents
one family representation analyzed with respect to the standard model gauge and
spinor groups. The 2d/2−1 = 64members represent quarks and leptons, left and
right handed, with spin up and down and with the hyper charges as required by
the standard model. There are also the anti-members, reachable from members not
only by Sab but also by CNPN [7].

The operators S̃ab transform each family member of a particular family into
another family, keeping the family member quantum numbers unchanged.

There are four groups of such families, having

(Γ (13+1), Γ̃ (13+1)) = ((+,+), (−,−), (+,−), (−,+)),

respectively. As seen in the simple case of d = (1 + 1) all four groups could be
reachable from the starting one only by the operators γa, γ̃a and γaγ̃b.

We have some experience with the toy model in d = (5+ 1), Refs. [8–10], that
when breaking symmetries not only that only spinors of one handedness remain
masless, but also most of families can get heavy masses.

After the break of SO(13, 1) to SO(7, 1) ×SO(6) (and correspondingly also
of S̃O(13, 1)) Sst, s ∈ (0, . . . , 8), t ∈ (9, . . . , 14) (and correspondingly also of S̃st,
s ∈ (0, . . . , 8), t ∈ (9, . . . , 14)) are no longer applicable. Anti spinors (spinors with
quantum numbers of the second part, numerated by 33 up to 64, of Table IV in
Ref. [4]) are after the break reachable only by CN PN [7].

The break of SO(6) to SU(3)×U(1) disables transformations from quarks to
leptons.

When breaking symmetries, like from SO(13, 1) to SO(7, 1)×SO(6), the break
must be done in a way that only spinors of one handedness remain massless in
order that the break leads to observed (almost massless) fermions and that most of
families get masses of the energy of the break [8–10]. Our studies so far support the
assumption that only the families with Γ̃ (7+1) = 1 and Γ̃ (6) = −1 remain massless.
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Correspondingly only eight families (2(7+1)/2−1) remain massless.
At the further break of SO(7, 1)×SU(3)×U(1) to SO(3, 1)×SU(2) ×SU(3)×

U(1) all the eight families of quarks and leptons remain massless due to the fact
that left handed and right handed quarks and leptons have different charges and
are correspondingly mass protected.

15.1.2 Properties of general boson fields

We have discussed so far only fermion fields. The spin-charge-family theory action,
Eq (15.1), introduces the vielbeins and the two kinds of the spin-connection fields,
with which the fermions interact. These are the gauge fields of the two kinds of
charges, which take care of the family members quantum numbers (Sab) and of
the family quantum numbers (S̃ab).

The Lagrange density (15.1) of each kind of the spin connection fields is linear
in the curvature. This action seems to be the simplest action of the Kaluza-Klein
kinds of theories, in which fermions carry the family and the family members
quantum numbers, while the gravitational field - the vielbeins and the two kinds
of the spin connection fields take care of the interaction among fermions. Vielbeins
and spin connections are the only boson fields in the theory. They manifest at the
low energy regime all the phenomenologically needed vector and scalar bosons.

Let us define boson fields, which in the case of d = (1 + 1), d = (13 + 1), or
any d, transform the 2d fermion states among themselves? The fields Sabωabc
and S̃abω̃abc can, namely, cause transitions only among fermions with the same
Clifford character: The Clifford even (odd) fermion states are transformed into the
Clifford even (odd) fermion states, as we have seen in subsection 15.1.1.

Let us assume for this purpose that there exist to each of products

γa1γa2 . . . γak ,

the number of products of γa’s running from zero to d, the corresponding gauge
fields: ωa1a2...ak . There are obviously 2d such gauge fields. These gauge fields,
carrying k vector indexes a1 . . . ak, transform a fermion state

Ψij, (i, j) = [(+,+), (−,+), (+,−), (−,−)]

belonging to one of the four groups (with the eigenvalues of (Γ (d),Γ̃ (d)= (i, j),
respectively), discussed in subsection 15.1.1, into another state, belonging to the
same or to one of the rest free groups: If starting with the state of either the A. or B.
groups, these bosons transform such a state to one of the states belonging to either
the group A. (if the number of aj is even) or to the group B. (if the number of aj
is odd). If we start from the group C. or D., then the transformed state remains
within these two groups.

