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Abstract

A dominating set D ⊆ V (G) of a graph G is a set such that each vertex v ∈ V (G) is
either in the set or adjacent to a vertex in the set. Matheson and Tarjan (1996) proved that
any n-vertex plane triangulation has a dominating set of size at most n/3, and conjectured
a bound of n/4 for n sufficiently large. King and Pelsmajer recently proved this for graphs
with maximum degree at most 6. Plummer and Zha (2009) and Honjo, Kawarabayashi,
and Nakamoto (2009) extended the n/3 bound to triangulations on surfaces.

We prove two related results: (i) There is a constant c1 such that any n-vertex plane
triangulation with maximum degree at most 6 has a dominating set of size at most n/6 +
c1. (ii) For any surface S, t ≥ 0, and ε > 0, there exists c2 such that for any n-vertex
triangulation on S with at most t vertices of degree other than 6, there is a dominating set
of size at most n(1/6 + ε) + c2.

As part of the proof, we also show that any n-vertex triangulation of a non-orientable
surface has a non-contractible cycle of length at most 2

√
n. Albertson and Hutchinson

(1986) proved that for n-vertex triangulation of an orientable surface other than a sphere has
a non-contractible cycle of length

√
2n, but no similar result was known for non-orientable

surfaces.
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1 Introduction
In this paper, we only consider graphs that are finite, undirected, and simple (no loops or
multiple edges) except where specified otherwise.

A dominating set D ⊆ V (G) of a graph G is a set such that each vertex v ∈ V (G) is
either in the set or adjacent to a vertex in the set. The domination number of G, denoted
γ(G), is defined as the minimum cardinality of a dominating set of G. Domination is very
widely studied (see [3] for a recent monograph). A triangulation on a given surface is a
graph embedded on the surface such that every face is bounded by a triangle.

In 1996, Matheson and Tarjan [8] proved γ(G) ≤ n/3 for any n-vertex triangulated
disc G (which includes all plane triangulations) and that this bound is sharp. Plummer and
Zha [11] recently extended this bound to triangulations on the projective plane and proved
γ(G) ≤ dn/3e for triangulations on the torus or Klein bottle. Honjo, Kawarabayashi, and
Nakamoto [4] obtained γ(G) ≤ n/3 for triangulations on the torus and the Klein bottle
and also for locally planar triangulations (triangulations of sufficiently high representa-
tivity) on every other surface. Matheson and Tarjan also gave an infinite class of plane
triangulations with n vertices that requires n/4 vertices to be dominated. They conjectured
that γ(G) ≤ n/4 for every plane triangulation G with a finite number of exceptions, such
as the octahedron, which has 6 vertices and domination number 2.

Conjecture 1.1 (Matheson and Tarjan [8]). There exists n0 such that any n-vertex plane
triangulation with n > n0 has a dominating set of size at most n/4.

High degree vertices are helpful when constructing a small dominating set; this moti-
vates the study of Conjecture 1.1 on graphs with no (or few) high degree vertices.

King and Pelsmajer [7] recently proved Conjecture 1.1 for plane triangulations with
maximum degree at most 6. That is, they found n0 such that γ(G) ≤ n/4 for any n-
vertex plane triangulation G with maximum degree at most 6 and n > n0. (The proof has
n0 = 4.5× 106.)

Our theorems extend the previous results. First, we show that the degree restriction
allows one to prove the following stronger upper bound, which verifies a conjecture by
King and Pelsmajer [7].

Theorem 1.2. There exists a constant c such that any n-vertex plane triangulation with
maximum degree at most 6 has a dominating set of size at most n/6 + c.

We prove Theorem 1.2 with c = 1.05× 107.

Maximum degree at most 6 implies that there are at most 12 vertices of degree less than
6, and all other vertices have degree 6. King and Pelsmajer conjectured that their result
can be extended to plane triangulations with a bounded number of vertices with degree not
equal to 6.

Conjecture 1.3 (King and Pelsmajer [7]). For any constant t, there exists nt such that any
n-vertex plane triangulation with n > nt and at most t vertices of degree other than 6 has
a dominating set of size at most n/4.

They also gave examples [7] showing that the bound n/4 in Conjecture 1.3 cannot be
improved beyond n/6 + c; the examples also imply that the bound in Theorem 1.2 is best
possible.
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One reason to restrict t rather than the maximum degree is to allow us to consider dom-
ination of similar degree-restricted triangulations on various surfaces. Indeed, it follows
easily from Euler’s Formula that if S is any surface other than the plane (sphere), pro-
jective plane, torus, or Klein bottle, then there are no triangulations on S with maximum
degree at most 6.

Theorem 1.4. For any surface S, integer t ≥ 0, and ε > 0, there exists c = c(S, t, ε) such
that any n-vertex triangulation on S, with at most t vertices of degree other than 6, has a
dominating set of size at most n( 1

6 + ε) + c.

We prove Theorem 1.4 with c = O((g3 + gt2)/ε), where g is the genus of S. Since
n is a trivial upper bound for domination number, Theorem 1.4 is only meaningful when
c(S, t, ε) < n, in which case t = O(

√
n).

Since n( 1
6 + ε) + c ≤ n

4 whenever n( 1
12 − ε) ≥ c, Conjecture 1.3 follows by setting

ε < 1
12 (for example, let ε = 0.08) and nt = c/( 1

12 − ε).

In the proof of Theorem 1.4, we need to know that every n-vertex triangulation on a
surface has a “small” non-contractible cycle. Albertson and Hutchinson [1] showed that
for any fixed orientable surface, there is a non-contractible cycle of length at most

√
2n.

We prove a similar bound for non-orientable surfaces.

Theorem 1.5. Any n-vertex triangulation on a non-orientable surface has a non-contra-
ctible cycle of length less than or equal to 2

√
n.

Remark 1.6. The upper bound of
√

2n in [1] was improved to O(
√
n/g log g) in [5],

where g is the genus of the orientable surface. However, using this result in our proof will
not reduce c below c = O((g3 + gt2)/ε) in the orientable case.

We will use the cycles to reduce a surface triangulation to sphere (or plane) triangu-
lations, as described in Section 2. A closely related, well-known method of reducing a
graph to a planar graph is to delete a small set of vertices (a planarizing set). Deleting
a planarizing set does not necessarily yield a triangulation, so it is not clear whether it
could be used to prove Theorem 1.4. Even if this was possible, it probably would not
yield a stronger result, since the best known bound on the size of a minimum planar set
is O(

√
gn) [2, 6], which is not much smaller than the total number of vertices involved in

at most O(g) non-contractible cycles that appear during the proof, and which is the main
bottleneck in lowering the value of c.

By the following construction, the order of magnitude of the bound in Theorem 1.5
is best possible: Take an icosahedron, identify opposite points, and then triangulate each
of the resulting 10 faces with a triangular grid of k2 triangles. We get a projective planar
triangulation with 10k2 faces, and hence 15k2 edges and n = 5k2 + 2 vertices. Its shortest
non-contractible cycle has length 3k, which is nearly 3√

5

√
n, or about 1.34164

√
n.

Thus, the correct bound has order
√
n, and the constant multiple is between 1.34 and 2.

Question 1.7. What is the smallest constant that could replace 2 in Theorem 1.5?

In Section 3 we explain how to reduce the proof of Theorem 1.4 to finding small dom-
inating sets for triangulations of spheres that contain certain pre-specified subsets of ver-
tices. We show how to find such a dominating set in Section 4, and prove Theorem 1.2 as
well. The proof of Theorem 1.2 follow the basic structure of the proof in [7]: we construct
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two kinds of dominating sets and show that one must be small enough. The argument in
Section 4 that finishes the proof of Theorem 1.4 is similar except that one of the sets only
dominates part of the graph; we apply induction to dominate the rest of the graph.

Before that, we review some standard definitions and then introduce some definitions
needed for our paper.

2 Definitions and preliminaries
For any graphG, let V (G) andE(G) denote the set of vertices and edges, respectively. For
a vertex v in a graph G, deg(v) and degG(v) each denote the degree of v in G. ∆(G) is the
maximum degree in G. For any U ⊆ V (G), let G[U ] denote the subgraph of G induced by
U , which has vertex set U and edge set {uv ∈ E(G) : u, v ∈ U}.

The length of a path, cycle, or walk W is the number of edges and it is denoted by
|W |. Since a walk W may repeat edges, |W | may exceed |E(W )|. If W is a cycle then
|V (W )| = |W | and if W is a path then |V (W )| = |W |+ 1. A chord of a cycle or walk W
is an edge not in E(W ) with endpoints in W .

The distance between vertices u and v, denoted d(u, v), is the minimum length of
a u, v-path. The distance between two sets (where each set could be a single vertex) is
the minimum length of a path with one endpoint in each set. For a vertex v in a graph
G and any integer i ≥ 0, let Ni(v) = {u ∈ V (G) : d(v, u) = i} and let Ni[v] =
{u ∈ V (G) : d(v, u) ≤ i}. Let Gi be the subgraph of G induced by Ni[v], that is,
V (Gi) = Ni[v] and E(Gi) contains the edges in G that have both endpoints in Ni[v].

A graph is connected if there is a u, v-path for every pair of vertices u, v. A vertex is
a cut-vertex if its removal increases the number of components of the graph. A graph with
more than two vertices is 2-connected if it is connected and it has no cut-vertices. A block
is a maximal subgraph with no cut-vertices. Each block is either 2-connected, a single edge
and its endpoints, or an isolated vertex. For any connected graph G, its block-cutpoint tree
T is defined such that the blocks and cut-vertices of G are the vertices of T , and a block B
and vertex v of G are adjacent in T if and only if B contains v.

For a graph G and vertex set U ⊆ V (G), a Steiner tree for U is a minimum-size tree
that contains U .

By a surface, we generally mean a 2-manifold without boundary. For g ≥ 0, let Sg
denote the orientable surface of orientable genus g (a sphere with g handles). For g ≥ 1,
let Ng denote the non-orientable surface of non-orientable genus g (a sphere with g cross-
caps). By the classification theorem for surfaces, these are all the possible surfaces. For
both S = Sg and S = Ng , g is called the genus of S.

Given a graph G on a surface S such that every face is homeomorphic to a disk,
|V (G)| − |E(G)| + |F (G)| is the Euler characteristic of S, where F (G) is the set of
faces. It is 2−2g for S = Sg and 2− g for S = Ng; thus, it is independent of the choice of
G. For any G we have the degree-sum formula

∑
v deg(v) = 2|E(G)|. For triangulations

we have 2|E(G)| = 3|F (G)|, so the Euler characteristic equals |V (G)| − |E(G)|/3 =
1
6

∑
v(6− deg(v)).

