Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 33, 2023, 1 UDK 5 Annales, Ser. hist. nat., 33, 2023, 1, pp. 1-142, Koper 2023 ISSN 1408-533X KOPER 2023 Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 33, 2023, 1 UDK 5 ISSN 1408-533X e-ISSN 2591-1783 ANNALES · Ser. hist. nat. · 33 · 2023 · 1 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies ISSN 1408-533X UDK 5 Letnik 33, leto 2023, številka 1 e-ISSN 2591-1783 UREDNIŠKI ODBOR/ COMITATO DI REDAZIONE/ BOARD OF EDITORS: Alessandro Acquavita (IT), Nicola Bettoso (IT), Christian Capapé (FR), Darko Darovec, Dušan Devetak, Jakov Dulčić (HR), Serena Fonda Umani (IT), Andrej Gogala, Daniel Golani (IL), Danijel Ivajnšič, Mitja Kaligarič, Marcelo Kovačič (HR), Andrej Kranjc, Lovrenc Lipej, Vesna Mačić (ME), Alenka Malej, Patricija Mozetič, Martina Orlando- Bonaca, Michael Stachowitsch (AT), Tom Turk, Al Vrezec Glavni urednik/Redattore capo/ Editor in chief: Darko Darovec Odgovorni urednik naravoslovja/ Redattore responsabile per le scienze naturali/Natural Science Editor: Lovrenc Lipej Urednica/Redattrice/Editor: Martina Orlando-Bonaca Prevajalci/Traduttori/Translators: Martina Orlando-Bonaca (sl./it.) Oblikovalec/Progetto grafico/ Graphic design: Dušan Podgornik, Lovrenc Lipej Tisk/Stampa/Print: Založništvo PADRE d.o.o. Izdajatelja/Editori/Published by: Zgodovinsko društvo za južno Primorsko - Koper / Società storica del Litorale - Capodistria© Inštitut IRRIS za raziskave, razvoj in strategije družbe, kulture in okolja / Institute IRRIS for Research, Development and Strategies of Society, Culture and Environment / Istituto IRRIS di ricerca, sviluppo e strategie della società, cultura e ambiente© Sedež uredništva/Sede della redazione/ Address of Editorial Board: Nacionalni inštitut za biologijo, Morska biološka postaja Piran / Istituto nazionale di biologia, Stazione di biologia marina di Pirano / National Institute of Biology, Marine Biology Station Piran SI-6330 Piran /Pirano, Fornače/Fornace 41, tel.: +386 5 671 2900, fax +386 5 671 2901; e-mail: annales@mbss.org, internet: www.zdjp.si Redakcija te številke je bila zaključena 23. 06. 2023. Sofinancirajo/Supporto finanziario/ Financially supported by: Javna agencija za raziskovalno dejavnost Republike Slovenije (ARRS) in Mestna občina Koper Annales - Series Historia Naturalis izhaja dvakrat letno. Naklada/Tiratura/Circulation: 300 izvodov/copie/copies Revija Annales, Series Historia Naturalis je vključena v naslednje podatkovne baze / La rivista Annales, series Historia Naturalis è inserita nei seguenti data base / Articles appearing in this journal are abstracted and indexed in: BIOSIS-Zoological Record (UK); Aquatic Sciences and Fisheries Abstracts (ASFA); Elsevier B.V.: SCOPUS (NL); Directory of Open Access Journals (DOAJ). To delo je objavljeno pod licenco / Quest’opera è distribuita con Licenza / This work is licensed under a Creative Commons BY-NC 4.0. Navodila avtorjem in vse znanstvene revije in članki so brezplačno dostopni na spletni strani https://zdjp.si/en/p/annalesshn/ The submission guidelines and all scientific journals and articles are available free of charge on the website https://zdjp.si/en/p/annalesshn/ Le norme redazionali e tutti le riviste scientifiche e gli articoli sono disponibili gratuitamente sul sito https://zdjp.si/en/p/annalesshn/ ANNALES · Ser. hist. nat. · 33 · 2023 · 1 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies UDK 5 Letnik 33, Koper 