
Informatica 30 (2006) 245–251 245

On Integrating Conversations into Web Services Composition

Zakaria Maamar
Zayed University, Dubai, U.A.E
zakaria.maamar@zu.ac.ae

Soraya Kouadri Mostéfaoui
Oxford Brookes University, Oxford, UK
E-mail: kouadris@acm.org

Keywords: Web service, conversation, composition, context.

Received: November 28, 2004

We present an approach for integrating conversations into the process of composing Web services. A Web
service is an accessible application that other applications and humans can discover and trigger to satisfy
various needs such as weather forecasts. While much of the work on Web services to date has focussed on
low-level standards, it is becoming urgent to allow Web services engage in conversations, make decisions,
and adjust their behavior according to the context of the situations in which they participate.

Povzetek: Predstavljena je integracija koverzacije v spletne storitve.

1 Introduction

In this paper, we highlight the role of conversations in the
field of Web services and assess the value-added of inte-
grating conversations into the composition of Web services.
Composition primarily addresses the situation of a user’s
request that cannot be satisfied by any available Web ser-
vice, whereas a composite service obtained by combining
available component services (i.e., Web services or com-
posite services) might be used [3]. While much of the work
on Web services to date has focussed on low-level stan-
dards for publishing, discovering, and triggering Web ser-
vices [2], the use of conversations promotes Web services
to a higher level by giving them the opportunity to act as ac-
tive components. A conversation is a consistent exchange
of messages between participants who are involved in joint
operations and thus have common interests.

In order to engage in conversations, Web services (also
called services in the rest of the paper) have to be lever-
aged from passive components, which only respond to trig-
gers, to active components, which make decisions and ad-
just their behavior according to the context in which they
evolve. Context is the information that characterizes the
interactions between humans, applications, and the sur-
rounding environment [4]. Huhns backs the importance of
leveraging Web services by using software agent architec-
tures [9]. Indeed Web services, unlike software agents, are
not designed to use and reconcile ontologies. Moreover,
software agents are inherently communicative, whereas
Web services are passive until invoked.

While some authors agree on the importance of leverag-
ing Web services to the level of active components, others
have already identified some similarities between Web ser-
vices and software agents [6]. Services (i) advertise their

capabilities after specification using for example WSDL,
(ii) search for other services using for example UDDI, and
(iii) invoke services without prior notice using for exam-
ple SOAP. This kind of behavior bears many likenesses
to software agents. For instance, a service accepts re-
quests (sense) and returns responses (action) [6]. In ad-
dition, once a service is invoked, it performs tasks with or
without further inputs (autonomy). However, it is the au-
thors’ belief that the aforementioned behavior of a service
is mainly hard-coded and consequently, limits the service
in its action selection. Enhancing Web services with con-
versation capabilities will first, enable an emergent behav-
ior during composition and second, permit to services to
be more flexible in managing the situations in which they
participate.

Web services composition is a very active area of re-
search and development. However, very little has been
achieved to date regarding the seamless integration of con-
versations into composition approaches of Web services.
In particular, several obstacles still hinder this integration
such as: (i) Web services are dealt with as passive com-
ponents rather than active components that can be embed-
ded with context-awareness mechanisms, (ii) existing ap-
proaches for service composition (e.g., BPEL4WS) typi-
cally facilitate orchestration only, while neglecting contex-
tual information on services, and (iii) lack of support tech-
niques for modeling and specifying conversations between
Web services. In this paper, the focus is on the conversa-
tions happening among a group of Web services, which are
called to constitute composite services.



246 Informatica 30 (2006) 245–251 Z. Maamar et al.

2 Conversations and Web services
Several authors note that current standards of Web services
are used in systems featured by simple interactions [1, 7].
Simple because the interactions adopt a request-response
pattern (e.g., announce/confirm). However there are multi-
ple situations that need more than two turns of interaction
(e.g., propose/counter-propose/accept ⊕ reject ⊕ counter-
propose/...). The participants in these situations have to
engage in conversations before they reach an agreement.
Another initiative in the field of Web services is the Web
Services Conversation Language (WSCL). This language
describes the structure of documents that a Web service ex-
pects receiving and producing, as well as the order in which
the exchange of documents is expected to take place. While
conversations in [1] occur between end-users and providers
of Web services, and WSCL focusses on specifying the op-
erations that Web services support, our focus is on the con-
versations happening among Web services. These services
might originate from different sources and have to engage
in conversations in order to agree on what to exchange, how
to exchange, when to exchange, and what to expect from an
exchange during composition.

