Documenta Praehistorica XLIV (2017) Early Neolithic population dynamics in the Eastern Balkans and the Great Hungarian Plain Tamara Blagojevic1, Marko Porčic1,2, Kristina Penezic1 and Sofija Stefanovic1'2 1 Bioarchaeology Group, Institute Biosense - the Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, RS tamara.blagojevic@biosense.rs 2 Laboratory for bioarchaeology, Department of Archaeology, Faculty of Philosophy, University of Beograd, Beograd, RS ABSTRACT - In this study, we reconstruct population dynamics in the Early Neolithic of the Eastern Balkans and the Great Hungarian Plain using frequency of radiocarbon dates as a population proxy. The method of summed calibrated radiocarbon probability distributions is applied to a set of dates recently published in Bulgaria and Hungary. The aim is to test the hypothesis of the Neolithic demographic transition (NDT) in these regions and to compare the patterns between these two and neighbouring regions. The results show that episodes of population growth occurred in both regions, which is in partial agreement with the predictions of the NDT theory. Population growth is detected, but it is followed by a bust, rather than stabilisation as predicted for the second phase of the NDT. KEY WORDS - Early Neolithic; Neolithic demographic transition; palaeodemography; radiocarbon; Southeast Europe Zgodnje neolitske dinamike poselitve na Vzhodnem Balkanu in v Veliki madžarski nižini IZVLEČEK - V članku poskušamo rekonstruirati populacijske dinamike v času zgodnjega neolitika na območju vzhodnega Balkana in Velike madžarske nižine, in sicer z uporabo pogostnosti radio-karbonskih datumov kot kazalcev poselitve. Metodo vsote verjetnostne razporeditve kalibriranih ra-diokarbonskih datumov smo uporabili pri analizi datumov, ki so bili nedavno objavljeni v Bolgariji in na Madžarskem. Na teh območjih smo preverjali hipotezo t.i. neolitske demografske tranzici-je (NDT) in primerjali dobljene vzorce s tistimi v sosednjih regijah. Rezultati kažejo, da so se epizode rasti poselitve zgodile v obeh regijah, kar je delno v skladu z napovedmi teorije NDT. Zaznali smo sicer rast poselitve, ki pa ji sledi nenaden padec, kar ni v skladu z napovedmi za drugo fazo NDT, ki predvideva stabilizacijo. KLJUČNE BESEDE - zgodnji neolitik; neolitska demografska tranzicija; paleodemografija; radiokar-bonsko datiranje; jugovzhodna Evropa Introduction It is commonly accepted that the Neolithic was introduced to Europe from the Near East, and new genetic and bioarchaeological evidence undoubtedly show that these processes included movements of people (Davison et al. 2007; Haak et al. 2010; Brami, Heyd 2011; Fort 2012; Pinhasi et al. 2012; Boric, Price 2013; Gurova, Bonsall 2014; Ozdogan 2014; Ma-thieson et al. 2015; Szécsényi-Nagy et al. 2015; Hof-manova et al. 2016). The directions and rates of spread of the Neolithic in different regions of Europe have been important issues in numerous studies, many of which offered possible models of pop- 18 DOI: io.43i2/dp.44.2 Early Neolithic population dynamics in the Eastern Balkans and the Great Hungarian Plain ulation expansion. Different models have been suggested for the process, the most frequently considered being: the wave-of-advance model, leap-frog colonisation, and diffusion of cultural novelties (cultural transmission) (Ammerman, Cavalli-Sforza 1971, 1973; Tringham 2000; Whittle et al. 2002; Bar-Yo-sef2004; Pinhasi et al. 2005; Davison et al. 2007; Bocquet-Appel et al. 2009; Boric, Price 2013). In recent years, the process of neolithisation has been studied as a more complex combination of demic and cultural diffusion (Wirtz, Lemmen 2003; Fort 2012; 2015). The Neolithic way of life brought changes in subsistence and mobility patterns, and a major shift in population structure and dynamics known as the Neolithic Demographic Transition (NDT). According to Jean-Pierre Bocquet-Appel (2002; 2008; 2011a; 2011b; 2013; Bocquet-Appel, Bar-Yosef2008a), the NDT was a two-stage process - the first stage being characterised by exponential population growth caused by increased fertility, followed by a second stage marked by increased mortality and decelerating growth. It is assumed that the increase in fertility was caused by changes in lifestyle which accompanied the Neolithic - dietary (introduction of new, more nutritious food), and changes in residential mobility (sedentary lifestyle). The increase in mortality that followed, especially among infants, was a result of numerous factors - introduction of new pathogens, lack of drinking water, contamination by feces, reduced breastfeeding and higher workload (Bocquet-Appel 2008.49; 2013.2). When the mortality rate equaled the birth rate, population growth stopped. The pattern of Neolithic population dynamics, based on the frequency of radiocarbon dates from Western, Northern and Central Europe, consists of a population boom that occurred at the beginning of the period, followed by a population bust after a few centuries (Shennan et al. 2013; Timpson et al. 2014). This pattern is in agreement with predictions of the NDT theory regarding its first phase, when population growth should occur. A recent study has shown that a similar pattern is observed in the Early Neolithic of the Central Balkans (Porcic et al. 2016). In this paper, we extend the paleodemographic research to the area of Eastern Balkans and the Great Hungarian Plain. The aim is to reconstruct population dynamics and to test the NDT hypothesis on two datasets from Southeast Europe, where such studies have been lacking. Two routes of expansion of the Neolithic way of life into Europe have been proposed. The continental route led from Thessaly, where Neolithic was introduced around the middle of the 7th millennium cal BC (Perles et al. 2013) through the Balkans, and to Central, Western and Eastern Europe (Bocquet-Ap-pel et al. 2009; Brami, Heyd 2011; Ozdogan 2014). The maritime (Mediterranean) route led from the coast of the Ionian Sea, along the eastern and western Adriatic coast, and further to the western Mediterranean and Iberia. Recent studies (Wirtz, Lemmen 2003; Bocquet-Appel et al. 2009; Lemmen et al. 2011; Silva, Steele 2014; Weninger et al. 2014; Brami, Zanotti 2015) emphasised the complexity of these processes, and different rates and timings for different European regions. These differences depended on various factors, such as geography, climate and sociocultural trends. The present state of research suggests that the Neolithic spread to the territory of Eastern Balkans (mostly modern-day Bulgaria), along the valleys of the Var-dar, Struma and Marica rivers (Boyadzhiev 2009). After settling in Southwestern Bulgaria and Thrace, Early Neolithic populations spread further north. The Neolithisation of this territory was gradual, in a south to north direction, and absolute dates from sites such as Poljanica-Platoto and Džuljunica-Smar-des date the beginning of these processes to around 6200/6100 cal BC (Boyadzhiev 2009.11; Kraufi et al. 2014.63, Tab. 1). The Early Neolithic lasted until around 5400/5350 cal BC, with the transition to the Late Neolithic occurring between 5500/5450 and 5400/5350 cal BC, which is thought to have been a gradual and smooth process (Gatsov, Boyadzhiev 2009.26). The Early Neolithic on the Great Hungarian Plain (modern-day Hungary) is represented by the Starčevo and Koros cultures. The settling of these early farming populations was concentrated in the valleys of several rivers: Tisza, Koros, Maros and Beret-yo. The highest density of sites has been found on the southern part of the Great Hungarian Plain, which is explained as a result of its rich and diverse landscape (Paluch 2012.49). The earliest 14C dates from the southernmost sites, such as Deszk-1, Pitva-ros, Maroslele-Pana and Olajkut, indicate that the beginning of Koros culture can be dated to around 6000/5910 cal BC. A south-to-north expansion is also suggested, with the earliest dates for the northernmost (Upper Tisza) region covering the time span between 5630 and 5470 cal BC (Domboroczki 2010; Domboroczki, Raczky 2010; Oross, Siklosi 2012). 