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Povzetek. Razvili smo rešitev za gluhe in naglušne osebe v obliki aplikacije, imenovane UHO. Rešitev s
pomočjo lokalnega modela razpoznave govora omogoča realnočasovni prikaz podnapisov slovenskega govora, ki
se predvaja na napravi. V ta namen smo s pomočjo govornega korpusa Artur 1.0 učili modele za razpoznavo
govora. Učenje je potekalo na superračunalniku VEGA, kjer smo na testni množici za večji model base dosegli
stopnjo napačno razpoznanih besed 11,38% in 15,19% za manjši model tiny. Realnočasovno izvedbo smo
zagotovili z uporabo ustreznih zaledij za sklepanje z modeli in s pristopom optimizacije dekodiranja žetonov,
ki ga imenujemo aditivno dekodiranje. Rezultati so spodbudni in kažejo, da realnočasovna razpoznava daje
primerljive rezultate kot razpoznava celotnih posnetkov naenkrat.

Ključne besede: Realnočasovna razpoznava govora, okvara sluha, samodejno podnaslavljanje, strojno učenje

Slovenian speech captioning system for deaf and hard of
hearing

We developed a solution for deaf and hard of hearing in
the form of an application, called UHO. The solution uses
a local speech recognition model to display real-time captions
of Slovenian speech that is being played on the device. For
this purpose, we used the speech corpus Artur 1.0 to train the
speech recognition models. We trained the models on the VEGA
supercomputer, where we achieved word error rates of 11.38%
for the larger base model and 15.19% for the smaller tiny model.
We ensured real-time execution by using appropriate model
inference backends and by using a token decoding optimization
approach that we call additive decoding. Results are promising,
indicating that real-time speech recognition can give comparable
results to recognition of full-length audio samples.

1 UVOD

Okvara sluha spada med eno izmed najtežjih oblik
invalidnosti [2]. V Sloveniji o večjih težavah s sluhom
poroča 5,7% populacije [3]. Prav tako več kot 5%
svetovne populacije zaradi okvare sluha potrebuje
rehabilitacijo. Do okvare sluha lahko pride na več
načinov. Med te sodijo npr. težave v obdobju pred
ali med rojstvom, kronične okužbe ušes, poslabšanje
sluha zaradi starosti, izpostavljenost glasnim zvokom
in podobno. Gluhim in naglušnim lahko vsakdanje
situacije predstavljajo velik stres, gluhost pa vpliva
na kakovost življenja in vodi do socialne izolacije.
Poleg tega lahko gluhost negativno vpliva na socialno
varnost, delozmožnost, proces izobraževanja, zmožnost
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komunikacije in počutje. Pri starejših z okvaro sluha je
prav tako lahko prisotna depresija [4].

Gluhe osebe v Sloveniji imajo sicer pravico do tolmača,
vendar žal le v omejenem obsegu ur (t. i. vavčerjev). Na
voljo imajo 30 ur letno, razen dijakov in študentov, ki
jim pripada 100 ur letno [5]. Gluhe osebe poudarjajo, da
je to premalo [6].

Tehnološki napredek na področju umetne inteligence
je omogočil razvoj različnih aplikacij za osebe s
posebnimi potrebami, kot so [36][37][38]. Razcvet je
doživela tudi tehnologija razpoznave govora, ki danes
že dosega stopnjo razpoznave, primerljivo s človeško
sposobnostjo [12]. Preprostejši sistemi razpoznavajo
po eno besedo naenkrat (angl. isolated-word speech
recognition). To je uporabno npr. pri zaznavi začetne
besede pri razpoznavi govora (angl. wake word detection)
in v sistemih z glasovnimi ukazi [39]. Po drugi strani
kompleksnejši sistemi govor razpoznavajo kontinuirano
(angl. continuous speech recognition). V našem delu gre
za kontinuirano razpoznavo govora.

Razpoznava govora na področju podporne tehnologije
(angl. Assistive Technology) najde uporabno vrednost pri
različnih podpornih sistemih. Primer tega so programske
rešitve podjetja Nuance [16], ki osebam s stanji, kot je
kvadriplegija, omogočajo glasovni nadzor računalnika.
Obstajajo tudi rešitve, ki gluhim uporabnikom omogočajo
prikaz strojno generiranih podnapisov za zvok, ki se
predvaja na napravi. Primer tega je aplikacija “Live
captions” [7] podjetja Microsoft, ki je na voljo v okolju
operacijskega sistema Windows. Prav tako za naprave
z operacijskim sistemom Android obstaja aplikacija
“Samodejni podnapisi” [8] podjetja Google. Žal nobena
od omenjenih aplikacij ne podpira slovenskega jezika.
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Pogosto so rešitve za razpoznavo govora storitve v
oblaku, npr. Google Cloud Speech-to-Text [1]. Razlog
za implementacijo razpoznavalnikov govora v oblaku je
predvsem računska zahtevnost izvajanj velikih modelov
strojnega učenja. Slabosti pa so, da so takšne storitve
plačljive, da porajajo vprašanje o zasebnosti, prav tako
pa lahko kakovost dobljenih transkriptov variira.