2.1 Composition stages
To assess the benefits of conversations to Web ser-
vices composition, we decompose the composition into
three stages: pre-composition, composition, and post-
composition. In the following, only the pre-composition
stage is discussed. Because similar services exist on the In-
ternet, it is important to search for and identify the services
that satisfy specific user-defined selection criteria (e.g., ex-
ecution cost, reliability, availability [14]). Conversations in
the pre-composition stage concern the following aspects:

1. Identification aspect: use search mechanisms
(e.g., UDDI registries) to identify Web services. We
assume that Web services are already specified and
advertised.

2. Invitation aspect: invite Web services to participate
in a composition. An invitation is either accepted or
refused. The rationale of inviting services instead of
directly triggering them is given in [12]. In addition,
conversations occurring during service invitation are
described towards the end of this paper.

3. Compatibility aspect: check if the Web services can
exchange meaningful information because of data het-
erogeneity issues that may raise. Details on the
semantic compatibility of Web services are found
in [13].

2.2 Conversation’s components
Pre-composition, composition, and post-composition
stages are each concerned with some of the conversational
aspects that take place during Web services composition.

Because of the variety of these aspects, we decided on
(i) associating each aspect with a conversation session and
(ii) implementing a session with a course of conversational
actions.

To handle the multiple conversation sessions, we use
Conversation Schemas (CSs) as a technique for describing
these sessions and their respective course of conversational
actions. We define a conversation schema as a specification
of the exchange of messages that is expected to happen be-
tween participants. This exchange depends on several fac-
tors including application domain, active context, and cur-
rent chronology. For example, a conversation schema de-
scribes both the side-effects of a conversation that is misun-
derstood and the corrective actions that permit fixing these
side-effects.

First of all, the initiator of a conversation downloads
a conversation schema from the library of conversation
schemas (Fig. 2) according to the following elements: cur-
rent composition stage, progress in this stage with regard
to the current aspect, and intention behind establishing the
conversation. These elements are needed since conversa-
tions are context sensitive [5, 15]. Next, the initiator in-
stantiates the conversation object (i.e., gives a value) and
checks the activation condition before it transfers a mes-
sage to a receiver. Upon reception of the conversation ob-
ject that the message conveys, the receiver takes one of the
following actions:

1. Accepts the conversation object without any change
and starts acting based on the conversation object’s
content.

2. Changes the conversation object and submits the mod-
ified conversation object to the initiator for either fur-
ther change, approval, or rejection.

3. Rejects the conversation object and either submits a
new conversation object to the initiator or ignores the
initiator (this one has a time-out constraint).

Modeling conversations is a complex process as several
requirements need to be satisfied. Some of these require-
ments are identified in [10]: (i) conversation models should
be task-oriented, (ii) conversation models should be as-
sociated with a semantics, (iii) conversation models must
provide communication abstractions, and (iv) conversation
models should be reusable and extendable. In this paper,
we specify conversation schemas with state charts [8]. In
addition to satisfying some of the aforementioned require-
ments such as (i) and (iv), encoding the flow of conver-
sations using state charts has several benefits. First, state
charts have a formal semantics, which is essential for rea-
soning on the content of conversations. Next, state charts
are becoming a standard process-modeling language as
they are being integrated into UML. This process modeling
helps in managing admissible turns and decision makings
during conversations. Finally, state charts offer most of the
control-flow constructs that can be found in real conver-
sations such as branching and looping. Fig. 1 depicts the



ON INTEGRATING CONVERSATIONS INTO. . . Informatica 30 (2006) 245–251 247

mapping of the concepts of a conversation schema onto the
concepts of a state chart.

– Name of states is labelled with S/R (sender/receiver).

– Name of transitions is labelled with activation condi-
tion and conversation object.

– Actions of states implement the information that con-
versation objects convey.

– A complete state chart illustrates the conversation
schema of a conversation session.