19 Tamara Blagojevic, Marko Porčic, Kristina Penezic and Sofija Stefanovic Data and method In this study, published data from Hungary (Anders, Siklosi 2012) and Bulgaria (Gatsov, Boyadzhiev 2009; Kraufi et al. 2014) were used. A total of 179 published radiocarbon dates from 16 Bulgarian sites and 117 dates from 24 sites from the territory of Hungary were analysed (Fig. 1; Appendix 1). Dates with large standard errors (170 radiocarbon years and greater) and dates that were out of the currently accepted chronological range for the Early Neolithic in Southeast Europe (-6200-5300 cal BC) were excluded from the analysis.1 The population dynamics were reconstructed by applying the summed calibrated radiocarbon probability distributions (SCPD) method. The main assumption of this method is that the quantity of material culture is directly proportional to population size in a certain time interval in a given region (Rick 1987; Shennan et al. 2013; Williams 2012). If the number of radiocarbon dates is large enough, then the frequency of dates from a specific time period will be directly proportional to the quantity of archaeological remains from that period, and hence to the size of the population that produced them. The method that was applied in this study was developed by Stephen Shennan et al. (2013) and Adrian Timpson et al. (2014), and it accounts for biases that can greatly affect the final result: the effects of the calibration curve, research bias and effects of taphonomy. The analysis was performed in R programming language (R Core Team 2014), using the Bchron package for calibrating dates (Parnell 2014), and the INTCAL 13 calibration curve (Reimer et al. 2013). The research bias is the result of different sampling strategies, depending on particular research questions. In other words, samples are usually not collected randomly, but in order to provide chronological information for specific archaeological contexts. In order to reduce the research bias, a binning procedure was performed at the beginning of the analysis. Radiocarbon dates were binned into site-phases, and sorted in decreasing order within each sitephase. Subdivision into bins within site-phases was performed if the difference between two adjacent dates was greater than 200 radiocarbon years. After the calibration, dates were summed within and between bins, and normalised to produce the final SCPD curve. This procedure controls for research bias due to the different number of dates from different sites and site phases, but it cannot control for the bias resulting from the selection of sites and site phases themselves. The binning procedure performed on the 179 Early Neolithic dates from Bulgaria produced 22 bins, while the same procedure performed on 117 Early Neolithic dates from Hungary produced 26. Taphonomic bias refers to the loss of archaeological material over time due to various taphonomic factors. In order to address this source of bias, the ta-phonomic exponential curve equation developed by Todd A. Surovell et al. (2009) was used as a null model. The null model assumes that the population was stationary and that, apart from the shape of the calibration curve, the taphonomy is the only factor which affects the shape of the empirical SCPD curve. According to the probabilities given by the null model, calendar dates from the specified time interval were randomly sampled, which produced a large number of simulated radiocarbon datasets. The number of dates for each simulated dataset is equal to the number of bins in the empirical data set. This procedure was repeated many times; for the Early Neolithic dates from Hungary and Bulgaria, we simulated 10000 null model SCPDs. Sampled calendar dates were then 'back calibrated' and recalibrated afterwards, and summed to produce the simulated SCPD pattern. Finally, the empirical SCPD curve was compared to the 95% confidence intervals calculated from the simulated SCPD values. When the empirical SCPD is above or below the 95% confidence intervals, there is a statistically significant growth or decline of population relative to the null model. This whole procedure was undertaken in order to assess the statistical significance of the empirical SCPD pattern. Results The results of the SCPD method for the territory of Bulgaria are shown in Figure 2. After ~6000 cal BC, the curve begins to increase, reaching a peak around 5700 cal BC, after which it decreases. However, none of the changes in the curve reach the threshold of statistical significance, as the curve is always within the 95% CI limits, meaning that it is consistent with the null model, which assumes uniform population (with effects of taphonomy). 1 The omitted dates are from the following Bulgarian sites: Ovcarovo-gorata (Bln-2031), Galabnik (GrN-19786), Poljanica-platoto (Bln-1571) and Dzuljunica-Smardes (OxA-24937). From Hungarian sites, the dates that were excluded are: Ecsegfalva 23 (OxA-12857), Endrod 6 (Deb-408, Deb-450), Maroslele-Pana (0xA-9403, Deb-2733), Szajol-Felsofold (Deb-473, Deb-474), Szakmar-Kisu-les (Deb-413), Szarvas 23 (BM-1865R) and Szarvas 56 (Deb-396). 20 Early Neolithic population dynamics in the Eastern Balkans and the Great Hungarian Plain The results of the SCPD method for the territory of Hungary are shown in Figure 3. The empirical curve increases after ~6200 cal BC and goes beyond the upper 95% CI limit between ~5750 and ~5500 cal BC, meaning that in this interval, there was a significant increase relative to the null model, which assumes uniform population (with effects of tapho-nomy). After this interval, the curve abruptly drops, but stays within the 95% CI limits. Around 5200 cal BC, a minor, but statistically significant drop can be observed. Discussion In the Eastern Balkans, the curve started to increase with the beginning of the Neolithic. The peak around 5700 cal BC occurred afterwards, and may be considered as indicative of the NDT. The lack of statistical Fig. 1. Early Neolithic sites from Bulgaria (1-16) and Hungary (17-38) with radiocarbon dates included in this study: 1 Azmak, 2 Čavdar, 3 Dobrinište, 4 Elešnica, 5 Galabnik, 6 Karanovo, 7 Kazanlak, 8 Kovačevo, 9 Kremenik (Sapareva Banja), 10 Slatina, 11 Stara Zagora (Okražna bolnica), 12 Ohoden, 13 Ov-čarovo-gorata, 14 Poljanica-platoto, 15 Džuljunica-Smardeš; 16 Ovcharovo-platoto 2; 17 Battonya-Ba-saraga, 18 Deszk-Olajkut, 19 Devavanya-Katalszeg, 20 Ecsegfalva 23, 21 Endrod 35, 22 Endrod 39, 23 Endrod 119, 24 Endrod-Varnyai-tanya, 25 Gyalaret-Szilagyi major, 26 Hodmezovasarhely-Kotacpart-Vata-tanya, 27 Ibrany-Nagyerdo, 28 Maroslele-Pana, 29 Mehtelek-Nadas, 30 Nagykoru-TszGyumolcsos, 31 Pitvaros-Viztarozo, 32 Roszke-Ludvar, 33 Szajol-Felsofold, 34 Szarvas 23; 35 Szentpeterszeg-Kort-velyes, 36Szolnok-Szanda, 37 Tiszaszolos-Domahaza-puszta; 38 Devavanya-Rehelyigat (mapproduced by Jugoslav Pendic and Kristina Penezic). 