V našem delu smo razvili rešitev* v obliki aplikacije
za operacijska sistema Windows in Android, imenovane
UHO. Rešitev omogoča realnočasovno podnaslavljanje
slovenskega govora in temelji na uporabi lokalnih
modelov Whisper [12] podjetja OpenAI brez potrebe po
internetni povezavi. Modele smo na superračunalniku
VEGA doučili (angl. fine-tuning) s pomočjo slovenskega
govornega korpusa Artur 1.0 [9]. V okolju operacijskega
sistema Windows smo uporabili večji model Whisper
base, v okolju operacijskega sistema Android pa
najmanjši model Whisper tiny. Primer grafičnega
izrisa podnapisov ob predvajanju določenega podkasta
prikazuje slika 1. Podnapisi se sproti izpisujejo v sivem
polju na dnu zaslona, ne glede na to, katero okno je v
ospredju.

V aplikaciji UHO za operacijski sistem Windows smo
implementirali sklepanje (angl. inference) na centralni
procesni enoti (CPE), da bi aplikacija lahko delovala
na čim širšem naboru računalnikov. V aplikaciji za
operacijski sistem Android smo pri sklepanju omogočili
Androidov aplikacijski programski vmesnik za nevronske
mreže (Android Neural Networks API – NNAPI), ki sam
določi, katere operacije bodo pri sklepanju potekale na
CPE in katere na grafični procesni enoti (GPE).

Modeli Whisper na vhodu zahtevajo 30-sekundni
posnetek oz. pripadajoč log-mel spektrogram. To je
predstavitev zvočnega signala v frekvenčnem prostoru, ki
s pomočjo logaritmično razporejenega sklopa filtrov daje
večji poudarek signalu pri višjih frekvencah. Če torej v
scenariju realnočasovne razpoznave z modelom sklepamo
približno vsaki 2 sekundi, še zmeraj obstaja 28-sekundno
prekrivanje govora med trenutno in prejšnjo iteracijo
sklepanja. To pri dekodiranju žetonov prinaša veliko
redundanco, saj je večina žetonov med iteracijama enaka.
Za namen zmanjšanja redundance smo implementirali
pristop, kjer smo v t. i. poziv (angl. prompt) modela
podali dekodirane žetone iz prejšnje iteracije sklepanja.
Tako smo izračunali le na novo pridobljene žetone in
pri dekodiranju prihranili veliko procesorskega časa. Ta
intuitivni pristop imenujemo aditivno dekodiranje in ga
podrobneje opišemo v nadaljevanju.

V rešitvi UHO za operacijski sistem Windows smo
za sklepanje uporabili knjižnico CTranslate2 [21].
CTranslate2 omogoča učinkovito sklepanje z modeli
transformerjev in je na voljo za programska jezika
C++ in Python. Zaradi potrebe po večji fleksibilnosti
pri postopku aditivnega dekodiranja smo skozi analizo

∗Programska koda rešitve je na voljo na https://github.com/obstino
-org/uho, naučeni modeli in učni podatki pa na https://huggingface.co
/blko.

Slika 1 Demonstracija podnaslavljanja naše aplikacije UHO
za operacijski sistem Windows, na primeru zvočne vsebine
določenega podkasta.

knjižnice namesto višjenivojskih rutin uporabili določene
nižjenivojske rutine knjižnice. Po drugi strani smo
v rešitvi za operacijski sistem Android sklepali s
pomočjo knjižnice ONNX (angl. Open Neural Network
Exchange) [25]. Modele Whisper smo doučili s
Pythonovo knjižnico HuggingFace Transformers [26],
ki pa uporablja modele tipa pytorch [27], zato je bilo
treba modele pretvoriti iz tipa pytorch v tip ONNX. Pri
tem smo dodatno implementirali pomembno tehniko
za pohitritev sklepanja z dekodirnikom, imenovano
KV-predpomnjenje (angl. Key-Value Caching – KV
Caching – predpomnjenje ključev in vrednosti).

Pri vrednotenju rezultatov smo uporabili znano metriko
stopnje napačno razpoznanih besed (angl. Word Error
Rate – WER), ki je definirana [14] z enačbo (1). V
enačbi I (angl. Insertions), D (angl. Deletions) in S
(angl. Substitutions) predstavljajo število vstavljenih,
izbrisanih in zamenjanih besed v razpoznanem besedilu.
N predstavlja število besed v referenčnem (dejansko
izgovorjenem) besedilu.

WER =
I +D + S

N
× 100 [%] (1)

Človek razpoznava z vrednostjo WER okoli 4% [23],
medtem ko bi bila vrednost WER pri razpoznavi govora
v idealnem primeru 0%. Pregled vrednosti WER, ki jih
na različnih govornih korpusih dosegajo različni modeli
strojnega učenja, je podan v [30].

