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Abstract

The notion of “antimatroid with repetition” was conceived by Bjorner, Lovasz and Shor
in 1991 as an extension of the notion of antimatroid in the framework of non-simple lan-
guages. Further they were investigated by the name of “poly-antimatroids” (Nakamura,
2005, Kempner & Levit, 2007), where the set system approach was used. If the underlying
set of a poly-antimatroid consists of n elements, then the poly-antimatroid may be repre-
sented as a subset of the integer lattice Zn. We concentrate on geometrical properties of
two-dimensional (n = 2) poly-antimatroids - poly-antimatroid polygons, and prove that
these polygons are parallelogram polyominoes. We also show that each two-dimensional
poly-antimatroid is a poset poly-antimatroid, i.e., it is closed under intersection.

The convex dimension cdim(S) of a poly-antimatroid S is the minimum number of
maximal chains needed to realize S. While the convex dimension of an n-dimensional
poly-antimatroid may be arbitrarily large, we prove that the convex dimension of an n-
dimensional poset poly-antimatroid is equal to n.
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1 Preliminaries
An antimatroid is an accessible set system closed under union [3]. An algorithmic charac-
terization of antimatroids based on the language definition was introduced in [5]. Another
algorithmic characterization of antimatroids that depicted them as set systems was devel-
oped in [14]. Dilworth (1940) was the first to study antimatroids, using another axiomatiza-
tion based on lattice theory, and they have been frequently rediscovered in other contexts.
The most updated survey on the subject may be found in [19].
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Antimatroids can be viewed as a special case of either greedoids or semimodular lat-
tices, and as a generalization of partial orders and distributive lattices. While classical
examples of antimatroids connect them with posets, chordal graphs, convex geometries,
etc., game theory gives a framework in which antimatroids are interpreted as permission
structures for coalitions [1]. There are also rich connections between antimatroids and clus-
ter analysis [16]. In mathematical psychology, antimatroids are used to describe feasible
states of knowledge of a human learner [9].

A poly-antimatroid [21] is a generalization of the notion of the antimatroid to multisets.
If the underlying set of a poly-antimatroid consists of n elements, then the n-dimensional
poly-antimatroid may be represented as a subset of the integer lattice Zn.

In this paper we investigate the correspondence between poly-antimatroids and poly-
ominoes. In the digital plane Z2, a polyomino [12] is a finite connected union of unit
squares without cut points. If we replace each unit square of a polyomino by a vertex at
its center, we obtain an equivalent object named a lattice animal [13]. Further, we use the
name polyomino for the two equivalent objects.

A polyomino is called column-convex (row-convex) if all its columns (rows) are con-
nected. In other words, each column/row has no holes. A convex polyomino is both row-
convex and column-convex. The parallelogram polyominoes [6], sometimes known as
staircase polygons [4, 13, 22], are a particular case of this family. In the staircase polygon
each element may be reached from the source (lowest left) point by a path made only of
north and east unit steps, and similarly this element may be reached from the target (highest
right) point by a path made only of south and west unit steps. Hence staircase polygons are
defined by a pair of monotone north-east paths that have common ending points.

We prove that a representation of a two-dimensional poly-antimatroid on the plane is a
staircase polygon.

Let E be a finite set. A set system over E is a pair (E,F), where F is a family of sets
over E, called feasible sets. We will use X ∪ x for X ∪ {x}, and X − x for X − {x}.

Definition 1.1. [18]A finite non-empty set system (E,F) is an antimatroid if
(A1) for each non-empty X ∈ F , there exists x ∈ X such that X − x ∈ F
(A2) for all X,Y ∈ F , and X * Y , there exists x ∈ X − Y such that Y ∪ x ∈ F .

Any set system satisfying (A1) is called accessible.
In addition, we use the following characterization of antimatroids.

Proposition 1.2. [18] For an accessible set system (E,F) the following statements are
equivalent:

(i) (E,F) is an antimatroid
(ii) F is closed under union (X,Y ∈ F ⇒ X ∪ Y ∈ F)

An “antimatroid with repetition” was invented by Bjorner, Lovasz and Shor [2]. Further
it was investigated by the name of “poly-antimatroid” as a generalization of the notion of
the antimatroid for multisets. A multiset A over E is a function fA : E → N , where
fA(e) is a number of repetitions of an element e in A. A poly-antimatroid is a finite non-
empty multiset system (E,S) that satisfies the antimatroid properties (A1) and (A2). So
antimatroids may be considered as a particular case of poly-antimatroids. Examples of an
antimatroid ({x, y, z},F) and a poly-antimatroid ({x, y}, S) are illustrated in Figure 1.
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Figure 1: (a) Antimatroid. (b) Poly-antimatroid.