Conversation schema
S: State

do/
Actions

(CO: conversation object)

CO

/Activation condition

R: State

do/
Actions

Figure 1: Conversation schema as a state chart

3 Context-aware conversations for
Web services composition

To assess the way a composition of Web services pro-
gresses so relevant conversation sessions are entered and
relevant conversation schemas are downloaded from the li-
brary of conversation schemas (Fig. 2), the use of aware-
ness mechanisms is required. These mechanisms ensure
that the status of each Web service is known and instanta-
neously reflected in a structure, which we denote by W-
context (context of Web service). using the information
that W-context caters, it is possible to know if a Web ser-
vice is part of a composition, under execution, or invited to
participate in a composition.

In one of our previous works [12], we strengthened the
advantages of the combination (software agent, Web ser-
vice, context). For example, agents track Web services in
order to update their respective W-contexts. The tracking
is about the composition in which a service takes part, the
current state that the service takes in the composition, and
the type of conversations that the service has initiated dur-
ing the composition. Fig. 2 presents the context-aware con-
versation approach for Web services composition that we
developed. The features of this approach are below.

1. Three types of software agents are set: conversation-
manager-agent, composite-service-agent, and service-
agent.

A conversation-manager-agent runs on top of the li-
brary of conversation schemas. It updates the library
if a new specification of a conversation schema is de-
veloped (e.g, by a designer). Plus, the conversation-
manager-agent responds to the requests of down-
loading conversation schemas that composite-service-
agents and service-agents submit.

A composite-service-agent triggers and monitors the
deployment of the specification of a composite service
(to keep Fig. 2 clear, the specification store is not rep-
resented1). This monitoring is reflected in a context,
which we refer to as C-context (context of Composite-
service). In addition, the composite-service-agent in-
teracts with service-agents when it comes to inviting
services for composition or informing services of the
changes in the specification of the composite services.

A service-agent is responsible for getting a Web ser-
vice ready for composition, monitoring its execution
through its state chart, and updating its W-context.

2. Besides the state charts of the conversation
schemas (Fig. 1), additional state charts are as-
sociated with Web services (Fig. 2). The states that
a Web service takes are immediately reflected in its
W-context. Interesting to note that the transitions
in the state charts of services are context-based and
conversation-oriented (Fig. 2-2). However, these
conversations are less complex than the conversations
that involve Web services (Fig. 2-1). Therefore, each
state of a Web service is associated with a T -context
(context of Web-service sT ate).

3. A library of conversation schemas that stores the spec-
ifications of conversation schemas (Fig. 1). The li-
brary is a resource from which composite-service-
agents and service-agents download conversation
schemas after interactions with the conversation-
manager-agent.

In Fig. 2, the conversations occur in two separate loca-
tions. In the first location, the conversations concern the
component Web services that participate in a composite
service (Fig. 2-1). These conversations are specified us-
ing the conversation schemas of Fig. 1. In the second lo-
cation, the conversations concern the states of the Web ser-
vices (Fig. 2-2). It should be noted that the state chart of
a conversation schema supports the interactions between
the state charts of services. The distinction between states
of services and states of conversations gives a much better
flexibility in managing the aspects that each type of state
chart is concerned with. State charts of services focus on
the changes that apply to services such as availability, com-
mitment, and execution, whereas state charts of conversa-
tions focus on the changes that apply to conversations such
as formulation, reception, and response.

Because of both types of state (those associated with ser-
vices and those associated with conversations), we annotate
each conversation state with a context, which we refer to as
S-context (context of conversation State). The rationale of
S-contexts of the states of conversations is similar to the
rationale of T -contexts of the states of services. Moreover,

1The specification of a composite service is based on state chart dia-
grams, where a state is labelled with a service chart diagram and a tran-
sition is labelled with events, conditions, and variable assignment opera-
tions [11].



248 Informatica 30 (2006) 245–251 Z. Maamar et al.

Web service 1

-1-
Conversations

State chart 1 State chart 2

Web service 2

W-context

Library
of CSs

Update

Interactions Interactions

Access Access

C-context
Update Update

Access

State 11 State 1i

-2-
Conversations

State 21 State 2j
-2-

Conversations

W-context

T11-context T1i-context T21-context T2j-context

Update

Conversation-manager-agent Service-agent Composite-service-agent

C-context: Composite-service context W-context: Web-service context T-context: sTate context

Legend

Figure 2: Context-aware conversation approach for Web services composition

to track the progress of a conversation a context, which we
denote by V-context (context of a conVersation), is used.
This is similar to the W-context of a Web service.