Struktura članka je sledeča. V poglavju 2 članka
opišemo sorodna dela. Nato v poglavju 3 opišemo,
kako uporabljamo modele Whisper, kjer med drugim
podrobneje opišemo naš pristop aditivnega dekodiranja.
Sledi poglavje 4, kjer opišemo način učenja modelov.
Rezultate učenja predstavimo v poglavju 5. V poglavju
6 sledi predstavitev rezultatov realnočasovne razpoznave,
kot so meritve časov sklepanja z modeli, točnost
realnočasovne razpoznave in primerjava rezultatov s
sorodnimi deli. V zadnjem poglavju 7 povzamemo
ugotovitve in prispevke našega dela ter opišemo smernice
za nadaljnje delo.
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2 SORODNA DELA

V delu [18] so razpoznavali slovenski govor z
nevronskimi mrežami s časovnim zamikom (angl. Time
Delay Neural Network – TDNN) in mrežami z
dolgim kratkoročnim spominom (angl. Long Short-Term
Memory). Uporabili so tri različne govorne korpuse, med
drugim tudi Gos 1.0 [32]. Avtorji so primerjali metode,
temelječe na nevronskih mrežah s statistično osnovanim
pristopom skritih modelov Markova v kombinaciji
z mešanicami Gaussovih porazdelitev (angl. Hidden
Markov Models, Gaussian Mixture Models). Najboljše
rezultate na testni množici so dosegli s TDNN, in sicer z
vrednostjo WER 27,16%. V nasprotju z našim delom so
avtorji uporabili prilagojene arhitekture nevronskih mrež,
medtem ko v našem delu Whisper temelji na arhitekturi
transformer. Prav tako so pri učenju uporabili relativno
manjše učne množice v skupnem obsegu približno 140
ur.

Zanimivo je delo [17], v katerem so avtorji
razpoznavali slovenski govor za domeno
dnevnoinformativnih oddaj. Avtorji so za razpoznavo
govora uporabili nevronsko mrežo in ločen trigramski
jezikovni model z velikostjo slovarja 250.000 besed.
Nevronsko mrežo so učili z manjšo količino zvočnih
posnetkov v obsegu 66 ur in dosegli vrednost
WER 15,71%. Avtorji so v nasprotju z našim delom
uporabljali ločen akustični in jezikovni model. Rešitev
avtorjev je dosegla relativno nizko vrednost WER.
Obstaja pa verjetnost, da njihov model ne bi deloval tako
uspešno na posnetkih zunaj domene dnevnoinformativnih
oddaj.

Obstaja tudi delo Online Notes [33], v katerem
so za študente iz tujine in študente s posebnimi
potrebami razvili sistem za realnočasovno prevajanje
in podnaslavljanje govora. Govor so razpoznavali in
prevajali v oblaku. Avtorji poročajo o vrednosti WER
20%, ki so jo dosegli ob prvem predavanju v sklopu
semestrskega testiranja. V delu Online Notes v nasprotju
z našo rešitvijo govora niso razpoznavali lokalno na
napravi, temveč v oblaku. Prav tako so morali svoj
jezikovni model sproti prilagajati vsebini predavanj.

Z realnočasovno razpoznavo z modeli Whisper so
se ukvarjali v delu Whisper-Streaming [19]. Avtorji
so, podobno kot mi, uporabljali pristop, kjer so doslej
dekodirane žetone dali modelu na vhodu kot poziv.
Implementacija njihove rešitve periodično zajema nov
zvok govora. V zadnjih dveh iteracijah zajema zvoka
in razpoznave govora obstaja prekrivanje žetonov, ki
so bili dekodirani. Prekrivajoči se žetoni se štejejo kot
potrjen transkript. To dosežejo s pomočjo t. i. algoritma
lokalnega soglasja (angl. Local Agreement) [31]. S
pomočjo informacije o časovnih oznakah ob zaznavi
ločila nato krajšajo zvočni medpomnilnik do časovne
oznake ločila. S tem zagotovijo, da medpomnilnik vselej
vsebuje zgolj eno poved. Rešitev Whisper-Streaming v
nasprotju z našo za uspešno delovanje potrebuje model,

ki vsebuje časovne oznake na nivoju besed in napoveduje
ločila. To lahko pomeni oviro pri implementaciji rešitve,
saj korpusi, kot je Artur 1.0, ne vsebujejo časovnih oznak
na nivoju besed. Prav tako so avtorji uporabljali večje
modele in jih izvajali na GPE, medtem ko je naša rešitev
zasnovana na uporabi manjših modelov in sklepanja na
CPE.

3 MODELI WHISPER

Modele Whisper je podjetje OpenAI predstavilo in
odprtokodno dalo na razpolago leta 2022 [12]. Modeli
temeljijo na arhitekturi transformerjev in med drugim
omogočajo večjezično razpoznavo govora. Za angleški
jezik model whisper-base dosega vrednost WER 5,0%
na angleškem korpusu LibriSpeech.test-clean, medtem ko
vrednost WER na slovenskem korpusu CommonVoice 9
znaša 70,3%. Ker je slednja vrednost za praktično
uporabo povsem nesprejemljiva, smo pri našem delu
uporabili pristop doučenja modelov. Pri tem smo skripto
za učenje osnovali na [15]. Modeli Whisper so na voljo v
različnih velikostih [22]. Poznamo tiny (najmanjši), base,
small, medium in large (največji)*.

