239 Key words: Beteae, LM, palynomorphology, sculpture, SEM, structure, UPGMA. Ključne besede: Beteae, svetlobni mikroskop, palinomorfologija, skulptura, vrstični elektronski mikroskop, struktura, UPGMA. Corresponding author: Daniella Ivanova E-mail: dani@bio.bas.bg Received: 16. 7. 2023 Accepted: 21. 2. 2024 Comparative morphometric and morphological study of the pollen of Beta trigyna, B. vulgaris and B. vulgaris subsp. maritima (Chenopodiaceae/Amaranthaceae sensu APG IV) Abstract Pollen morphology of Beta trigyna, B. vulgaris and B. vulgaris subsp. maritima, last of those studied for the first time, was investigated using light and scanning electron microscopy, based on 10 herbarium specimens. The aim of the study was to provide detailed data on the pollen characteristics of these taxa to identify similarities and differences between them. Pollen grains are pantoporate, spheroidal, circular in outline; small- and medium-sized. Exine sculpture is nanoechinate, tectum is psilate or psilate-perforate. Pore membranes are nanoechinate. Diagnostic relevance of the characters of pollen grains is discussed (pollen and pore diameters, distance between pores and between pore centres, nanoechini size and density, number of nanoechini on pore membranes, structure of columellae). UPGMA dendrograms based on palynological data support the differentiation of B. trigyna (section Corollinae), B. vulgaris and B. vulgaris subsp. maritima (section Beta). The obtained characteristics of pollen grains of Beta species can be used in spore-pollen analysis, especially in identifying the impact of human economic activity in the past. Izvleček S svetlobnim in vrstičnim elektronskim mikroskopom smo na 10 herbarijskih primerkih proučevali morfologijo peloda vrst Beta trigyna, B. vulgaris in B. vulgaris subsp. maritima, slednja je proučevana prvič. Namen raziskave je bil pridobiti natančne podatke o značilnostih peloda teh taksonov in izpostaviti podobnosti in razlike med njimi. Pelodna zrna so pantoporatna, sferoidna in okrogle oblike, majhna do srednje velika. Eksina je nanoehinatna, tektum je psilaten ari psilaten- perforaten. Membrane por so nanoehinatne. Obravnavali smo diagnostični pomen lastnosti pelodnih zrn (premere peloda in por, razdaljo med porami in središči por, velikost in gostoto nanoehinijev na membranah por, zgradbo kolumel). Z Dendrogrami UPGMA na osnovi palinoloških podatkov so potrdili razlike med vrstami B. trigyna (section Corollinae), B. vulgaris in B. vulgaris subsp. maritima (section Beta). Dobljene lastnosti pelodnih zrn vrst rodu Beta lahko uporabimo pri analizah spor in pelodnih analizah, predvsem pri ugotavljanju vpliva človekove gospodarske aktivnosti v preteklosti. Zoya M. Tsymbalyuk1, Daniella Ivanova2 & Lyudmila M. Nitsenko1 1 Department of Systematics and Floristics of Vascular Plants, M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv, Ukraine. 2 Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria. DOI: 10.2478/hacq-2023-001023/2 • 2024, 239–252 23/2 • 2024, 239–252 240 Tsymbalyuk et al. Comparative morphometric and morphological study of the pollen of Beta taxa Introduction Beta L. belongs to the tribe Beteae (Betoideae, Chenopodi- aceae/Amaranthaceae sensu APG IV), and comprises 9–10 species and an uncertain number of subspecies or varieties, which are mainly included in B. vulgaris L. (Iamonico, 2019). Wild representatives of the genus are annual, biennial and perennial herbaceous plants occurring from the Atlantic coast of Europe, Macaronesia, Eastern Europe and the Mediterranean Region to West and South Asia including Eastern India and Bangladesh (Ford-Lloyd & Williams, 1975; Ball & Akeroyd, 1993; Kadereit et al., 2006; Iamonico, 2019; POWO, 2023). In the flora of Ukraine and Bulgaria the genus is represented by the taxa B. trigyna Waldst. & Kit., B. vulgaris, and B. vulgaris subsp. maritima (L.) Arcang. (Iljin, 1952; Jordanov & Kuzmanov, 1966; Mosyakin & Fedoronchuk, 1999; Yena & Yevseyen- kov, 2010). Beta vulgaris is a biennial or perennial plant; its native range is in the Azores, Western Europe and Eastern Europe, the Mediterranean Region and eastwards to In- dia (Ford-Lloyd & Williams, 1975; POWO, 2023). This species is of great economic importance as a sugar crop, vegetable and fodder plant. Beta vulgaris is also used as medicinal and ornamental plant (Ford-Lloyd & Williams, 1975; POWO, 2023). The perennial sea beat B. vulgaris subsp. maritima (syn.: B. maritima L.) is widespread and native to Macaronesia, Western and Eastern Europe, the Mediterranean Region, the Middle East and extends to India; mainly in maritime locations along the seashores, but inland populations also occur (Ford-Lloyd & Wil- liams, 1975; Letschert, 1994; Stevenato et al., 2001; Bi- ancardi et al., 2012; Richards et al., 2014; Van Dijk & Hautekèete, 2014). Beta vulgaris subsp. maritima has the Mediterranean as its centre of diversity and, most likely, centre of domestication (Richards et al., 2014). It is esti- mated to be the wild progenitor of cultivated beet; it is also considered the most important wild source of genetic di- versity useful in improvement of cultivated beet, especially sugar beet (Richards et al., 2014; Stevanato et al., 2001). The native range of the perennial species B. trigyna is SE Europe to Iran and Turkmenistan (Ford-Lloyd & Wil- liams, 1975; Kadereit et al., 2006; POWO, 2023). The most comprehensive taxonomic treatment of the genus Beta was published by Iamonico (2019). Molecular phylogenetic studies of the genus were carried out by Shen et al. (1998), Hohmann et al. (2006), and Kadereit et al. (2006). Beta vulgaris and B. vulgaris subsp. maritima are included in the section Beta, and B. trigyna is included in the section Corollinae (Tranzschel) Ulbr. (Kadereit et al., 2006; Iamonico, 2019). The first two taxa are diploids with 2n = 18 chromosomes; but B. trigyna is a hexaploid with 2n = 54 (see e.g., Queirós, 1975; Česchmedjiev, 1976; Pastor et al., 1988; Ball & Akeroyd, 1993; Dempsey et al., 1994; Runemark, 1996, etc.). According to the lit- erature, some Beta taxa are problematic and need further revision (Kadereit et al., 2006; Iamonico, 2019). The palynomorphological characters are often used as additional