2023, številka 1 ISSN 1408-53 3X e-ISSN 2591-1783 VSEBINA / INDICE GENERALE / CONTENTS 2023(1) BIOTSKA GLOBALIZACIJA GLOBALIZZAZIONE BIOTICA BIOTIC GLOBALIZATION Andrea LOMBARDO A New Mediterranean Record of the Sacoglossan Thuridilla mazda (Mollusca, Gastropoda) with a Review of its Distribution, Biology and Ecology .......................... Nov sredozemski zapis o pojavljanju polža zaškrgarja vrste Thuridilla mazda (Mollusca, Gastropoda) s pregledom njene razširjenosti, biologije in ekologije Deniz ERGUDEN, Sibel ALAGOZ ERGUDEN & Deniz AYAS On the Occurrence of Lutjanus argentimaculatus (Forsskål, 1775) in the South-Eastern Mediterranean, Turkey .................. O pojavljanju mangrovskega rdečega hlastača Lutjanus argentimaculatus (Forsskål, 1775) v jugovzhodnem Sredozemskem morju (Turčija) Adib SAAD, Lana KHREMA, Amina ALNESSER, Issa BARAKAT & Christian CAPAPÉ The First Substantiated Record of Areolate Grouper Epinephelus areolatus (Serranidae) and Additional Records of Pilotfish Naucrates ductor (Carangidae) from the Syrian Coast (Eastern Mediterranean Sea) ................................ Prvi potrjen zapis o pojavljanju rdečepikaste kirnje, Epinephelus areolatus (Serranidae), in dodatni zapis o pojavljanju pilota, Naucrates ductor (Carangidae), iz sirske obale (vzhodno Sredozemsko morje) Okan AKYOL & Vahdet UNAL Additional Record of Sillago suezensis (Sillaginidae) from the Aegean Sea, Turkey .......... Nov zapis o pojavljanju rdečemorskega mola Sillago suezensis (Sillaginidae) v turškem Egejskem morju SREDOZEMSKI MORSKI PSI SQUALI MEDITERRANEI MEDITERRANEAN SHARKS Hakan KABASAKAL, Uğur UZER & F. Saadet KARAKULAK Occurrence of Deep-Sea Squaliform Sharks, Echinorhinus brucus (Echinorhinidae) and Centrophorus uyato (Centrophoridae), in Marmara Shelf Waters ......................................... Pojavljanje dveh globokomorskih morskih psov Echinorhinus brucus (Echinorhinidae) in Centrophorus uyato (Centrophoridae), v vodah Marmarskega šelfa Khadija OUNIFI-BEN AMOR, Mohamed Mourad BEN AMOR, Marouène BDIOUI & Christian CAPAPÉ Additional Captures of Smoothback Angel Shark Squatina oculata ( Squatinidae) from the Tunisian Coast ................... (Central Mediterranean Sea) Nova ulova pegastega sklata Squatina oculata (Squatinidae) iz tunizijske obale (osrednje Sredozemsko morje) Alessandro DE MADDALENA, Marco Giovanni BONOMO, Andrea CALASCIBETTA & Lorenzo GORDIGIANI On a Large Shortfin Mako Shark Isurus oxyrinchus (Lamnidae) Observed at Pantelleria (Central Mediterranean Sea) .................................. O velikem primerku atlantskega maka, Isurus oxyrinchus (Lamnidae), opaženega blizu Pantellerie (osrednje Sredozemsko morje) 27 37 43 1 13 7 19 ANNALES · Ser. hist. nat. · 33 · 2023 · 1 IHTIOFAVNA ITTIOFAUNA ICHTHYOFAUNA Christian CAPAPÉ, Christian REYNAUD & Farid HEMIDA The First Well-Documented Record of Maltese Skate Leucoraja melitensis (Rajidae) From the Algerian Coast (Southwestern Mediterranean Sea) ............ Prvi potrjeni primer o pojavljanju skata vrste Leucoraja melitensis (Rajidae) iz alžirske obale (jugozahodno Sredozemsko morje) Alessandro NOTA, Sara IGNOTO, Sandro BERTOLINO & Francesco TIRALONGO First Record of Caranx crysos (Mitchill, 1815) in the Ligurian Sea (Northwestern Mediterranean Sea) Suggests Northward Expansion of the Species ........... Prvi zapis o pojavljanju modrega trnoboka Caranx crysos (Mitchill, 1815) v Ligurskem morju (severozahodno Sredozemsko morje) dokazuje širjenje vrste proti severu Alen SOLDO The First Marine Record of Northern Pike Esox lucius Linnaeus, 1758 in the Mediterranean Sea ....................................... Prvi morski zapis o pojavljanju ščuke Esox lucius Linnaeus, 1758 v Sredozemskem morju Mourad CHÉRIF, Rimel BENMESSAOUD, Sihem RAFRAFI-NOUIRA & Christian CAPAPÉ Diet and Feeding Habits of the Greater Weever Trachinus draco (Trachinidae) from the Gulf of Tunis (Central Mediterranean Sea) ........................ Prehranjevalne navade morskega zmaja Trachinus draco (Trachinidae) iz Tuniškega zaliva (osrednje Sredozemsko morje) Laith A. JAWAD & Okan AKYOL Skeletal Abnormalities in a Sphyraena sphyraena (Linnaeus, 1758) and a Trachinus radiatus Cuvier, 1829 Collected from the North-Eastern Aegean Sea, Izmir, Turkey ........... Skeletne anomalije na primerkih vrst Sphyraena sphyraena (Linnaeus, 1758) in Trachinus radiatus Cuvier, 1829, ujetih v severovzhodnem Egejskem morju (Izmir, Turčija) Deniz ERGUDEN, Sibel ALAGOZ ERGUDEN & Deniz AYAS A Rare Occurrence and Confirmed Record of Scalloped Ribbonfish Zu cristatus (Osteichthyes: Trachipteridae) in the Gulf of Antalya (Eastern Mediterranean), Turkey .......... O redkem pojavljanju in potrjeni najdbi čopaste kosice Zu criistatus (Osteichthyes: Trachipteridae) v Antalijskem zalivu (vzhodno Sredozemsko morje), Turčija FAVNA FAUNA FAUNA Nicola BETTOSO, Lisa FARESI, Ida Floriana ALEFFI & Valentina PITACCO Epibenthic Macrofauna on an Artificial Reef of the Northern Adriatic Sea: a Five-Years Photographic Monitoring ...................................... Epibentoška makrofavna na umetnem podvodnem grebenu v severnem Jadranu: pet letni fotografski monitoring Roland R. MELZER, Martin PFANNKUCHEN, Sandro DUJMOVIČ, Borut MAVRIČ & Martin HEß First Record of the Golden Coral Shrimp, Stenopus spinosus Risso, 1827, in the Gulf of Venice ................................... Prvi zapis o pojavljanju koralne kozice, Stenopus spinosus Risso, 1827, v Beneškem zalivu Abdelkarim DERBALI, Nour BEN MOHAMED & Ines HAOUAS-GHARSALLAH Age, Growth and Mortality of Surf Clam Mactra stultorum in the Gulf of Gabes, Tunisia ................................. Starost, rast in smrtnost koritnice Mactra stultorum v Gabeškem zalivu (Tunizija) Cemal TURAN, Servet Ahmet DOĞDU & İrfan UYSAL Mapping Stranded Whales in Turkish Marine Waters .......................................... Popisovanje nasedlih kitov v turških morskih vodah OBLETNICE ANNIVERSARI ANNIVERSARIES Martina ORLANDO-BONACA & Patricija MOZETIČ Šestdeset let morskega biologa Lovrenca Lipeja ..... Kazalo k slikam na ovitku ................................... Index to images on the cover .............................. 113 119 141 51 75 55 61 67 89 99 127 139 141 ANNALES · Ser. hist. nat. · 33 · 2023 · 1 ANNALES · Ser. hist. nat. · 33 · 2023 · 1 99 received: 2023-04-03 DOI 10.19233/ASHN.2023.14 EPIBENTHIC MACROFAUNA ON AN ARTIFICIAL REEF OF THE NORTHERN ADRIATIC SEA: A FIVE-YEARS PHOTOGRAPHIC MONITORING Nicola BETTOSO, Lisa FARESI & Ida Floriana ALEFFI Agenzia Regionale per la Protezione dell’Ambiente del Friuli Venezia Giulia (ARPA FVG), via Cairoli 14 – 33053 Palmanova (UD), Italy e-mail: nicola.bettoso@arpa.fvg.it Valentina PITACCO Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia ABSTRACT Artificial reefs (ARs) are man-made structures used with the aim of improving fisheries and increasing natural production of biological