21 Tamara Blagojevic, Marko Porčic, Kristina Penezic and Sofija Stefanovic significance (at the 0.05 level) of the deviation from the null model is most probably due to the low effective sample size (the number of bins is only 22), which implies low statistical power. The results for the Hungarian Plain dates show a significant peak around ~ 5750 cal BC, which can be interpreted as population growth at the beginning of the Neolithic, and the signal of the NDT. It is followed by a sharp decrease in the curve at ~5500 cal BC, suggesting a population bust in this period. The observed pattern - a population increase at the beginning of the Neolithic, followed by a population decrease after about 150 years for Bulgaria, and about 250 years for Hungary - correspond to the boom and bust pattern observed in other regions in Europe and the Balkans (Shennan, Edinborough 2007; Shen-nan et al. 2013; Timpson et al. 2014; Porcic et al. 2016; Pilaar Birch, Van-der Linden 2017). When compared to the results obtained for the territory of Serbia (Porcic et al. 2016), it can be seen that they are quite similar in general, but some regional differences should be further discussed (Fig. 4). In Porcic et al. (2016) it was shown that the SCPD curve for data from Serbia had two statistically significant peaks (~6000 cal BC and ~ 5650 cal bC) and a major drop between. Two explanations have been proposed. The first perceives these changes as real demographic patterns that reflect major population growth followed by increased mortality or migration, with a rebound occurring after 350 years. The other explanation would be that this result is a consequence of a research bias that led to oversampling the earliest Early Neolithic contexts and that the peak around ~ 5650 cal BC is most probably the signal of the NDT (Porcic et al. 2016.6-7). In a recent study by Suzanne Pilaar Birch and Marc Vander Linden (2017), which primarily deals with the correlation between environmental changes and population dynamics dur- Fig. 2. Results of the SCPD analysis based on the Early Neolithic radiocarbon dates from Bulgaria. SCPD empirical curve (black line) for Early Neolithic dates, with 95% confidence intervals (shaded) based on 10 000 simulations from the null model (grey dashed line) and 200 year rolling mean (red line); number of dates = 179; number of bins = 22; globalp value = 0.5516. Fig. 3. Results of the SCPD analysis based on the Early Neolithic radiocarbon dates from Hungary. SCPD empirical curve (black line) for Early Neolithic dates, with 95% confidence intervals (shaded) based on 10 000 simulations from the null model (grey dashed line) and 200 year rolling mean (red line); number of dates = 117; number of bins = 26; globalp value = 0.0037. 22 Early Neolithic population dynamics in the Eastern Balkans and the Great Hungarian Plain ing the Late Pleistocene and Early Holocene in the eastern Adriatic and western Balkans, the SCPD method was used in order to reconstruct population dynamics. The results have confirmed the boom and bust pattern in the Balkan region, and have also shown that these processes happened within the same time frame in the eastern Adriatic (Pilaar Birch, Vander Linden 2017.Figs. 5 and 6). Additional data are available for the territory of Croatia. Botic presents the results of summed distributions of the Starcevo (Early Neolithic) and Sopot (Late Neolithic) dates from the territory of Croatia (Botic 2016.17, Fig. 4). A sign of possible population growth similar to the one observed in data from neighbouring regions is present. However, it should be noted that the number of dates from this study is very low (23 dates). It is interesting to note that the peaks from the three curves (Bulgaria, Hungary, Serbia) coincide (Fig. 4), given the usual assumption that the Neolithic gradually spread from south to north. The earliest Neolithic in Serbia and Bulgaria is dated to ~6200 and ~6l00-6050 cal BC, respectively (Whittle et al. 2002; Kraufi et al. 2014). The earliest Koros sites in Hungary are not older than 6000 cal BC (Anders, Siklosi 2012.153). Therefore, it should be expected that population boom in Central and Eastern Balkans should have happened earlier than in the Great Hungarian Plain if the demographic process was the same. Given the small samples in all regions of Southeast Europe and the fact that the SCPD method is a very rough tool, these contradictions should not be given too much weight at this moment, as the precision to discriminate between the shifts of one or two centuries may be lacking in this case. Given the increasing importance of the research focusing on the relationship between climate changes and cultural dynamics (e.g., Wirtz, Lemmen 2003; Budja 2007; 2015; Gronenborn 2009; Weninger et al. 2009; 2014; Clare, Weninger 2010; Shennan et al. 2013; Lemmen, Wirtz 2012; Botic 2016; Pilaar Birch, Vander Linden 2017), we compared the SCPD curves to a global climate proxy. In order to explore the relationship between climate and population dynamics in the three regions of Southeast Europe, the SCPD curves for Serbia, Hungary and Bulgaria are plotted against the GISP2 core curve (Grootes, Stuiver 1997) (Fig. 4). There is some indication that the troughs after ~5500 cal BC on SCPD curves based on dates from Serbia and Hungary may be related to the reduction in temperature which started somewhat earlier, but no strong sign of covariation is present. Unfortunately, at this point, no high-resolution climate proxies are available for the study region, and a more precise climate reconstruction is not possible. Relying on global proxies such as GISP cores when investigating populations dynamics in the central Balkan area can only be regarded as a general framework for further research. In order to create a more accurate and precise reconstruction of population dynamics in Southeastern Europe, it is necessary to generate a new sample of radiocarbon dates according to a probabilistic sampling design, which would minimise the re- Fig. 4. Climate proxy (raw SO18 curve data from GISP2 core - green solid line) plotted over SCPD curves for Serbia (black dash-dotted line), Bulgaria (blue solid line) and Hungary (red dashed line) 23 Tamara Blagojevic, Marko Porčic, Kristina Penezic and Sofija Stefanovic search bias and increase statistical power. For the region of Central Balkans, the collection of new radiocarbon samples is currently under way by the authors of this paper. This sample is specifically designed for the purposes of population dynamics reconstruction with the SCPD method; an effort is made to approximate a random sample. Therefore, the results presented in this paper should be considered as preliminary and will be further refined when the new data arrive. Conclusions It can be concluded that in the Eastern Balkans and Great Hungarian plain, the shape of the SCPD curve is consistent with the population boom predicted by the NDT theory and empirical results from other parts of Europe and Balkans. No clear influence of climate on population dynamics patterns during the 6th millennium cal BC was detected. -ACKNOWLEDGEMENTS- This research is a result of the Project "BIRTH: Births, mothers and babies: prehistoric fertility in the Balkans between 10 000-5000 BC", funded by the European Research Council (ERC) (https://erc.europa. eu/) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 640557; Principal Investigator: SS). We would like to thank Jugoslav Pendic for his help with Figure 1. We are also grateful to Carsten Lemmen and the anonymous reviewer for their constructive comments, suggestions and criticism. The responsibility for all remaining omissions and errors is exclusively ours. References Ammerman A., Cavalli-Sforza L. 1971. Measuring the Rate of Spread of Early Farming in Europe. Man 6(4): 674688. 