A closed curve on a surface is either one-sided or two-sided, and a surface is orientable
if and only if it has no one-sided closed curves. A two-sided closed curve can be con-
tractible, surface-separating, or neither; closed curves which are neither are called essen-
tial. A plane graph is a graph drawn in the plane without crossings; a planar graph is a
graph that can be drawn as a plane graph. With respect to graph embeddings, the sphere
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is usually interchangeable with the plane. See [9] for further background on graphs on
surfaces.

Suppose that C is a non-contractible cycle of G on the surface S. We can obtain
a triangulation G′ on a related surface S′, which we call the C-derived graph of G, as
follows. Cut the surface along C, and copy C locally onto each side of the cut so that
each vertex and edge is doubled. This creates a triangulated surface with one hole if C is
one-sided, and two holes if C is two-sided. Attach a disk to each hole to create a surface
without boundary; this is S′. Add a vertex to each disk with edges to every vertex on the
disk boundary; this yields G′, which is a triangulation of S′.

If C is one-sided, then C is replaced by a cycle C1 of length 2|C|, so |V (G′)| =
|V (G)|+ |C|+ 1, |E(G′)| = |E(G)|+ 3|C|, and |F (G′)| = |F (G)|+ 2|C|, where F (G)
is the set of faces of the embedded graph G. In this case, the Euler characteristics of S and
S′ differ by one. If C is two-sided, then C is replaced by cycles C1, C2 of length |C|, so
|V (G′)| = |V (G)| + |C| + 2, |E(G′)| = |E(G)| + 3|C|, and |F (G′)| = |F (G)| + 2|C|.
In this case, the Euler characteristics of S and S′ differ by two. If C is two-sided, then C
may be surface-separating, in which case the Euler characteristic of S′ equals the sum of
the Euler characteristics of its two components.

Since the Euler characteristic of Sg is 2−2g and the Euler characteristic ofNg is 2−g,
there are only certain possibilities for S′, which we summarize in Table 1.

Case S C S′

1 Sg 2-sided, non-separating Sg−1
2 Sg 2-sided, surface-separ. Sk1 ∪ Sk2 k1, k2 ≥ 1 and k1 + k2 = g
3 Ng 1-sided, non-separating Ng−1 (only if g ≥ 2)
4 Ng 1-sided, non-separating S(g−1)/2 (only if g is odd)
5 Ng 2-sided, non-separating Ng−2
6 Ng 2-sided, non-separating S(g−2)/2 (only if g is even)
7 Ng 2-sided, surface-separ. Nk1 ∪Nk2 k1, k2 ≥ 1 and k1 + k2 = g
8 Ng 2-sided, surface-separ. Sk1/2 ∪Nk2 k1/2, k2 ≥ 1 and k1 + k2 = g

Table 1: All possible C-derived surfaces S′, given the non-contractible cycle C on surface
S with genus g ≥ 1

The genus of Sg is also called orientable genus and the genus of Ng is also called non-
orientable genus. Although it is somewhat unusual, it will be convenient for us to say that
the non-orientable genus of Sg/2 is g (where g is even). (See Table 1 for motivation.)

An outerplane graph is a plane graph with all of its vertices incident to its outer face.
For any graph G on a surface S, its dual is a graph on S with a vertex in each face of
G, such that whenever two faces share an edge in G, the vertices corresponding to those
faces are joined by an edge of the dual. The weak dual of an outerplane graph G is the
dual minus the vertex in the outer face of G; the weak dual is a forest, and it is a tree
if G is 2-connected. The outer face of a connected outerplane graph H is bounded by a
closed walk; without loss of generality, we may always assume that the walk is oriented
counterclockwise, so that the exterior of H is always to the right.

The next two definitions allow us to state and work with a lemma from [7] (Lemma 4.6
in this paper) in the situation where the maximum degree is not bounded by 6.

Definition 2.1. Consider a closed walk W = v0, v1, . . . , vm = v0 (indexed by the cyclic
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group Zm) that bounds a connected outerplane subgraph H of a plane triangulation G,
oriented counterclockwise, so that the exterior of H is always to the right.

For each i ∈ Zm, let rdegi(W ) be the number of edges incident to vi from the right—
more specifically, if the edges incident to vi are ordered such that they are counterclockwise
near vi, then count the ones that are after vivi−1 and before vivi+1. (The edges counted by
rdegi(W ) lie in the exterior of H , and if vi is not a cut-vertex of H , then rdegi(W ) counts
every edge incident to vi which lies in the exterior of H .)

The outer degree sequence of W is the cyclic sequence rdeg1(W ), . . . , rdegm(W )
indexed by Zm.

We name a few special types of cyclic sequences that arise in the proof.

Definition 2.2. The cyclic sequence d1, . . . , dm (indexed by Zm) is

Type A if di = 2 for all i ∈ Zm,

Type B if di = 3 for some i ∈ Zm and dj = 2 for all j ∈ Zm \ {i},
Type C if di = 4 for some i ∈ Zm and dj = 2 for all j ∈ Zm \ {i},
Type D if di = di+1 = 3 for some i ∈ Zm and dj = 2 for all j ∈ Zm \ {i, i+ 1},
Type E if di = 3 and dj = 1 for some i, j ∈ Zm and dk = 2 for all k ∈ Zm \ {i, j}.

The following definition is from [7], albeit slightly renamed:

Definition 2.3. Let w, `, k be integers with w ≥ 3, ` ≥ 1, and 0 ≤ k < w. A (w, `, k)-
cylinder, (w, `)-cylinder, or triangulated cylinder is any plane graph constructed as fol-
lows.

Fix an integer k with 0 ≤ k < w. Start with the Cartesian product of a w-cycle and
a path of length `. The vertices can be labeled za,b with a in the cyclic group Zw and
0 ≤ b ≤ `. For each 0 ≤ b < `, add an edge from za,b to za+1,b+1 if 0 ≤ a < k, and
add an edge from za,b to za−1,b+1 if k < a ≤ w. All triangles (except those of the form
z0,b0z1,b1z2,b2 when w = 3) are 3-faces.

The parameter w is the width and ` is the length. The cycles induced by {za,0 : a ∈
Zw} and {za,` : a ∈ Zw} bound w-faces; these cycles are called the boundary cycles. The
interior vertices are the vertices not in either boundary cycle.

Suppose that H is a (w, `, k)-cylinder with 0 < k < w and let V (H) = {ya,b : z ∈
Zw, 0 ≤ b ≤ `}. Let zw−a,b = ya,b for each ya,b ∈ V (H). With these new vertex
names, we see that H is also a (w, `, w − k)-cylinder. Thus, we may always assume that
0 ≤ k ≤ w/2 for any (w, `, k)-cylinder.

Note that a (w, `)-cylinder has exactly w(`+ 1) vertices.

We consider one infinite graph: let G∞ be the infinite 6-regular triangular grid (see
Figure 1 on the left). There is a pattern of vertices from G∞ that uses every seventh vertex
(see the right side of Figure 1) and that dominates G∞; let D∞ ⊆ V (G∞) be this (infinite)
set of vertices.

3 Proof of Theorem 1.4
Given a triangulation G of an arbitrary surface, we can modify the graph by repeatedly
picking a non-contractible cycle C and replacing its component GC with the C-derived
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Figure 1: G∞, with a dominating set D∞ that contains every seventh vertex

graph of GC . This continues until we have a graph G′ that is the disjoint union of triangu-
lations of spheres. Vertices of degree other than 6 in G′ either came from vertices like that
in G or from vertices that at some point were in one of these cycles C. We wish to keep
track of these vertices and the way that they cluster.

Definition 3.1. For any graph G, we will always use the notation U,U0, U0 for vertex sets
and dU for an integer that satisfy:

1. U is the disjoint union of U0 and U0,

2. {v ∈ V (G) : deg(v) 6= 6} ⊆ U ,

3. every component of G[U ] contains at least one vertex of U0, and

4. for each v ∈ U0, there is a u ∈ U0 with d(v, u) ≤ dU .

(For a graph called G∗, we use the notation U∗, U∗0 , U∗0 , d
∗
U instead, etc.)

Note that for any triangulation G of a surface, we can satisfy Definition 3.1 by letting
U = U0 = {v ∈ V (G) : deg(v) 6= 6}, U0 = ∅, and dU = 0.

Suppose that G is a triangulation of a surface with U,U0, U0, dU that satisfy Defini-
tion 3.1, and C is a non-contractible cycle in G. The C-derived graph G′ has two com-
ponents G1, G2 if C is surface-separating and one component if C is non-separating. We
wish to modify U,U0, U0, dU so that Definition 3.1 is satisfied for the C-derived graph and
for its components.

Lemma 3.2. Suppose that G is a triangulation of a surface with U,U0, U0, dU that satisfy
Definition 3.1, C is a non-contractible cycle in G, and G′ is the C-derived graph. If C is
2-sided, let C1, C2 be the new cycles that replace C and let v1, v2 be the new vertices in
the disks bounded by C1, C2. If C is 1-sided, then let C1 be the new cycle that replaces C,
and let v1 be the new vertex in the disk bounded by C1.

If C is 2-sided, then Definition 3.1 is satisfied for G′ by U ′ = (U \ V (C)) ∪ V (C1) ∪
V (C2) ∪ {v1, v2}, U ′0 = (U0 \ V (C)) ∪ {v1, v2}, U ′0 =

(
U0 \ V (C)

)
∪ V (C1) ∪ V (C2),

and d′U = dU + 1. If G′ has two components G1, G2, then for i = 1, 2, Definition 3.1 is
satisfied forGi by U i = U ′∩V (Gi), U i0 = U ′0∩V (Gi), U i0 = U ′0∩V (Gi), and diU = d′U .

If C is 1-sided, then Definition 3.1 is satisfied for G′ by U ′ = (U \ V (C)) ∪ V (C1) ∪
{v1}, U ′0 = (U0 \ V (C)) ∪ {v1}, U ′0 =

(
U0 \ V (C)

)
∪ V (C1), and let d′U = dU + 1.

Proof. Suppose that C is 2-sided and U ′, U ′0, U ′0, d
′
U are as stated above. The properties

(1) and (2) of Definition 3.1 are clearly satisfied for G′. (3) is also satisfied, since any
component of G′[U ′] that intersects C1 (C2) must also contain v1 (v2). Since property (4)
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holds for G and U,U0, U0, dU , every vertex v of U0 \ V (C) is connected to a vertex of U0

by a path in G with at most dU edges. Hence, a minimal path P in G from v to U0 ∪ V (C)
has at most dU edges. E(P ) gives us a path in G′ from v to U ′0 or C1∪C2, and in the latter
case it is one more edge away from v1 or v2, which is in U ′0. Since d′U = dU + 1, property
(4) holds true for G′ and U ′, U ′0, U ′0, d

′
U .