4 Development example of a
conversation schema

We decomposed the composition of Web services into
three stages: pre-composition, composition, and post-
composition. Each stage consists of different aspects,
which characterize the conversations that occur. In this sec-
tion, we illustrate how a conversation schema is developed.
This development consists of devising two state charts, one
for the conversations and one for the services that partici-
pate in these conversations. Before we explain the devel-
opment process, the following comments are made on both
types of state charts:

– State labels are annotated with S/R (sender/receiver).
If there is no annotation, the state identifies the com-
munication network.

– Transitions implement the links between states. Two
types of transition exist. The transitions that connect
states of the same chart are represented with regular
lines. The transitions that connect states of separate
charts are represented with dashed lines.

To keep the paper self-contained, only the conversation
schema featuring the invitation aspect is illustrated (Fig. 3).
While a composite service monitors the component Web
services that are currently under execution, the composite
service submits an invitation to the next component Web
service to join the composition.

States of services. There are four states, which are seen
from two perspectives.

– Sender perspective: two states are associated with
the sender service namely monitoring and assessment.
Here, the sender corresponds to the composite service.
One of the actions in the monitoring state consists of
downloading the conversation schema for Web ser-
vices invitation. We recall that this schema is stored
in the library of conversation schemas (Fig. 2).

– Receiver perspective: two states are associated with
the receiver service namely assessment and deploy-
ment. Here, the receiver corresponds to the next com-
ponent Web service. One of the actions in the assess-
ment state consists of checking the current commit-
ments that the Web service has towards other compos-
ite services. Based on these commitments, the com-
ponent service either accepts or rejects the invitation
to participate in a composite service.

States of conversations. There are six states, which are
seen from three perspectives. Ellipses glued to transitions
correspond to conversation objects.

– Sender perspective: two states are associated with the
sender service namely preparation and reception.

– Receiver perspective: two states are associated with
the receiver service namely preparation and reception.

– Network perspective: two states are associated with
the communication network namely transmission
from the sender to the receiver, and transmission from
the receiver to the sender.

5 Implementation
As a first step of validating the proposed approach of
Fig. 2, we have developed a conversation and Web services
composition-manager, using Borland JBuilder Enterprise



ON INTEGRATING CONVERSATIONS INTO. . . Informatica 30 (2006) 245–251 249

Invitation

/CS downloaded

S: Preparation
do/
devise message

S: Monitoring
do/
monitor cur. service
prepare next service
download CS

/Message not validated
or not understood

Re-
formulation

States of conversationStates of services

: Transmission
do/
transmit message
(S,R)

Invitation

R: Reception
do/
parse message
check message
understand message

/Message validated
and understood

R: Assessment
do/
analyse CO
check current
commitments

/Message validated
and understood

/Invitation rejected xor postponed

/Decision on CO made

/Message not validated
or not understood

Re-
formulation

R: Preparation
do/
devise message

Decision

Decision

S: Reception
do/
parse message
check message

/Message devised

/Message submitted

/CO accepted

R: Deployment
do/
prepare service

/service ready
to be deployed

/Message devised

: Transmission

do/
transmit message
(R,S)

/Message submitted

S: Assessment
do/
analyse CO

/Next service
to be triggered

T-context

T-context

T-context

T-context

S-context

S-context

S-context

S-context

/Execution current
service completed

Figure 3: State chart of a conversation schema - invitation aspect



250 Informatica 30 (2006) 245–251 Z. Maamar et al.

Figure 4: Graphical editor for conversation schemas and service chart diagrams

Edition version 92. The prototype integrates a set of tools,
which allow for instance Web services’ providers and users
to create, compose, and execute services based on the dif-
ferent contexts. WSDL is used for Web services specifi-
cation, and UDDI is used for Web services announcement
and discovery. Details of contexts and conversation ses-
sions are structured as XML files. A dedicated XML editor
was developed in order to create, validate, test, and mon-
itor the different XML files. The validation of these files
is based on two XML schemas (conversations.xsd and con-
text.xds). In addition, the conversation manager offers an
editor for describing the state charts of conversation ses-
sions and composite services (Fig. 4). The graphical edi-
tor provides means for directly manipulating conversations
and service chart diagrams, states, and transitions (add, re-
move, modify, etc.) graphically using drag and drop oper-
ations.