resources. In 2006 an AR made of three types of modules was sunk near an underwater sewage outfall. The objectives of the project were: (a) to use the AR to restock some target species of commercial interest and (b) to promote biodiversity in selected areas. The epibenthic macrofauna that had settled on this AR was annually monitored for five years (2007- 2011) using non-destructive photographic methods. A total of 88 taxa from 8 phyla were identified, with a predominance of Porifera, Mollusca and Ascidiacea. Among the types of modules used to construct the AR, polyethylene panel nets were functional for bivalve settlement in the first year, whereas concrete structures seemed to perform best in promoting biodiversity in terms of species richness in the long term. Nevertheless, the 5-year monitoring period was too short to speculate on the stability or homeostasis of communities settled on the AR in terms of ecological succession. Key words: artificial reefs, macrozoobenthos, Adriatic Sea, photographic monitoring LA MACROFAUNA EPIBENTONICA DI UNA BARRIERA ARTIFICIALE SOMMERSA DELL’ALTO ADRIATICO: RISULTATI DI UN MONITORAGGIO FOTOGRAFICO QUINQUENNALE SINTESI Le barriere artificiali (BA) sono strutture solitamente utilizzate per incrementare le rese di pesca. Nel 2006 è stata realizzata una BA, costruita con tre diverse tipologie di moduli e situata in prossimità di un dotto fognario sottomarino. Gli obiettivi del progetto erano: (a) sperimentare la BA per il ripopolamento di alcune specie di interesse commerciale e (b) promuovere la biodiversità. La macrofauna epibentonica insediata su questa BA è stata monitorata a cadenza annuale durante 5 anni (2007-2011) per mezzo di rilievi fotografici. Complessiva- mente sono stati identificati 88 taxa appartenenti ad 8 phyla, in cui i Porifera, Mollusca ed Ascidiacea sono stati prevalenti. I pannelli in rete di polietilene sono stati efficaci durante il primo anno per l’insediamento dei molluschi bivalvi, mentre nel lungo periodo il cemento si è dimostrato il più efficace per promuovere la biodiversità in termini di ricchezza specifica. Il monitoraggio di 5 anni comunque non è stato del tutto soddisfacente per trarre conclusioni sulla successione ecologica della comunità insediata sulla BA. Parole chiave: Barriere artificiali, macrozoobenthos, mare Adriatico, monitoraggio fotografico ANNALES · Ser. hist. nat. · 33 · 2023 · 1 100 Nicola BETTOSO et al.: EPIBENTHIC MACROFAUNA ON AN ARTIFICIAL REEF OF THE NORTHERN ADRIATIC SEA: A FIVE-YEARS PHOTOGRAPHIC ..., 99–112 INTRODUCTION Artificial reefs (ARs) are man-made structures that have long been used with the aim of improving fisheries by concentrating fish and increasing the natural production of biological resources (Bohn- sack & Sutherland, 1985). Parenzan (1957) was one of the first scientists to suggest the use of artificial structures as a tool to increase fishery production in oligotrophic environments by sinking wrecks and testing ad hoc experimental areas (Parenzan, 1986). In Italy the first AR was made in December 1970, when a team of recreational fishermen, without any scientific support, obtained the permission to sink 1,300 cars at depth between 35 and 50 m in order to discourage trawling and to improve recreational fishing (Relini & Orsi Relini, 1989). The first scientif- ically oriented AR was built in 1974 in the Adriatic Sea, with stones and concrete blocks (Bombace, 1989). After about 40 years, Fabi