1973. A population model for the diffusion of early farming in Europe. In C. Renfrew (ed.), The explanation of culture change: models in prehistory. Duckworth. London: 343-357. Anders A., Siklósi Z. (eds.) 2012. The First Neolithic Sites in Central/South-East European Transect, Volume III. The Körös Culture in Eastern Hungary. British Archaeological Reports IS 2334. Archaeopress. Oxford. Bar-Yosef O. 2004. Guest Editorial: East to West - Agricultural Origins and Dispersal into Europe. Current Anthropology 45: S1-S3. Bocquet-Appel J-P. 2002. Paleoanthropological Traces of a Neolithic Demographic Transition. Current Anthropology 43(4): 637-650. 2008. Explaining the Neolithic Demographic Transition. In J-P. Bocquet-Appel, O. Bar-Yosef (eds.), The Neolithic Demographic Transition and its Consequences. Springer. Berlin: 35-55. 2011a. When the World's Population Took Off: The Springboard of the Neolithic Demographic Transition. Science 333(6042): 560-561. http://science.sciencemag. org/content/333/6042/560 2011b. The Agricultural Demographic Transition During and After the Agriculture Inventions. Current Anthropology 52(S4): S497-S510. 2013. Demographic Transitions. In C. Smith (ed.), Encyclopedia of Global Archaeology. Springer Science+ Business Media. New York: 1-8. Bocquet-Appel J-P., Bar-Yosef O. (eds.) 2008. The Neolithic Demographic Transition and its Consequences. Springer. Berlin. Bocquet-Appel J-P., Naji S., Vander Linden M. and Kozlow-ski J. K. 2009. Detection of diffusion and contact zones of early farming in Europe from the space-time distribution of 14C dates. Journal of Archaeological Science 36(3): 1-14. Boric D., Price T. D. 2013. Strontium isotopes document greater human mobility at the start of the Balkan Neolithic. Proceedings of the National Academy of Sciences of the USA 110(9): 3298-3303. http://www.pnas.org/con tent/110/9/3298.full Botic K. 2016. Climatic influences on appearance and development of Neolithic cultures in southern outskirts of Carpathian basin. Studia Quaternaria 33(1): 11-26. https:// bib.irb.hr/datoteka/811183.s_011_026_opt-2.pdf Boyadzhiev Y. D. 2009. Early neolithic cultures on the territory of Bulgaria. In I. Gatsov, Y. Boyadzhiev (eds.), The 24 Early Neolithic population dynamics in the Eastern Balkans and the Great Hungarian Plain First Neolithic Sites in Central/South-East European Transect, Volume I. Early Neolithic Sites on the Territory of Bulgaria. British Archaeological Reports IS 2048. Archaeopress. Oxford: 7-43. Brami M., Heyd V. 2011. The origins of Europe's first farmers: The role of Hacilar and western Anatolia, fifty years on. Prähistorische Zeitschrift 86(2): 165-206. Brami M., Zanotti A. 2015. Modelling the initial expansion of the Neolithic out of Anatolia. Documenta Praehisto-rica 42:103-116. http://revije.ff.uni-lj.si/DocumentaPrae historica/article/view/42.6 Budja M. 2007. The 8200 calBP 'climate event' and the process of neolithisation in south-eastern Europe. Documenta Praehistorica 34:191-201. http://revije.ff.uni-lj. si/DocumentaPraehistorica/article/view/34.14 2015. Archaeology and rapid climate changes from the collapse concept to a panarchy interpretative model. Documenta Praehistorica 42:171-184. http://revije.ff. uni-lj.si/DocumentaPraehistorica/article/view/42.11 Clare L., Weninger B. 2010. Social and biophysical vulnerability of prehistoric societies to Rapid Climate Change. Documenta Praehistorica 37: 283-292. http://revije.ff. uni-lj.si/DocumentaPraehistorica/article/view/37.24 Davison K., Dolukhanov P. M., Sarson G. R., Shukurov A. and Zaitseva G. I. 2007. A Pan-European model of the Neolithic. Documenta Praehistorica 34: 139-154. http://re vije.ff.uni-lj.si/DocumentaPraehistorica/article/view/ 34.11 Domboroczki L. 2010. Report on the excavation at Tisza-szolos-Domahaza-puszta and a new model for the spread of the Körös culture. In J. K. Kozlowski, P. Raczky (eds.), Neolithization of the Carpathian Basin: Northernmost distribution of the Starcevo/Körös culture. Krakow-Budapest: 137-176. Domboroczki L., Raczky P. 2010. Excavations at Ibrany-Nagyerdo and the northernmost distribution of the Körös culture in Hungary. In J. K. Kozlowski, P. Raczky (eds.), Neolithization of the Carpathian Basin: Northernmost distribution of the Starcevo/Körös culture. Krakow-Budapest: 191-218. Fort J. 2012. Synthesis between demic and cultural diffusion in the Neolithic transition in Europe. Proceedings of the National Academy of Sciences of the USA 109(46): 18669-18673. http://www.pnas.org/content/109/46/186 69.full Fort J., Crema E. R. and Madella M. 2015. Modelling Demic and Cultural Diffusion: An Introduction. Human Biology 87(3): 141-149. Gatsov I., Boyadzhiev Y. (eds.) 2009. The First Neolithic Sites in Central/South-East European Transect, Volume I. Early Neolithic Sites on the Territory of Bulgaria. British Archaeological Reports IS 2048. Archaeopress. Oxford. Gronenborn D. 2009. Climate fluctuations and trajectories to complexity in the Neolithic: towards a theory. Documenta Praehistorica 36: 97-110. http://revije.ff.uni-lj. si/DocumentaPraehistorica/article/view/36.5 Grootes P., Stuiver M. 1997. Oxygen 18/16 variability in Greenland snow and ice with 10 3 to 10 5 year time resolution. Journal of Geophysical Research: Oceans (19782012), 102(C12): 26455-26470. Gurova M., Bonsall K. 2014. 'Pre-Neolithic' in Southeast Europe: a Bulgarian perspective. Documenta Praehistorica 41:95-109. http://revije.ff.uni-lj.si/DocumentaPraehi storica/article/view/41.5/2568 Haak W. and 18 co-authors. 2010. Ancient DNA from European Early Neolithic farmers reveals their Near Eastern affinities. PLOS Biology 8(11): e1000536. doi: 10.1371/ journal.pbio.1000536 PMID: 21085689 http://journals. plos.org/plosbiology/article?id=10.1371/journal.pbio.10 00536#s2 Hofmanova Z. and 38 co-authors. 2016. Early farmers from across Europe directly descended from Neolithic Aegeans. Proceedings of the National Academy of Sciences of the USA 113(25): 6886-6891. http://www.pnas. org/content/113/25/6886.full Kraufi R., Elenski N., Weninger B., Clare L., gakirlar C. and Zidarov P. 2014. Beginnings of the Neolithic in Southeast Europe: the Early Neolithic sequence and absolute dates from Dzuljunica-Smardes (Bulgaria). Documenta Praehistorica 41:51-77. http://revije.ff.uni-lj.si/Documen taPraehistorica/article/view/41.3 Lemmen C., Wirtz K. W. 2014. On the sensitivity of the simulated European Neolithic transition to climate extremes. Journal of Archaeological Science 51: 65-72. Lemmen C., Gronenborn D. and Wirtz K. W. 2011. A simulation of the Neolithic transition in Western Eurasia. Journal of Archaeological Science 38:3459-3470. Mathieson I. and 37 co-authors. 