diagnostic features in the taxonomy (Celenk et al., 2008; Albach et al., 2021; Tsymbalyuk et al., 2021, 2022a, 2022b; El Ghazali, 2022) as well as for spore-pol- len analysis in the paleopalynology (Monoszon, 1973; Be- zusko et al., 2003, 2023; Tsymbalyuk et al., 2005; Lewan- dowska et al., 2023). Many authors studied and discussed the pollen morphology of B. trigyna or B. vulgaris using light, scanning and/or transmission electron microscopy (Tsukada, 1967; Monoszon, 1973; Nowicke, 1975; Skvar- la & Nowicke, 1976; Kupriyanova & Alyoshina, 1972; Nowicke & Skvarla, 1979; Tsymbalyuk, 2005, 2008; Ts- ymbalyuk et al., 2005; Angelini et al. 2014). Despite the relatively numerous publications, the knowledge about the morphology of pollen grains in B. trigyna and B. vul­ garis are fragmentary because the available descriptions usually have only briefly addressed the pollen morphology or researchers have analysed a few selected pollen features. Palynomorphological investigation of B. trigyna, B. vul­ garis and B. vulgaris subsp. maritima taxa was carried out using light and scanning electron microscopy in order to provide detailed quantitative and qualitative data on their pollen characteristics to identify similarities and differ- ences between them. Materials and methods In total, pollen grains of 10 specimens belonging to B. trigyna, B. vulgaris and B.  vulgaris subsp. maritima (henceforth B. maritima) taxa were sampled in the Na- tional Herbarium of Ukraine (KW – herbarium of the M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv; the herbarium acronym is given according to Thiers (2023 [continuously updated]). The methods used in the present study have been described in details earlier (Tsymbalyuk et al., 2023a, 2023b). Pollen morphology was studied using both light microscopy (LM) and scanning electron microscopy (SEM). For LM studies (Biolar ×700), the pollen was acetolysed following Erdtman (1952), mounted on slides with glycerinated gelatin, analysed, and photomicro- graphed. Pollen morphometric features of 30 properly de- veloped pollen grains from each specimen were measured, and the measurements included the following parameters: pollen diameter, pore diameter, distance between pores, exine thickness. The distance between pore centres and C/D value (C – pollen diameter, D – distance between pore centres) were calculated (McAndrews & Swanson, 23/2 • 2024, 239–252 241 Tsymbalyuk et al. Comparative morphometric and morphological study of the pollen of Beta taxa 1967). The number of pores was calculated by multiply- ing the number of pores visible on the surface by two and adding the number of pores at the edge of the pollen grain. For all quantitative characters, descriptive statistics was applied and the range (minimum–maximum), arith- metic mean and standard deviation were calculated using Microsoft Excel software. The slides were deposited in the Palynotheca (reference pollen collection) at the National Herbarium of Ukraine (Bezusko & Tsymbalyuk, 2011). For SEM studies (JEOL JSM-6060LA), dry and aceto- lysed pollen grains were treated with 96%-ethanol, then the samples were sputter-coated with gold and investigated at the Centre of Electron Microscopy of the M.G. Kholodny Institute of Botany. The measurements of the nanoechini and columellae were taken on 5–8 pollen grains from each specimen from SEM micrographs and made using the pro- gram AxioVision Rel.4.8.2. The numbers of nanoechini per unit area (4 µm²) and on pore membranes were deter- mined. Terminology used in descriptions of pollen grains follows mainly the glossaries of Punt et al. (2007) and Hal- britter et al. (2018). Abbreviations of taxon author names follow Brummitt & Powell (1992), with additions avail- able from the continuously updated International Plant Names Index (IPNI, 2023) and from POWO (2023). Cluster analysis was carried out to determine the phe- netic similarities among the investigated taxa. Thirteen quantitative characters were examined: pollen and pore di- ameter, distance between pores and between pore centres, pore number, C/D value, and exine thickness (Table 1); nanoechini: height, width at the base, number/4  µm², number on pore membranes; columellae: height and thickness (Table 2). Cluster analysis was carried out using the unweighted pair group method with arithmetic mean (UPGMA). The Euclidean distance was used as a simi- larity index in clustering analyses. PAST (PAleontologi- cal STatistics) v. 4.08 was used for the analysis (Hammer et al., 2001). The variability of the characters has been examined by Box plots. Taxon Pollen diameter Pore diameter Distance be- tween pores Distance between pore centres Pore number C/D Exine thickness Beta trigyna 1 28.46±2.04 25.27–33.25 3.83±0.46 2.66–5.05 3.29±0.54 2.66–4.65 7.13±0.86 5.32–9.04 30.13±2.06 28–35 0.25±0.03 0.19–0.30 2.62±0.09 2.39–2.79 Beta trigyna 2 27.66±2.07 23.94–31.92 3.87±0.52 2.66–5.32 3.48±0.48 2.66–3.99 7.35±0.84 5.32–9.31 28.90±2.19 26–34 0.26±0.02 0.22–0.31 2.57±0.23 2.39–3.32 Beta trigyna 3 26.82±1.09 23.94–29.26 4.94±0.81 3.99–6.65 3.58±0.48 2.66–4.65 8.52±0.94 6.65–9.97 24.93±1.63 22–29 0.31±0.03 0.25–0.38 2.51±0.13 2.26–2.66 Beta trigyna G 27.64±1.91 23.94–33.25 4.21±0.80 2.66–6.65 3.45±0.51 2.66–4.65 7.67±1.07 5.32–9.97 27.98±2.97 22–35 0.27±0.04 0.19–0.38 2.57±0.17 2.26–3.32 Beta vulgaris 1 19.28±0.89 17.29–21.28 2.35±0.31 1.99–3.32 2.24±0.24 1.99–2.66 4.60±0.42 3.99–5.71 29.76±1.54 26–32 0.23±0.01 0.20–0.29 2.38±0.16 1.99–2.66 Beta vulgaris 2 22.52±2.05 18.62–26.60 3.09±0.72 1.99–4.65 2.74±0.45 2.39–3.99 5.83±1.08 4.38–8.37 26.13±2.15 23–32 0.25±0.03 0.20–0.33 2.44±0.22 1.99–2.92 Beta vulgaris 3 18.70±0.90 17.29–19.95 2.39±0.23 1.99–2.66 2.42±0.15 2.26–2.66 4.81±0.32 4.25–5.32 27.26±1.48 26–32 0.25±0.01 0.22–0.29 2.44±0.12 2.26–2.66 Beta vulgaris G 20.17±2.18 17.29–26.60 2.61±0.58 1.99–4.65 2.47±0.37 1.99–3.99 5.08±0.88 3.99–8.37 27.72±2.31 23–32 0.25±0.02 0.20–0.33 2.42±0.17 1.99–2.92 Beta maritima 1 21.13±1.34 18.62–23.94 2.79±0.40 2.39–3.99 2.76±0.36 2.39–3.99 5.55±0.65 4.78–7.44 27.07±3.25 24–32 0.26±0.03 0.22–0.36 2.34±0.22 1.99–2.66 Beta maritima 2 19.99±0.93 18.62–22.61 2.50±0.13 2.39–2.66 2.45±0.23 1.99–2.79 4.96±0.31 4.38–5.45 31.76±2.29 28–36 0.24±0.01 0.22–0.28 