Hence, U ′, U ′0, U ′0, d
′
U satisfy Definition 3.1 for G′. If C is surface-separating, then in-

tersecting the sets with each componentG1, G2 clearly gives sets that satisfy Definition 3.1
for each component with d′U .

The same sort of argument works if C is 1-sided. (In this case, C cannot be surface-
separating.)

Remark 3.3. Still using the terminology of Lemma 3.2: Note that |U ′0| − |U0| ≤ 2 if C is
2-sided, and |U ′0| − |U0| ≤ 1 if C is 1-sided. Also, note that |U ′0| − |U0| ≤ 2|C| (in both
cases).

Moreover, suppose that we have a dominating setD′ ofG′ that containsU ′. D′ contains
V (C1) ∪ V (C2) ∪ {v1, v2} if C is 2-sided and D′ contains V (C1) ∪ {v1} if C is 1-sided.
If we replace these vertices in D′ by V (C), we get a vertex set D which is a dominating
set for G and contains U . Recall that G′ has |C| + 1 or |C| + 2 more vertices than G,
depending on whether C is 1-sided or 2-sided. Then |D′| − |D| = |V (G′)| − |V (G)|.

Now consider graphs for which each component is a triangulation of a surface. If we
repeatedly find a non-contractible cycle C, get the C-derived graph, and apply Lemma 3.2,
we will end up with a graph G∗ with U∗, U∗0 , U∗0 , d

∗
U that satisfies Definition 3.1.

Let g0, g1, g2 be the number of surface-separating, (non-separating) 1-sided, and non-
separating 2-sided cycles C used during that process. Let

∑
|C| denote the sum of cycle-

sizes, taken over all cycles used during the process. The total number of 2-sided cycles
used is g0 + g2, so |V (G∗)| − |V (G)| =

∑
|C| + 2g0 + g1 + 2g2. By Remark 3.3,

|U∗0 | − |U0| ≤ 2g0 + g1 + 2g2 and |U∗0 | − |U0| ≤ 2
∑
|C|.

Suppose that D∗ is a dominating set of G∗ that contains U∗. Then by repeatedly apply-
ing Remark 3.3, we get a dominating set D of G that contains U , such that |D∗| − |D| =
|V (G∗)| − |V (G)|.

Now, we are ready to start the proof of Theorem 1.4.
Suppose that we are given a triangulation G of an arbitrary surface S with n vertices,

at most t of which have degree other than 6. We will modify the graph and surface until
we have a graph G∗ which is the disjoint union of triangulations of spheres, by repeatedly
picking a minimum non-contractible cycle C in any current component H that is on a non-
spherical surface, and replacing H by its C-derived graph H ′. Let g0, g1, g2 and

∑
|C| be

as defined above.
Let the genus-sum of a graph be the sum of the genuses of its components. Observe

that the process ends precisely when the genus-sum reach zero.
According to Table 1: When C is surface-separating, the number of components in-

creases by one, but the genus-sum is unchanged. When C is non-separating, the orientable
genus-sum decreases by 1 if C is 2-sided, and the non-orientable genus-sum decreases by
j if C is j-sided.

If G = Sg , then the cycle C is 2-sided in each step, so g1 = 0 and it takes g steps to
reduce the genus-sum to zero, so g2 = g. If G = Ng , we must have g1 + 2g2 = g in order
for the genus-sum to be reduced to zero. In each step where C is surface-separating, the
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number of components with non-zero genus is increased by one, so g0 ≤ g − 1, and in the
end we have g0 + 1 ≤ g components.

We may assume that |U0| = t, |U0| = 0, and dU = 0, by the comment following
Definition 3.1. Then, we may conclude that |U∗0 | ≤ 2

∑
|C|, |U∗0 | ≤ t + 2g0 + g1 + 2g2,

|V (G∗)| = n +
∑
|C| + 2g0 + g1 + 2g2, |D∗| = |D| +

∑
|C| + 2g0 + g1 + 2g2, and

d∗U ≤ g0 + g1 + g2 ≤ 2g − 1.
We still need to find a dominating set D∗ of G∗ that contains U∗. To do this, we find a

dominating set for each of its components H , which are triangulations of spheres such that
U∗ ∩ V (H), U∗0 ∩ V (H), U∗0 ∩ V (H), and d∗U satisfy Definition 3.1.

Lemma 3.4. Let G be a triangulation of the sphere with n vertices and suppose that
U,U0, U0, dU satisfies Definition 3.1. Then G has a dominating set D that contains U
such that

|D| ≤ n

6
+ 3(|U0| − 1)(2

√
3n+ 2dU + 9) +

3

2
|U0|+

1

3
.

We defer the proof of Lemma 3.4 until later; For now, we assume that it is true. Ap-
plying Lemma 3.4 to each component of G∗, we get dominating sets for each component
whose union D∗ is a dominating set for G∗. Hence,

|D∗| ≤
∑
H

(
|V (H)|

6
+ 3(|UH0 | − 1)(2

√
3|V (H)|+ 2d∗U + 9) +

3

2
|UH0 |+

1

3

)
,

where the sum is taken over all components H of G∗. Note that
∑
|V (H)| = |V (G∗)|,∑

|UH0 | = |U∗0 |,
∑
|UH0 | = |U∗0 |, and

∑
(|UH0 | − 1)(2

√
3|V (H)|) ≤

∑
(|UH0 | −

1)
∑

(2
√

3|V (H)|). There are g0 + 1 components H of G∗, so∑√
|V (H)| ≤ (g0 + 1)

√
(
∑
|V (H)|)/(g0 + 1) =

√
(g0 + 1)|V (G∗)|,

and we get

|D∗| ≤ |V (G∗)|
6

+ 3 (|U∗0 | − g0 − 1)
(

2
√

3(g0 + 1)|V (G∗)|+ 2d∗U + 9
)

+

3

2
|U∗0 |+

1

3
(g0 + 1).

Note that |U∗0 |−g0−1 ≤ t+g0+g1+2g2−1. Also, |D∗| = |D|+
∑
|C|+2g0+g1+2g2,

d∗U ≤ 2g − 1, |U∗0 | ≤ t+ 2g0 + g1 + 2g2, |U∗0 | ≤ 2
∑
|C|, and g0 ≤ g − 1, so

|D| ≤ |V (G∗)|
6

+ 3 (t+ g + g1 + 2g2 − 2)
(

2
√

3g|V (G∗)|+ 4g + 7
)

+

2
∑
|C| − g1 − 2g2 +

1

3
.

Also, |V (G∗)| = n+
∑
|C|+ 2g0 + g1 + 2g2. To continue, we need an upper bound for∑

|C|.
As stated in Section 1, every n-vertex triangulation of a non-spherical surface has a

non-contractible cycle C with |C| ≤
√

2n if the surface is orientable and |C| ≤ 2
√
n if the

surface is non-orientable.
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Let f(m) = f (1)(m) = bm+
√

2m+ 2c for m ≥ 3. For i > 1 and m ≥ 3, let
f (i)(m) = f(f (i−1)(m)). Given a triangulation of an orientable surface with at most m
vertices, there is a non-contractible cycle C such that the C-derived graph has at most
f(m) vertices. If G is embedded on Sg , then there are g2 +g0 cycles considered during the
process that produces G∗, and at every stage of the process, every component is orientable.
Therefore, |V (G∗)| ≤ f (g2+g0)(n), where n = |V (G)|.

The size of each C in the process depends on the size of the component H containing
C, which could be part of a graph at any stage in the process before the end (when G∗

has been obtained). The last C considered in the process cannot be surface-separating,
so each time we consider a new cycle C, at most g2 − 1 non-separating cycles C have
already been considered. Also, surface-separating cycles produce two components which
each have fewer vertices than their source component. Therefore, the number of vertices
in a component H that contains any of the cycles C is at most f (g2−1)(n). Since there
are g2 + g0 cycles C considered during the entire process, we obtain

∑
|C| ≤ (g2 +

g0)
√

2f (g2−1)(n). Since g2 = g and g2 + g0 ≤ 2g− 1, we get |V (G∗)| ≤ f (2g−1)(n) and∑
|C| ≤ (2g − 1)

√
2f (g−1)(n).

Let F (m) = F (1)(m) = bm+ 2
√
m+ 1c for m ≥ 3. For i > 1 and m ≥ 3, let

F (i)(m) = F (F (i−1)(m)). Note that F (m) ≥ f(m) for all m ≥ 3. Given a triangulation
of a non-orientable surface with at mostm vertices, there is a non-contractible cycleC such
that the C-derived graph has at most F (m) vertices. If G is embedded on Ng , then there
are g1 + g2 + g0 cycles C considered during the process, and there can be orientable and
non-orientable components during the process. Since f(m) ≤ F (m), we have |V (G∗)| ≤
F (g1+g2+g0)(n). As before, taking the C-derived graph does not increase the size of any
component H which contains some non-contractible cycle from later in the process, if C
is surface-separating cycles or if C is the last non-separating cycle considered. Continuing
as before, in this case we can obtain

∑
|C| ≤ (g1 + g2 + g0)2

√
F (g1+g2−1)(n). Since

g1 + g2 + g0 ≤ 2g − 1 and g1 + g2 − 1 ≤ g − 1, we get |V (G∗)| ≤ F (2g−1)(n) and∑
|C| ≤ (2g − 1)2

√
F (g−1)(n).

Using these bounds for |V (G∗)| and
∑
|C|, we can rewrite our bound for |D| in terms

of f (i)(n) when G is embedded on an orientable surface, and in terms of F (i)(n) when G
is embedded on an orientable surface.

Thus, we need to find bounds on f (i)(n) and F (i)(n).
Claim: f (i)(n) ≤ n+ i

√
2n+ i2 + 3i− 2 and F (i)(n) ≤ n+ 2i

√
n+ i2.

Proof by induction: For i = 1, f i(n) = f(n) ≤ n+
√

2n+ 1 + 3− 2, as desired.
Suppose that i ≥ 2. By induction, f (i−1)(n) ≤ n+(i−1)

√
2n+(i−1)2+3(i−1)−2 =

n+ i
√

2n−
√

2n+ i2 + i− 4. Therefore, f (i)(n) = bf (i−1)(n) +
√

2f (i−1)(n) + 2c is
at most

n+ i
√

2n−
√

2n+ i2 + i− 4 +

√
2
[
n+ i

√
2n−

√
2n+ i2 + i− 4

]
+ 2.