Correspondingly we define to each of products γ̃a1 γ̃a2 . . . γ̃ak , again the
number of products of γ̃a’s running from zero to d, the corresponding gauge
fields ω̃a1a2...ak , which again transform the state Ψij, belonging to one of the four
groups, discussed in subsection 15.1.1, into another state, belonging to the same
(if the number of ak is even), or to one of the rest free groups (if the number of ak
is odd). In this case the transformations go from A. to C., or from B. to D..
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All the states of one group of fermions are reachable from the starting state
under the application of ωabc and ω̃abc. The operators Sab and S̃ab keep the
handedness Γ (d) and Γ̃ (d), respectively, unchanged. (Let us remind the reader
that all the 2(13+1)/2−1 states of one family (Table IV of Ref. [4]) are reachable
by Sabωabc and all the 2(7+1)/2−1 families (Table V of Ref. [4]) are reachable by
S̃abω̃abc).

The by the products of γ̃a’s transformed state Ψ̄ differs in general from the
one transformed by the product of γa’s according to the definition in Eq. (15.2).

Let us assume that all the boson fields obey the equations of motion

∂a∂aωa1a2...ak = 0 ,

∂a∂aω̃a1a2...ak = 0 . (15.9)

For the boson fields, which are the gauge fields of the products of γ̃a1 γ̃a2 . . . γ̃ak
or of γa1γa2 . . . γak Eq. (15.9), this can only be true in the weak fields limit.

Let us see the action of this boson fields on fermion basic states in the case of
d = (1+ 1). The boson fields bring to fermions the quantum numbers, which they
carry. We can calculate these quantum numbers by taking into account Eq. (16) in
Ref. [4]

SabAd...e...g = i (ηaeAd...b...g − ηbeAd...a...g) , (15.10)

or we can simply calculate the action of the operators, the gauge fields of which
are boson fields.

1 (1, γ0, γ1, γ0 γ1) = (1, γ0, γ1, γ0 γ1) ,

1̃ (1, γ0, γ1, γ0 γ1) = (1, γ0, γ1, γ0 γ1) ,

γ0 (1, γ0, γ1, γ0 γ1) = (γ0, 1, γ0 γ1, γ1) ,

γ̃0 (1, γ0, γ1, γ0 γ1) = i (γ0,−1, γ0 γ1,−γ1) ,

γ1 (1, γ0, γ1, γ0 γ1) = (γ1,−γ0 γ1,−1, γ0) ,

γ̃1 (1, γ0, γ1, γ0 γ1) = i (γ1,−γ0 γ1, 1,−γ0) ,

γ0γ1 (1, γ0, γ1, γ0 γ1) = (γ0 γ1,−γ1,−γ0, 1)

γ̃0 γ̃1 (1, γ0, γ1, γ0 γ1) = (i)2 (γ0γ1, γ1, γ0, 1) , (15.11)

It is obvious that the two kinds of fields influence states in a different way, except the
two constants, which leave states untouched.

One can conclude that there are correspondingly 2× 2d − 1 independent real
boson fields (only one of the two constants has the meaning), and there are also,
as we have learned in Subsec. 15.1.1 2d complex fermion fields, which means
2 × 2d real fermion fields in any dimension. This supports the Aratyn-Nielsen
theorem [5].

o Comments on d=(1+1) case.

Let us make a choice of 2
d
2
−1 fermion states, which is for d = 2 only one state,

say
01

(+i). It is the complex field and accordingly with two degrees of freedom.
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One can make then (any) one choice of the boson field, let sayω01, which is the
gauge field of the ”charge” Γ (1+1). This is in agreement with the Aratyn-Nielsen
theorem.

All the (complex) Clifford odd fermion states, (
01

(+i),
01

(−i), need three of the
independent boson fields, let say (γ1ω1, γ0γ1ω01, γ̃1ω̃1), to be in agreement with
the Aratyn-Nielsen theorem.