et al. (2011) report- ed more than 70 ARs along the Italian coast, most of them built thanks to the financial support of the European Community. In the oligotrophic waters of the Mediterranean, ARs have been used mainly to protect Posidonia oceanica meadows from illegal trawling and to increase habitat complexity and species diversity (Relini et al., 1994; Gonzalez-Correa et al., 2005; Ponti et al., 2015). In contrast, in the eutrophic wa- ters of the central and northern Adriatic, ARs have been used to increase fishery yields (Bombace et al., 1994; Bombace et al., 1997). Concrete, pebbles, limestone rocks, and PVC are the most common materials used to build ARs (Toledo et al., 2020 and references therein). The concrete is frequently used because it is cheap and allows the realization of different structures in terms of shape and size. In addition, concrete is resistant to chemical and physical marine actions, thus ensuring long duration (Fabi et al., 2011; Ponti et al., 2015). ARs are intentionally placed on the seafloor with the goal of imitating the function of a natural reef, therefore most studies after the installation of an AR are focused on the ecological succession of benthic organisms on these manmade substrates (Toledo et al., 2020 and references therein). The colonization process can be broadly divided in early and late succession: the former is associated with the first or- ganisms that settle on the ARs, including organized microorganisms creating microbial mats or biofilms; the latter is characterized by the arrival of more complex organisms, which in turn attract predator species from further up the trophic chain (Herbert et al., 2017; Toledo et al., 2020 and references therein). The AR analyzed in the present study was based on guidelines developed as part of the project ADRI. BLU (2006). This project addressed the sustainable management of fisheries activities and resources in the northern Adriatic Sea. More information on the project is available on internet in Italian. The specif- ic objectives of the project were: (a) to use the AR in Fig. 1: Map of the study area, the circle indicates the terminal tract of Lignano Sabbiadoro sewage outfall. Sl. 1: Zemljevid obravnavanega območja z označenim delom terminala kanalizacije mesta Lignano Sabbia- doro (krogec). Fig. 2: Particular of the terminal tract of the sewage out- fall, location of the AR units and photo sampling points. Sl. 2: Del terminala kanalizacije, lega UPG in vzorčevalne postaje fotografskega monitoringa. 101 ANNALES · Ser. hist. nat. · 33 · 2023 · 1 Nicola BETTOSO et al.: EPIBENTHIC MACROFAUNA ON AN ARTIFICIAL REEF OF THE NORTHERN ADRIATIC SEA: A FIVE-YEARS PHOTOGRAPHIC ..., 99–112 order to restock some target species of commercial interest, such as pectinid bivalves, and (b) to pro- mote biodiversity in some selected areas, such the Gulf of Trieste for the Region Friuli-Venezia Giulia. In this context, in 2006, an AR was sunk three miles off Lignano Sabbiadoro, near an underwater sewage outfall (Solis-Weiss et al., 2007, and references therein), and the settled macrofauna was monitored annually for the following five years (2007- 2011) using photographic methods based on a guide spe- cifically developed within this project (Arpa FVG, 2007; Bettoso et al., 2023). The photographic meth- od is less accurate than other sampling techniques, but has the advantage of being non-destructive, fast, and efficient