This is at most the claimed upper bound n+ i
√

2n+ i2 + 3i− 2 if and only if√
2
[
n+ i

√
2n−

√
2n+ i2 + i− 4

]
≤
√

2n+ 2i.

Equivalently (squaring both sides), this is

2
[
n+ i

√
2n−

√
2n+ i2 + i− 4

]
≤ 2n+ 4i

√
2n+ 4i2.
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which is true if and only if

0 ≤ (2i+ 2)
√

2n+ 2i2 − 2i+ 8,

which is true.
To prove F (i)(n) ≤ n + 2i

√
n + i2, observe that F (n) = b(

√
n+ 1)2c and that the

desired bound can be rewritten as F (i)(n) ≤ (
√
n+ i)2.

When i = 1, we have F (1)(n) = F (n) ≤ (
√
n + 1)2, as desired. Suppose that i ≥ 2.

By induction, F (i−1)(n) ≤ (
√
n + i − 1)2. Then F (i)(n) = (

√
F (i−1)(n) + 1)2 ≤

((
√
n+ i− 1) + 1)2 = (

√
n+ i)2. Thus the claim is proved.

Note that
√
f (i)(n) ≤

√
F (i)(n) ≤

√
n + i. Now we are ready to finish the proof of

Theorem 1.4.

First, consider the case that G is a triangulation of Sg (g ≥ 1). We have

|V (G∗)| ≤ f (2g−1)(n) ≤ n+ (2g − 1)
√

2n+ (2g − 1)2 + 3(2g − 1)− 2,√
|V (G∗)| ≤

√
f (2g−1)(n) ≤

√
n+ 2g − 1,

and ∑
|C| ≤ (2g − 1)

√
2f (g−1)(n) ≤ (2g − 1)

√
2(
√
n+ g − 1).

Together with

|D| ≤ |V (G∗)|
6

+ 3 (t+ g + g1 + 2g2 − 2)
(

2
√

3g|V (G∗)|+ 2g + 7
)

+

2
∑
|C| − g1 − 2g2 +

1

3
,

g0 ≤ g − 1, g1 = 0, and g = g2, we can get |D| ≤ n
6 + a

√
n+ b, where

a =

√
2

6
(2g − 1) + 6

√
3g(t+ 3g − 2) + 2

√
2(2g − 1)

and

b = 3(t+ 3g − 2)
(

2
√

3g(2g − 1) + 4g + 7
)

+ 2
√

2(2g − 1)(g − 1) +
2

3
g2 +

7

3
g − 1

3
.

Note that a and b depend only on g and t, with a = O(g1/2(g+t)) and b = O(g3/2(g+t)).
Next, consider the case that G is a triangulation of Ng . We have

|V (G∗)| ≤ F (2g−1)(n) ≤ n+ 2(2g − 1)
√
n+ (2g − 1)2,√

|V (G∗)| ≤
√
n+ 2g − 1,

and ∑
|C| ≤ (2g − 1)2

√
F (g−1)(n) ≤ 2(2g − 1)(

√
n+ g − 1).

Using the same bound for |D| with g0 ≤ g − 1 and g1 + 2g2 = g, we again can get
|D| ≤ n

6 + a
√
n+ b, but this time with

a =
1

3
(2g − 1) + 6

√
3g(t+ 2g − 2) + 2(2g − 1)



188 Ars Math. Contemp. 4 (2011) 177–204

and

b = 3(t+ 2g − 2)
(

2
√

3g(2g − 1) + 4g + 7
)

+ 4(2g − 1)(g − 1) +
2

3
g2 − 2

3
g +

1

2
.

Again, a and b depend only on g and t, with a = O(g1/2(g + t)) and b = O(g3/2(g + t)).
IfG is a triangulation of the sphere S0, a direct application of Lemma 3.4 with |U0| = t,

|U0| = 0, and dU = 0 gives |D| ≤ n
6 +a
√
n+bwith a = 6

√
3(t−1) and b = 27(t−1)+ 1

3 .
So a = O(g1/2(g + t)) and b = O(g3/2(g + t)) is valid for all surfaces.

To prove Theorem 1.4, it suffices to have n
6 + a

√
n + b ≤ n( 1

6 + ε) + c, for some
c = c(Sg, t, ε). Let c = a2/(4ε) + b. Then the previous inequality is equivalent to 0 ≤

nε− a
√
n+ a2/(4ε), which is true since the right side equals

(√
nε− a

2
√
ε

)2
.

Since a2 = O(g3) and b = O(g5/2) for g ≥ t, and a2 = O(gt2) and b = O(g3/2t) for
t ≥ g, we get a2+b = O(a2) = O(g3+gt2). This yields c = O(a2/ε) = O((g3+gt2)/ε).

Remark 3.5. There must be a constant c′ such that c =
(
c′(g3 + gt2)/ε

)
(1 + o(1)). This

constant is different for Sg and Ng .
Using the stronger Hutchinson bound of |C| ≤ O(

√
n/g log g) instead of |C| ≤

√
2n

for the orientable case would improve c′, but not O((g3 + gt2)/ε).
The argument for the non-orientable case would also work for S2g , where g is non-

orientable genus. But the constant c′ we would get is not as good as the current c′ for the
orientable case.

4 Proof of Lemma 3.4 and Theorem 1.2
For convenience, we restate Lemma 3.4 and Theorem 1.2 as a single lemma.

Lemma 4.1. Let G be a triangulation of the sphere with n vertices and suppose that
U,U0, U0, dU satisfies Definition 3.1. Then G has a dominating set D that contains U
such that

|D| ≤ n

6
+ 3(|U0| − 1)(2

√
3n+ 2dU + 9) +

3

2
|U0|+

1

3
.

Moreover, if ∆(G) ≤ 6 and U = U0 = {v ∈ V (G) : deg(v) 6= 6}, then

|D| ≤ n

6
+ 1.05× 107.

By the comment following Definition 3.1, when ∆(G) ≤ 6 we may assume that U =
U0 = {v ∈ V (G) : deg(v) 6= 6} and dU = 0; hence Lemma 4.1 does indeed imply
Theorem 1.2.

From Euler’s formula it follows that∑
u∈U

(deg(u)− 6) = −12. (4.1)

G has minimum degree at least 3 since otherwise G must be a triangle, in which case any
one vertex gives us a sufficiently small dominating set. Then, by Equation 4.1, |U | ≥ 4.
Note that if ∆(G) ≤ 6 and U = {v ∈ V (G) : deg(v) 6= 6}, then by Equation 4.1,
|U | ≤ 12.
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Let T0 be a Steiner tree for U0 in G; that is, let T0 be a tree in G such that U0 ⊆ V (T0)
and T0 is of minimum size. Let U ′0 = U0 ∪ {v ∈ V (T0) : degT0

(v) 6= 2}.
Suppose that |U0| > 1. Let L0 be the set of leaves in T0; then |L0| ≥ 2 and L0 ⊆ U0.

One can prove by induction that a tree with k ≥ 2 leaves has at most k − 2 vertices of
degree greater than 2. Then we have |U ′0| ≤ 2|L0| − 2 ≤ 2|U0| − 2.

Since U ′0 contains {v ∈ V (T0) : degT0
(v) 6= 2}, E(T0) can be partitioned by the

maximal paths in T0 with no internal vertices inU ′0 (and endpoints inU ′0). There are |U ′0|−1
such paths; let P0 be such a path of maximum length. Then |P0|(|U ′0|−1) ≥ |E(T0)|. Since
|V (T0)| = |E(T0)|+ 1 and |U ′0| ≤ 2|U0| − 2, we get

|V (T0)| ≤ (2|U0| − 3)|P0|+ 1.

(If ∆(G) ≤ 6 and U = U0 = {v ∈ V (G) : deg(v) 6= 6}, then |U0| ≤ 12, so |V (T0)| ≤
21|P0|+ 1.)

If |U0| ≤ 1, then by |U | ≥ 4 and Definition 3.1(3), we must have |U0| = 1. In this
case, |V (T0)| = 1.

Since every component of G[U ] contains a vertex of U0 and T0 contains U0, T0 ∪G[U ]
is connected. Let T be a spanning tree in T0 ∪ G[U ]. So, T contains U and |V (T )| ≤
|V (T0)|+ |U0|. (If |U0| ≤ 1, |V (T )| = 1 + |U0|.)

Next, we define G′: make two copies of each edge of T and, for each vertex v ∈
V (T ), make degT (v) copies of v. Draw these all near the original edges and vertices,
and create incidences in the natural way so that we obtain a plane graph with one face fT
that contains T (before T is deleted), and the other faces are all 3-faces (that correspond
to the faces of G). (See Figure 2 for an example.) Note the boundary of fT is a cycle.
For convenience, let us reembed G′ in the plane such that fT is the outer face. Ignoring
fT , we have a triangulated disc. Let V ′T be the vertices in G′ copied from V (T ); then
G′ − V ′T = G− V (T ).

Figure 2: An example of constructing G′ near a portion of T

The following lemma was originally stated only for the case where G′ is constructed
from a graph G that has maximum degree at most 6, but it applies (with the exact same
proof) wheneverG′ is a triangulated disk and all its interior vertices have degree equal to 6.

Lemma 4.2. [King and Pelsmajer [7]] Suppose that G′ is a triangulated disk and all its
interior vertices have degree equal to 6. Then G′ can be mapped to G∞ such that vertices
are sent to vertices, edges to edges, and interior 3-faces to 3-faces, such that adjacent
3-faces in G′ are mapped to distinct 3-faces in G∞.

Let g be a map fromG′ toG∞ as described in Lemma 4.2. Note that g is not necessarily
injective. There is a pattern of vertices from G∞ that uses every seventh vertex (see the
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right side of Figure 1). Let D∞ ⊆ V (G∞) be the (infinite) set of vertices indicated in the
figure. For each vertex v ∈ V (G′), g(v) ∈ D∞ or g(v) is adjacent to a vertex in D∞.
If v 6∈ V ′T then the seven vertices of N [v] map to the seven vertices of N [g(v)]; as this
includes one vertex of D∞, v is dominated by g−1(D∞) = {v ∈ V (G′) : g(v) ∈ D∞}.
Therefore G′ is dominated by the union of g−1(D∞) and V ′T , or equivalently the union of
g−1(D∞)−V ′T and V ′T . LetD′ = g−1(D∞)−V ′T and letD be the union ofD′ and V (T ).
By the construction of G′ from G, D is a subset of V (G) that dominates every vertex of G.