Bosons in interaction with fermions If we expect gauge boson fileds to appear in
the covariant derivative of fermions, as we are used to require, then all the gauge
fields must curry the space index, like it is the case of the covariant derivative for
fermions, presented in Eq. (15.1): p0a = pa − 1

2
Sbcωbca − 1

2
S̃bcω̃bca.

Let us generalize this covariant momentum by replacing 1
2
Sa1a2ωa1a2a +

1
2
S̃a1a2ω̃a1a2a by

p0a = pa −{
ωa + γa1ωa1a + γa1γa2ωa1a2a + · · ·+ γa1γa2 . . . γadωa1a2...ad a
+ γ̃a1ω̃a1a + γ̃a1 γ̃a2ω̃a1a2a + · · ·+ γ̃a1 γ̃a2 . . . γ̃adω̃a1a2...ad a

}
.

(15.12)

We assumed that all the γa’s in products appear in the ascending order. Corre-
spondingly is 1

2
Sa1a2ωa1a2a replaced by i

2
γa1γa2ωa1a2a, the factor i

2
appears

due to Sa1a2 = i
2
γa1γa2 , a2 > a1.

This theory would neither be gauge invariant nor do the corresponding gauge
fields fulfill the equations of motion, Eq. (15.9), except in the weak limit if the gauge
fields appear as the background fields. The degrees of freedom of bosons and
fermions no longer fulfill the Aratyn-Nielsen theorem, unless we again allow either
only Clifford even or Clifford odd fermion states and only one of the two fields
with the space index zero, let sayω0 among the boson fields is allowed. And yet
we have in addition nonphysical degrees of freedom due to gauge invariance for
almost free massless fields in the weak limit, which should be possibly removed.

If nature has ever started with the boson fields as presented above, most of
these fields do not manifest in d = (3+ 1).

15.2 Conclusions

We have started the fermionization of boson fields (or bosonization of fermion
fields) in any d (the reader can find the corresponding contribution in this proceed-
ings )to understand better why, if at all, the nature has started in higher dimensions
with the simple action as assumed in the spin-charge-family theory, offering in the
low energy regime explanation for all observed degrees of freedom of fermion and
boson fields, with the families of fermions included. This theory is a kind of the
Kaluza-Klein theories with two kinds of the spin connection fields. We also hope
that the fermionizasion can help to see which role can the same number of degrees
of freedom of fermions and bosons play in the explanation, why the cosmological
constant is so small.
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This contribution is a small step towards understanding better the open
problems of the elementary particle physics and cosmology. We discussed for any
d-dimensional space the degrees of freedom for free massless fermions and the
degrees of freedom for free massless bosons, which are the gauge fields of all
possible products of both kinds of the Clifford algebra objects, either of γa or of
γ̃a.

Although we have not yet learned enough to be able to answer any of the four
questions, presented in the introduction (a. Why is the simple starting action of the
spin-charge-family theory doing so well in manifesting the observed properties of
the fermion and boson fields? b. Under which condition can more general action
lead to the starting action of Eq. (15.1)? c. What would more general action, if
leading to the same low energy physics, mean for the history of our Universe? d.
Could the fermionization procedure of boson fields or the bosonization procedure
of fermion fields, discussed in this Proceedings for any dimension d (by the authors
of this contribution, while one of them, H.B.F.N. [5], has succeeded with another
author to do the fermionization for d = (1 + 1)), help to find the answers to the
questions under a. b. c.?), yet we have started to understand better the topic.
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Abstract. Being a unique multi-functional complex of science and education online, Virtual
Institute of Astroparticle Physics (VIA) operates on website http://viavca.in2p3.fr/site.html.
It supports presentation online for the most interesting theoretical and experimental results,
participation in conferences and meetings, various forms of collaborative scientific work
as well as programs of education at distance, combining online videoconferences with ex-
tensive library of records of previous meetings and Discussions on Forum. Since 2014 VIA
online lectures combined with individual work on Forum is being elaborated in a specific
tool for MOOC activity. The VIA facility is regularly effectively used in the programs of
Bled Workshops. At XVIII Bled Workshop it provided a world-wide discussion of the open
questions of physics beyond the standard model, supporting presentations at distance and
world-wide propagation of discussions at this meeting.