3.1 Sklepanje z modeli
Modeli Whisper so sestavljeni iz kodirnih in

dekodirnih blokov. Z modeli Whisper značilno
sklepamo tako, da na vhodu kodirnika podamo log-mel
spektrogram 30-sekundnega posnetka. S kodirnikom
za dan posnetek sklepamo zgolj enkrat, nato pa z
dekodirnikom sklepamo večkrat – enkrat za vsak nov
izhodni žeton. Izhodni žetoni so del slovarja Whisper,
ki vsebuje 51.865 podbesednih enot (delov besed).
Z dekodirnikom sklepamo tako, da mu na vhodu
podamo izhod kodirnika in do zdaj dekodirane žetone –
t. i. poziv. Poziv daje dekodirniku kontekst za izračun
naslednjega izhodnega žetona. Na začetku dekodiranja je
v našem primeru poziv sestavljen iz zaporedja žetonov
“<|startoftranscript|><|sl|>
<|transcribe|>” [34], ki jim pripadajo numerični
indeksi 50258, 50305, 50359†. Tukaj “<|sl|>”
pomeni oznako, ki pove, da gre za razpoznavo
slovenskega jezika.

Tipično z namenom pridobivanja točnejših transkripcij
uporabljamo pri dekodiranju tudi metodo iskanja z žarki
(angl. beam search) [24]. To je pristop, kjer vzporedno
preiskujemo več možnih izhodnih zaporedij žetonov.
Število preiskovalnih poti je znano tudi kot število
žarkov (angl. beam size). Na koncu izberemo zaporedje
z največjo verjetnostjo žetonov.

3.2 Predpomnjenje ključev in vrednosti
Pri sklepanju na operacijskem sistemu Android smo

model ONNX prilagodili tako, da omogoča uporabo

∗Na voljo so large, large-v2, large-v3 in large-v3-turbo, kjer je
slednji optimiziran za hitrost sklepanja.

†Indekse žetonov najlažje dobimo s pomočjo leksikalnega
analizatorja knjižnice whisper [35].
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Slika 2 Prikaz postopka aditivnega dekodiranja. Zeleno: na
novo dekodirani žetoni; modro: starejši potrjeni žetoni; rdeče:
zavrženi žetoni.

metode t. i. predpomnjenja ključev in vrednosti. Ključi
in vrednosti so vektorji, ki se računajo v mehanizmu
pozornosti arhitekture transformer. Ker tudi modeli
Whisper temeljijo na transformerjih, smo s to tehniko
dosegli bistveno pohitritev časa sklepanja z dekodirnikom.
Prilagojeni model dekodirnika tako zdaj na vhodu
dodatno sprejema ključe in vrednosti iz prejšnje iteracije
sklepanja. Dekodirnik nato vrne modificiran nabor
ključev in vrednosti, ki jih v naslednji iteraciji sklepanja
dekodirniku ponovno damo na vhod. Pohitritev dosežemo,
saj nam s tem pristopom pri sklepanju ni treba ponovno
izračunavati vseh ključev in vrednosti iz prejšnjih iteracij.

3.3 Aditivno dekodiranje
Pri razpoznavi govora značilno zajemamo zvok vsaki

2 sekundi in ga dodajamo v 30-sekundni medpomnilnik.
Naivna implementacija realnočasovne razpoznave
govora bi zaradi zahteve modelov Whisper po fiksni
30-sekundni dolžini vhodnih posnetkov vsakič znova
izvajala razpoznavo govora nad celotnimi posnetki.

Mi smo se odločili uporabiti drugačen, intuitiven
pristop, ki ga imenujemo aditivno dekodiranje. Ta pri
sklepanju z dekodirnikom omogoča uporabo oz. vnos
informacije žetonov iz prejšnje iteracije sklepanja v
trenutno iteracijo. Efektivno to pomeni, da dekodiramo
zgolj nove žetone iz trenutne iteracije, in tako posledično
znatno zmanjšamo število žetonov, ki jih moramo
dekodirati.

Pristop je ilustriran na sliki 2. Za vsak korak je

s pravkotnikom s polno črto in označbo “zvočni tok”
prikazan 30-sekundni medpomnilnik. Ko zajamemo 2
sekundi novega zvočnega odseka, ga dodamo na konec
medpomnilnika, hkrati pa z začetka medpomnilnika
odstranimo 2 sekundi zvoka. Zvok, ki še prihaja, je
označen s pravokotnikom s črtkano črto. Zeleno označeni
so žetoni, ki smo jih dekodirali v trenutnem koraku.
Rdeče označeni so žetoni na začetku in koncu, ki smo
jih zavrgli. Žetone na začetku zavržemo zato, ker nam
je model zanje vrnil nizke verjetnosti in sklepamo, da
v medpomnilniku ni več pripadajočega zvoka. Žetone
na koncu pa zavržemo, ker je stavek na koncu zvočnega
toka pogosto odrezan sredi zadnje besede in posledično
napačno razpoznan. Imamo tudi modro označene žetone,
to so žetoni, ki smo jih dekodirali v prejšnjih iteracijah.
Poziv v naslednjem koraku je sestavljen iz spajanja
modrih in zelenih žetonov prejšnje iteracije.