In Subsection 4.1, we find upper bounds for |D| in terms of n and |V (T )|. In [7], where
the maximum degree is at most 6, such a bound is much easier to find.

4.1 Upper bounds for |D|

Consider any distinct v1, v2 ∈ D′ with g(v1) 6= g(v2). Since D′ ⊆ G′ − V ′T , N [v1]
and N [v2] are 7-vertex subsets of G′. Then, by Lemma 4.2, g maps N [v1] and N [v2]
bijectively to N [g(v1)] and N [g(v2)], respectively. According to the right side of Figure 1,
since g(v1) 6= g(v2), N [g(v1)] and N [g(v2)] are disjoint. Then N [v1] and N [v2] must also
be disjoint. Therefore, if v1, v2 ∈ D′ and N [v1] ∩N [v2] 6= ∅, then g(v1) = g(v2).

Lemma 4.3. If g(v1) = g(v2) in G∞ where v1, v2 ∈ V (G′) are distinct vertices, and
u ∈ N [v1] ∩N [v2], then deg(u) > 6 and there are at least 5 edges between uv1 and uv2
in the rotation at u in the drawing of G′.

Proof. If v1, v2 are adjacent in G′, then they are mapped to adjacent (hence distinct) ver-
tices by Lemma 4.2. So v1 and v2 are not adjacent, and u 6∈ {v1, v2}. The 3-faces ofG′ that
are incident to uwill either form a path or a 6-cycle in the dual ofG′. According to the map
g, the images of the faces under g will again be consecutive around g(u), so the number of
these faces between v1 and v2 must be 6i for some positive integer i. The number of edges
between uv1 and uv2 in the rotation at u is 6i−1 ≥ 5, and thus deg(u) ≥ (6i−1)+2 ≥ 7.
(See Figure 3.)

b b

u

Figure 3: Two vertices v1, v2 with g(v1) = g(v2) and u ∈ N [v1] ∩N [v2]

Let t′ be the number of vertices in G′ of degree greater than 6, and for each vertex
v ∈ D′ let t′v be the number of vertices in N [v] with degree greater than 6.

Consider any v ∈ D′, and suppose that u ∈ N [v]∩N [v′] for some v′ ∈ D′ with v 6= v′.
By the paragraph preceding Lemma 4.3, g(v) = g(v′). Then, by Lemma 4.3, the degree of
u is greater than 6. Therefore, vertices of degree at most 6 in N [v] are not in N [v′] for any
v′ ∈ D′ with v 6= v′. Since v ∈ D′ ⊆ G′ − V ′T , N [v] is a 7-vertex subset of G′. Hence,
N [v] contains 7 − t′v vertices of degree at most 6, which are not in N [v′] for any v′ ∈ D′
with v 6= v′. Therefore,

∑
v∈D′(7− t′v) ≤ |V (G′)| − t′. We can write

|D′| = 1

6

∑
x∈D′

6 ≤ 1

6

(
|V (G′)| − t′ +

∑
v∈D′

(t′v − 1)

)
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and soon, we will bound
∑
v∈D′(t′v − 1).

If ∆(G) ≤ 6, then any vertex with degree greater than 6 in G′ must be in V ′T and must,
as a vertex inG, be a leaf of T . If we also have U = U0 = {v ∈ V (G) : deg(v) 6= 6}, then
T is a Steiner tree for U , so every leaf of T has degree less than 6. Therefore, if ∆(G) ≤ 6
and U = U0 = {v ∈ V (G) : deg(v) 6= 6}, then t′ and every t′v is zero, and the results of
the previous paragraph simplify to 7|D′| ≤ |V (G′)|, or |D′| ≤ 1

7 |V (G′)|.
To bound

∑
v∈D′(t′v − 1), we make an auxilliary plane graph H: Let V (H) be the set

of all vertices in G′ that have degree greater than 6. For each v ∈ D′, let B[v] be the union
of the six triangles incident to v in the embedding of G′ in the plane (including the interior
and boundary of each triangle). Then each B[v] is a hexagon with t′v vertices of H on its
boundary. For distinct x, y ∈ D′, the interiors of the hexagons B[x] and B[y] are disjoint;
the hexagons may intersect on their boundaries. Now, for each v ∈ D′ with t′v ≥ 2, draw a
(t′v − 1)-leaf star in B[v] on the t′v vertices of V (H) in B[v], such that the edges are drawn
on the interior of B[v]. (See Figure 4 for an example.) Let E(H) be the set of all such
edges. Then H is a plane graph with t′ vertices and

∑
v∈D′(t′v − 1) edges.

b

b b

b

a

b

c d

Figure 4: An example of a star drawn in B[v] when t′v = 4

Lemma 4.4. H is an outerplanar graph with no multiple edges.

Proof. Assume there are two edges inH sharing the same endpoints, say x, y, which means
there are vertices u, v ∈ D′ such thatB[u] andB[v] each contain both x and y. LetQ beG′

restricted to the quadrilateral xuyv and its interior, as shown in Fig 5. By Lemma 4.3, there
are at least 5 edges incident to x between the two edges ux and vx in the quadrilateral, so
degQ(x) ≥ 7; similarly degQ(y) ≥ 7. All the vertices in the interior of G′ have degree 6,
and degQ(u) ≥ 2,degQ(v) ≥ 2, so we have

∑
z∈Q deg(z) ≥ 6(|V (Q)|−4)+2+2+7+

7 = 6|V (Q)| − 6. Also,
∑
z∈Q deg(z) = 2|E(Q)|, so |E(Q)| ≥ 3|V (Q)| − 3. However,

Q is planar, so Euler’s formula yields |E(Q)| ≤ 3|V (Q)| − 6. This is a contradiction, so
H has no multiple edges.

The vertices of degree greater than 6 in G′ are all on the boundary of G′, so all these
vertices are incident to the outer face of H as well. These are the vertices of H , so H is
outerplanar.

By Lemma 4.4, |E(H)| ≤ 2|V (H)| − 3, so
∑
v∈D′(t′v − 1) ≤ 2t′ − 3. Then |D′| ≤

1
6 (|V (G′)| − t′+ 2t′− 3) = 1

6 (|V (G′)|+ t′− 3). Since |V (G′)| = n− |V (T )|+ |V ′T | and
|D| = |D′|+ |V (T )|, we obtain |D| ≤ 1

6 (n+ 5|V (T )|+ |V ′T |+ t′−3). Clearly, t′ ≤ |V ′T |,
so |D| ≤ 1

6 (n+ 5|V (T )|+ 2|V ′T | − 3). When we defined G′, we made degT (v) copies of
v for all v ∈ V (T ), so |V ′T | =

∑
v∈T degT (v) = 2|E(T )| = 2|V (T )| − 2. Therefore,

|D| ≤ 1

6
(n+ 9|V (T )| − 7).
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b b

b

b
x

y

u v

Figure 5: The quadrilateral xuyv and its interior in H

Recall that if ∆(G) ≤ 6 and U = U0 = {v ∈ V (G) : deg(v) 6= 6}, then |D′| ≤
1
7 |V (G′)|. Since |V (G′)| = n − |V (T )| + |V ′T | and |V ′T | = 2|V (T )| − 2, in this case we
have |D| = |V (T )|+ |D′| ≤ |V (T )|+ 1

7 (n− |V (T )|+ 2|V (T )| − 2), or

|D| ≤ 1

7
(n+ 8|V (T )| − 2).

Thus we have found upper bounds for |D| in terms of n and |V (T )|. When this bound
does not suffice, we will need to find a different dominating set.

4.2 When G contains a large triangulated cylinder

Within this subsection, we assume that |U0| > 1.
Recall that P0 is a longest path in T0 such that no internal vertices are in U ′0. Let v1, v2

be the endpoints of the path P0. Let x be a middle vertex of P0, that is, let x be a vertex on
P0 of distance b|P0|/2c from an endpoint of P0. Let Ni(x) be the set of vertices of G with
distance exactly i from x, let Ni[x] be the set of vertices of G with distance at most i from
x, and let Gi be the graph induced by Ni[x].

The dU = 0 case of the following result was obtained in [7], using mostly the same
proof.

Lemma 4.5. Ni(x) does not intersect U for i < b|P0|/2c − dU .

Proof. Suppose that j is the smallest index such that Nj(x) intersects U0. Since each
u ∈ U0 has distance at most dU to a vertex of U0, vertices of Ni(x) with i < j − dU do
not intersect U .

Let u ∈ U0 ∩ Nj(x) and let Q be an x, u-path of length j (which is in Gj ). There
is a unique x, u-path in T0; without loss of generality, assume that it contains v1 (rather
than v2). By the choice of P0, deleting the interior of its x, v1-subpath from T0 gives
a 2-component graph that contains U0. We could then add Q to that graph to obtain a
connected graph that contains U0, and let T ′0 be a spanning tree of it. Then, |V (T ′0)| ≤
|V (T0)| − (b|P0|/2c − 1) + (j − 1). But |V (T0)| ≤ |V (T ′0)| since T0 is a Steiner tree for
U0, so j ≥ b|P0|/2c.

Let r be minimum such that Gr is not a triangulated hexagon. Then Gr−1 accounts for
1 +

∑r−1
i=1 6i distinct vertices, so n > 1 + 6r(r − 1)/2 > 3(r − 1)2.
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Next, we seek to understand the structure of Gi for values i ≥ r. Our immediate goal
is Lemma 4.8; Lemmas 4.6 and 4.7 help us obtain it. In [7] the result stated in Lemma 4.8
was obtained for graphs of maximum degree at most 6, using a different proof.

From Subsection 2, recall the definitions outer degree sequence of a walk that bounds
a connected outerplane subgraph of G and type A, B, C, D, and E cyclic sequences.

Lemma 4.6 (King and Pelsmajer [7]). Suppose that x is a vertex in a plane triangulation
G, and r is the minimum such that Gr (the graph induced by Nr[x]) is not a triangulated
hexagon. If every vertex in Nr[x] has degree 6, then Nr[x] contains a cycle C ′ of length at
most 2r+ 1 of type A, B, C, D, or E. Moreover, if C is type A or E then |C ′| ∈ {2r, 2r+ 1}.

In [7], walks of type C and D appear when “q = 1”, type B appear when “q = 2” and
type A and E arise when “q = 3”.

Lemma 4.7. Suppose that W = v0, v1, . . . , vm = v0 is a walk (indexed by the cyclic
group Zm) that bounds an outerplane subgraph H of a plane triangulation G such that W
is oriented counterclockwise, that is, with the exterior of H always to its right. Suppose
that W is type A, B, C, D, or E and suppose that every vertex of W has degree 6 in G.