2.28±0.18 1.99–2.66 Beta maritima 3 18.66±1.00 17.29–19.95 2.35±0.29 1.59–2.66 2.39±0.16 1.99–2.66 4.74±0.39 3.59–5.32 28.26±2.06 25–32 0.25±0.01 0.20–0.28 1.70±0.21 1.33–1.99 Beta maritima 4 20.33±1.45 18.62–23.94 2.61±0.35 1.99–3.32 2.37±0.20 1.99–2.66 4.99±0.41 4.12–5.71 33.85±2.69 29–39 0.24±0.02 0.19–0.28 2.23±0.18 1.99–2.66 Beta maritima G 20.00±1.49 17.29–23.94 2.56±0.34 1.59–3.99 2.49±0.29 1.99–3.99 5.05±0.54 3.59–7.44 30.23±3.73 24–39 0.25±0.02 0.19–0.36 2.13±0.33 1.33–2.66 Table 1: Pollen morphometric characters (using LM): the values are presented as Mean ± Standard deviation and Range (minimum-maximum) (all measurements given as µm); 1, 2, 3, 4 – specimen number; G – general specimens’ measurements; C – pollen diameter, D – distance between pore centres. Tabela 1: Morfološke značilnosti peloda (z uporabo LM): vrednosti predstavljajo povprečje ± standardna deviacija in rang (minimum-maksimum) (vse meritve so v µm); 1, 2, 3, 4 – številka primerka; G – glavne meritve primerkov; C – premer peloda, D – razdalja med središčem pore. 23/2 • 2024, 239–252 242 Tsymbalyuk et al. Comparative morphometric and morphological study of the pollen of Beta taxa Results The original data on quantitative pollen characters used in this study are summarised in Tables 1, 2. LM and SEM photomicrographs of pollen grains are shown in Fig- ures 1–4. UPGMA dendrograms showing the relationships of pollen grains of studied taxa are presented in Figure 5. Box plots illustrating the variation in pollen diameter, pore diameter, distance between pores and pore centres, pore number, and exine thickness of B. trigyna, B. vulgaris and B. maritima pollen grains are shown in Figure 6. Description of pollen grains Beta trigyna (Figures 1a–h; 2a, b; 3a, b; 4a–c) LM. Pollen grains monads, isopolar, spheroidal, cir- cular in outline, slightly undulated or undulated on the edge; medium-sized: P (Polar axis) = E (Equatorial diameter) = 23.94–33.25 µm; pantoporate, with 22–35 pores evenly distributed on the surface. Pores circular, 2.66–6.65 µm in diameter, with distinct or indistinct margins. Distance between pores 2.66–4.65 µm, between pore centres – 5.32–9.97 µm. C/D = 0.190–0.388. Exine 2.26–3.32 µm thick (Table 1). Sexine thicker than nex- ine. Columellae distinct or indistinct. LO-analysis: colu- mellae distinct, circular, densely distributed, nanoechini indistinct or invisible. Figure 1: Pollen grains of Beta (LM): a–h – B. trigyna (a–d – speci- men 2, Ukraine, e–h – specimen 3, Turkey), i–p – B. vulgaris (i, j – specimen 1, Ukraine, k, l – specimen 2, Ukraine, m–p – specimen 3, India), q–x – B. vulgaris subsp. maritima (q–t – specimen 1, France, u – specimen 4, Egypt, v – specimen 3, France, w, x – specimen 2, India). Scale bars = 10 µm. → Slika 1: Pelodna zrna vrst rodu Beta (LM): a–h – B. trigyna (a–d – primerek 2, Ukrajina, e–h – primerek 3, Turčija), i–p – B. vulgaris (i, j – primerek 1, Ukrajina, k, l – primerek 2, Ukrajina, m–p – primerek 3, Indija), q–x – B. vulgaris subsp. maritima (q–t – primerek 1, Francija, u – primerek 4, Egipt, v – primerek 3, Francija, w, x – primerek 2, Indija). Merilo = 10 µm. → Taxon Nanoechini (SEM) Columellae (SEM) Height Width at the base Number/4 µm² Number on pore membranes Height Thickness Beta trigyna 1 0.14±0.04 0.08–0.22 0.23±0.03 0.18–0.30 9.27±1.21 7–11 16.61±2.92 13–22 0.62±0.06 0.53–0.73 0.30±0.03 0.23–0.36 Beta trigyna 2 0.12±0.04 0.06–0.22 0.21±0.03 0.16–0.28 7.94±1.60 6–12 17.41±2.67 14–22 0.66±0.04 0.58–0.74 0.31±0.03 0.25–0.36 Beta trigyna 3 0.13±0.03 0.07–0.20 0.23±0.03 0.18–0.30 8.66±1.94 6–12 20.12±3.62 15–27 0.75±0.09 0.57–0.88 0.31±0.06 0.22–0.43 Beta trigyna G 0.13±0.04 0.06–0.22 0.22±0.03 0.16–0.30 8.48±1.69 6–12 17.91±3.34 13–27 0.71±0.10 0.53–0.88 0.31±0.05 0.22–0.43 Beta vulgaris 1 0.09±0.01 0.07–0.12 0.15±0.02 0.13–0.21 14.12±1.36 12–16 9.12±1.26 8–12 0.54±0.06 0.45–0.63 0.19±0.02 0.16–0.23 Beta vulgaris 2 0.10±0.02 0.06–0.14 0.17±0.02 0.13–0.21 11.04±1.60 9–15 13.82±2.60 8–17 0.52±0.04 0.45–0.61 0.20±0.01 0.18–0.23 Beta vulgaris 3 0.10±0.02 0.07–0.13 0.16±0.02 0.13–0.21 13.18±1.69 10–16 11.17±1.61 9–15 0.55±0.05 0.45–0.63 0.19±0.01 0.17–0.22 Beta vulgaris G 0.09±0.02 0.06–0.14 0.16±0.02 0.13–0.21 12.21±2.05 9–16 11.87±2.88 8–17 0.54±0.05 0.45–0.63 0.19±0.01 0.16–0.23 Beta maritima1 0.09±0.02 0.05–0.14 0.18±0.03 0.12–0.24 12.07±1.57 9–15 13.00±2.33 10–17 0.47±0.05 0.41–0.58 0.17±0.01 0.15–0.21 Beta maritima 2 0.09±0.02 0.05–0.15 0.17±0.03 0.11–0.24 12.39±1.58 10–15 11.40±2.48 7–16 0.42±0.04 0.35–0.53 0.20±0.02 0.16–0.25 Beta maritima 3 0.09±0.02 0.05–0.14 0.17±0.03 0.12–0.24 14.11±1.60 12–17 10.95±2.69 6–15 0.48±0.08 0.35–0.59 0.21±0.02 0.18–0.26 Beta maritima 4 0.10±0.03 0.05–0.15 0.18±0.02 0.12–0.23 12.36±1.49 9–15 9.18±1.78 6–12 0.45±0.04 0.38–0.55 0.18±0.01 0.17–0.21 Beta maritima G 0.09±0.02 0.05–0.15 0.18±0.03 0.11–0.24 12.67±1.71 9–17 10.92±2.69 6–17 0.46±0.06 0.35–0.59 0.20±0.02 0.15–0.26 Table 2: Pollen morphometric characters (using SEM): the values are presented as Mean ± Standard deviation and Range (all measurements given as µm); 1, 2, 3, 4 – specimen number; G – general specimens’ measurements. Tabela 2: Morfološke značilnosti peloda (z uporabo SEM): vrednosti predstavljajo povprečje ± standardna deviacija in rang (minimum-maksimum) (vse meritve so v µm); 1, 2, 3, 4 – številka primerka; G – glavne meritve primerkov. 23/2 • 2024, 239–252 243 Tsymbalyuk et al. Comparative morphometric and morphological study of the pollen of Beta taxa Figure 1 23/2 • 2024, 239–252 244 Tsymbalyuk et al. Comparative morphometric and morphological study of the pollen of Beta taxa SEM. Exine sculpture nanoechinate; nanoechini conic with straight sides and acute apex, 0.06–0.22 µm high, 0.16–0.30 µm wide at base, sparsely or more densely distributed (6–12/4 µm²); tectum psilate-perforate in areas between nanoechini. Pore membranes with nanoe- chini (in number 13–27), pores’ margin raised or sunken; mesoporia mainly flattened or rarely convex. Columellae medium-length or long, 0.57–0.88 µm long, thick, 0.22– 0.43 µm wide, densely or sparsely arranged (Table 2). Specimens investigated: 1. Crimea, Yayla, Ai-Petri. Rocky slope, in a funnel. 25 July 1974. O. Dubovik (KW). 