2015. Genome-wide patterns of selection in 230 ancient Eurasians. Nature; advance online publication. doi: 10.1038/nature16152 Oross K., Siklosi Z. 2012. Relative and absolute chronology of the Early Neolithic of the Great Hungarian Plain. In A. Anders, Z. Siklosi (eds.), The First Neolithic Sites in Central/South-East European Transect, Volume III. The Koros Culture in Eastern Hungary. British Archaeological Reports IS 2334. Archaeopress. Oxford: 129-159. 25 Tamara Blagojevic, Marko Porčic, Kristina Penezic and Sofija Stefanovic Ozdogan M. 2014. A new look at the introduction of the Neolithic way of life in Southeastern Europe. Changing paradigms of the expansion of the Neolithic way of life. Documenta Praehistorica 41:33-49. http://revije.ff.uni-lj. si/DocumentaPraehistorica/article/view/41.2 Paluch T. 2012. Characteristics of the Koros culture in the southern section of the Great Hungarian Plain. In A. Andersand, Z. Siklosi (eds.), The First Neolithic Sites in Central/South-East European Transect, Volume III. The Koros Culture in Eastern Hungary. British Archaeological Reports IS 2334. Archaeopress. Oxford: 49-52. Parnell A. 2014. Bchron: Radiocarbon dating, age-depth modelling, relative sea level rate estimation, and non-pa-rametricphase modelling. R package version 4.0. 2014 Perles C., Quiles A. and Valladas H. 2013. Early seventh-millennium AMS dates from domestic seeds in the Initial Neolithic at Franchthi Cave (Argolid, Greece). Antiquity 87(338): 1001-1015. Pilaar Birch S. E., Vander Linden M. 2017. A long hard road... Reviewing the evidence for environmental change and population history in the eastern Adriatic and western Balkans during the Late Pleistocene and Early Holocene. Quaternary International. http://dx.doi.org/10.1016/j. quaint.2016.12.035 Pinhasi R., Fort J. and Ammerman A. J. 2005. Tracing the origin and spread of agriculture in Europe. PLOS Biology 3(12): e2220-e2228. http://journals.plos.org/plosbiology/ article?id=10.1371/journal.pbio.0030410 Pinhasi R., Thomas M. G., Hofreiter M., Currat M. and Burger J. 2012. The genetic history of Europeans. Trends in Genetics 28(10): 496-505. doi: 10.1016/j.tig.2012.06.006 PMID: 22889475 Porcic M., Blagojevic T. and Stefanovic S. 2016. Demography of the Early Neolithic Population in Central Balkans: Population Dynamics Reconstruction Using Summed Radiocarbon Probability Distributions. PLOS ONE 11(8): e0160832. http://journals.plos.org/plosone/article?id=10. 1371/journal.pone.0160832 R Core Team 2014. R: A language and environment for statistical computing. R Foundation for Sratistical Computing, Viena, Austria. URL http://R-project.org/ Reimer P. J. and 29 co-authors. 2013. IntCal13 and Ma-rine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP. Radiocarbon 55(4): 1869-1887. Rick J. W. 1987. Dates as Data: An Examination of the Peruvian Preceramic Radiocarbon Record. American Antiquity 52(1): 55-73. Shennan S., Edinborough K. 2007. Prehistoric population history: from the Late Glacial to the Late Neolithic in Central and Northern Europe. Journal of Archaeological Science 34: 1339-1345. Shennan S., Downey S. S., Timpson A., Edinborough K., Colledge S., Kerig T., Manning, K. and Thomas M. G. 2013. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nature Communications 4: 2486. http://www.nature.com/articles/ncom ms3486 Silva F., Steele J. 2014. New methods for reconstructing geographical effects on dispersal rates and routes from large-scale radiocarbon databases. Journal of Archaeological Science 52: 609-620. Szecsenyi-Nagy A. and 27 co-authors. 2015. Tracing the genetic origin of Europe's first farmers reveals insights into their social organization. Proceedings of the Royal Society of London B: Biological Sciences 282(1805): 20150339. http://rspb.royalsocietypublishing.org/content/ 282/1805/20150339 Timpson A., Colledge S., Crema E., Edinborough K., Kerig T., Manning K., Thomas, M. G. and Shennan S. 2014. Reconstructing regional population fluctuations in the European Neolithic using radiocarbon dates: a new case-study using an improved method. Journal of Archaeological Science 52: 549-557. http://www.sciencedirect.com/sci ence/article/pii/S0305440314002982 Timpson A., Manning K. and Shennan S. 2015. Inferential mistakes in population proxies: A response to Torfing's "Neolithic population and summed probability distribution of 14C-dates". Journal of Archaeological Science 63: 199-202. doi:http://dx.doi.org/10.1016/j.jas.2015.08.018 Tringham R. 2000. Southeastern Europe in the transition to agriculture in Europe: bridge, buffer or mosaic. In T. D. Price (ed.), Europe's First Farmers. Cambridge University Press. Cambridge: 19-56. Weninger B. and 18 co-authors. 2009. The Impact of Rapid Climate Change on Prehistoric Societies during the Holocene inthe Eastern Mediterranean. Documenta Prae-historica 36: 7-59. http://revije.ff.uni-lj.si/DocumentaPrae historica/article/view/36.2 Weninger B., Clare L., Gerritsen F., Horejs B., Kraufi R., Linstadter J., Ozbal R. and Rohlling E. J. 2014. Neolithisa-tion of the Aegean and Southeast Europe during the 6600-6000 cal BC period of Rapid Climate Change. Documenta Praehistorica 41:1-31. http://revije.ff.uni-lj.si/ DocumentaPraehistorica/article/view/41.1 26 Early Neolithic population dynamics in the Eastern Balkans and the Great Hungarian Plain Wirtz K. W., Lemmen C. 2003. A global dynamic model Early Neolithic in northern Serbia and south-east Hun-for the Neolithic transition. Climatic change 59:333-367. gary. Antaeus (25): 63-117. Whittle A., Bartosiewicz L., Boric D., Pettitt P. and Richards Williams A. N. 2012. The use of summed radiocarbon proM. 2002. In the beginning: new radiocarbon dates for the bability distributions in archaeology: a review of methods. Journal of Archaeological Science 39:578-589. Appendix 1 List of sites from the territory of Hungary and Bulgaria, with radiocarbon dates used in this study HUNGARY Site (No. on the Fig. 1) Coordinates Lab. No Uncal. BP St. error Cal BC Reference Battonya-Basaraga (17) 45°59'37-84"n 21°28'10.12"E BM-1862R 6710 110 5840 (95.4%) 5473 Bowman et al. 1990.73-, Hor-vdth, Hertelendi 1994.123 Deszk-Olajkut (18) 46°13'4375"n 20°14'34.04"E OxA-9396 7030 50 6010 (95.4%) 5796 Whittle et al. 2002.111, 115 Deszk-Olajkut Bln-581 6605 100 5709 (95.4%) 5374 Quitta, Kohl 1969.240 Deszk-Olajkut Bln-584 6540 100 5643 (95.4%) 5317 Quitta, Kohl 1969.240 Deszk-Olajkut Bln-583 6410 100 5613 (95.4%) 5083 Quitta, Kohl 1969.240 Deszk-Olajkut Bln-582a 6390 100 5551 (95.5%) 5078 Quitta, Kohl 1969.240 Deszk-Olajkut Bln-582 6260 100 5469 (95.4%) 4994 Quitta, Kohl 1969.240 Deszk-Olajkut OxA-9376 6225 55 5315 (95.4%) 5040 Whittle et al. 2002.111, 115 Devavanya-Katalszeg (19) 47° 0'5639"n 20°57'35.72"e Bln-86 6370 100 5524 (95.4%) 5070 Kohl, Quitta 1963.300 Devavanya-Rehelyi gat (38) 47°4'9.37"n 20°55'8.78"E Bln-1379 6640 60 5657 (95.4%) 5482 Oross, Siklosi 2012.Tab. 1 Ecsegfalva 23 (20) 47° 8'34.42"n 2°°55'i7.i9"E OxA-9329 6950 45 5974 (95.4%) 5733 Whittle et al. 2002.110, 115 Ecsegfalva 23 OxA-11871 6930 40 5899 (95.4%) 5726 Bronk Ramsey et al. 2007.175 Ecsegfalva 23 OxA-9335 6920 50 5969 (95.4%) 5716 Whittle et al. 2002.110, 115 Ecsegfalva 23 OxA-9526 6915 50 5970 (95.4%) 5712 Whittle et al. 2002.110, 115 Ecsegfalva 23 OxA-11983 6915 36 5881 (95.4%) 5726 Bronk Ramsey et al. 2007.175 Ecsegfalva 23 