Then W is a cycle of G. Furthermore, the neighbors of W on the interior of H form a
connected outerplane graph H ′, bounded by a counterclockwise walk W ′ with length and
type specified by Table 3.

Proof. IfH has only one vertex v, then deg(v) = rdeg0(W ). IfH contains a leaf v, which
is the ith vertex of W , then deg(v) = 1 + rdegi(W ). Since deg(v) = 6 for all v ∈ V (H)
and rdegi(W ) ≤ 4 for all i ∈ Zm, both cases give a contradiction.

Suppose thatH contains a 2-connected leaf-blockB with cut-vertex v, with v appearing
as the ith and jth vertex of W as it enters and exits B. Then degB(v) ≥ 2 and degH(v) ≥
degB(v) + 1, so rdegi(W ) + rdegj(W ) ≤ deg(v) − degH(v) ≤ 6 − 3 = 3. Then the
outer degree sequence of W must be type E with {rdegi(W ), rdegj(W )} = {1, 2}. Also,
the three previous inequalities must be equalities; in particular, degH(v) = 3. Therefore, v
is incident to a single-edge (cut-edge) block of H , and it and B are the only two blocks of
H that contain v.

Since the previous argument applies to any 2-connected leaf-block of H , there is at
most one 2-connected leaf-block in H . Since H has no leaves, the block-cutpoint tree of
H has at most one leaf. However, any nontrivial tree has at least two leaves, so the block-
cutpoint tree must have only one vertex. That is, H must be 2-connected. Then W is a
cycle.

Since W is a cycle, each vertex vi in W is incident to exactly two edges in W and
rdegi(W ) edges on the exterior of W . Also deg(vi) = 6, so vi is incident to exactly
4− rdegi(W ) edges on the interior of W . (See Table 2, ignoring the last column.)

If W is of type C and vi is its vertex with rdegi(W ) = 4, then vi is incident to no
edges on its interior, so vi−1vivi+1 is a triangle on the interior of H . Removing vi from
W yields a cycle of length m− 1 of type D that bounds the outerplane graph H − vi. For
convenience, rename W , m, and H to be these values instead. Now W is of type A, B, D,
or E. Note that every value of 4− rdegi(W ) is 2 except for at most one 3 and up to two 1s.

Suppose that W has at least one chord on its interior. (A chord of W is an edge of
G − E(W ) with endpoints in W .) By the choice of H , we may assume without loss of
generality that E(H) is the union of E(W ) and all chords of W that lie in the interior of
W . Then the weak dual of H is a nontrivial tree, with at least two leaf-faces. Let vivj be
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rdegi(W ) number of such i 4− rdegi(W ) 3− rdegi(W )
3 at most two 1 0
4 at most one 0 (none)
1 at most one 3 2
2 m, m− 1 or m− 2 2 1

Table 2: The number of edges incident to vi on the exterior of W , the frequency of each
case, the number of edges incident to vi on the interior of W , and the number of edges of
W ′ that form a triangle with vi (when W is of type A, B, C, D, or E and m = |W |)

a chord incident to a leaf-face f of the weak dual of H , and let B be the boundary cycle
of f . For any edge xy in B, there is a triangle xyz in G in B ∪ f . B is chordless, so
either z is in f or B = xyz. If B = xyz, then f is a face of G; letting {x, y} = {vi, vj},
z is incident to zero edges on the interior of W — a contradiction. Hence, z is in f . It
follows that every vertex of B, including vi and vj , is incident to an edge in f . At most
one vertex of W is incident to more than two edges on its interior. Since vi and vj are each
incident to an edge in f and the edge vivj , without loss of generality we can assume that
vi is incident to no other edges in the interior of W . Let vivjz be the unique triangle of G
that contains vivj and is not in B ∪ f . Then viz must be an edge of W . As before, vivjz
does not bound a leaf-face of the weak dual of H , because then z would be incident to zero
edges on the interior of W . Therefore vjz must be a chord of W . Hence, vj is the unique
vertex of W that is incident to 3 edges on the interior of W . Recall that H has a leaf-face
f ′ 6= f . Applying the same argument to f ′, we find that f ′ is also incident to vj , and that
vj is incident to an edge in f ′. This edge is not a chord and it is not in f , so vj is incident
to four edges in the interior of W — a contradiction. Thus, we have shown that W has no
chords in its interior.

For each i ∈ Zm, the vertices adjacent to vi in the interior of W form a path Qi,
such that for each edge xy in Qi, vixy bounds a face of G. Let W ′ be the closed walk
obtained by concatenating these paths. By construction, W ′ bounds an outerplane graph,
oriented in the counterclockwise direction. Qi has 4 − rdegi(W ) vertices, so its length is
3− rdegi(W ). See Table 2 on the right. Thus, each vi in W yields one edge in W ′, except
if rdegi(W ) is 3 or 1, in which case vi yields 0 or 2 edges in W ′. This shows that W ′ has
the length specified by Table 3 when W is type A, B, D, or E.

Type of W length of W ′ Type of W ′

A m A
B m− 1 B
C m− 3 C
D m− 2 C
E m E

Table 3: How the type and length of W determine the type and length of W ′ (where
m = |W |)

For each v′i in W ′, rdegi(W
′) is the number of paths Qi that contains v′i. Thus, when

Qi and Qi+1 have length at least one, they meet at a vertex v′i with rdegi(W
′) = 2; when

Qi has length two (when W is type E) it yields on vertex v′i with rdegi(W
′) = 1; when
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|Qi| = |Qi+1| = 0 (type D) or |Qi| = 0 (type B), there is a vertex v′i with rdegi(W
′) = 4

or rdegi(W
′) = 3. Altogether, this shows that W ′ has the type indicated in Table 3, when

W is type A, B, D, or E.
WhenW is type C, then it was replaced by a walk of type D and lengthm−1, so by the

previous two paragraphs, W ′ should have length (m − 1) − 2 and be type C, as indicated
in Table 3.

When N3r+1[x] does not intersect U , we will produce a triangulated cylinder (recall
definition from Subsection 2).

Lemma 4.8. Suppose that G is a plane triangulation, with P0, x, and r defined as before.
If N3r+1[x] does not intersect U , then G contains a (w, `)-cylinder H with no interior
vertices in U , such that w ∈ {2r, 2r + 1} and ` ≥ 2(b|P0|/2c − r − dU − 1).

Proof. Since N3r+1[x] does not intersect U , every vertex in N3r+1[x] has degree 6. By
Lemma 4.6, Nr[x] contains a cycle W0 of length at most 2r + 1 of type A, B, C, D, or E.
W0 bounds an outerplanar subgraph ofG, and it can be oriented counterclockwise. For any
i ≥ 1, let N∗i be the set of vertices in the interior of W0 at distance exactly i from W0. Let
j be minimum such thatN∗j = ∅ orN∗j intersects U . SinceW0 is inNr[x], j > 0. Then we
can repeatedly apply Lemma 4.7 for i = 0, . . . , j− 1 with W = Wi, which proves that Wi

is a cycle of type A, B, C, D, or E and produces the closed (nonempty) walk Wi+1 = W ′

on vertex set N∗i+1. Therefore, Wj is nonempty, so N∗j must contain a vertex of U .
According to Table 3, if W0 is type B, C, or D, then for all 1 ≤ i ≤ 2r + 1, every Wi

is type B or C. Then |Wi+1| ≤ |Wi| − 1 for all 0 ≤ i ≤ j − 1, so |Wj | ≤ |W0| − j. Wj is
nonempty and |W0| ≤ 2r + 1, so 0 < 2r + 1 − j. Since W0 is in Nr[x], N∗i ⊆ Nr+i[x]
for all i ≥ 1. Then N∗j ⊆ Nr+j [x] ⊆ N3r+1[x]. However, N3r+1[x] does not intersect U ,
so this is a contradiction. Thus we may assume that W0 is type A or E, in which case Wi is
the same type and length as W0 for all 1 ≤ i ≤ j, and |W0| ∈ {2r, 2r+ 1} by Lemma 4.6.
Let w = |W0|. Wi is a w-cycle for all 0 ≤ i ≤ j − 1.

For any i ≥ 1, let N∗−i be the set of vertices in the exterior of W0 at distance exactly
i from W0, and let k be the minimum such that N∗−k = ∅ or N∗−k contains a vertex of
degree not equal to 6. Now, reembed G in the plane such that the interior and exterior of
W0 are switched and repeat the previous argument. This yields w-cycles W−i on N∗−i for
all 0 ≤ i ≤ k − 1. The cycles Wi for −(k − 1) ≤ i ≤ j − 1 and the edges between
consecutive cycles form a (w, `)-cylinder with w = |W0| and ` = j + k − 2.

N∗j and N∗−k each contain a vertex of U , so Nr+j [x] and Nr+k[x] do too, since W0

is in Nr[x]. By Lemma 4.5, r + j ≥ b|P0|/2c − dU and r + k ≥ b|P0|/2c − dU . Then
` ≥ j + k − 2 ≥ 2(b|P0|/2c − r − dU − 1).

The following results are proved in [7].

Lemma 4.9 (King and Pelsmajer [7]). Suppose that G is a plane triangulation and that
∆(G) ≤ 6. If H is a (w, `)-cylinder in G with ` maximal, then G − V (H) has at most
w(w − 1) vertices.

Lemma 4.10 (King and Pelsmajer [7]). Suppose that H is a (w, `)-cylinder. Then H has
w(`+ 1) vertices and there is a set of d `7e(w+ 2) vertices on H that dominates all vertices
on the interior of H .
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We will see that the size d `7e(w + 2) is efficient enough — that is, it uses roughly one-
sixth of the vertices on the (w, `)-cylinder or less — when w ≥ 12. However, we must
prove a new result for the cases when w is small.

Lemma 4.11. If H is a (w, `)-cylinder and 3 ≤ w ≤ 12, then H contains a set of at most
|V (H)|

6 + 12 = 1
6w(`+ 1) + 12 vertices that dominates the interior vertices of H .

Proof. Let Z = {za,b : a ∈ Zw, 0 ≤ b ≤ `} be the vertex set of H , and note that
|Z| = w(`+ 1). Let Z ′ = {za,b : a ∈ Zw, 0 < b < `}, the vertices on the interior of H .