Povzetek. Virtual Institute of Astroparticle Physics (VIA), ki deluje na spletni strani
http://viavca.in2p3.fr/site.html, je vsestranski sistem za podporo znanosti in izobraževanja
na spletu. Sistem podpira neposredne spletne predstavitve najbolj zanimivih teoretičnih in
eksperimentalnih rezultatov, udeležbo na konferencah in srečanjih, različne oblike skupnega
znanstvenega dela, pa tudi programe izobraževanja na daljavo, ki povezujejo neposredne
videokonference in zapise prejšnjih srečanj in diskusij na spletnem forumu VIA. Od leta
2014 se kombinacija neposrednih spletnih predavanj in individualnega dela na spletnih
forumih VIA razvija kot orodje za množično spletno izobraževanje na daljavo (MOOC).
Sredstva VIA se redno učinkovito uporablja na blejskih delavnicah. Na letošnji, osemnajsti,
delavnici je omogočila diskusijo udeležencev iz vseh koncev sveta o odprtih vprašanjih
fizike onkraj standardnih modelov fizike osnovnih delcev in kozmologije ter podporo
predstavitev na daljavo in svetovno dostopnost diskusij na delavnici.

16.1 Introduction

Studies in astroparticle physics link astrophysics, cosmology, particle and nuclear
physics and involve hundreds of scientific groups linked by regional networks (like
ASPERA/ApPEC [1,2]) and national centers. The exciting progress in these studies

?? khlopov@apc.univ-paris7.fr
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will have impact on the knowledge on the structure of microworld and Universe
in their fundamental relationship and on the basic, still unknown, physical laws
of Nature (see e.g. [3,4] for review).

Virtual Institute of Astroparticle Physics (VIA) [5] was organized with the
aim to play the role of an unifying and coordinating structure for astroparticle
physics. Starting from the January of 2008 the activity of the Institute takes place
on its website [6] in a form of regular weekly videoconferences with VIA lectures,
covering all the theoretical and experimental activities in astroparticle physics and
related topics. The library of records of these lectures, talks and their presentations
was accomplished by multi-lingual Forum. In 2008 VIA complex was effectively
used for the first time for participation at distance in XI Bled Workshop [7]. Since
then VIA videoconferences became a natural part of Bled Workshops’ programs,
opening the virtual room of discussions to the world-wide audience. Its progress
was presented in [8–13]. Here the current state-of-art of VIA complex, integrated
since 2009 in the structure of APC Laboratory, is presented in order to clarify the
way in which VIA discussion of open questions beyond the standard model took
place in the framework of XVIII Bled Workshop.

16.2 The structure of VIA complex and forms of its activity

16.2.1 The forms of VIA activity

The structure of VIA complex is illustrated on Fig. 16.1. The home page, presented
on this figure, contains the information on VIA activity and menu, linking to
directories (along the upper line from left to right): with general information on
VIA (About VIA), entrance to VIA virtual rooms (Rooms), the library of records
and presentations (Previous) of VIA Lectures (Previous→ Lectures), records of
online transmissions of Conferences(Previous→ Conferences), APC Colloquiums
(Previous → APC Colloquiums), APC Seminars (Previous → APC Seminars)
and Events (Previous → Events), Calender of the past and future VIA events
(All events) and VIA Forum (Forum). In the upper right angle there are links
to Google search engine (Search in site) and to contact information (Contacts).
The announcement of the next VIA lecture and VIA online transmission of APC
Colloquium occupy the main part of the homepage with the record of the most
recent VIA events below. In the announced time of the event (VIA lecture or
transmitted APC Colloquium) it is sufficient to click on ”to participate” on the
announcement and to Enter as Guest (printing your name) in the corresponding
Virtual room. The Calender links to the program of future VIA lectures and events.
The right column on the VIA homepage lists the announcements of the regularly
up-dated hot news of Astroparticle physics and related areas.