enough to monitor the evolution of epibenthic communities on the AR with a good benefit-cost ratio. In the present work the results of this photographic monitoring are presented. MATERIAL AND METHODS Study area The AR was located in the Gulf of Trieste, the northernmost part of the Adriatic Sea (Fig. 1). It is a shallow semi-enclosed basin (max depth 25 m), characterized by the largest tidal amplitudes and the lowest winter temperatures in the Mediterra- nean Sea (Boicourt et al., 1999), high temperature and salinity variations, and important stratification of the water column (Stravisi, 1983). The hydrody- namism is related mainly to the ascending eastern current coming from the Istrian coast. The general circulation pattern is predominantly counterclock- wise in the lower layer and clockwise in the surface layer. This circulation, especially in the surface layer can be modulated by prevailing winds from Fig. 3: a) Tecnoreef ® pyramid (TR); b) Ecomare pyramids (EM); c) Polyethylene net for scallops settlement (PE) (photos: Arpa FVG). Sl. 3: a) Tecnoreef ® piramida (TR); b) Ecomare piramide (EM); c) Polietilenska mreža za naseljevanje pokrovač (PE) (fotografije: Arpa FVG). ANNALES · Ser. hist. nat. · 33 · 2023 · 1 102 Nicola BETTOSO et al.: EPIBENTHIC MACROFAUNA ON AN ARTIFICIAL REEF OF THE NORTHERN ADRIATIC SEA: A FIVE-YEARS PHOTOGRAPHIC ..., 99–112 eastern quadrants such as Bora (Stravisi, 1983). The sediments are quite varied, from sands with beachrocks to muds, predominantly detritical, and the associated biocoenoses of the Gulf belong mainly to the DC (Détritique Côtier), DE (Détri- tique Envasé) and VTC (Vases Terrigènes Côtières) biocoenoses, as defined by Pérès & Picard (1964) (Solis-Weiss et al., 2001). The AR was deployed in August/September 2006 about 3 nautical miles off Lignano Sabbiadoro near the underwater sewage outfall (Fig. 1), where anchoring and fishery are forbidden. The site is located at 16 m depth, where the sediment consists of pelitic sand and very sandy pelite, and benthic community of the soft bottom is mainly represented by the biocoenosis of Coastal De- tritic (DC) (Solis-Weiss et al., 2007). The AR consisted of Fig. 4: Taxa richness (TR, Tecnoreef; EM, ecomare; PE, polyethylene). Sl. 4: Pestrost taksonov (TR, Tecnoreef; EM, ecomare; PE, polietilen- ska mreža). Fig. 5: a) K-dominance curves for Tecnoreef (TR), b) K-dominance curves for ecomare (EM); c) K-dominance curves for polyethylene net (PE). Sl. 5: Krivulje K-dominance za Tecnoreef (TR), b) krivulje K-dominance za ecomare (EM); c) krivulje K-dominance za polietilensko mrežo (PE). 103 ANNALES · Ser. hist. nat. · 33 · 2023 · 1 Nicola BETTOSO et al.: EPIBENTHIC MACROFAUNA ON AN ARTIFICIAL REEF OF THE NORTHERN ADRIATIC SEA: A FIVE-YEARS PHOTOGRAPHIC ..., 99–112 Tab. 1: Taxa richness year by year on every AR module (TR – Tecnoreef, EM – ecomare, PE – polyethylene net) and Mann-Kendall test (ns – not significant, in bold – upward trend). Tab. 1: Pestrost taksonov v posameznih letih na vsakem UPG modulu (TR – Tecnoreef, EM – ecomare, PE – polietilenska mreža) in Mann-Kendallov test (ns – ni statistično značilen, mastni tisk – trend naraščanja). TR 2007 2008 2009 2010 2011 Mann-Kendall tot 19 31 49 41 46 ns Porifera 1 6 13 11 16 0.042 Mollusca 8 8 10 7 9 ns Echinodermata 5 2 3 5 2 ns Cnidaria 0 2 3 2 3 ns Chordata 3 9 12 12 9 ns Bryozoa 0 1 2 2 3 0.0083 Arthropoda 0 1 3 0 1 ns Annelida 2 2 3 2 3 ns EM 2007 2008 