2. Crimea, Belogorsk District, Belaya Skala village, along the Biyuk-Karasu River. 8 June 1978. O. Dubovik (KW). 3. Turkey. Ex Herb. Hort. Bot. Reg. Kew. Prov. Erzurum: Kop Dag Pass: weed; alt. 9000 ft. 9 August 1962. Coll. P. Furse 3484 (KW). Beta vulgaris (Figures 1i–p; 2c, d; 3c, d; 4d–f ) LM. Pollen grains monads, isopolar, spheroidal, cir- cular in outline, slightly undulated or undulated on the edge; small and medium-sized: P = E = 17.29–26.60 µm; pantoporate, with 23–32 pores evenly distributed on the surface. Pores circular, 1.99–4.65 µm in diameter, with indistinct or distinct margins. Distance between pores 1.99–3.99 µm, between pore centres – 3.99–8.37 µm. C/D = 0.200–0.331. Exine 1.99–2.92 µm thick (Ta- ble 1). Sexine thicker than nexine. Columellae indis- tinct or invisible. LO-analysis: columellae indistinct or rarely distinct, circular, densely distributed, nanoechini invisible. SEM. Exine sculpture nanoechinate; nanoechini conic with straight sides and acute apex, 0.06–0.14 µm high, 0.13–0.21 µm wide at base, sparsely or more densely dis- tributed (9–16/4 µm²); tectum psilate or psilate-perforate in areas between nanoechini. Pore membranes with na- noechini (in number 8–17), pores’ margin sunken or raised; mesoporia mainly convex or rarely flattened. Columellae medium-length, 0.45–0.63 µm long, thin, 0.16–0.23 µm wide, densely arranged (Table 2). Specimens investigated: 1. [Ukraine] Donetsk Re- gion, Makiivka, Novo-Kalynove village, gardens along the road to the mine. 30 June 1982. R.I. Burda, A.E. Kus­ kov (KW). 2. [Ukraine] Kozatske village in the Shevchen- kiv region. Cultivated. July 1920. M. Pidoplichko (KW). 3. [India] Delhi University Campus. 15 February 1957. Manahar Lal (KW). Figure 2: Pollen grains of Beta (SEM): a, b – B. trigyna (a – specimen 1, Ukraine, dry pollen, b – specimen 3, Turkey, acetolysed pollen), c, d – B. vulgaris (c – specimen 1, Ukraine, dry pollen, d – specimen 3, India, dry pollen), e, f – B. vulgaris subsp. maritima (e – specimen 4, Egypt, dry pollen, f – specimen 4, Egypt, acetolysed pollen). Scale bars = 5 µm. Slika 2: Pelodna zrna vrst rodu Beta (SEM): a, b – B. trigyna (a – primerek 1, Ukrajina, suh pelod, b – primerek 3, Turčija, acetoliziran pelod), c, d – B. vulgaris (c – primerek 1, Ukrajina, suh pelod, d – primerek 3, Indija, suh pelod), e, f – B. vulgaris subsp. maritima (e – primerek 4, Egipt, suh pelod, f – primerek 4, Egipt, acetoliziran pelod). Merilo = 5 µm. e fd ca b 23/2 • 2024, 239–252 245 Tsymbalyuk et al. Comparative morphometric and morphological study of the pollen of Beta taxa Figure 3: Exine sculpture of pollen grains of Beta (SEM): a, b – B. trigyna (a – specimen 1, Ukraine, dry pollen, b – specimen 3, Turkey, acetolysed pollen), c, d – B. vulgaris (c – specimen 1, Ukraine, dry pollen, d – specimen 3, India, dry pollen), e, f – B. vulgaris subsp. maritima (e – specimen 4, Egypt, dry pollen, f – specimen 2, India, dry pollen). Scale bars = 1 µm. Slika 3: Eksina pelodnih zrn vrst rodu Beta (SEM): a, b – B. trigyna (a – primerek 1, Ukrajina, suh pelod, b – primerek 3, Turčija, acetoliziran pelod), c, d – B. vulgaris (c – primerek 1, Ukrajina, suh pelod, d – primerek 3, Indija, suh pelod), e, f – B. vulgaris subsp. maritima (e – primerek 4, Egipt, suh pelod, f – primerek 2, Indija, suh pelod). Merilo = 1 µm. Beta maritima (= B. vulgaris subsp. maritima) (Figu- res 1q–x; 2e, f; 3e, f; 4g–i) LM. Pollen grains monads, isopolar, spheroidal, circular in outline, slightly undulated or undulated on the edge; small and medium-sized: P = E = 17.29–23.94 µm; pantoporate, with 24–39 pores evenly distributed on the surface. Pores circular, 1.59–3.99 µm in diameter, with indistinct or distinct margins. Distance between pores 1.99–3.99 µm, between pore centres – 3.59– 7.44 µm. C/D = 0.193–0.366. Exine 1.33–2.66 µm thick (Table 1). Sexine thicker than nexine. Columellae indistinct or invisible. LO-analysis: columellae indistinct or rarely distinct, circular, densely distributed, nanoechini invisible. SEM. Exine sculpture nanoechinate; nanoechini conic with straight sides and acute apex, 0.05–0.15 µm 23/2 • 2024, 239–252 246 Tsymbalyuk et al. Comparative morphometric and morphological study of the pollen of Beta taxa high, 0.11–0.24 µm wide at base, sparsely or more densely distributed (9–17/4µm²); tectum psilate or psilate-perforate in areas between nanoechini. Pore membranes with nanoechini (in number 6–17), pores’ margin sunken or raised; mesoporia mainly convex or rarely flattened. Columellae short and medium-length, 0.35–0.59 µm long, thin, 0.15–0.26 µm wide, densely arranged (Table 2). Specimens investigated: 1. France, Charente-Inféri- eure [nowadays Charente-Maritime]. Pointe d’Yves, rocailles. 4 Juin 1929. Herbier J. Charrier (KW). 2. [India] Herb. Ind. Or. Hook. fil. F. Thomson. Hab. Punjab. Cult. Regio. hop. Coll. I.I. (KW-TURCZ: Turczaninow historical herbarium in Kyiv). 3. [France] Ajaccio – Corsica (KW-TURCZ). 4. [Egypt] prope Cahiram in pratis. Unio itiner. leg. Januario 1833. Dr. A. Wiest 77 (KW-TURCZ). Numerical analysis of the palynomorphological characters Cluster analysis of all 10 studied specimens clearly dis- tinguished the three specimens of B.  trigyna (Table 1; Figure 5a). The specimens with similar larger pollen di- ameter, pore diameter, distance between pores and pore centres, number of pores, C/D value and exine thickness belonging to B. trigyna are placed into a separate branch. On the other hand, B.  vulgaris and B. maritima speci- mens with the smallest measurements of pollen grain fea- tures are placed in another branch (Figure 5a). In general, the variation range in the characteristics of pollen grains between the different specimens of B. trigyna is small (see Figure 6); no significant discontinuity within species was observed. The samples of B.  trigyna from Ukraine had most similar characters. However, an exception is the B. trigyna specimen collected in Turkey, which had larger Figure 4: Pores and exine structure of pollen grains of Beta (SEM): a–c – B. trigyna (a – specimen 1, Ukraine, dry pollen, b, c – specimen 3, Turkey, acetolysed pollen), d–f – B. vulgaris (d – specimen 1, Ukraine, dry pollen, e, f – specimen 3, India, acetolysed pollen), g–i – B. vulgaris subsp. maritima (g – specimen 