OxA-10500 6900 60 5968 (95.4%) 5667 5876 (95.4%) 5713 Bronk Ramsey et al. 2007.175 Ecsegfalva 23 OxA-11984 6893 36 5876 (95.4%) 5713 Bronk Ramsey et al. 2007.175 Ecsegfalva 23 OxA-12654 6889 36 5874 (95.4%) 5710 Bronk Ramsey et al. 2007.176 Ecsegfalva 23 OxA-10501 6885 50 5881 (95.4%) 5671 Bronk Ramsey et al. 2007.176 Ecsegfalva 23 OxA-9327 6870 50 5877 (95.4%) 5661 Whittle et al. 2002.110, 115 Ecsegfalva 23 OxA-11845 6865 40 5840 (95.4%) 5667 Bronk Ramsey et al. 2007.175 Ecsegfalva 23 OxA-9333 6860 45 5844 (95.4%) 5658 Whittle et al. 2002.110, 115-Bronk Ramsey et al. 2007.175 Ecsegfalva 23 OxA-9334 6855 50 5844 (95.4%) 5644 ibid. Ecsegfalva 23 OxA-10505 6845 50 5838 (95.4%) 5643 Bronk Ramsey et al. 2007.176 Ecsegfalva 23 OxA-12655 6830 35 5777 (95.4%) 5642 Bronk Ramsey et al. 2007.176 Ecsegfalva 23 OxA-12860 6826 41 5787 (95.4%) 5637 Bronk Ramsey et al. 2007.176 Ecsegfalva 23 OxA-11863 6825 45 5796 (95.4%) 5633 Bronk Ramsey et al. 2007.175 Ecsegfalva 23 OxA-12859 6818 44 5783 (95.4%) 5632 Bronk Ramsey et al. 2007.175 Ecsegfalva 23 OxA-9328 6815 50 5797 (95.4%) 5627 Whittle et al. 2002.110, 115-Bronk Ramsey et al. 2007.175 Ecsegfalva 23 OxA-9331 6815 45 5778 (95.4%) 5631 ibid. 27 Tamara Blagojevic, Marko Porčic, Kristina Penezic and Sofija Stefanovic Site (No. on the Fig. 1) Coordinates Lab. No Uncal. BP St. error Cal BC Reference Ecsegfalva 23 OxA-9332 6810 45 5771 (95.4%) 5629 Whittle et al. 2002.110, 115; Bronk Ramsey et al. 2007.175 Ecsegfalva 23 OxA-11982 6806 39 5746 (95.4%) 5632 Bronk Ramsey et al. 2007.175 Ecsegfalva 23 OxA-9330 6795 50 5771 (95.4%) 5621 Whittle et al. 2002.110, 115; Bronk Ramsey et al. 2007.176 Ecsegfalva 23 OxA-X-2040-07 6787 37 5731 (95.4%) 5631 Bronk Ramsey et al. 2007.176 Ecsegfalva 23 OxA-13511 6785 45 5739 (95.4%) 5624 Bronk Ramsey et al. 2007.175 Ecsegfalva 23 OxA-12858 6782 42 5733 (95.4%) 5627 Bronk Ramsey et al. 2007.175 Ecsegfalva 23 OxA-11850 6780 50 5752 (95.4%) 5617 Bronk Ramsey et al. 2007.175 Ecsegfalva 23 OxA-X-2040-09 6780 39 5728 (95.4%) 5630 Bronk Ramsey et al. 2007.175 Ecsegfalva 23 OxA-X-2040-08 6775 37 5726 (95.4%) 5629 Bronk Ramsey et al. 2007.175 Ecsegfalva 23 OxA-12854 6774 45 5736 (95.4%) 5621 Bronk Ramsey et al. 2007.175 Ecsegfalva 23 OxA-11868 675° 45 5728 (95.4%) 5571 Bronk Ramsey et al. 2007.176 Ecsegfalva 23 OxA-13510 6731 43 5720 (95.4%) 5563 Bronk Ramsey et al. 2007.176 Ecsegfalva 23 OxA-12140 6729 32 5711 (95.4%) 5571 Bronk Ramsey et al. 2007.176 Ecsegfalva 23 OxA-9325 6690 50 5707 (95.4%) 5526 Whittle et al. 2002.110, 115; Bronk Ramsey et al. 2007.176 Ecsegfalva 23 OxA-10148 6665 50 5664 (95.4%) 5491 ibid. Ecsegfalva 23 OxA-11849 6660 40 5646 (95.4%) 5512 Bronk Ramsey et al. 2007.176 Ecsegfalva 23 OxA-12855 6596 42 5617 (95.4%) 5483 Bronk Ramsey et al. 2007.175 Endrod 35 (21) 46°52'8.86"N 20°51'23.05"E Bln-1940 6615 60 5635 (95.4%) 5478 Oross, Siklosi 2012.Tab. 1 Endrod 35 Bln-1960 6415 60 5488 (95.4%) 5235 Oross, Siklosi 2012.Tab. 1 Endrod 35 BM-1864R 6180 110 536 9 (95.4%) 4840 Bowman et al. 1990.73 Endrod 39 (22) 46°58'59.01"N 20°45'33.37"e BM-1868R 6970 110 6047 (95.4%) 5662 Bowman et al. 1990.73; Horvdth, Hertelendi 1994.122 (with Lab no. BM-1668R) Endrod 39 BM-1863R 6950 140 6083 (95.4%) 5571 Bowman et al. 1990.73; Horvdth, Hertelendi 1994.122 Endrod 39 BM-1870R 6950 120 6034 (95.4%) 5635 Bowman et al. 1990.73; Horvdth, Hertelendi 1994.122 (with Lab no. BM-1971R) Endrod 39 BM-1871R 6830 120 5982 (95.4%) 5540 Bowman et al. 1990.73; Horvdth, Hertelendi 1994.122 Endrod 39 Bln-1941 6785 55 5777 (95.4%) 5573 Oross, Siklosi 2012.Tab. 1 Endro'd 119 (23) 46°56'2.43"N 20°37'53.42"e OxA-9587 6915 45 5899 (95.4%) 5716 Whittle et al. 2002.110, 115 Endro'd 119 OxA-9583 6895 45 5890 (95.4%) 5676 Whittle et al. 2002.110, 115 Endro'd 119 OxA-9588 6855 45 5842 (95.4%) 5657 Whittle et al. 2002.110, 115 Endro'd 119 OxA-9586 6850 45 5839 (95.4%) 5650 Whittle et al. 2002.110, 115 Endro'd 119 OxA-9582 6825 45 5796 (95.4%) 5633 Whittle et al. 2002.110, 115 Endro'd 119 OxA-9584 6825 45 5796 (95.4%) 5633 Whittle et al. 2002.110, 115 Endro'd 119 OxA-9590 6815 50 5797 (95.4%) 5627 Whittle et al. 2002.110, 115 Endro'd 119 OxA-9585 6795 50 5771 (95.4%) 5621 Whittle et al. 2002.110, 115 Endro'd 119 OxA-9589 6720 45 5717 (95.4%) 5559 Whittle et al. 2002.110, 115 Endrod-Varnyai-tanya (24) 46°54'54.34"n 20°46'37.73"e OxA-9395 6595 50 5619 (95.4%) 5481 Whittle et al. 2002.111, 116 Gyalaret-Szilagyi major (25) 46°14'32.24"N 20° 8'50.49"E Bln-75 7090 100 6206 (95.4%) 5746 Kohl, Quitta 1963.299-300; 1964.315; Horvdth, Herte-lendi 1994.122 Hodmezovasarhely-Kotacpart-Vata-tanya (26) 46°23'37.19"N 20°14'41.87"E Bln-115 6450 100 5613 (95.4%) 5224 Kohl, Quitta 1963.299-300; 1964.315-316 28 Early Neolithic population dynamics in the Eastern Balkans and the Great Hungarian Plain Site (No. on the Fig. 1) Coordinates Lab. No Uncal. BP St. error Cal BC Reference Ibrany-Nagyerdo (27) 48° 8'3.32"N 21°42'51.46"E Poz-28216 6630 40 5626 (95.4%) 5491 Domboroczki, Raczky 2010. 214 Ibrany-Nagyerdo Poz-28214 657° 40 56l5 (95.4%) 5475 DomborOczki, Raczky 2010.214 Maroslele-Pana (28) 46°17'58.53"N 20°2i'i7.99"E OxA-9399 6965 50 5981 (95.4%) 5736 Whittle et al. 2002.111, 115 Maroslele-Pana OxA-10149 6845 50 5838 (95.4%) 5643 Whittle et al. 2002.111, 115 Maroslele-Pana OxA-9401 6780 50 5752 (95.4%) 56l7 Whittle et al. 2002.111, 115 Maroslele-Pana OxA-9400 6740 50 5730 (95.4%) 5561 Whittle et al. 2002.111, 115 Mehtelek-Nadas (29) 47°55'22.39"n 22°49'57.54"e Bln-1331 6835 60 5843 (95.4%) 5629 Kalicz, Makkay 1977.23; Hor-vdth, Hertelendi 1994.122; Raczky et al. 2010.164 Mehtelek-Nadas Bln-1332 6655 60 5665 (95.4%) 5484 ibid. Mehtelek-Nadas GrN-6897 6625 50 5628 (95.4%) 5486 ibid. Nagykoru-Tsz Gyumolcsos (30) 47°i6'28.34"N 20°26'30.85"E VERA-3476 7065 35 6016 (95.4%) 5883 Raczky et al. 2010.164 -ll- Poz-23460 7040 40 6006 (95.4%) 5842 Gulyds et al. 2010.1462 -ll- Poz-26328 6970 40 5978 (95.4%) 5747 Raczky et al. 2010.164 -ll- Poz-26327 6940 40 5966 (95.4%) 5730 Raczky et al. 2010.164 -ll- Poz-23317 6890 40 5882 (95.4%) 5707 Gulyds et al. 2010.1462 -ll- VERA-3474 6890 35 5873 (95.4%) 5712 Raczky et al. 2010.164 -ll- Poz-26325 6860 40 5838 (95.4%) 5666 Raczky et al. 2010.164 -ll- VERA-3540 6850 35 5833 (95.4%) 5661 Raczky et al. 2010.164 -ll- VERA-3052 6755 40 5726 (95.4%) 5618 Raczky et al. 2010.164 Pitvaros-Viztarozo (31) 46°i8'i.09"N 20°44'32.98"E OxA-9336 7060 45 6018 (95.4%) 5845 Whittle et al. 2002.110, 115 Pitvaros-Viztarozo OxA-9393 6940 50 5974 (95.4%) 5726 Whittle et al. 2002.110, 115 Pitvaros-Viztarozo OxA-9392 6885 50 5881 (95.4%) 5671 Whittle et al. 2002.110, 115 Roszke-Ludvar (32) 46°12'52.36"N 19°56'I.82"E Deb-2730 6972 59 5983 (95.4%) 5738 Horvdth, Hertelendi 1994.122 Szajol-Felso'fold (33) 47°10'12.34"N 20°17'51.28"E VERA-3531 6805 35 5738 (95.4%) 5638 Raczky 2006.383 Szajol-Felsofold VERA-3051 6725 35 5713 (95.4%) 5566 Raczky 2006.383 Szajol-Felsofold VERA-3534 6620 35 5621 (95.4%) 5491 Raczky 2006.383 Szarvas 23 (34) 46°5i'i9.6i"N 20°35'I.II"E OxA-9375 6855 55 5871 (95.4%) 5639 Whittle et al. 2002.111-115 Szarvas 23 BM-1866R 6780 110 5894 (95.4%) 5491 Bowman et al. 1990.73 Szentpeterszeg-Kortvelyes (35) 47°14'20.46"N 21°35'42.10"E Bln-2578 6800 60 5835 (95.4%) 5617 Oross, Siklosi 2012.Tab. 1 Szolnok-Szanda (36) 47° 7'12 70"n 20°II'57.79"e Bln-1938 7005 80 6018 (95.4%) 5732 Oross, Siklosi 2012.Tab. 1 Szolnok-Szanda Bln-1946 7005 80 6018 (95.4%) 5732 Oross, Siklosi 2012.Tab. 1 Szolnok-Szanda Bln-2576 6940 60 5981 (95.4%) 5718 Oross, Siklosi 2012.Tab. 1 Szolnok-Szanda Poz-37861 6910 40 5886 (95.4%) 5721 Oross, Siklosi 2012.Tab. 1 Szolnok-Szanda OxA-23754 6859 34 5836 (95.4%) 5667 Oross, Siklosi 2012.Tab. 1 Szolnok-Szanda Bln-2577 6790 70 5837 (95.4%) 5564 Oross, Siklosi 2012.Tab. 1 Szolnok-Szanda Poz-37860 6770 40 5726 (95.4%) 5626 Oross, Siklosi 2012.Tab. 1 Szolnok-Szanda OxA-23756 6713 33 5707 (95.4%) 5562 Oross, Siklosi 2012.Tab. 1 Szolnok-Szanda OxA-23755 6713 32 5707 (95.4%) 5562 Oross, Siklosi 2012.Tab. 1 Szolnok-Szanda OxA-23753 6688 35 5665 (95.4%) 5541 Oross, Siklosi 2012.Tab. 1 Szolnok-Szanda OxA-23752 6554 32 5606 (95.4%) 5474 Oross, Siklosi 2012.Tab. 1 Tiszaszolos-Doma-haza-puszta (37) 47°I0'53.07"n i8°59'I8.34"E Deb-11890 6920 50 5969 (95.4%) 5716 Domboroczki, Raczky 2010b. 152, Tab. 1 -ll- OxA-20238 6789 37 5731 (95.4%) 5632 ibid. -ll- Deb-11902 6780 65 5807 (95.4%) 5561 ibid. -ll- OxA-20237 6776 34 5724 (95.4%) 5631 ibid. 29 Tamara Blagojevic, Marko Porčic, Kristina Penezic and Sofija Stefanovic Site (No. on the Fig. 1) Coordinates Lab. No Uncal. BP St. error Cal BC Reference Tiszaszolos-Doma-haza-puszta OxA-20239 6775 4o 5729 (95.4%) 5627 Domboroczki, Raczky 2010b. 152, Tab. 1 -ll- Deb-11804 674o 60 5736 (95.4%) 5547 ibid. -ll- OxA-20236 6673 35 5657 (95.4%) 5531 ibid. -ll- Deb-12962 6657 65 5701 (95.4%) 5481 ibid. -ll- Deb-11898 655o 95 5639 (95.4%) 5326 ibid. -ll- Deb-13045 6462 48 5492 (95.4%) 5324 Läszlo Domboroczki 2012.108 -ll- VERA-4243 6245 30 53o9 (95.4%) 5o76 ibid. BULGA RIA Azmak (1) 42°27'6.O6"N 25°43'O.6I"E Bln-293 73o3 15o 6452 (95.4%) 5901 Görsdorf, Bojadziev 1996. 133-136 Azmak Bln-291 7158 15o 6361 (95.4%) 5739 ibid. Azmak Bln-292 6878 100 5982 (95.4%) 5625 ibid. Azmak Bln-294 6768 100 5877 (95.4%) 5494 ibid. Azmak Bln-296 6779 100 5886 (95.4%) 5516 ibid. Azmak Bln-295 6720 100 5808 (95.4%) 5479 ibid. Azmak Bln-203 6870 100 5983 (95.4%) 5621 ibid. Azmak Bln-299 6812 100 5968 (95.4%) 5542 ibid. Azmak Bln-267 6758 100 5846 (95.4%) 5487 ibid. Azmak Bln-224 6650 15o 5872 (95.4%) 5317 ibid. Azmak Bln-297 6675 100 5776 (95.4%) 539o ibid. Azmak Bln-298 654o 100 5643 (95.4%) 5317 ibid. Azmak Bln-300 6426 15o 5641 (95.4%) 5o43 ibid. Azmak Bln-301 6483 100 (1,3 ) 5625 (95.4%) 5231 ibid. Azmak Bln-430 6279 120 5479 (95.4%) 4953 ibid. Azmak Bln-140A 6476 100 5622 (95.4%) 523o ibid. Chavdar (Cavdar) (2) 42°4i'38.57"N 24° 3'I.33"E Bln-1583 6994 55 5988 (95.4%) 5753 Görsdorf, Bojadziev 1996. 124-126 Chavdar (Cavdar) Bln-1580 7oo3 45 599o (95.4%) 5775 ibid. Chavdar (Cavdar) Bln-2108 7195 65 6221 (95.4%) 5929 ibid. Chavdar (Cavdar) Bln-1663 7o7o 5o 6o34 (95.4%) 5843 ibid. Chavdar (Cavdar) Bln-1582 7020 45 6001 (95.4%) 5796 ibid. Chavdar (Cavdar) Bln-1581 7000 60 5995 (95.4%) 5749 ibid. Chavdar (Cavdar) Bln-1578 6994 55 5988 (95.4%) 5753 ibid. Chavdar (Cavdar) Bln-2662 6400 100 5606 (95.4%) 5080 ibid. Chavdar (Cavdar) Bln-2107 655o 5o 5619 (95.4%) 5385 ibid. Chavdar (Cavdar) Bln-4261 7120 80 6211 (95.4%) 5837 ibid. Chavdar (Cavdar) Bln-4106 6840 5o 5837 (95.4%) 5639 ibid. Chavdar (Cavdar) Bln-1241 6852 100 5981 (95.4%) 557o ibid. Chavdar (Cavdar) Bln-1241 A 6830 100 5976 (95.4%) 5560 ibid. Chavdar (Cavdar) Bln-1162 6400 100 5606 (95.4%) 5080 ibid. Chavdar (Cavdar) Bln-1162 A 6985 100 6o47 (95.4%) 5676 ibid. Chavdar (Cavdar) Bln-1251 6997 100 6o59 (95.4%) 57o8 ibid. Chavdar (Cavdar) Bln-1160 6680 100 5782 (95.4%) 5469 ibid. Chavdar (Cavdar) Bln-1160 A 7o4o 100 6o85 (95.4%) 5720 ibid. Chavdar (Cavdar) Bln-908 6990 15o 6207 (95.4%) 5626 ibid. Chavdar (Cavdar) Bln-911 6870 120 5998 (95.4%) 5564 ibid. Chavdar (Cavdar) Bln-909 6815 100 597o (95.4%) 5546 ibid. Chavdar (Cavdar) Bln-910 6665 100 5753 (95.4%) 5385 ibid. Chavdar (Cavdar) Bln-910 A 6555 100 5657 (95.4%) 5323 ibid. Chavdar (Cavdar) Bln-907 6320 100 5481 (95.4%) 5o46 ibid. Chavdar (Cavdar) Bln-1030 6760 100 5868 (95.4%) 5488 ibid. Chavdar (Cavdar) Bln-906 6720 100 5808 (95.4%) 5479 ibid. Dobrinishte (Dobrinište) (3) 4i°5i'6.48"N 23°35'4.94"E Bln-3785 6650 60 5661 (95.4%) 5484 Görsdorf, Bojadziev 1996.127 30 Early Neolithic population dynamics in the Eastern Balkans and the Great Hungarian Plain Site (No. on the Fig. 1) Coordinates Lab. No Uncal. BP St. error Cal BC Reference Dobrinishte (Dobriniste) Bln-3786 6610 5o 5623 (95.4%) 5483 Corsdorf, Bojadziev 1996.127 Dzuljunica-Smardes (15) 43° 7'i7-5o"N 25°54'1744"e OxA-25045 6686 39 5669 (95.4%) 5531 Kraufi et al. 2014.51-77 -ll- OxA-25047 714o 4o 6o75 (95.4%) 5920 Kraufi et al. 2014.51-77 -ll- OxA-25046 695o 4o 5971 (95.4%) 5736 Kraufi et al. 2014.51-77 -ll- OxA-24981 7185 4o 6205 (95.4%) 5987 Kraufi et al. 2014.51-77 -ll- OxA-25043 7o55 4o 6013 (95.4%) 5846 Kraufi et al. 2014.51-77 -ll- OxA-24977 7136 4o 6o73 (95.4%) 5919 Kraufi et al. 2014.51-77 -ll- OxA-24978 7o54 39 6012 (95.4%) 5847 Kraufi et al. 2014.51-77 -ll- OxA-24939 7171 36 6o94 (95.4%) 5985 Kraufi et al. 2014.51-77 -ll- OxA-24935 7026 35 5995 (95.4%) 584o Kraufi et al. 2014.51-77 -ll- OxA-24931 7066 38 6020 (95.4%) 5878 Kraufi et al. 2014.51-77 -ll- OxA-24932 7o53 35 6010 (95.4%) 5849 Kraufi et al. 2014.51-77 -ll- OxA-25040 7o49 39 6008 (95.4%) 5846 Kraufi et al. 2014.51-77 -ll- OxA-24938 7134 35 6o67 (95.4%) 5923 Kraufi et al. 2014.51-77 -ll- OxA-25044 7o95 4o 6048 (95.4%) 5896 Kraufi et al. 2014.51-77 -ll- OxA-24979 7145 38 6o75 (95.4%) 5925 Kraufi et al. 2014.51-77 -ll- OxA-25033 7o84 36 6026 (95.4%) 5891 Kraufi et al. 2014.51-77 -ll- OxA-24980 7011 38 599o (95.4%) 5802 Kraufi et al. 2014.51-77 -ll- OxA-24937 7588 37 6491 (95.4%) 6396 Kraufi et al. 2014.51-77 -ll- OxA-25042 7o95 4o 6048 (95.4%) 5896 Kraufi et al. 2014.51-77 -ll- OxA-24934 7195 37 6205 (95.4%) 5995 Kraufi et al. 2014.51-77 -ll- OxA-24936 7083 36 6o25 (95.4%) 5892 Kraufi et al. 2014.51-77 Eleshnitsa (Elesnitsa, Elesnica) (4) 4i°54'33-9i"N 23°39'54.IO"e Bln-3238 7010 60 6002 (95.4%) 5758 Corsdorf, Bojadziev 1996.126-127 Eleshnitsa Bln-3241 6960 60 5982 (95.4%) 573o Corsdorf, Bojadziev 1996.126-127 Eleshnitsa Bln-3242 6940 5o 5974 (95.4%) 5726 Corsdorf, Bojadziev 1996.126-127 Eleshnitsa Bln-3239 6920 60 5978 (95.4%) 5677 Corsdorf, Bojadziev 1996.126-127 Eleshnitsa Bln-3940 6850 5o 5841 (95.4%) 5643 Corsdorf, Bojadziev 1996.126-127 Eleshnitsa Bln-3245 673o 9o 5786 (95.4%) 5485 Corsdorf, Bojadziev 1996.126-127 Eleshnitsa Bln-3237 679o 5o 5762 (95.4%) 5620 Corsdorf, Bojadziev 1996.126-127 Eleshnitsa Bln-3244 6720 7o 5736 (95.4%) 5514 Corsdorf, Bojadziev 1996.126-127 Galabnik (5) 42°26'49-35"N 23° 5'5429"e Bln-3580 7120 7o 6205 (95.4%) 5842 Corsdorf, Bojadziev 1996.122-123 Galabnik Bln-3579 7o3o 7o 6022 (95.4%) 5752 Corsdorf, Bojadziev 1996.122-123 Galabnik Bln-3579 H 7220 80 6245 (95.4%) 5920 Corsdorf, Bojadziev 1996.122-123 Galabnik Bln-3582 695o 7o 5986 (95.4%) 5719 Corsdorf, Bojadziev 1996.122-123 Galabnik Bln-3581 679o 80 587o (95.4%) 5551 Corsdorf, Bojadziev 1996.122-123 Galabnik GrN-19786 7o7o 180 6352 (95.4%) 5632 Corsdorf, Bojadziev 1996.122-123 Galabnik GrN-19785 7020 60 6010 (95.4%) 5763 Corsdorf, Bojadziev 1996.122-123 Galabnik GrN-19784 7o7o 60 6060 (95.4%) 5812 Corsdorf, Bojadziev 1996.122-123 Galabnik Bln-4095 7020 15o 6211 (95.4%) 5643 Corsdorf, Bojadziev 1996.122-123 Galabnik Bln-4096 714o 80 6213 (95.4%) 5849 Corsdorf, Bojadziev 1996.122-123 Galabnik Bln-4094 6760 80 5834 (95.4%) 5527 Corsdorf, Bojadziev 1996.122-123 Galabnik Bln-4093 