Definition 1.3. A multiset system (E,S) satisfies the chain property if for all X,Y ∈ F ,
and X ⊂ Y , there exists a chain X = X0 ⊂ X1 ⊂ ... ⊂ Xk = Y such that Xi =
Xi−1 ∪ xi and Xi ∈ S for 0 ≤ i ≤ k.

It is easy to see that the chain property follows from (A2), but they are not equivalent.
It is clear that each poly-antimatroid satisfies the chain property.

Antimatroids have already been investigated within the framework of lattice theory by
Dilworth [7]. The feasible sets of an antimatroid ordered by inclusion form a lattice, with
lattice operations: X ∨Y = X ∪Y , and X ∧Y is the maximal feasible subset of set X ∩Y
called a basis. Since an antimatroid is closed under union, it has only one basis.

A finite lattice L is called join-distributive [3] if for any x ∈ L the interval [x, y] is
Boolean, where y is the join of all elements covering x. Such lattices have appeared under
several different names, e.g. locally free lattices [18] and upper locally distributive lattices
(ULD) [10, 20]. Distributive lattices are exactly those that are both upper and lower locally
distributive.

Theorem 1.4. [3, 18] A finite lattice is join-distributive if and only if it is isomorphic to
the lattice of feasible sets of some antimatroid.

It easy to see that feasible sets of a poly-antimatroid ordered by inclusion form a join-
distributive lattice as well.

Consider a particular case of antimatroids called poset antimatroids [18]. A poset an-
timatroid has as its feasible sets the lower sets of a poset (partially ordered set). Poset
antimatroids can be characterized as the unique antimatroids, which are closed under inter-
section [18]. We extend this definition to poly-antimatroids.

Definition 1.5. A poly-antimatroid is called a poset poly-antimatroid if it is closed under
intersection.

Evidently, feasible sets of a poset poly-antimatroid ordered by inclusion form a dis-
tributive lattice.
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2 Two-dimensional poly-antimatroids and polyominoes
In this section we consider a geometric characterization of two-dimensional poly-anti-
matroids.

Let E = {x, y}. In this case each point A = (xA, yA) in the digital plane Z2 may be
considered as a multiset A over E, where xA is a number of repetitions of an element x,
and yA is a number of repetitions of an element y in multiset A. Thus a set of points in
the digital plane Z2 that satisfies the properties of an antimatroid is a representation of a
two-dimensional poly-antimatroid.

Definition 2.1. A set of points S in the digital plane Z2 is a poly-antimatroid polygon if
(A1) for every point (xA, yA) ∈ S, such that (xA, yA) 6= (0, 0),
either (xA − 1, yA) ∈ S or (xA, yA − 1) ∈ S
(A2) for all A * B ∈ S,
if xA ≥ xB and yA ≥ yB then either (xB + 1, yB) ∈ S or (xB , yB + 1) ∈ S
if xA ≤ xB and yA ≥ yB then (xB , yB + 1) ∈ S
if xA ≥ xB and yA ≤ yB then (xB + 1, yB) ∈ S

Notice that accessibility implies ∅ ∈ S.
For example, see a poly-antimatroid polygon in Figure 2.
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Figure 2: A poly-antimatroid polygon.

We use the following notation [17]. If A = (x, y) is a point in a digital plane, the
4-neighborhood N4(x, y) is the set of points

N4(x, y) = {(x− 1, y), (x, y − 1), (x+ 1, y), (x, y + 1)}

and 8-neighborhood N8(x, y) is the set of points

N8(x, y) = {(x− 1, y), (x, y − 1), (x+ 1, y), (x, y + 1), (x− 1, y − 1),

(x− 1, y + 1), (x+ 1, y − 1), (x+ 1, y + 1)}.

Let m be any of the numbers 4 or 8. A sequence A0, A1, ..., An is called an Nm-path if
Ai ∈ Nm(Ai−1) for each i = 1, 2, ...n. Any two points A,B ∈ S are said to be Nm-
connected in S if there exists an Nm-path A = A0, A1, ..., An = B from A to B such that
Ai ∈ S for each i = 1, 2, ...n. A digital set S is an Nm-connected set if any two points
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P ,Q from S are Nm-connected in S. An Nm-connected component of a set S is a maximal
subset of S, which is Nm-connected.

An Nm-path A = A0, A1, ..., An = B from A to B is called a monotone increasing
Nm-path if Ai ⊂ Ai+1 for all 0 ≤ i < n, i.e.,

(xAi
< xAi+1

) ∧ (yAi
≤ y

Ai+1
) or (x

Ai
≤ x

Ai+1
) ∧ (y

Ai
< y

Ai+1
).