2, India, dry pollen, h – specimen 2, India, acetolysed pollen, i – specimen 1, France, acetolysed pollen); a, b, d, e, g, h – pores, c, f, i – columellae. Scale bars = 1 µm. Slika 4: Pore in struktura eksine pelodnih zrn vrst rodu Beta (SEM): a–c – B. trigyna (a – primerek 1, Ukrajina, suh pelod, b, c – primerek 3, Turčija, pelod v acetonu), d–f – B. vulgaris (d – primerek 1, Ukrajina, suh pelod, e, f – primerek 3, Indija, pelod v acetonu), g–i – B. vulgaris subsp. maritima (g – primerek 2, India, suh pelod, h – primerek 2, Indija, pelod v acetonu, i – primerek 1, Francija, pelod v acetonu); a, b, d, e, g, h – pore, c, f, i – kolumele. Merilo = 1 µm. 23/2 • 2024, 239–252 247 Tsymbalyuk et al. Comparative morphometric and morphological study of the pollen of Beta taxa mean pore diameter, pore centre distance, C/D value, and pore number, which is also confirmed by the dendrogram (Figure 5a). Specimens with comparable average measure- ments of pollen grain features, belonging to B.  vulgaris and B. maritima, are grouped together and placed in a separate branch (Figure 5a). belonging to B. vulgaris and B. maritima, are grouped to- gether and form a separate branch (Figure 5b). Discussion In general, our data are in agreement with the results of previous LM studies (Tsukada, 1967; Kupriyanova & Alyoshina, 1972; Monoszon, 1973; Angelini et al., 2014). Pollen diameter – The pollen size range for B.  trigyna was given by Kupriyanova & Alyoshina (1972) as 25.2– 27.6  µm, and by Monoszon (1973) as 25.0–30.3  µm. Their data are close to our pollen diameter measure- ments, although the range in our study is slightly larger. The pollen sizes for B. vulgaris were given by Monoszon (1973) as 16.0–18.3 µm. Tsukada (1967) presented only the mean pollen diameter of B. vulgaris as 19.5 µm. An- gelini et al. (2014) reported pollen grain diameters for B. vulgaris ssp. cicla (L.) Schübl. & G.Martens (= B. vul­ garis var. cicla L.) [19.71 (18.48–20.02) µm], B. vulgaris var. rubra L. [20.08 (18.48–21.56) µm], and B. vulgaris var. altissima Döll (= B.  vulgaris subsp. vulgaris) [20.08 (18.48–21.56) µm]. These reports are similar to those for B. vulgaris and B. maritima found in the current study (Table 1). Pore diameter – Kupriyanova & Alyoshina (1972) re- ported B. trigyna pore diameter of 2.4–3.6 µm. Monoszon (1973) reported B.  trigyna pollen grains that had diam- eter of pores of 3.5–4.0 µm, and those of B.  vulgaris – 2.8–3.8 µm, which falls in the range of our data. Angelini et al. (2014) reported pollen grains of B. vulgaris ssp. cicla (2.31–3.08 µm), B.  vulgaris var. rubra (2.31–3.39 µm), and B. vulgaris var. altissima (2.31–3.08 µm), in which the diameter of pores is comparable to those of B. vulgaris and B. maritima reported in the current study (Table 1). Distance between pores – Kupriyanova & Alyoshina (1972) reported B. trigyna pollen grains that had distanc- es between pores of 3.6–4.2 µm, which is in line with the values obtained in this study. Angelini et al. (2014) reported pollen grains of B. vulgaris ssp. cicla [2.52 (2.00– 3.08) µm], B. vulgaris var. rubra [2.78 (2.31–3.08) µm], and B.  vulgaris var. altissima [3.08 (2.77–3.85) µm], in which the distances between pores are comparable to those of B. vulgaris and B. maritima in the present study (Table 1). Distance between pore centres – Monoszon (1973) re- ported pollen grains with 7.6–9.0 µm distances between centres of pores in B. trigyna, and 4.0–5.1 µm in B. vul­ garis which is consistent with our data (Table 1). Pore number – Kupriyanova & Alyoshina (1972) re- ported a greater number of pores on pollen of B. trigyna (30–40) than the values found in our study. Monoszon (1973) reported pollen grains of B.  trigyna with 23–29 Figure 5: UPGMA dendrograms showing the relationships of pollen grains of B. trigyna, B vulgaris and B. vulgaris subsp. maritima taxa: a – quantitative characters (see Table 1), b – quantitative characters (see Table 2). Slika 5: UPGMA dendrogrami, ki prikazujejo podobnosti peloda med vrstami B. trigyna, B vulgaris in B. vulgaris subsp. maritima: a – kvanti- tativni znaki (glej Tabelo 1), b – kvantitativni znaki (glej Tabelo 2). Pollen samples from Ukrainian B. trigyna had the most similar nanoechini and columellae measurements and are clustered into one branch (Table 2; Figure 5b). However, pollen grains of the Turkish B. trigyna specimen had big- ger nanoechini number on the pore membrane. But in general, as seen in the UPGMA dendrogram, B. trigyna has distinctive pollen morphometric features (larger nanoechini, more nanoechini on the pore membrane, sparse distribution of nanoechini on the surface, longer and thicker columellae) and is placed in a separate cluster (Figure 5b). Specimens with a similar number of nanoe- chini per unit area, number of nanoechini distributed on pore membrane, and comparative size of the columellae, Single Linkage Euclidean distances a Linkage Distances b 23/2 • 2024, 239–252 248 Tsymbalyuk et al. Comparative morphometric and morphological study of the pollen of Beta taxa Figure 6: Box plots of Beta pollen grains: a – pollen diameter, b – pore diameter, c – distance between pore, d – distance between pore centres, e – pore number, f – exine thickness; 1–3 – B. trigyna, 4–6 – B. vulgaris, 7–10 – B. vulgaris subsp. maritima. Slika 6: Škatle z brki pelodnih zrn vrst rodu Beta: a – premer peloda, b – premer pore, c – razdalja med porami, d – razdalja med središči por, e – število por, f – debelina eksine; 1–3 – B. trigyna, 4–6 – B. vulgaris, 7–10 – B. vulgaris subsp. maritima. a b c d e f 23/2 • 2024, 239–252 249 Tsymbalyuk et al. Comparative morphometric and morphological study of the pollen of Beta taxa pores and of B.  vulgaris with up to 30 pores. Tsukada (1967) reported a total number of 32–40 pores per grain for B. vulgaris. Possibly, the observed variation is due to differences in pore counting approaches. Angelini et al. (2014) reported pollen grains of B. vulgaris ssp. cicla (44– 67), B.  vulgaris var. rubra (40–58), and B.  vulgaris var. altissima (35–49), which had more pores than B. vulgaris and B.  maritima counted in the current investigation. Our data showed that the C/D values are very similar in all taxa investigated, since