7100 80 6203 (95.4%) 5783 Corsdorf, Bojadziev 1996.122-123 Galabnik GrN-19783 697o 5o 5981 (95.4%) 574o Corsdorf, Bojadziev 1996.122-123 Galabnik Bln-4091 6760 60 5751 (95.4%) 5558 Corsdorf, Bojadziev 1996.122-123 Galabnik Bln-4092 6710 60 5723 (95.4%) 5529 Corsdorf, Bojadziev 1996.122-123 Galabnik Bln-3576 6670 7o 57o6 (95.4%) 5486 Corsdorf, Bojadziev 1996.122-123 Karanovo (6) 42°3O'45.67"N 25°54'5543"e Bln-4339 7o9o 9o 6203 (95.4%) 575o Corsdorf, Weninger 1993; Corsdorf, Bojadziev 1996.133-136; Kohl, Quitta 1966; Quitta, Kohl 1969.37 3i Tamara Blagojevic, Marko Porčic, Kristina Penezic and Sofija Stefanovic Site (No. on the Fig. i) Coordinates Lab. No Uncal. BP St. error Cal BC Reference Karanovo Bln-4336 7110 50 6067 (95.4%) 5892 ibid. Karanovo Bln-4338 6955 45 5975 (95.4%) 5736 ibid. Karanovo Bln-4337 6810 65 5842 (95.4%) 5618 ibid. Karanovo Bln-4335 6710 55 5719 (95.4%) 5535 ibid. Karanovo Bln-3942 6820 50 5803 (95.4%) 5629 ibid. Karanovo Bln-4177 7110 50 6067 (95.4%) 5892 ibid. Karanovo Bln-4179 7130 70 6206 (95.4%) 5846 ibid. Karanovo Bln-4178 6730 80 5756 (95.4%) 5490 ibid. Karanovo Bln-3943 6760 50 5736 (95.4%) 5569 ibid. Karanovo Bln-3941 6750 50 5732 (95.4%) 5565 ibid. Karanovo Bln-3944 6785 60 5794 (95.4%) 5566 ibid. Karanovo Bln-3716 6910 60 5972 (95.4%) 5674 Görsdorf, Weninger 1993; Gernsdorf, Bojadziev 1996.133-136; Kohl, Quitta 1966; Quitta, Kohl 1969.37 Karanovo Bln-3716 H 6850 60 5873 (95.4%) 5635 ibid. Karanovo Bln-3586 6780 60 5788 (95.4%) 5565 ibid. Karanovo Bln-152 6807 100 5966 (95.4%) 5536 ibid. Karanovo Bln-201 6540 100 5643 (95.4%) 5317 ibid. Karanovo Bln-234 6490 150 5716 (95.4%) 5079 ibid. Karanovo Bln-3904 6375 70 5476 (95.4%) 5224 ibid. Karanovo Bln-3458 6440 60 5509 (95.4%) 5309 ibid. Karanovo Bln-3459 6420 60 5491 (95.4%) 5236 ibid. Karanovo Bln-3460 6440 60 5509 (95.4%) 5309 ibid. Karanovo Bln-3461 6480 60 5545 (95.4%) 5321 ibid. Karanovo Bln-3464 6500 50 5602 (95.4%) 5358 ibid. Karanovo Bln-3463 635° 60 5469 (95.4%) 5221 ibid. Karanovo Bln-3465 6410 60 5486 (95.4%) 5232 ibid. Karanovo Bln-3587 6380 60 5476 (95.4%) 5227 ibid. Karanovo Bln-37i7 6450 60 5513 (95.4%) 5315 ibid. Karanovo Bln-3717 H 6510 60 5613 (95.4%) 5345 ibid. Karanovo Bln-158 6395 100 5558 (95.4%) 5079 ibid. Kazanlak (7) 42°38'i4.05"N 25°23'3976"E Bln-730 6335 160 5616 (95.4%) 4935 Georgiev 1974; Nikolov, Karastoyanova 2003 Kazanlak Bln-729 6330 100 5482 (95.4%) 5053 ibid. Kovachevo (Kovačevo) (8) 41°30'20.I6"N 23°28'II.55"E Ly-1437 (OxA) 7180 45 6207 (95.4%) 5983 Grebska-Kulova 2008; Lichardus-Itten et al. 2000; 2002; 2006; Ko-vacheva 1995; Pemitcheva 1990 Kovachevo Ly-1654 (OxA) 7090 70 6081 (95.4%) 5796 ibid. Kovachevo Ly-1439 (OxA) 6975 50 5982 (95.4%) 5743 ibid. Kovachevo Ly-1438 (OxA) 6990 45 5984 (95.4%) 5764 ibid. Kovachevo Ly-1620 (OxA) 6980 65 5988 (95.4%) 5737 ibid. Kovachevo Ly-6553 6760 160 5992 (95.4%) 5385 ibid. Kovachevo Ly-6554 6830 85 5963 (95.4%) 5566 ibid. Kremenik (Sapareva Bania) (Sapareva Banja) (9) 42°22'0.09"N 23° 3'53 50"e Bln-2554 6620 100 5720 (95.4%) 5377 Görsdorf, Bojadziev 1996.127-128 Kremenik Bln-2552 6460 60 5524 (95.4%) 5317 Görsdorf, Bojadziev 1996.127-128 Kremenik Bln-2554A 6840 60 5868 (95.4%) 5629 Görsdorf, Bojadziev 1996.127-128 Kremenik Bln-2553 6660 60 5671 (95.4%) 5483 Görsdorf, Bojadziev 1996.127-128 Kremenik Bln-2105 6530 50 5612 (95.4%) 5376 Görsdorf, Bojadziev 1996.127-128 Kremenik Bln-2556 6480 60 5545 (95.4%) 5321 Görsdorf, Bojadziev 1996.127-128 Kremenik Bln-2106 6475 40 5516 (95.4%) 5357 Görsdorf, Bojadziev 1996.127-128 Kremenik Bln-2550 6550 60 5621 (95.4%) 5379 Görsdorf, Bojadziev 1996.127-128 Kremenik Bln-2551 6450 100 5613 (95.4%) 5224 Görsdorf, Bojadziev 1996.127-128 32 Early Neolithic population dynamics in the Eastern Balkans and the Great Hungarian Plain Site (No. on the Fig. 1) Coordinates Lab. No Uncal. BP St. error Cal BC Reference Kremenik Bln-2549 6350 60 5469 (95.4%) 5221 Görsdorf, Bojadiiev 1996.127-128 Ohoden (12) 43°23'7.84"N 23°42'49.36"E KN-5655 6830 45 5803 (95.4%) 5636 Ganetovski, G. 2007 Ovčarovo-gorata (13) 43° 6'43.05"n 26°39'i3.2o"E Bln-1544 6688 60 5715 (95.4%) 5511 Görsdorf, Bojadiiev 1996.128-129 Ovčarovo-gorata Bln-1620 6463 50 5509 (95.4%) 5324 Görsdorf, Bojadiiev 1996.128-129 Ovčarovo-gorata Bln-2032 6555 70 5625 (95.4%) 5376 Görsdorf, Bojadiiev 1996.128-129 Ovčarovo-gorata Poz-16984 6890 40 5882 (95.4%) 5707 Krauß 2014.174-200 Ovčarovo-gorata Poz-16985 6890 40 5882 (95.4%) 5707 Krauß 2014.174-200 Ovčarovo-gorata Poz-16986 6500 40 5535 (95.4%) 5371 Krauß 2014.174-200 Ovčarovo-gorata Poz-18480 6900 40 5881 (95.4%) 5716 Krauß 2014.174-200 Ovčarovo-gorata Poz-18483 675° 40 5726 (95.4%) 5575 Krauß 2014.174-200 Ovčarovo-gorata Poz-18484 6640 40 5632 (95.4%) 5494 Krauß 2014.174-200 Ovčarovo-gorata Poz-18486 6800 40 5741 (95.4%) 5631 Krauß 2014.174-200 Ovčarovo-gorata Poz-18487 6660 40 5646 (95.4%) 5512 Krauß 2014.174-200 Ovčarovo-gorata Poz-18489 6750 40 5726 (95.4%) 5575 Krauß 2014.174-200 Ovčarovo-gorata Poz-18490 6780 40 5730 (95.4%) 5628 Krauß 2014.174-200 Ovčarovo-gorata Poz-18491 6810 40 5754 (95.4%) 5631 Krauß 2014.174-200 Ovčarovo-gorata Poz-18493 6670 40 5659 (95.4%) 5522 Krauß 2014.174-200 Ovčarovo-gorata Poz-18494 6690 40 5674 (95.4%) 5529 Krauß 2014.174-200 Ovcharovo-platoto 2 (Ovčarovo-platoto 2) (16) 43°II'39"n 26°38'i2"E Bln-1356 6480 60 5545 (95.4%) 5321 Görsdorf, Bojadiiev 1996.129 Polyanitsa-platoto (Poljanica-platoto) (14) 43°14'30.22"N 26°35'29.I8"E Bln-1571 7535 80 6563 (95.4%) 6230 Görsdorf, Bojadiiev 1996.121-122 Polyanitsa-platoto Bln-1512 7140 80 6213 (95.4%) 5849 Görsdorf, Bojadiiev 1996.121-122 Polyanitsa-platoto Bln-1613 7380 60 6392 (95.4%) 6094 Görsdorf, Bojadiiev 1996.121-122 Polyanitsa-platoto Bln-1613 A 7275 60 6242 (95.4%) 6020 Görsdorf, Bojadiiev 1996.121-122 Slatina (10) 42°4i'i8.o6"N 23°2i'56.i8"E Bln-3434 6890 60 5963 (95.4%) 5661 Görsdorf, Bojadiiev 1996 Slatina Bln-3435 6860 50 5869 (95.4%) 5644 Görsdorf, Bojadiiev 1996 Slatina Bln-3436 6840 60 5868 (95.4%) 5629 Görsdorf, Bojadiiev 1996 Slatina Bln-3437 6810 50 5789 (95.4%) 5626 Görsdorf, Bojadiiev 1996 Slatina Bln-3438 6960 60 5982 (95.4%) 5730 Görsdorf, Bojadiiev 1996 Slatina Bln-3439 6940 60 5981 (95.4%) 5718 Görsdorf, Bojadiiev 1996 Slatina Bln-3440 6840 60 5868 (95.4%) 5629 Görsdorf, Bojadiiev 1996 Slatina Bln-3441 6960 60 5982 (95.4%) 5730 Görsdorf, Bojadiiev 1996 Slatina Bln-3442 6780 60 5788 (95.4%) 5565 Görsdorf, Bojadiiev 1996 Slatina Bln-3443 6840 60 5868 (95.4%) 5629 Görsdorf, Bojadiiev 1996 Slatina Bln-3504 6970 60 5983 (95.4%) 5736 Görsdorf, Bojadiiev 1996 Slatina Bln-3555 6930 60 5980 (95.4%) 5712 Görsdorf, Bojadiiev 1996 Stara Zagora-Okrazhna bolnitsa (Okra/na Bolnica) (11) 42°25'45.oo"N 25°36'i7.97"E Bln-1587 7139 65 6207 (95.4%) 5886 Görsdorf, Bojadiiev 1996 -ll- Bln-1586 6814 65 5843 (95.4%) 5619 Görsdorf, Bojadiiev 1996 -ll- Bln-1589 6918 45 5902 (95.4%) 5717 Görsdorf, Bojadiiev 1996 -ll- Bln-1252 6844 100 5979 (95.4%) 5565 Görsdorf, Bojadiiev 1996 -ll- Bln-1250 6820 100 5972 (95.4%) 5556 Görsdorf, Bojadiiev 1996 -ll- Bln-1163 6688 150 5896 (95.4%) 5345 Görsdorf, Bojadiiev 1996 -ll- Bln-1588 6750 60 5743 (95.4%) 5555 Görsdorf, Bojadiiev 1996 -ll- Bln-1164 6723 100 5809 (95.4%) 5480 Görsdorf, Bojadiiev 1996 -ll- Bln-1164 6744 100 5837 (95.4%) 5487 Görsdorf, Bojadiiev 1996 Note: the full code for the data analysis is available from M. Porcic on request. back to contents 33