The chain property and the fact that the family of feasible sets of a poly-antimatroid is
closed under union mean that for each two points A,B: if B ⊂ A, then there is a monotone
increasing N4-path from B to A, and if A is incomparable with B, then there is a monotone
increasing N4-path from both A and B to A ∪ B = (max(xA, xB),max(yA, yB)). In
particular, for each A ∈ S there is a monotone decreasing N4-path from A to 0. So, we
can conclude that a poly-antimatroid polygon is an N4-connected component in the digital
plane Z2.

Definition 2.2. A point set S ⊆ Z2 is defined to be orthogonally convex if, for every
line L that is parallel to the x-axis (y = y∗) or to the y-axis (x = x∗), the intersection
of S with L is empty, a point, or a single interval ([(x1, y

∗), (x2, y
∗)] = {(x1, y

∗), (x1 +
1, y∗), ..., (x2, y

∗)}).

It follows immediately from the chain property that every poly-antimatroid polygon S
is both connected and orthogonally convex.

In what follows we prove that poly-antimatroid polygons are closed not only under
union, but under intersection as well.

Lemma 2.3. A poly-antimatroid polygon is closed under intersection, i.e., if two points
A = (xA, yA) and B = (xB , yB) belong to a poly-antimatroid polygon S, then the point
A ∩B = (min(xA, xB),min(yA, yB)) ∈ S.

Proof. The claim of the lemma is evident for two comparable points. Consider two in-
comparable points A and B, and assume without loss of generality that xA < xB and
yA > yB . Then there is a monotone decreasing N4-path from A to 0, and so there is a
point C = (xC , yB) ∈ S on this path with xC ≤ xA. Hence, the point A ∩ B belongs to
S, since it is located on the monotone increasing N4-path from C to B.

Thus, every poly-antimatroid polygon is a distributive lattice polyhedron [11], since
x, y ∈ S ⇒ min(x, y),max(x, y) ∈ S.

Consider the following rectangles:

R = {(x, y) ∈ Z2 : xmin ≤ x ≤ xmax ∧ ymin ≤ y ≤ ymax} and |R| > 1

Definition 2.4. The sequence of n rectangles C1, C2, ..., Cn is called regular if
(a) x0

min = y0min = 0
(b) xi

min ≤ xi+1
min ∧ yimin ≤ yi+1

min

and for each 1 ≤ i ≤ n− 1 at least one of the inequality is strong
(c) xi+1

min ≤ xi
max ∧ yi+1

min ≤ yimax for each 1 ≤ i ≤ n− 1
(d) xi

max ≤ xi+1
max ∧ yimax ≤ yi+1

max

and for each 1 ≤ i ≤ n− 1 at least one of the inequality is strong

Lemma 2.3 implies that every poly-antimatroid polygon is a union of rectangles built
on each pair of incomparable points. The following is even more explicit.
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Lemma 2.5. Every poly-antimatroid polygon is a regular sequence of rectangles.

Proof. Consider the set of rectangles built on pairs of incomparable points and leave only
maximal rectangles, i.e., rectangles that are not covered completely by other rectangles.
These rectangles forms a regular sequence. Indeed, the property (a) and (c) follows from
the definition of a poly-antimatroid polygon (A1).

Suppose there are two maximal rectangles R1 and R2 with two incomparable minimal
points (x1

min, y
1
min) and (x2

min, y
2
min). Then, since poly-antimatroid polygons are closed

under union and under intersection, these rectangles are covered by two rectangles. The
minimal and maximal points of the first rectangle are

(min(x1
min, x

2
min),min(y1min, y

2
min)), (min(x1

max, x
2
max),min(y1max, y

2
max)).

The minimal and maximal points of the second rectangle are

(max(x1
min, x

2
min),max(y1min, y

2
min)), (max(x1

max, x
2
max),max(y1max, y

2
max))

respectively. There are the cases that these two rectangles are identical. See Figure 3. Thus
the rectangles R1 and R2 are not maximal and so all minimal points are comparable. The
same is true for maximal points as well.
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Figure 3: Two examples for proof of Lemma 2.5.

The following theorem shows that a poly-antimatroid polygon is a parallelogram poly-
omino.

Theorem 2.6. A set of points S in the digital plane Z2 is a poly-antimatroid polygon if
and only if it is an orthogonally convex N4-connected set that is bounded by two monotone
increasing N4-paths between (0, 0) and the maximum point of the set (xmax, ymax).

To prove the “if” part of Theorem 2.6 it remains to give a definition of the boundary.
A point A in set S is called an interior point in S if N8(A) ∈ S. A point in S which

is not an interior point is called a boundary point. All boundary points of S constitute the
boundary of S. We can see a poly-antimatroid polygon with its boundary in Figure 4.

Since poly-antimatroid polygons are closed under union and under intersection, there
are six types of boundary points that we divide into two sets – lower and upper boundary:

Blower = {(x, y) ∈ S : (x+ 1, y) /∈ S ∨ (x, y − 1) /∈ S ∨ (x+ 1, y − 1) /∈ S}
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Figure 4: A boundary of a poly-antimatroid polygon.