2009 2010 2011 tot 12 23 32 33 37 0.0083 Porifera 2 4 8 7 8 0.042 Mollusca 7 5 8 7 10 ns Echinodermata 0 2 3 3 2 ns Cnidaria 0 1 2 2 3 0.0083 Chordata 2 8 7 9 5 ns Bryozoa 0 1 2 2 3 0.0083 Arthropoda 0 1 0 1 2 ns Annelida 1 1 2 2 4 0.042 PE 2007 2008 2009 2010 2011 tot 27 17 25 30 30 ns Porifera 1 1 7 7 11 0.042 Mollusca 12 3 6 8 5 ns Echinodermata 3 0 1 2 2 ns Cnidaria 2 3 3 2 3 ns Chordata 6 6 5 6 4 ns Bryozoa 0 1 1 2 2 0.042 Arthropoda 1 0 0 1 0 ns Annelida 2 3 2 2 3 ns ANNALES · Ser. hist. nat. · 33 · 2023 · 1 104 Nicola BETTOSO et al.: EPIBENTHIC MACROFAUNA ON AN ARTIFICIAL REEF OF THE NORTHERN ADRIATIC SEA: A FIVE-YEARS PHOTOGRAPHIC ..., 99–112 two different units (hereafter AR units) placed on both sides of the sewage duct, at a distance of 500 m from the end section of the sewer (Fig. 2). These AR units were made of three different types of artificial modules (hereafter AR modules) placed in a symmentrical and specular way with respect to the sewer (Fig. 2). These modules were: 30 pyramids made of concrete slabs (TR – declared “sea-friendly” by the producer Tecnoreef®, manifactured using only natural components, without synthetic additives; pH – 9; 180 cm height) (Fig. 3a); 4 pyramids made of PVC tubes (EM – Ecomare, diameter of tubes is 100 cm and pyramid high is 273 cm) (Fig. 3b); 4 sets of polyethylene panel nets (PE) (mesh size 40 mm, length 100 m, height 300 cm, width 100 cm) used for the settlement of scallop larvae (Fig. 3c). Sampling and analysis Epibenthic faunal communities on the AR were surveyed once a year using SCUBA photo-sampling (Fujifilm Finepix F30 model). Pictures of a 50x50 cm (2,500 cm2) quadrat (divided in 4 subquadrats) were taken at 16 points for each unit (4 for TR, 4 for EM, and 8 for PE) for a total of 32 sampling points (displayed in Fig. 2). Animals that were readily identifiable in the photographs were determined to the lowest possible taxonomic level, whereas those not easily recogniz- able at the species level were collected and stored for determination at the laboratory (Bettoso et al., 2023). The first survey took place in June 2007, nine months after the sinking of the AR, and was repeated each spring/summer until 2011, for a total of 132 quadrats analysed. Cluster, K-dominance curves and SIMPER analysis (Clarke and Warwick, 2001) were performed on presence/absence data subdivided for type of AR module and year of sampling. Mann Kendall test was applied to statistically assess if there is a monotonic upward or downward trend of the variable of interest over time. RESULTS A total of 88 taxa of epibenthic invertebrates, be- longing to 8 phyla, were detected by photo sampling, of which 75 were recorded on concrete pyramids (TR), 57 in both PVC pyramids (EM) and polyethylene panel nets (PE). The most abundant phyla in terms of taxa richness were Mollusca followed by Porifera and Chordata, the latter represented by class Asci- diacea. The same pattern was observed considering the three types of AR modules separately, except for TR, where Porifera slightly outweigh Mollusca (Fig. 4). The highest taxa richness was observed on TR modules for all phyla except for Cnidaria, showing the highest richness on PE modules (Fig. 4). Con- sidering the total number of taxa, an increase with time was observed only for EM (Mann-Kendall test, Tab. 1). Considering the different phyla separately, Porifera and Bryozoa were the only groups to show an increasing trend in