Ko ob zajemu novega zvoka krajšamo začetek
zvočnega medpomnilnika, začetek posnetka morda ne bo
več vseboval vsebine govora iz prejšnjih iteracij sklepanja.
Kot omenjeno, nam bo dekodirnik v naslednji iteraciji
sklepanja za žetone odstranjenega zvoka vrnil zelo nizko
verjetnost. Te žetone odstranjujemo na nekoliko podoben
način kot avtorji v [12] zaznavajo t. i. halucinacije
(angl. hallucinations) [13], s pomočjo izračuna verjetnosti
žetonov. Natančneje, pri našem pristopu odstranjujemo
žeton na prvem indeksu, dokler je povprečje logaritmov
verjetnosti prvih 5 žetonov manjše od določenega praga.

Podobno s pomočjo izračuna logaritma verjetnosti
zadnjih 5 žetonov tudi odstranjujemo rdeče označene
žetone s konca transkripcij, kar lahko vidimo na
sliki 2. Dodatno s konca odstranjujemo žetone, dokler
ti vsebujejo neabecedne simbole. To je koristno, saj
model zaradi prekinjenega govora kot zadnji simbol
pogosto napove ločilo, čeprav se stavek še nadaljuje.
Poleg tega s konca odstranimo še backPopExtra = 3
žetone, saj je zadnji stavek razpoznanega govora zaradi
odsekovne narave zajema zvoka pogosto odrezan sredi
besede. Posledično to pomeni, da bi dobili napačne
transkripcije, če teh žetonov ne bi odstranili.

3.4 Praktični izzivi in rešitve
Modeli Whisper so dovzetni predvsem za pojav

t. i. halucinacij [12], kjer model napoveduje besede, ki
jih ni v zvočnem posnetku. Pogosto se to zgodi, ko je na
posnetku tišina, lahko pa se tudi sicer. Halucinacije se
lahko pojavijo kot naključne besede ali kot neprekinjen
niz ponavljajočih se besed (angl. repeat loops [12]) kot
npr. “da je bilo je bilo je bilo...”. Halucinacije smo v
našem delu zaznavali s pomočjo preverjanja verjetnosti
žetonov, saj imajo pogosto nižjo verjetnost. Dodatno
smo jih zaznavali z merjenjem kompresijskega razmerja
izhodnega transkripta, kajti ponavljajoče se besede v
halucinacijah imajo višje kompresijsko razmerje. Pri
tem smo se zgledovali po pristopu avtorjev [12]. Kadar
halucinacije zaznamo, nastavimo žetone poziva na prazen
seznam in 30-sekundni zvočni medpomnilnik na ničelne
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vrednosti. S tem zagotovimo nadaljevanje dekodiranja,
žal pa posledično določen del govora ne bo razpoznan.

Dodaten izziv je tudi situacija, pri kateri pride do
zastoja pri dekodiranju in model namesto napovedi
novega žetona napove žeton za konec razpoznanega
besedila (<|endoftext|>). Opažali smo, da do tega
pogosto pride pri menjavi govorca znotraj zajetega
zvoka. Videli smo, da je ta neželeni pojav mogoče
zmanjšati z odstranjevanjem odsekov daljših tišin z
detektorjem glasovne aktivnosti (angl. Voice Activity
Detector – VAD)‡. V ta namen smo v našem delu
uporabili model Silero VAD [20]. Prav tako smo s
pomočjo VAD detektirali, kdaj je v posnetku 3-sekundna
tišina, ob pojavitvi katere smo resetirali poziv in zvočni
medpomnilnik.

4 UČENJE

4.1 Opis korpusa Artur 1.0
Korpus Artur 1.0 [9] vsebuje 1.067 ur slovenskega

govora, od katerih je 884 ur transkribiranih. Korpus med
drugim vsebuje posnetke branega govora iz korpusa
Gigafida 2.0, posnetke parlamentarnega govora ter
posnetke javnega in nejavnega govora. Mi smo pri učenju
od tega uporabili 832 ur – pri tem nismo vključili studio
posnetkov enega govorca.

Korpus za vse posnetke govora vsebuje
t. i. standardizirane in pogovorne zapise transkriptov.
Primer pogovornega zapisa transkripta iz korpusa
je “Res je, da je predlog zakona naraunan za tisto
kategorijo, ki je najbol ogrožena.” Pripadajoči transkript
v standardiziranem zapisu je “Res je, da je predlog
zakona naravnan za tisto kategorijo, ki je najbolj
ogrožena.” V našem delu smo se pri učenju odločili za
uporabo standardiziranih transkripcij.

Korpus sicer nima časovnih oznak na nivoju besed,
kjer bi za vsako besedo vedeli, kdaj se je pojavila v
posnetku, vsebuje pa časovne oznake na nivoju skupkov
besed oz. stavkov. Pri učenju z do 30 sekund dolgimi
posnetki smo se odločili za dodajanje žetona s časovno
oznako z dolžino trajanja posnetka na konec zaporedja
učnih žetonov. Če je bilo trajanje posnetka na primer 17,4
sekunde, smo pripeli žeton z oznako <|17.40|>. To je
mogoče, saj imajo modeli Whisper rezervirane žetone za
časovne oznake, smiselno pa se nam je zdelo, saj obstaja
argument, da vključitev časovnih oznak lahko preprečuje
pojav halucinacij. Transkripcije so v formatu .trs orodja
za transkribiranje Transcriber 1.5.1 [10]. Primer besedila
v datoteki .trs prikazuje transkript 1.