In 2010 special COSMOVIA tours were undertaken in Switzerland (Geneva),
Belgium (Brussels, Liege) and Italy (Turin, Pisa, Bari, Lecce) in order to test stability
of VIA online transmissions from different parts of Europe. Positive results of these
tests have proved the stability of VIA system and stimulated this practice at XIII
Bled Workshop. The records of the videoconferences at the XIII Bled Workshop
are available on VIA site [14].
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Fig. 16.1. The home page of VIA site
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Since 2011 VIA facility was used for the tasks of the Paris Center of Cos-
mological Physics (PCCP), chaired by G. Smoot, for the public programme ”The
two infinities” conveyed by J.L.Robert and for effective support a participation
at distance at meetings of the Double Chooz collaboration. In the latter case, the
experimentalists, being at shift, took part in the collaboration meeting in such a
virtual way.

The simplicity of VIA facility for ordinary users was demonstrated at XIV Bled
Workshop in 2011. Videoconferences at this Workshop had no special technical
support except for WiFi Internet connection and ordinary laptops with their
internal video and audio equipments. This test has proved the ability to use VIA
facility at any place with at least decent Internet connection. Of course the quality
of records is not as good in this case as with the use of special equipment, but still
it is sufficient to support fruitful scientific discussion as can be illustrated by the
record of VIA presentation ”New physics and its experimental probes” given by
John Ellis from his office in CERN (see the records in [15]).

In 2012 VIA facility, regularly used for programs of VIA lectures and transmis-
sion of APC Colloquiums, has extended its applications to support M.Khlopov’s
talk at distance at Astrophysics seminar in Moscow, videoconference in PCCP,
participation at distance in APC-Hamburg-Oxford network meeting as well as to
provide online transmissions from the lectures at Science Festival 2012 in Univer-
sity Paris7. VIA communication has effectively resolved the problem of referee’s
attendance at the defence of PhD thesis by Mariana Vargas in APC. The referees
made their reports and participated in discussion in the regime of VIA videoconfer-
ence. In 2012 VIA facility was first used for online transmissions from the Science
Festival in the University Paris 7. This tradition was continued in 2013, when
the transmissions of meetings at Journes nationales du Dveloppement Logiciel
(JDEV2013) at Ecole Politechnique (Paris) were organized [17].

In 2013 VIA lecture by Prof. Martin Pohl was one of the first places at which
the first hand information on the first results of AMS02 experiment was presented
[16].

In 2014 the 100th anniversary of one of the foundators of Cosmoparticle
physics, Ya. B. Zeldovich, was celebrated. With the use of VIA M.Khlopov could
contribute the programme of the ”Subatomic particles, Nucleons, Atoms, Universe:
Processes and Structure International conference in honor of Ya. B. Zeldovich 100th
Anniversary” (Minsk, Belarus) by his talk ”Cosmoparticle physics: the Universe
as a laboratory of elementary particles” [18] and the programme of ”Conference
YaB-100, dedicated to 100 Anniversary of Yakov Borisovich Zeldovich” (Moscow,
Russia) by his talk ”Cosmology and particle physics” [19].

In 2015 VIA facility supported the talk at distance at All Moscow Astrophysi-
cal seminar ”Cosmoparticle physics of dark matter and structures in the Universe”
by Maxim Yu. Khlopov and the work of the Section ”Dark matter” of the Interna-
tional Conference on Particle Physics and Astrophysics (Moscow, 5-10 October
2015). Though the conference room was situated in Milan Hotel in Moscow all the
presentations at this Section were given at distance (by Rita Bernabei from Rome,
Italy; by Juan Jose Gomez-Cadenas, Paterna, University of Valencia, Spain and by



i
i

“proc15” — 2015/12/9 — 10:51 — page 181 — #197 i
i

i
i

i
i

16 Virtual Institute of Astroparticle Physics and Discussions . . . 181

Dmitri Semikoz, Martin Bucher and Maxim Khlopov from Paris) and its work was
chaired by M.Khlopov from Paris [22].

The discussion of questions that were put forward in the interactive VIA
events can be continued and extended on VIA Forum. The Forum is intended to
cover the topics: beyond the standard model, astroparticle physics, cosmology,
gravitational wave experiments, astrophysics, neutrinos. Presently activated in
English,French and Russian with trivial extension to other languages, the Forum
represents a first step on the way to multi-lingual character of VIA complex and
its activity.