the pollen grains have a similar or at least comparable number of pores (Table 1). Exine – Kupriyanova & Alyoshina (1972) reported pollen grains of B.  trigyna that had thinner exine (1.8– 2.4 µm) than the values recorded in this study. The exine of the pollen grains of B. vulgaris ssp. cicla [1.77 (1.54– 2.31) µm], B. vulgaris var. rubra [2.02 (1.54–2.77) µm], and B. vulgaris var. altissima [1.86 (1.54–2.31) µm], re- ported by Angelini et al. (2014), is generally thinner than the exine of B. vulgaris and B. maritima measured in our study (Table 1). Exine sculpture – Tsukada (1967) presented the mean nanoechini number per unit area in B. vulgaris (12.8/4 µm²), which is consistent with our data (Table 2). The data obtained in the present study show that B.  trigyna had larger pollen grains than the other two taxa. Beta vulgaris and B. maritima had overlapping size ranges. This is also supported by the cluster analysis and box plots (Figures 5a, 6a). Beta trigyna had fewer pores, while B. vulgaris and B. maritima had bigger pore num- bers (Figure 6e). The largest diameter of pores was ob- served in B. trigyna, while pores with a smaller diameter were found in B. vulgaris and B. maritima (Figure 6b). Larger distances between pores and between centres of pores were characteristic for B. trigyna, while shorter ones were observed in B. vulgaris and B. maritima (Figure 6c, d). Beta trigyna had a thicker exine, while B. vulgaris and B. maritima had a thinner exine (Figure 6f ). Our data demonstrate the relationship between the pore size and the number of nanoechini on the pore mem- brane (Tables 1, 2). The pollen grains of B. trigyna had a larger pore diameter and a greater number of nanoechini on the pore membrane (Figure 4a, b). Respectively, the pollen grains of B. vulgaris and B. maritima had a smaller pore diameter and fewer nanoechini on the membrane of pores (Figure 4d, e, g, h). There are several palynomorphological characters that overlap. For example, pollen grains in all taxa were slight- ly undulated or undulated on the edge, which also agrees with the data of Kupriyanova & Alyoshina (1972) and Monoszon (1973). According to the mesoporial exine level, pores in B. trigyna, B. vulgaris and B. maritima were sunken or raised. Pollen grains of all taxa had convex or slightly flattened mesoporia and psilate-perforate tectum (Figures 3, 4). Since these characters are similar in all taxa, their usefulness for distinguishing of the taxa is limited. Some authors have observed a correlation between the ploidy level and the pollen size in members of Cheno- podiaceae family: polyploidy may result in larger pollen (e.g., Bassett et al., 1983; Olvera et al., 2006). The latter authors noted also that the number of pores is another pollen character to compare with the chromosome counts in Chenopodiaceae (Olvera et al., 2006). In our study, smaller pollen grains were found in B. vulgaris and B. ma­ ritima which are diploids and possess chromosome num- bers of 2n = 18. The largest pollen grains were found in the hexaploid B. trigyna with a chromosome number of 2n = 54. The data obtained corroborate the relationship between the number of chromosomes and the pollen size. A greater number of chromosomes clearly correspond to an increase in the size of pollen grains. Our studies showed that B. trigyna pollen had a larger diameter but fewer pores, whereas B. vulgaris and B. maritima had a smaller diameter but more numerous pores. Bezusko et al. (2023) analysed the species composition of the palynofloras of Late Holocene sediments of eight sections located on the territory of the Left Bank of the modern Forest-Steppe zone of Ukraine. The obtained data showed that the composition of palynofloras of Subatlantic–3 Holocene sediments of two sections (Loshchyna and Lopanske) included pollen grains of B. vulgaris. The radiocarbon date 550±40 BP records the appearance of pollen grains of B. vulgaris in the palynoflora of the investigated deposits of the Lopanske section. The results of the analysis of paleofloristic materials indicate the cultivation of B. vulgaris in the Kharkiv region (Bohodukhivskyi and Dergachivskyi Districts), starting from the second half of the Subatlantic–3 Holocene time. Thus, B. vulgaris had its own history of cultivation in the studied area. Conclusions The description of the pollen grains of B. maritima is pro- vided for the first time in this study. Also, for the first time, a description and comparison of the exine structure using SEM of B. trigyna, B. vulgaris and B. maritima is provided. The most significant characters for the diagnosis of these taxa are: pollen and pore sizes, distance between pores and between pore centres, structure of columellae, nanoechini size and density, number of nanoechini on pore membranes, and exine thickness. The taxa B.  vul­ garis and B.  maritima are quite similar in pollen grain characters. Pollen grains of B. trigyna (section Corollinae) differ in these characters from those of B. vulgaris and 23/2 • 2024, 239–252 250 Tsymbalyuk et al. Comparative morphometric and morphological study of the pollen of Beta taxa B. maritima (section Beta). The presented quantitative and qualitative characteristics of pollen grains and their photomicrographs can be used for pollen identification in paleopalynology for spore-pollen analysis, especially for identifying the impact of human economic activity in the past. When identifying pollen grains, it is possible to use a complex of features of B. vulgaris since B. maritima grows mainly on sea coasts. The pollen characteristics de- scribed here may also be used in future studies aiming at completing the knowledge on Beteae species and Cheno- podiaceae/Amaranthaceae in general. Acknowledgements The authors express their gratitude to Natalia M. Shy- ian, Head Curator of the National Herbarium of Ukraine (KW; herbarium of the M.G. Kholodny Institute of Bota- ny, National Academy of Sciences of Ukraine). Kind help and cooperation of Dmytro O. Klymchuk, Head of the Centre of Electron Microscopy (M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine), are greatly appreciated. This study was funded in part by the project of the M.G. Kholodny Institute of Botany