For all integers w, k with 3 ≤ w ≤ 12 and 0 ≤ k < w, we will give an integer
m = m(w, k) and a set S ⊆ {za,b : a ∈ Zw, 0 ≤ b < m} such that (i) every za,b ∈ Z ′
is dominated by some zc,d ∈ Z such that zc,d mod m ∈ S, and (ii) |S| ≤ min( 1

6mw, 12).
If we have such m and S, then SZ = {za,b ∈ Z : za,b mod m ∈ S} is a set of size at most
|S|d(`+ 1)/me in Z that dominates Z ′. Since |S|d(`+ 1)/me ≤ |S|( `m +1) ≤ 1

6w`+12,
this will finish the proof.

Thus, it remains to find such m,S for all w, k such that 3 ≤ w ≤ 12 and 0 ≤ k < w.
Recall that we may assume that 0 ≤ k ≤ w/2. In each case of the proof, we describe S
via a figure where za,b is located on row a and column b, showing rows 0 to w (row 0 and
row w are identified) and columns 0 to at least m. When b = 0 ≡ w (mod w), then za,b is
shown twice, but once as a hollow dot (for example, in Figure 6). The figure will make it
clear that SZ dominates Z ′ as desired.

We begin with two general cases: when w is a multiple of 2 or 3.
Consider any case wherew is a multiple of 3. No matter what k is, any three consecutive

rows of Z ′ can be dominated by taking every other vertex on the middle row. (For example,
see Figure 6 on the left). Thus, we have m,S with m = 2 and |S| = w/3. Clearly SZ
dominates Z ′ and |S| = 1

6mw ≤ 12, so this suffices.
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b b

b b

bc bc

Figure 6: Dominating sets when w = 6: an example with m = 2 and k = 2, with 3m
columns shown (left) and an example with m = 3 and k = 3, with 2m columns shown
(right)

Next, consider any case where w is even. Let m = 3, and S will contain one vertex
from each even-indexed row. Then |S| = 1

2w = 1
6mw ≤ 6. Clearly, SZ will dominate

all vertices in each even-indexed row of Z ′. It remains to show that for any k, S can be
constructed so that SZ dominates all vertices in all odd-indexed rows of Z ′.

For each row 2i, S contains either z2i,0, z2i,1, or z2i,2, and this “offset” determines the
entire pattern on that row in SZ . (For example, see Figure 6 on the right.) Once the offset
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is chosen for row 2i, two of the three possible offsets for row 2i + 2 (modw) will ensure
that all vertices in row 2i+ 1 (mod w) of Z ′ are dominated. Thus, starting with z2,1 in SZ
for row 2, the offsets for rows 2i with 1 ≤ i ≤ w/2−1 can be chosen so that all vertices in
rows 3, . . . , w− 3 of Z ′ are dominated. Finally, of the three possible offsets for row 0, two
will ensure that all vertices in row w − 1 of Z ′ are dominated, and two will ensure that all
vertices in row 1 of Z ′ are dominated; hence, there is an offset for row 0 so that both rows
are dominated.

It remains to consider the cases w = 5, 7, 11, for all 0 ≤ k < w. We consider each
of these cases separately, giving a figure that shows S in {za,b : 0 ≤ b < m} in the
appendix and noting that |S| ≤ 12 and |S|

mw ≤
1
6 in Table 4. This completes the proof of

Lemma 4.11.

w k Figure |S| m |S|/(mw)
5 0 8 4 5 4/25
5 1 8 5 7 1/7
5 2 8 5 6 1/6
7 0 9 7 7 1/7
7 1 9 8 7 8/49
7 2 10 8 7 8/49
7 3 10 8 7 8/49
11 0 11 12 7 12/77
11 1 11 12 7 12/77
11 2 11 9 5 9/55
11 3 12 12 7 12/77
11 4 12 12 7 12/77
11 5 12 12 7 12/77

Table 4: All cases with w = 5, 7, 11

At this point, we break the argument into two proofs.

4.3 Finishing the proof of Theorem 1.2

Suppose that ∆(G) ≤ 6 and U = U0 = {v ∈ V (G) : deg(v) 6= 6}. Then T = T0, |U0| =
dU = 0, |U0| = |U | ≤ 12, and there is a dominating set D of G with |D| ≤ n+8|V (T )|−2

7 .
Also, |U0| > 1 because |U | ≥ 4, so we have P0 and r with n > 3(r− 1)2, and Lemma 4.5
applies.

Let c = 1.05 × 107. If |D| ≤ n/6 + c then we are done, so we may assume that
1
7 (n+ 8|V (T )| − 2) > n/6 + c, or equivalently, n < 48|V (T )| − 42c − 12. |V (T )| =
|V (T0)| ≤ (2|U0| − 3)|P0| + 1 ≤ 21|P0| + 1, so n < 1008|P0| − 42c + 36 and |P0| >
n−36+42c

1008 . And since c = 1.05× 107, |P0| > 42c−36
1008 > 42× 104.

Claim: Every vertex in N3r+1[x] has degree 6.
By Lemma 4.5, it is true if 3r + 1 < b|P0|/2c. Suppose that it is false. Then 3r + 1 ≥

b|P0|/2c ≥ (|P0| − 1)/2, so r ≥ (|P0| − 3)/6. Since n > 3(r − 1)2, we get n >
1
12 (|P0|2−18|P0|+81). Then n < 1008|P0|−42c+36 gives 12(1008|P0|−42c+36) >
|P0|2−18|P0|+81, or equivalently, 12114+(−504c+351)/|P0| > |P0|. Which contradicts
|P0| > 42× 104. Thus the claim is proved.
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Now we may apply Lemma 4.8 to obtain a (w, `, k)-cylinder H with ` maximized. By
Lemmas 4.8 and 4.9, w = 2r or w = 2r+1, ` ≥ |P0|−2r−3, and n ≤ w(`+1)+w(w−
1) = w(`+w). By Lemma 4.10, H contains a set SH of at most d `7e(w + 2) vertices that
dominates its interior. V (G)−V (H) dominates itself and the boundary of H , so if we add
V (G)−V (H), we get a set that dominatesG; it has size at most d `7e(w+2)+n−w(`−1).
We are done if this is at most n6 + c, so we may assume that d `7e(w+ 2) +n−w(`− 1) >
n
6 + c. Since d `7e ≤

`+6
7 and n ≤ w(` + w), we get w(` − 1) − (`+6)(w+2)

7 + c < 5
6n ≤

5
6w(`+ w). It follows that (w − 12)` < 35w2 + 78w + 72− 42c.

First, consider the case w ≥ 13. Then ` < (35w2 + 78w + 72 − 42c)/(w − 12) =
35w + 498 + 6048−42c

w−12 . Since c > 6048 and w ≤ 2r + 1, we have ` < 35w + 498 ≤
70r + 533. Since ` ≥ |P0| − 2r − 3, we have |P0| < 72r + 536. With r < 1 +

√
n/3

and |P0| > n−36+42c
1008 , we can obtain n − 36 + 42c − 1008(24

√
3n + 608) < 0. Let

f(x) = x2 − 1008 · 24
√

3x − 1008 · 608 − 36 + 42c; then f(
√
n) < 0. Since f(x) is

a quadratic function with a positive quadratic term, f(x) must have two roots. Therefore
(1008 · 24

√
3)2 − 4(−1008 · 608 + 42c− 36) > 0, which contradicts c = 1.05× 107 (but

not by much, which explains our choice of c). This completes the case w ≥ 13.
Next, suppose that 3 ≤ w ≤ 12. By Lemma 4.11, H contains a set of size S that

dominates all vertices on its interior of H with |S| ≤ |V (H)|/6 + 12. If we add V (G) −
V (H) and all the vertices of the boundary of H to S, we get a set that dominates G; its
size is at most |V (H)|/6 + 12 + w(w − 1) + 2w. Since w ≤ 12 and H ⊆ G, we have
|V (H)|/6 + 12 + w(w − 1) + 2w ≤ n/6 + 12 + 132 + 24 < n/6 + c, as desired.

4.4 Finishing the proof of Lemma 3.4

Recall that there is a dominating set D of G with |D| ≤ n+9|V (T )|−7
6 .

If |U0| = 1, then |V (T )| = 1 + |U0|, so

|D| ≤ n+ 9|U0|+ 2

6
=
n

6
+

3

2
|U0|+

1

3
,

as desired. Thus, we may assume that |U0| > 1.
We have P0 and r with n > 3(r − 1)2. Also, by Lemma 4.5, every vertex in Ni[x] has

degree 6 and is not in U if i < b|P0|/2c − dU .
Case 1 |P0| < 2

√
3n+ 2dU + 9.

Then, since |V (T0)| ≤ (2|U0| − 3)|P0| + 1 and |V (T )| ≤ |V (T0)| + |U0|, we have
|V (T )| < (2|U0| − 3)(2

√
3n + 2dU + 9) + |U0| + 1. G has a dominating set D with

|D| ≤ n+9|V (T )|−7
6 . Then

|D| < n

6
+

3

2
(2|U0| − 3)(2

√
3n+ 2dU + 9) +

3

2
|U0|+

1

3
.

Case 2 |P0| ≥ 2
√

3n+ 2dU + 9.
Since n > 3(r − 1)2, we get

√
3n > 3(r − 1), which yields |P0| > 6r + 2dU + 3, so

|P0| ≥ 6r + 2dU + 4. Then b|P0|/2c − dU > 3r + 1, so by Lemma 4.5, every vertex in
N3r+1[x] has degree 6 and is not in U . By Lemma 4.8, G has a (w, `)-cylinder H with no
interior vertices in U , such that w ∈ {2r, 2r+ 1} and ` ≥ 2(b|P0|/2c− r−dU − 1). Since
b|P0|/2c ≥ 1

2 (|P0| − 1) and
√

3n > 3(r − 1), we get

` > 2

(
1

2
(2
√

3n+ 2dU + 9− 1)− 1

3

√
3n− 1− dU − 1

)
= 4(1 +

√
n/3).
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By Lemma 4.11, the interior of the triangulated cylinder can be dominated by a set
SZ of at most w(`+1)

6 + 12 vertices if 3 ≤ w ≤ 12. In this case, 12 ≤ 4w, so we get
|SZ | < w`

6 + 5w. If w ≥ 13, then by Lemma 4.10, the interior of the triangulated cylinder
can be dominated by a set SZ of at most d `+1

7 e(w + 2) vertices. Since d `+1
7 e ≤

`
7 + 1, in

this case we have |SZ | ≤ ( `7 + 1)(w + 2) = w`
6 −

(w−12)`
42 + (w + 2) < w`

6 + 2w. Thus,
we have |SZ | < w`

6 + 5w for all w ≥ 3.
In order to apply induction on n, we delete the w(` − 1) interior vertices of (w, `)-

cylinder H . Let C1 and C2 be the boundary cycles of H; these now bound holes in the
surfaces. Recall that every w-cycle on the cylinder has the exact same pattern of turns:
none, or exactly one right turn and exactly one left turn which are at the same places around
each cycle. Thus we can identify C1 and C2 such that corresponding turns are matched to
each other. Thus, when two vertices of degree 6 are identified, the resulting vertex will have
degree 6. In this way, identify each pair of corresponding vertices v1, v2 from C1, C2 to get
a new vertex v∗ and a new w-cycle C∗. This creates a new plane (or sphere) triangulation
G∗ with n− w` vertices.