Transkript 1: Zgled odseka datoteke tipa .trs
<Sync t ime = "61 .7 68" / >
Res je , da
<Sync t ime = "63 .1 96" / >

‡Spletna diskusija, od koder smo črpali idejo: https://github.com/o
penai/whisper/discussions/679.

j e p r e d l o g zakona
<Sync t ime = "64 .7 91" / >
n a r a v n a n za t i s t o

Transkripcije vsebujejo* tudi okoli 200 neverbalnih in
polverbalnih glasov, ki so v besedilu označeni z lojtro
(npr. glas #mhm). Mi smo pri učenju modelov te oznake
v učnih podatkih ohranili.

4.2 Priprava podatkov in okolja za učenje
Ker modeli Whisper delujejo nad 30-sekundnimi

posnetki, smo morali pri pripravi učnih podatkov daljše
posnetke primerno skrajšati. To je bilo mogoče storiti,
saj korpus Artur vsebuje informacijo o časovnih oznakah.
Primer časovne oznake v transkriptu 1 je denimo
“<Sync time=61.768/>”, kar pomeni, da se odsek
besedila za to oznako začne pri 61,768 sekundi danega
posnetka. Da smo daljše posnetke skrajšali, smo torej s
pomočjo opisanih oznak krajše odseke združevali, dokler
je bilo njihovo skupno trajanje krajše od 30 sekund.
Tako smo razrezali daljše posnetke na krajše, največ
30-sekundne odseke.

Učili smo s pomočjo skripte Python, predvsem
z uporabo knjižnic HuggingFace Transformers [26],
HuggingFace Datasets [28], pytorch [27] in evaluate [29].
Celotni korpus na disku zavzema okoli 300 GB
prostora in je pomnilniško zahteven tudi po ekstrakciji
značilnic log-mel spektrogramov. To je pomenilo izziv,
saj se med učenjem učni podatki navadno hranijo v
glavnem pomnilniku, zato smo se odločili za uporabo
t. i. pretakanja (angl. dataset streaming) s pomočjo
knjižnice HuggingFace Datasets. S pomočjo naše
skripte smo ustvarili več komprimiranih datotek tipa
“.parquet” [11], ki smo jih potem med učenjem pretočno
brali z diska.

Učili smo na superračunalniku VEGA, na vozliščih z
NVIDIA A100 GPE. Skripto Python smo zagnali znotraj
vsebnika Singularity. Skripto smo snovali tako, da je bilo
omogočeno nadaljevanje učenja tudi po njegovi prekinitvi,
do katere pride zaradi časovne omejitve izvajanja procesa.
Skupaj je učenje trajalo približno 3 dni. Model base smo
učili s stopnjo učenja 2,50E−5 in velikostjo paketa 32,
model tiny pa s stopnjo učenja 3,75E−5 in velikostjo
paketa 32. Skupaj smo učili 51.000 korakov oziroma 6
epoh. Število epoh izračunamo s pomočjo enačbe 2.

štEpoh =
štKorakov × velikostPaketa

štUčnihPrimerkov
=

51.000× 32

270.000
≈ 6

(2)

Vmesne rezultate smo shranjevali na vsakih 4.000
korakov. Iz celotnega korpusa smo za testno množico
namenili 15 ur posnetkov. Preostali del korpusa smo
razdelili na učno in validacijsko množico v razmerju
90 : 10.

∗Seznam neverbalnih in polverbalnih glasov najdemo v datoteki s
transkripti “Artur-DOC/Artur-PogovorniZapis.pdf”.
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Slika 3 Prikaz izgube na validacijski množici v odvisnosti od
učnega koraka med učenjem modela whisper-base.

Slika 4 Prikaz vrednosti WER na validacijski množici
v odvisnosti od učnega koraka med učenjem modela
whisper-base.

5 REZULTATI UČENJA

Pri vrednotenju rezultatov smo transkripte normalizirali
tako, da smo besedila spremenili v male črke, odstranili
ločila in druge znake ter dvojne presledke.

Na sliki 3 je prikazan graf vrednosti izgube na
validacijski množici za model base med procesom učenja.
Z grafa je razvidno, da je vrednost izgube začela naraščati
po koraku 32.000. Prav tako je s slike 4 razvidno, da je
vrednost WER na validacijski množici pri istem koraku
dosegla najnižjo vrednost. Naraščanje vrednosti izgube po
tem koraku je mogoče pripisati prekomernemu prileganju.

Na sliki 5 je prikazano gibanje vrednosti izgube na
validacijski množici za model tiny, medtem ko slika 6
prikazuje graf vrednosti WER na validacijski množici v
odvisnosti od učnega koraka. Podobno kot pri modelu
base je tudi tukaj po 32.000 koraku vrednost izgube
začela naraščati, najverjetneje zaradi prekomernega
prileganja. Po tem koraku tudi vrednost metrike WER
ni bistveno padala.

V končni implementaciji smo uporabili modela base
in tiny pri koraku 32.000, kar ustreza 3,8 epohe. Model
base je pri tem koraku na testni množici dosegel vrednost
WER 11,38%, model tiny pa WER 15,19%.