16.2.2 VIA e-learning and MOOC

One of the interesting forms of VIA activity is the educational work at distance.
For the last six years M.Khlopov’s course ”Introduction to cosmoparticle physics”
is given in the form of VIA videoconferences and the records of these lectures
and their ppt presentations are put in the corresponding directory of the Forum
[20]. Having attended the VIA course of lectures in order to be admitted to exam
students should put on Forum a post with their small thesis. Professor’s com-
ments and proposed corrections are put in a Post reply so that students should
continuously present on Forum improved versions of work until it is accepted as
satisfactory. Then they are admitted to pass their exam. The record of videocon-
ference with their oral exam is also put in the corresponding directory of Forum.
Such procedure provides completely transparent way of evaluation of students’
knowledge.

Since 2014 the second part of this course is given in English in order to
develop VIA system as a possible tool for Massive Online Open Courses (MOOC)
activity [21]. The students must write their small thesis, present it and being
admitted to exam pass it in English. The restricted number of online connections
to videoconferences with VIA lectures is compensated by the wide-world access
to their records on VIA Forum and in the context of MOOC VIA Forum and
videoconferencing system can be used for individual online work with advanced
participants.

16.2.3 Organisation of VIA events and meetings

First tests of VIA system, described in [5,7–9], involved various systems of video-
conferencing. They included skype, VRVS, EVO, WEBEX, marratech and adobe
Connect. In the result of these tests the adobe Connect system was chosen and
properly acquired. Its advantages are: relatively easy use for participants, a possi-
bility to make presentation in a video contact between presenter and audience, a
possibility to make high quality records, to use a whiteboard tools for discussions,
the option to open desktop and to work online with texts in any format.

Initially the amount of connections to the virtual room at VIA lectures and
discussions usually didn’t exceed 20. However, the sensational character of the
exciting news on superluminal propagation of neutrinos acquired the number
of participants, exceeding this allowed upper limit at the talk ”OPERA versus
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Maxwell and Einstein” given by John Ellis from CERN. The complete record of
this talk and is available on VIA website [23]. For the first time the problem of
necessity in extension of this limit was put forward and it was resolved by creation
of a virtual ”infinity room”, which can host any reasonable amount of participants.
Starting from 2013 this room became the only main virtual VIA room, but for
specific events, like Collaboration meetings or transmissions from science festivals,
special virtual rooms can be created. This solution strongly reduces the price of the
licence for the use of the adobeConnect videoconferencing, retaining a possibility
for creation of new rooms with the only limit to one administrating Host for all of
them.

The ppt or pdf file of presentation is uploaded in the system in advance
and then demonstrated in the central window. Video images of presenter and
participants appear in the right window, while in the lower left window the
list of all the attendees is given. To protect the quality of sound and record, the
participants are required to switch out their microphones during presentation and
to use the upper left Chat window for immediate comments and urgent questions.
The Chat window can be also used by participants, having no microphone, for
questions and comments during Discussion. The interactive form of VIA lectures
provides oral discussion, comments and questions during the lecture. Participant
should use in this case a ”raise hand” option, so that presenter gets signal to switch
out his microphone and let the participant to speak. In the end of presentation
the central window can be used for a whiteboard utility as well as the whole
structure of windows can be changed, e.g. by making full screen the window with
the images of participants of discussion.

Regular activity of VIA as a part of APC includes online transmissions of
all the APC Colloquiums and of some topical APC Seminars, which may be of
interest for a wide audience. Online transmissions are arranged in the manner,
most convenient for presenters, prepared to give their talk in the conference
room in a normal way, projecting slides from their laptop on the screen. Having
uploaded in advance these slides in the VIA system, VIA operator, sitting in the
conference room, changes them following presenter, directing simultaneously
webcam on the presenter and the audience.

16.3 VIA Sessions at XVIII Bled Workshop

VIA sessions of XVIII Bled Workshop have developed from the first experience at
XI Bled Workshop [7] and their more regular practice at XII, XIII, XIV, XV, XVI and
XVII Bled Workshops [8–13]. They became a regular part of the Bled Workshop’s
programme.