Still using v1, v2, v∗ to represent corresponding vertices on C1, C2, C
∗, we define dis-

joint subsets U∗0 , U∗0 of V (G∗) as follows: If v1 or v2 is in U0, then put v∗ in U∗0 ; also, let
U∗0 \V (C∗) = U0\V (H). Note that |U∗0 | ≤ |U0|. If v1 or v2 is inU0 and v∗ 6∈ U∗0 , then put
v∗ in U∗0 ; also, let U∗0 \ V (C∗) = U0 \ V (H). Note that |U∗0 | ≤ |U0|. Let U∗ = U∗0 ∪U∗0 ;
note that U∗ \ V (C∗) = U \ V (H) and that for each v∗ ∈ U∗ ∩ V (C∗), v1 or v2 is in
V (C) ∩ U .

We wish to show that Definition 3.1 is satisfied by G∗ with U∗, U∗0 , U∗0 , dU .
A vertex of degree not equal to 6 in G∗ is also a vertex of degree other than 6 in G if

it is not in V (C∗), and if v∗ ∈ V (C∗) does not have degree 6 then at least one of v1 or v2
does not have degree 6. Therefore every vertex of degree not equal to 6 in G∗ is in U∗.

Any vertex x ∈ U∗0 corresponds to a vertex y ∈ U0 (either x = v∗ ∈ V (C∗) and
y ∈ {v1, v2}, or x 6∈ V (C∗) and y = x). There is a path P in G from y to U0 of length
at most dU . The vertices of P that lie in H can be replaced by vertices on C∗ in a natural
way so that we get a walk in G∗ from x to U∗0 of length at most |P |. Therefore, any vertex
in U∗0 has distance at most dU in G∗ to U∗0 .

Since U does not intersect the interior of H , each component of G[U ] becomes a con-
nected subgraph of G∗[U∗] that contains at least one vertex of U∗0 . Each component of
G∗[U∗] is the union of some of these subgraphs, so it also intersects U∗0 .

Definition 3.1 is satisfied for G∗ with U∗, U∗0 , U∗0 , dU , so we can apply induction. We
get a dominating set D∗ that contains U∗ such that

|D∗| ≤ n− w`
6

+ 3(|U∗0 | − 1)(2
√

3(n− w`) + 2dU + 9) +
3

2
|U∗0 |+

1

3
.

Since |U∗0 | ≤ |U0| and |U∗0 | ≤ |U0|, we get

|D∗| ≤ n− w`
6

+ 3(|U0| − 1)(2
√

3(n− w`) + 2dU + 9) +
3

2
|U0|+

1

3
.

Temporarily set x so that
√
n −
√
n− w` = xw. Then

√
n − xw =

√
n− w`, so

n + x2w2 − 2xw
√
n = n − w`. Then x2w + ` = 2x

√
n. Since ` > 4(1 +

√
n/3) and

x2w > 0, we get 4(1+
√
n/3) < 2x

√
n. Then x > 2

√
1/3, so

√
n−
√
n− w` > 2

√
1/3w
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and 2
√

3(n− w`) < 2
√

3n− 4w. It follows that

|D∗| < n− w`
6

+ 3(|U0| − 1)(2
√

3n− 4w + 2dU + 9) +
3

2
|U0|+

1

3
.

G is dominated by the union of D∗ − V (C∗), SZ , and V (C1) ∪ V (C2); this set D has
size at most |D∗|+(wl6 +5w)+2w. Since |U0| ≥ 2, we have 3(|U0|−1)(−4w)+5w+2w ≤
−5w < 0. Thus, we get

|D| < n

6
+ 3(|U0| − 1)(2

√
3n+ 2dU + 9) +

3

2
|U0|+

1

3

Thus, whether |U0| ≤ 1, or whether we are in one of the two cases where |U0| > 1,
we obtain a dominating set D for G of the desired size. This finishes the proof of the
Lemma 3.4.

5 Small non-contractible cycles in non-orientable surfaces
In this section we prove Theorem 1.5.

First we prove it for any triangulation G on the projective plane N1. Given G on N1,
let C be a minimum-length non-contractible cycle. C must be one-sided. Cut along C
and double C alongside the cut, as in the C-derived construction from Section 2, but do
not add the disk, nor the extra vertex that goes in the disk. This yields a triangulated disk
G′ bounded by a cycle C ′ of length 2|C|. Label the vertices of C ′ in clockwise order, as
v0, v1, . . . , v|C| = v′0, v

′
1, . . . , v

′
|C| = v0; then vj and v′j (for any 0 ≤ j ≤ |C|) are copies

of the same vertex in C. Let m = b|C|/2c, let x = vm, and for all j ≥ 0, let Vj be the set
of vertices v in G′ such that the distance d(v, x) = j.

Lemma 5.1. Vj contains a path Pj from vm−j to vm+j of length at least 2j, for all j with
0 ≤ j ≤ m.

Proof. Any path P in G′ between opposite vertices vj , v′j of C corresponds to non-contra-
ctible cycle in C; then by the choice of C, the length of P is at least |C|. Recall that for
any vertices u, v, any u, v-walk contains a u, v-path.

Suppose that W is a vi, vj-walk (or path) in G′ with 0 ≤ i < j ≤ m. Then
v0, . . . , vi,W, vj , . . . , v|C| = v′0 is is a v0, v′0-walk in G′, which contains a v0, v′0-path
P in G′. Since the length of P must be at least |C|, the length of W must be at least j − i.

For 0 ≤ j ≤ m, we can apply the previous observation where the indices are (m−j,m)
or (m,m+ j) and conclude that vm±j 6∈ Vi for any i < j. Since vm, vm−1, . . . , vm−j and
vm, vm+1, . . . , vm+j are paths of length j, we have vm±j ∈ Vj for all 0 ≤ j ≤ m. If we
apply the same observation where the indices are m − j and m + j, we can conclude that
any vm−j , vm+j-walk (or path) in G′ has length at least 2j, for any 0 ≤ j ≤ m.

Thus, it remains to show that G′ contains a vm−j , vm+j-path Pj with V (Pj) ⊆ Vj , for
all 0 ≤ j ≤ m. We prove this by induction. It is trivial for j = 0 since V0 = {x}. Assume
that it is true for fixed j with 0 ≤ j < m. We must prove it for j + 1.

Without loss of generality, we may assume that Pj is vm−j , vm+j-path with vertices
in Vj of minimum length. Then Pj is an induced path, that is, there is no edge between
non-consecutive vertices of Pj .

Pj divides the triangulated disk into two faces; let f be the face that does not contain
x. For any yk ∈ Vk, there is a path yk, yk−1, . . . , y0 with each yi ∈ Vi. If yk is in f , then
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this path must intersect Pj at yi with 0 ≤ i < k, which implies that k > j. Therefore, f
contains no vertex of

⋃
0≤i≤j Vi.

Let Pj = y1, y2, . . . , yp, where vm−j = y1 and yp = vm+j . A triangle in f with more
than one endpoint on Pj must intersect V (Pj) at two consecutive endpoints yi, yi+1, since
Pj is an induced path and G′ has no multiple edges. Every edge yiyi+1 of Pj is incident
to exactly one triangle in f ; let zi be its third vertex, which is in f . Let z0 = vm−j−1 and
let zp = vm+j+1. (See Figure 7.) For each yi in Pj , there is a set of triangles in f such
that yi is their only vertex in Pj , naturally ordered by the embedding near yi; removing yi
yields a zi−1, zi-walk in f . Concatenating these walks gives a z0, zp-walk W in f . Since
every vertex of W is incident to a vertex of Pj , and W is in f , the vertices of W must be
contained in Vj+1. W contains a z0, zp-path; let this be Pj+1.

(not f)

b

vm
y1

(vm−j)

yp
(vm+j)

z0
(vm−j−1))

zp
(vm+j+1)

z1 y2

z2

yi yi+1

zi−1 zi+1
zi

Pj

Figure 7: Construction of Pj+1 in f , when Pj is assumed to be of minimum length

Lemma 5.2. Any n-vertex triangulation on the projective plane has a non-contractible
cycle of length less than or equal to 2

√
n− 1.

Proof. Since the vertex sets V0, . . . , Vm are disjoint, the vertex sets of the paths P0, . . . , Pm
are disjoint. Therefore,

n ≥
m∑
j=0

|V (Pj)| ≥
m∑
j=0

(2j + 1) = (m+ 1)2.

Then 2
√
n− 1 ≥ 2m+ 1 = 2b|C|/2c+ 1 ≥ |C|.

Lemma 5.3. Any n-vertex triangulation on a non-orientable surface with genus g > 1 has
a non-contractible cycle of length less than or equal to 2

√
n.

Proof. For any non-orientable surface Ng , it is known that the double cover of Ng is Sg−1.
Let G be an n-vertex triangulation of Ng with g > 1, and let H be the double cover of G.
Then H is a 2n-vertex triangulation on Sg−1, an orientable surface that is not the sphere.
By [1], H has a non-contractible cycle CH of length at most

√
2(2n) = 2

√
n.

CH maps to a closed walk CG on Ng . If CG is contractible, then there is a homotopy
in Sg−1 from CG to a point. It lifts to a homotopy in Ng from CH to a point ([10, Lemma
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54.2], for example). Then CH is contractible in Ng , which is a contradiction. Therefore,
CG is a non-contractible closed walk in G of length at most |CH |. CG must contain a
non-contractible cycle, which has length at most |CG| ≤ |CH | ≤ 2

√
n.

The previous two lemmas complete the proof of Theorem 1.5.
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Appendix: Figures for cases with w = 5, 7, 11
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Figure 8: Dominating sets for w = 5, with k = 0 (left), k = 1 (center), and k = 2 (right)
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Figure 9: Dominating sets for w = 7 with k = 0 (left) and k = 1 (right)
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Figure 10: Dominating sets for w = 7 with k = 2 (left) and k = 3 (right)
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Figure 11: Dominating sets for w = 11 with k = 0 (left), k = 1 (center), and k = 2 (right)
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Figure 12: Dominating sets for w = 11 with k = 3 (left), k = 4 (center), and k = 5 (right)
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