Slika 5 Prikaz izgube na validacijski množici v odvisnosti od
učnega koraka med učenjem modela whisper-tiny.

Slika 6 Prikaz vrednosti WER na validacijski množici v
odvisnosti od učnega koraka med učenjem modela whisper-tiny.

6 REZULTATI REALNOČASOVNE
RAZPOZNAVE

6.1 Meritve časov sklepanja
Z doučenima modeloma Whisper base in tiny smo

izvedli meritve časov realnočasovnega sklepanja. Za
sklepanje z modeli smo preizkusili različna zaledja,
in sicer knjižnico ONNX, CTranslate2 ter knjižnico
HuggingFace Transformers. Meritve smo povprečili
nad minimalno 100 izvajanji kodirnika in dekodirnika.
Meritve smo izvajali na CPE na prenosnem računalniku
s procesorjem AMD Ryzen 7 5800H in na pametnem
telefonu Samsung Galaxy A52S 5G s procesorjem
Qualcomm Snapdragon 778G. Na operacijskem sistemu
Android smo z namenom pohitritve sklepanja z modeli
pri uporabi zaledja ONNX omogočili NNAPI.

V tabeli 1 so prikazani časi sklepanja kodirnika pri
uporabi različnih zaledij za sklepanje ter modelih base
in tiny. Iz tabele je razvidno, da je čas sklepanja s
kodirnikom pri uporabi zaledja ONNX najmanjši. V
primerjavi z implementacijo CTranslate2 je bila na
operacijskem sistemu Android pri uporabi modela tiny
prisotna več kot sekunda razlike.

V tabeli 2 so prikazani časi sklepanja enega
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Tabela 1 Časi sklepanja s kodirnikom (krepko označeni sta
konfiguraciji, uporabljeni v končni rešitvi).

Zaledje za sklepanje Model
base tiny

Windows – ONNX 253 ms 126 ms
Windows – CTranslate2 568 ms 245 ms
Windows – HF Transformers 473 ms 194 ms
Android – ONNX 1.107 ms 413 ms
Android – CTranslate2 3.648 ms 1.643 ms

Tabela 2 Časi sklepanja enega dekodirnega koraka pri
požrešnem dekodiranju z enim žarkom (krepko označeni sta
konfiguraciji, uporabljeni v končni rešitvi).

Zaledje za sklepanje Model
base tiny

Windows – ONNX (brez KV) 53 ms 26 ms
Windows – ONNX (KV) 31 ms 17 ms
Windows – CTranslate2 19 ms 13 ms
Windows – HF Transformers (KV) 13 ms 6 ms
Android – ONNX (brez KV) 193 ms 75 ms
Android – ONNX (KV) 79 ms 40 ms
Android – CTranslate2 85 ms 47 ms

koraka z dekodirnikom. Uporabljena konfiguracija na
operacijskem sistemu Windows z zaledjem CTranslate2
je dosegala čas 19 ms na korak, kar bi pri dekodiranju
100 žetonov ustrezalo približno 2 sekundama. To je
precej bolje kot naivna implementacija z zaledjem
ONNX brez KV-predpomnjenja. Po drugi strani pa je
implementacija s KV-predpomnjenjem na operacijskem
sistemu Android dosegala najmanjši 40 ms čas sklepanja
enega koraka pri uporabi modela tiny.

6.2 Meritve vrednosti WER
Za različne konfiguracije smo izvedli meritve

vrednosti WER med realnočasovno razpoznavo. Pri
vrednotenju smo uporabili posnetek javnega govora
“Artur-J-Gvecg-P500001-avd.wav” iz testne množice
korpusa Artur 1.0 v trajanju 1 ure in 52 minut. Meritve
na sliki 7 prikazujejo vrednosti WER za modela base
in tiny pri različnih časovnih korakih zajema zvočnega
toka in različnem številu žarkov.

Nastavitev največje kakovosti v rešitvi UHO za
operacijski sistem Windows uporablja 4 žarke in
2-sekundni korak. Pri tej nastavitvi model base dosega
vrednost WER 9,56%. Privzeta nastavitev v rešitvi UHO
za operacijski sistem Android uporablja 1 žarek in
2-sekundni korak. Pri tej nastavitvi model tiny dosega
nekoliko višjo vrednost WER 17,47%.

Iz rezultatov vidimo, da ima velikost časovnega koraka
pri zajemu zvočnega toka precejšen vpliv na vrednost
WER. Tako je npr. za model base pri uporabi 1 žarka in
2-sekundnega časovnega koraka vrednost WER nižja za
skoraj 10 odstotnih točk v primerjavi z vrednostjo pri
0,5-sekundnem časovnem koraku. Razvidno je tudi, da
lahko večje število uporabljenih žarkov znatno zmanjša
vrednost WER. To je vidno predvsem pri modelu

Slika 7 Prikaz vrednosti WER med realnočasovno razpoznavo
nad izbranim posnetkom dolžine približno 2 ur; prikazano za
modela Whisper base in tiny pri različnem številu žarkov in
različnih časovnih korakih periodičnega zajema zvoka.

whisper-tiny. Po drugi strani pa se zaradi možne omejene
procesorske moči uporaba več žarkov na operacijskem
sistemu Android ne splača v vseh primerih.