In the course of XVIII Bled Workshop meeting the list of open questions was
stipulated, which was proposed for wide discussion with the use of VIA facility.
The list of these questions was put on VIA Forum (see [24]) and all the participants
of VIA sessions were invited to address them during VIA discussions. During the
XVIII Bled Workshop the test of not only minimal necessary equipment, but either
of the use of VIA facility by ordinary non-experienced users was undertaken. VIA
Sessions were supported by personal laptop with WiFi Internet connection only, as
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well as in 2015 the members of VIA team were physically absent in Bled and all the
videoconferences were directed by M.Khlopov at distance. It principally confirmed
a possibility to provide effective interactive online VIA videoconferences even in
the absence of any special equipment and qualified personnel at place. Only laptop
with microphone and webcam together with WiFi Internet connection was proved
to support not only attendance, but also VIA presentations and discussions. In the
absence of WiFi connection, the 3G connection of iPhone was sufficient for VIA
management and presentations. However technical problems didn’t provide time
for all the talks scheduled for VIA Session.

In the framework of the program of XVIII Bled Workshop, M. Khlopov, gave
his talk ”Composite dark matter” (Fig. 16.2). It provided an additional demonstra-
tion of the ability of VIA to support the creative non-formal atmosphere of Bled
Workshops (see records in [25]). VIA facility has provided presentation at distance

Fig. 16.2. VIA talk by M.Khlopov given from Paris at XVIII Bled Workshop

for talks ”Particle Dark Matter direct detection” by Rita Bernabei and Riccardo
Cerulli (Rome University TorVergata, Italy) (Fig. 16.3) and ”New Perspectives for
Hadron Physics and the Cosmological Constant Problem” by Stan Brodsky (SLAC,
USA) (Fig. 16.4)

VIA sessions also included talks of Bled participants of the Workshop: ”Reg-
ularization of conformal correlators” by Loriano Bonora (Fig. 16.5) and ”Novel
string field” by Holger Bech Nielsen.

Due to technical problems and the lack of time during the Workshop it was
not possible to support by VIA the talk ”The Spin-Charge-Family theory offers the
explanation for all the assumptions of the Standard model, for the Dark matter, for
the Matter-antimatter asymmetry, for... ,making several predictions” by Norma
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Fig. 16.3. VIA talk of R.Bernabei and R.Cerulli presented by R.Cerulli from Rome, Italy at
XVIII Bled Workshop

Fig. 16.4. VIA talk by Stan Brodsky from SLAC, USA at XVIII Bled Workshop
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Fig. 16.5. VIA talk by Loriano Bonora at XVIII Bled Workshop

Mankoc-Borstnik. This talk was given in VIA specially later, so that its record has
appeared in the list of VIA presentations at the XVIII Bled Workshop (Fig. 16.6).
The records of all these lectures and discussions can be found in VIA library [25].

Fig. 16.6. VIA talk by N. Mankoc-Borstnik at XVIII Bled Workshop
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16.4 Conclusions

The Scientific-Educational complex of Virtual Institute of Astroparticle physics
provides regular communication between different groups and scientists, working
in different scientific fields and parts of the world, the first-hand information on
the newest scientific results, as well as support for various educational programs at
distance. This activity would easily allow finding mutual interest and organizing
task forces for different scientific topics of astroparticle physics and related topics.
It can help in the elaboration of strategy of experimental particle, nuclear, astro-
physical and cosmological studies as well as in proper analysis of experimental
data. It can provide young talented people from all over the world to get the
highest level education, come in direct interactive contact with the world known
scientists and to find their place in the fundamental research. These educational
aspects of VIA activity is now being evolved in a specific tool for MOOC. VIA
applications can go far beyond the particular tasks of astroparticle physics and
give rise to an interactive system of mass media communications.

VIA sessions became a natural part of a program of Bled Workshops, main-
taining the platform of discussions of physics beyond the Standard Model for
distant participants from all the world. The experience of VIA applications at Bled
Workshops plays important role in the development of VIA facility as an effective
tool of e-science and e-learning.
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Brezplačni izvod za udeležence
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