Bupper = {(x, y) ∈ S : (x− 1, y) /∈ S ∨ (x, y + 1) /∈ S ∨ (x− 1, y + 1) /∈ S}
It is possible that Blower ∩Bupper 6= ∅. For example, the point B10 in Figure 4 belongs

to both the lower and upper boundaries.
From Lemma 2.5 it follows immediately that lower and upper boundaries are bound-

aries of regular sequence of rectangles and so a poly-antimatroid polygon is an orthogonally
convex N4-connected set bounded by two monotone increasing N4-paths.

The following lemma is the “only-if” part of Theorem 2.6.

Lemma 2.7. An orthogonally convex N4-connected set S that is bounded by two monotone
increasing N4-paths between (0, 0) and (xmax, ymax) is a poly-antimatroid polygon.

Proof. By Definition 2.1 we have to check the two properties (A1) and (A2):
(A1) Let A = (x, y) ∈ S. If A is an interior point in S then (x − 1, y) ∈ S and

(x, y−1) ∈ S. If A is a boundary point, then the previous point on the boundary ((x, y−1)
or (x− 1, y)) belongs to S.

(A2) Let A * B ∈ S. Consider two cases:
(i) xa ≥ xb and ya ≥ yb. If B is an interior point in S then (xb + 1, yb) ∈ S and

(xb, yb+1) ∈ S. If B is a boundary point, then the next point on the boundary ((xb, yb+1)
or (xb + 1, yb)) belongs to S.

(ii)xa ≤ xb and ya ≥ yb. We have to prove that (xb, yb+1) ∈ S. Suppose the opposite.
Then the point B is an upper boundary point. Since ya ≥ yb there exists an upper boundary
point (xa, y) with y ≥ yb that contradicts the monotonicity of the boundary.

Corollary 2.8. Any poly-antimatroid polygon S may be represented as the union of its
boundary:

S = Blower ∨ Bupper = {X ∪ Y : X ∈ Blower, Y ∈ Bupper}

3 Convex dimension
Definition 3.1. Convex dimension [18] cdim(S) of any antimatroid S is the minimum
number of maximal chains

∅ = X0 ⊂ X1 ⊂ ... ⊂ Xk = Xmax with Xi = Xi−1 ∪ xi

whose union gives the antimatroid S.
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The set of maximal chains sufficient to realize a poly-antimatroid is called a convex
realizer.

The result of Corollary 2.8 shows that the convex dimension of a two-dimensional poly-
antimatroid equals two. Note, that the convex dimension of an arbitrary three-dimensional
poly-antimatroid may be arbitrarily large [8]. Let S be a set of points:

S = {(x, y, z) : (0 ≤ x, y ≤ N) ∧ (0 ≤ z ≤ 1) ∧ (z = 1⇒ x+ y ≥ N)}.

It is easy to check that S is a three-dimensional poly-antimatroid. Consider N + 1
points (x, y, 1) with x + y = N . Since each of these points cannot be represented as a
union of any points from S with smaller coordinates, the convex dimension of S is at least
N + 1.

In the sequel we prove that the convex dimension of an n-dimensional poset poly-
antimatroids is at most n.

An endpoint of a feasible set X is an element e ∈ X such that X − e is a feasible set
too. A feasible set that has only one endpoint is called a path of the antimatroid. It is easy
to see that a path is an union-irreducible element of the lattice and each feasible set is the
union of its path subsets. The family of ideals in the set of paths partially ordered by set
inclusion forms path poset antimatroid.

Theorem 3.2. [18] The convex dimension of antimatroid is equal to the width of its path
poset.

It is easy to check that the theorem holds for poly-antimatroids as well.
Denote by dim(S) the order dimension of the lattice of feasible multisets of a poly-

antimatroid. The order (or the Dushnik-Miller) dimension of a poset is the smallest number
of total orders the intersection of which gives the partial order.

Corollary 3.3. [18]

dim(S) ≤ cdim(S)

Since any n-dimensional poly-antimatroid may be represented as a subset of the integer
lattice Zn, its order dimension is at most n [23].

For poset poly-antimatroids their convex dimension should equal to order dimension,
since feasible sets of a poset poly-antimatroid form a distributive lattice and order di-
mension of distributive lattice is equal to the width of its path poset (ideals of the union-
irreducible elements)[23]. Eventually, we obtain the following.

Proposition 3.4. The convex dimension of the n-dimensional poset poly-antimatroids is at
most n.

4 Conclusions
It turned out that a two-dimensional case of a poly-antimatroid known in this paper as
a poly-antimatroid polygon is equivalent to special cases of polyominoes, lattice animals,
and staircase polygons. It seems to be a challenging problem to generalize the path structure
of poly-antimatroid polygons to upper dimensions.
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