6.3 Primerjava rezultatov WER s sorodnimi deli
V tabeli 3 podamo primerjavo vrednosti WER naše

rešitve s sorodnimi deli. Naša rešitev pri uporabi
whisper-base v primerjavi s slovenskimi sorodnimi deli
dosega najnižjo vrednost WER. Podajamo tudi rezultat
za rešitev Whisper-Streaming, ki pri realnočasovni
razpoznavi dosega nekoliko boljši rezultat od našega.
Po drugi strani pa primerjava z Whisper-Streamingom ni
najbolj poštena, saj so avtorji uporabili precej večji model
whisper-large-v2. Prav tako so razpoznavali angleški
govor, za katerega so bili modeli učeni z nesorazmerno
večjim številom ur kot v naši rešitvi.

7 ZAKLJUČEK

Predstavili smo rešitev za gluhe in naglušne osebe,
imenovano UHO, ki omogoča realnočasovno
podnaslavljanje slovenskega govora s pomočjo
modelov Whisper podjetja OpenAI. Modele smo doučili
na superračunalniku VEGA z govornim korpusom
Artur 1.0. Pri tem smo na testni množici za model
whisper-base dosegli vrednost WER 11,38%, za model
whisper-tiny pa vrednost WER 15,19%.

V aplikaciji UHO za operacijski sistem Windows nam
je kljub uporabi nekoliko večjega modela whisper-base
uspelo zagotoviti realnočasovno izvedbo s pomočjo
knjižnice CTranslate2. V aplikaciji UHO za operacijski
sistem Android smo hitrost sklepanja optimizirali z
uporabo metode KV-predpomnjenja in zaledja ONNX.
Kljub temu smo bili zaradi omejene procesorske moči
mobilnih naprav prisiljeni za realnočasovno razpoznavo
uporabiti manjši, manj točen model whisper-tiny.
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Tabela 3 Primerjava naše rešitve s sorodnimi deli. Krepko označeni sta konfiguraciji, ki smo
ju uporabili v končni rešitvi.

Rešitev Model Vrsta razpoznave Jezik WER
Naša rešitev whisper-base nad celotnimi posnetki slo. 11,38%
Naša rešitev whisper-tiny nad celotnimi posnetki slo. 15,19%
Naša rešitev* whisper-base realnočasovno slo. 10,85%
Naša rešitev* whisper-tiny realnočasovno slo. 17,47%
Sorodno delo s TDNN [18] TDNN nad celotnimi posnetki slo 27,16%
Dnev. inform. oddaje [17] globoke NM nad celotnimi posnetki slo. 15,17%
Online Notes [33] Kaldi WFST realnočasovno (oblak) slo. 20%
Whisper-Streaming** [19] whisper-large-v2 realnočasovno angl. 5,80%
* požrešno dekodiranje, časovni korak 2 s
** testirano na korpusu ESIC

Za izboljšavo kakovosti transkriptov smo
implementirali metodo iskanja z žarki. Realnočasovno
izvedbo smo omogočili z uporabo intuitivnega pristopa,
ki ga imenujemo aditivno dekodiranje. Ta pristop v
glavnem omogoča pouporabo informacije žetonov iz
prejšnje iteracije dekodiranja v naslednjih iteracijah. S
tem pristopom znatno zmanjšamo skupni čas sklepanja
z modeli.

Izvedli smo meritve vrednosti WER med
realnočasovno razpoznavo. Rezultati so spodbudni
in kažejo, da so vrednosti WER pri realnočasovni
izvedbi primerljive z vrednostmi ob razpoznavi celotnih
posnetkov naenkrat.

Iz meritev vrednosti WER pri realnočasovnem
izvajanju smo sicer videli, da modeli tiny izkazujejo
precej višjo vrednost WER kot modeli base. Žal
povečanje števila žarkov na manj zmogljivejših napravah,
kot so sistemi z operacijskim sistemom Android, pri
dekodiranju poveča časovni zamik razpoznave govora.
Možnosti rešitve za to omejitev vidimo v omejitvi
uporabe na nekoliko hitrejše naprave z operacijskim
sistemom Android, kot so Google Pixel s procesorji
Google Tensor. Dodatno vidimo potencial za uporabo
nekoliko večjega modela, kot je whisper-base, na
hitrejših napravah z operacijskim sistemom iOS.

Nadaljnje delo bi moralo reševati zastoje, do katerih
lahko pride pri menjavi govorca. Možna rešitev bi bila
preskakovanje žetonov (angl. token suppression), kot je
predčasno napovedan žeton za konec transkripta.

Prav tako bi nadaljnje delo moralo reševati trenutno
nezmožnost doučenih modelov za večjezično razpoznavo,
ki je posledica t. i. efekta katastrofalnega pozabljanja
(angl. catastrophic forgetting).
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[39] B. Kovačič; B. Bošković , Slovenian command word speech
recognition using transfer learning, Proceedings of the
9th Student Computing Research Symposium (SCORES’23).
University of Primorska Press; Faculty of Electrical Engineering
and Computer Science; Faculty of Computer and Information
Science, str. 43-46, Dostopno na: https://doi.org/10.26493/score
s23.04, 2023
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