6 Conclusion

In this paper, we overviewed our approach for compos-
ing Web services using software agents, conversations, and
context. Several types of conversation schemas are dis-
cussed such as those for inviting Web services to partici-
pate in composition. Conversation schemas have been as-
sociated with software agents and contextual information.
Because needs and interests of users always change, it is
important to ensure that the composition of Web services
efficiently handles these changes. What is needed is to al-
low Web services to decide whether to join a composition,
what states to take with regard to the outcomes of conver-
sations, and what actions to perform within these states.

2http://www.borland.com/jbuilder/enterprise/index.html.

References
[1] L. Ardissono, A. Goy, and G. Petrone. Enabling

Conversations with Web Services. In Proceed-
ings of the Second International Joint Conference
on Autonomous Agents & Multi-Agent Systems (AA-
MAS’2003), Melbourne, Australia, 2003.

[2] B. Benatallah, Q. Z. Sheng, and M. Dumas. The Self-
Serv Environment for Web Services Composition.
IEEE Internet Computing, 7(1), January-February
2003.

[3] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenz-
erini, and M. Mecella. A Foundational Vision
for e-Services. In Proceedings of The Workshop
on Web Services, e-Business, and the Semantic
Web (WES’2003) held in conjunction with The 15th
Conference On Advanced Information Systems En-
gineering (CAiSE’2003), Klagenfurt/Velden, Austria,
2003.

[4] P. Brézillon. Focusing on Context in Human-
Centered Computing. IEEE Intelligent Systems,
18(3), May/June 2003.

[5] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation
Specification: A New Approach to Design and Anal-
ysis of E-Service Composition. In Proceedings of
The Twelfth International World Wide Web Confer-
ence (WWW’2003), Budapest, Hungary, 2003.

[6] B. Burg. Agents in the World of Active Web Services.
In Proceedings of Second Kyoto Meeting on Digital
Cities, Kyoto, Japan, 2001.

[7] J. Dale, D. Levine, F. G. McCabe, G. Arnold, M. Lyel,
and H. Kuno. Advanced Web Services. Technical



ON INTEGRATING CONVERSATIONS INTO. . . Informatica 30 (2006) 245–251 251

Report FLA-NARTM02-08, Fujitsu Laboratories of
America, Inc., Sunnyvale CA, USA, 2002.

[8] D. Harel and A. Naamad. The STATEMATE Seman-
tics of Statecharts. ACM Transactions on Software
Engineering and Methodology, 5(4), October 1996.

[9] M. Huhns. Agents as Web Services. IEEE Internet
Computing, 6(4), July-August 2002.

[10] F. Lin and D. H. Norrie. Schema-based Conver-
sation Modeling for Agent-oriented Manufacturing
Systems. Computers in Industry, 46(3), October
2001.

[11] Z. Maamar, B. Benatallah, and W. Mansoor. Ser-
vice Chart Diagrams - Description & Application. In
Proceedings of The Twelfth International World Wide
Web Conference (WWW’2003), Budapest, Hungary,
2003.

[12] Z. Maamar, S. Kouadri Mostéfaoui, and H. Yahyaoui.
A Web Services Composition Approach based on
Software Agents and Context. In Proceedings of The
19th Annual ACM Symposium on Applied Comput-
ing (SAC’2004), Nicosia, Cyprus, 2004.

[13] B. Medjahed, A. Bouguettaya, and A. Elmagarmid.
Composing Web Services on the Semantic Web. The
VLDB Journal, Special Issue on the Semantic Web,
Springer Verlag, 12(4), 2003.

[14] D. A. Menascé. QoS Issues in Web Ser-
vices. IEEE Internet Computing, 6(6), Novem-
ber/December 2002.

[15] J. P. Morgenthal. Web Service Conversations. Busi-
ness Integration Journal, August 2003.