No. III-96-21.476 (state registration no. 0121U100463) sup- ported by the National Academy of Sciences of Ukraine: Micromorphological and palaeopalynological characteris- tics of representatives of critical groups of asterids in the Flora of Ukraine (taxa of order Caryophyllales). Zoya M. Tsymbalyuk  https://orcid.org/0000-0003-2768-0045 Daniella Ivanova  https://orcid.org/0000-0001-5286-030X Lyudmila M. Nitsenko  https://orcid.org/0000-0003-1945-7409 References Albach, D. C., Tsymbalyuk, Z. M., & Mosyakin, S. L. (2021). Pollen morphology of Ellisiophyllum and Sibthorpia (Plantaginaceae, tribe Sibthorpieae) and phylogenetics of the tribe. Plant Systematics and Evolution, 307, art. 66. https://doi.org/10.1007/s00606-021-01786-9 Angelini, P., Bricchi, E., Gigante, D., Poponessi, S., Spina, A., & Venanzoni, R. (2014). Pollen morphology of some species of Amaranthaceae s. lat. common in Italy. Flora Mediterranea, 24, 247–272. https://doi.org/10.7320/FlMedit24.247 Ball, P. W., & Akeroyd, J. R. (1993). Beta L. In T. G. Tutin, N. A. Burges, A. O. Chater, J. R. Edmondson, V. H. Heywood, D. M. Moore, D. H. Valentine, S. M. Walters & D. A. Webb (Eds.), Flora Europaea. 2nd edition, Vol. 1. Psilotaceae to Platanaceae (pp. 110–111). Cambridge University Press, Cambridge. Bassett, I. J., Crompton, C. W., McNeill, J., & Taschereau, P. M. (1983). The genus Atriplex (Chenopodiaceae) in Canada. Communications Branch, Agriculture Canada, Ottawa. Monograph No. 31. Bezusko, L. G., Mosyakin, S. L., & Tsymbalyuk, Z. M. (2003). Pylok rodyny Chenopodiaceae Vent. – indykator pryrodnykh ta antropohennykh zmin roslynnoho pokryvu Ukrayiny v Holotseni [Pollen of the family Chenopodiaceae Vent. as an indicator of natural and anthropogenic changes of vegetation of Ukraine in the Holocene]. Naukovi zapysky NaUKMA. Pryrodnychi nauky, 22(3), 392–395 [in Ukrainian]. Bezusko, L. G., & Tsymbalyuk, Z. M. (2011). Palinoteka Instytutu botaniky im. M. H. Kholodnoho NAN Ukrainy [Palynotheca of the M. G. Kholodny Institute of Botany, NAS of Ukraine]. In N. M. Shiyan (Ed.), Herbaria of Ukraine (pp. 138–141). Index Herbariorum Ucrainicum. Alterpress, Kyiv [in Ukrainian]. Bezusko, L. G., Tsymbalyuk, Z. M., & Nitsenko, L. M. (2023). Participation of cultivated plants in the palynofloras of Late Holocene deposits of the Left Bank Forest-Steppe zone of Ukraine. In Ethnobotanical traditions in agronomy, pharmacy and garden design. Proceedings of the Sixth International Scientific Conference, dedicated to the Year of Indomitability of Ukraine (July 5–8, 2023) (pp. 17–24). Uman [in Ukrainian]. Biancardi, E., Panella, L. W., & Lewellen, R. T. (2012). Range of Distribution. In Beta maritima: The Origin of Beets (pp. 75–84). Springer, New York. https://doi.org/10.1007/978-1-4614-0842-0_2 Brummitt, R. K., & Powell, C. E. (Eds.) (1992). Authors of plant names. A list of authors of scientific names of plants, with recommended standard forms of their names, including abbreviations. Royal Botanic Gardens, Kew. Celenk, S., Dirmenci, T., Malyer, H., & Bicakci, A. (2008). A palynological study of the genus Nepeta L. (Lamiaceae). Plant Systematics and Evolution, 276(1), 105–123. https://doi.org/10.1007/ s00606-008-0062-7 Česchmedjiev, I. V. (1976). Reports. In Á. Löve (Ed.), IOPB Chromosome number reports LIV. Taxon, 25(5/6), 642–643. Dempsey, R. E., Gornall, R. J., & Bailey, J. P. (1994). Contributions to a cytological catalogue of the British and Irish flora, 4. Watsonia, 20(1), 63–66. El Ghazali, G. E. B. (2022). Pollen morphological studies in Amaranthaceae s. lat. (incl. Chenopodiaceae) and their taxonomic significance: A review. Grana, 61(1), 1–7. https://doi.org/10.1080/001 73134.2021.1950829 Erdtman, G. (1952). Pollen morphology and plant taxonomy. Angiosperms. Almqvist & Wiksell, Stockholm. Ford-Lloyd, B. V., & Williams, J. T. (1975). A revision of Beta section Vulgares (Chenopodiaceae), with new light on the origin of cultivated beets. Botanical Journal of the Linnean Society, 71(2), 89–102. https:// doi.org/10.1111/j.1095-8339.1975.tb02448.x Halbritter, H., Ulrich, S., Grímsson, F., Weber, M., Zetter, R., Hesse, M., Buchner, R., Svojtka, M., & Frosch-Radivo, A. (2018). Illustrated pollen terminology. 2nd edition. Springer International Publishing, Cham, XVIII. http://doi.org/10.1007/978-3-319-71365-6 Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). Past: Paleontological statistics software package for education and data analysis. Palaeontologica Electronica, 4(1), 19. Hohmann, S., Kadereit, J. W., & Kadereit, G. (2006). Understanding Mediterranean-Californian disjunctions: molecular evidence from Chenopodiaceae–Betoideae. Taxon, 55(1), 67–78. https://doi. org/10.2307/25065529 23/2 • 2024, 239–252 251 Tsymbalyuk et al. Comparative morphometric and morphological study of the pollen of Beta taxa Iamonico, D. (2019). Remarks on the subfam. Betoideae (Chenopodiaceae/Amaranthaceae sensu APG IV). Phytotaxa, 400(3), 145–164. https://doi.org/10.11646/phytotaxa.400.3.3 Iljin, M. M. (1952). Chenopodiaceae. In M. I. Kotov (Ed.), Flora of the Ukrainian SSR [Flora URSR], Vol. 4 (pp. 260–400). Vydavnytstvo AN URSR, Kyiv [in Ukrainian]. IPNI. International Plant Names Index. (2023). The Royal Botanic Gardens, Kew, Harvard University Herbaria & Libraries and Australian National Botanic Gardens. Available at: http://www.ipni.org [accessed 14 July 2023]. Jordanov, D., & Kuzmanov, B. (1966). Beta L. In D. Jordanov (Ed.), Florae Reipublicae Popularis Bulgaricae, Vol. 3 (pp. 551–553). Aedibus Academiae Scientiarum Bulgaricae, Serdicae [in Bulgarian]. Kadereit, G., Hohmann, S., & Kadereit, J. W. (2006). A synopsis of Chenopodiaceae subfam. Betoideae and notes on the taxonomy of Beta. Willdenowia, 36(1), 9–19. https://doi.org/10.3372/wi.36.36101 Kupriyanova, L. A., & Alyoshina, L. A. (1972). Pyltsa i spory rasteniy flory evropeyskoy chasti SSSR [Pollen and spores of plants from the Flora of the European part of the USSR], Vol. 1. Nauka, Leningrad [in Russian]. Letschert, J. P. W., Lange, W., Frese, L., & Van Den Berg, R. G. (1994). Taxonomy of Beta section Beta. Journal of Sugar Beet Research, 31(1–2), 69–85. Lewandowska, A., Milecka, K., Niedzielski, P., Czerwiński, S., & Gałka, M. (2023). Late Glacial development of lakes and wetland vegetation in a dune area in Central Poland. Acta Palaeobotanica, 63(1), 1–20. https://doi.org/10.35535/acpa-2023-0001 McAndrews, J. H., & Swanson, A. R. (1967). The pore number of periporate pollen with special references to Chenopodium. Review of Palaeobotany and Palynology, 3, 105–117. https://doi. org/10.1016/0034-6667(67)90044-9 Monoszon, M. Kh. (1973). Opredelitel pyltsy vidov semeystva marevykh (posobie po sporovo­pyltsevomu analizu) [Identification key of pollen of species of the family Chenopodiaceae (manual on spore­pollen analysis)]. Nauka, Moscow [in Russian]. Mosyakin, S. L., & Fedoronchuk, M. M. (1999). Vascular plants of Ukraine. A nomenclatural checklist. M. G. Kholodny Institute of Botany, Kyiv. Nowicke, J. W. (1975). Pollen morphology in the order Centrosper- mae. Grana, 15(1–3), 51–77. https://doi.org/10.1080/00173134.197 5.11864622 Nowicke, J. W., & Skvarla, J. J. (1979). Pollen morphology: the potential influence in higher order systematics. Annals of the Missouri Botanical Garden, 66(4), 633–700. https://doi.org/10.2307/2398914 Olvera, H. F., Fuentes-Soriano, S., & Hernández, E. M. (2006). Pollen morphology and systematics of Atripliceae (Chenopodiaceae). Grana, 45(3), 175–194. https://doi.org/10.1080/00173130600873935 Pastor, J., Fernández, I., & Díez, M. J. (1988). Números cromosómicos para la flora española, 528–543. Lagascalia, 15(1), 124–129. POWO (2023). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Available at: http://www. plantsoftheworldonline.org [accessed 14 July 2023]. Punt, W., Hoen, P. P., Blackmore, S., Nilsson, S., & Le Thomas, A. (2007). Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology, 143(1–2), 1–81. https://doi. org/10.1016/j.revpalbo.2006.06.008 Queirós, M. (1975). Contribuiçao para o conhecimento citotaxonómico das Spermatophyta de Portugal. X. Chenopodiaceae. Boletim da Sociedade Broteriana, 49(2), 121–142. Richards, C. M., Reeves, P. A., Fenwick, A. L., & Panella, L. (2014). Genetic structure and gene flow in Beta vulgaris subspecies maritima along the Atlantic coast of France. Genetic Resources Crop Evolution, 61, 651–662. https://doi.org/10.1007/s10722-013-0066-1 Runemark, H. (1996). Reports (590–678). In G. Kamari, F. Felber & F. Garbari (Eds.), Mediterranean chromosome number reports – 6. Flora Mediterranea 6, 223–243. Shen, Y., Ford-Lloyd, B., & Newbury, H. (1998). Genetic relationships within the genus Beta determined using both PCR-based marker and DNA sequencing techniques. Heredity, 80(5), 624–632. https://doi.org/10.1046/j.1365-2540.1998.00332.x Skvarla, J. J., & Nowicke, J. W. (1976). Ultrastructure of pollen exine in Centrospermous families. Plant Systematics and Evolution, 126(1), 55–78. https://doi.org/10.1007/BF00986074 Stevenato, P., De Biaggi, M., Skaracis, G. N., Colombo, C., Mandolino, G., & Biancardi, E. (2001). The Sea Beet (Beta vulgaris L. ssp. maritima) of the Adriatic Coast as Source of Resistance for Sugar Beet. Sugar Tech, 3(3), 77–82. https://doi.org/10.1007/BF03014567 Thiers, B. (2023 [continuously updated]). Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available at: http://sweetgum. nybg.org/science/ih [accessed 14 July 2023]. Tsukada, M. (1967). Chenopod and amaranth pollen: Electron- microscopic identification. Science, 157(3784), 80–82. https://doi. org/10.1126/science.157.3784.80 Tsymbalyuk, Z. M. (2005). Palinomorfolohiya predstavnykiv rodyny Chenopodiaceae Vent. (dlya tsiley systematyky y sporovo­pylkovoho analizu) [Pollen morphology of representatives of the family Chenopodiaceae Vent. (for taxonomy and spore­pollen analysis]. Ph.D. Thesis, M. G. Kholodny Institute of Botany, NAS of Ukraine, Kyiv [in Ukrainian]. Tsymbalyuk, Z. M. (2008). Palinomorfologicheskie osobennosti predstaviteley semeystva Chenopodiaceae [Palynomorphological peculiarities of the family Chenopodiaceae members]. Botanicheskiy Zhurnal, 93(3), 430–438 [in Russian]. Tsymbalyuk, Z. M., Celenk, S., Bell, C. D., Nitsenko, L. M., & Mosyakin, S. L. (2022a). Comparative palynomorphological study of the genus Symphoricarpos (Caprifoliaceae): exine sculpture and implications for evolution. Palynology, 46(4), 1–14. https://doi.org/10. 1080/01916122.2022.2052993 Tsymbalyuk, Z. M., Ivanova, D., Bell, C. D., & Nitsenko, L. M. (2022b). Pollen morphology of selected taxa of Valeriana (Caprifoliaceae): taxonomic and evolutionary implications. Phytotaxa, 577(1), 57–78. https://doi.org/10.11646/phytotaxa.577.1.3 Tsymbalyuk, Z. M., Ivanova, D., & Nitsenko, L. M. (2021). Taxonomic significance of palynomorphological characteristics of selected Centranthus (Caprifoliaceae) species. Hacquetia, 20(2), 243–256. https://doi.org/10.2478/hacq-2020-0021 23/2 • 2024, 239–252 252 Tsymbalyuk et al. Comparative morphometric and morphological study of the pollen of Beta taxa Tsymbalyuk, Z. M., Mosyakin, S. L., & Bezusko, L. G. (2005). Novi pidkhody u rozrobtsi vyznachnyka pylku Chenopodiaceae dlya tsiley pylkovoho analizu (taksony flory Ukrayiny) [New approaches to developing an identification manual of pollen of Chenopodiaceae for pollen analysis (taxa occurring in Ukraine)]. Naukovi zapysky NaUKMA. Biolohiya ta ekolohiya, 43, 19–25 [in Ukrainian]. Tsymbalyuk, Z. M., Mosyakin, S. L., & Nitsenko, L. M. (2023a). New data on pollen morphology of the genus Camphorosma (Chenopodiaceae). Acta Palaeobotanica, 63(1), 21–31. https://doi. org/10.35535/acpa-2023-0002 Tsymbalyuk, Z. M., Nitsenko, L. M., & Mosyakin, S. L. (2023b). Taxonomic significance of pollen morphology of selected taxa of Bassia, Sedobassia, Spirobassia and Neokochia (Chenopodiaceae/ Amaranthaceae sensu APG IV). Palynology, 47(4), 1–16. https://doi.or g/10.1080/01916122.2023.2233586 Van Dijk, H., & Hautekèete, N. C. (2014). Evidence of genetic change in the flowering phenology of sea beets along a latitudinal cline within two decades. Journal of Evolutionary Biology, 27(8), 1572–1581. https://doi.org/10.1111/jeb.12410 Yena, A. V., & Yevseyenkov, P. Ye. (2010). Beta vulgaris L. subsp. maritima (L.) Arcang. (Chenopodiaceae) – novyy takson dlya flory Kryma [Beta vulgaris L. subsp. maritima (L.) Arcang. (Chenopodiaceae) – a new taxon in the Crimean flora]. Ukrainian Botanical Journal, 67(5), 700–703 [in Russian].