richness values in all types of AR modules (Tab. 1). The K-dominance curves generated for TR showed decreasing dominance from 2007 to 2008, whereas curves for 2009, 2010 and 2011 showed a comparable shape (Fig. 5a). Similar pattern was observed for EM, although the curves from 2009 to 2011 intersect at one point (Fig. 5b). For PE, the shape of the curve for 2007 was more similar to the curves for 2009-2011, whereas the curve for 2008 was the steepest and showed the highest dominance (Fig. 5c). The dendrogram clearly separated the first survey of 2007 (Group A: EM07, TR07, PE07) at a similarity level of about 20%, whereas the Group B included TR08 and EM08 surveyed in 2008. The remaining clusters (2009-2011) were grouped at a similarity level of about 60%, except PE08 which was grouped apart (Group C). The cluster 2009- 2011 was subdivided on the basis of the type of Fig. 6: Dendrogram on the basis of years (07-11) and AR module (TR, EM, PE). Sl. 6: Dendrogram na podlagi različnih let (07-11) in modula AR (TR, EM, PE). 105 ANNALES · Ser. hist. nat. · 33 · 2023 · 1 Nicola BETTOSO et al.: EPIBENTHIC MACROFAUNA ON AN ARTIFICIAL REEF OF THE NORTHERN ADRIATIC SEA: A FIVE-YEARS PHOTOGRAPHIC ..., 99–112 Tab. 2: SIMPER analysis performed on clusters of the dendrogram (cut off 50%). Tab. 2: SIMPERjeva analiza posameznih gruč na dendrogramu (rez na nivoju 50%).   Group A 2007 (TR, EM, PE)   Group B 2008 (TR, EM)   Group C 2008 (PE) POR Crambe crambe POR Crambe crambe CNI Cereus pedunculatus MOL Hexaplex trunculus POR Ulosa digitata ANN Serpulidae indet. MOL Ostrea edulis MOL Hexaplex trunculus CHO Phallusia mammillata MOL Mimachlamys varia MOL Ostrea edulis CHO Styela plicata MOL Pinna nobilis ANN Serpulidae indet. CHO Didemnum lahillei MOL Mytilus galloprovincialis CHO Didemnum lahillei   MOL Flexopecten glaber CHO Phallusia mammillata   ANN Serpulidae indet. CHO Phallusia fumigata   CHO Phallusia mammillata CHO Diplosoma listerianum   CHO Botryllus schlosseri     Group D 2009-2011 (TR) Group E 2009-2011 (EM) Group F 2009-2011 (PE) POR Crambe crambe POR Crambe crambe POR Crambe crambe POR Dysidea fragilis POR Dysidea fragilis POR Ulosa digitata POR Haliclona (Reniera) mediterranea POR Haliclona (Reniera) mediterranea POR Dysidea fragilis POR Phorbas fictitius POR Ulosa digitata POR Haliclona (Reniera) mediterranea POR Dictyonella incisa CNI Cereus pedunculatus CNI Epizoanthus sp. POR Ulosa digitata MOL Hexaplex trunculus CNI Cereus pedunculatus CNI Cereus pedunculatus MOL Ostrea edulis MOL Hexaplex trunculus MOL Hexaplex trunculus MOL Anomia ephippium MOL Ostrea edulis MOL Ostrea edulis MOL Mimachlamys varia MOL Anomia ephippium MOL Mimachlamys varia ANN Serpulidae indet. MOL Mytilus galloprovincialis ANN Serpulidae indet. BRY Bryozoa indet. ANN Serpulidae indet. BRY Bryozoa indet. BRY Schizobrachiella sanguinea BRY Bryozoa indet. BRY Schizobrachiella sanguinea ECH Ocnus planci ECH Ophiothrix fragilis ECH Ocnus planci CHO Phallusia mammillata CHO Didemnum lahillei CHO Microcosmus sp. CHO Phallusia fumigata CHO Diplosoma listerianum CHO Didemnum lahillei CHO Didemnum lahillei   CHO Diplosoma listerianum CHO Microcosmus sp.     ANNALES · Ser. hist. nat. · 33 · 2023 · 1 106 Nicola BETTOSO et al.: EPIBENTHIC MACROFAUNA ON AN ARTIFICIAL REEF OF THE NORTHERN ADRIATIC SEA: A FIVE-YEARS PHOTOGRAPHIC ..., 99–112 AR modules rather than years (Group D: TR09, TR10, TR11; Group E: EM09, EM10, EM11; Group F: PE09, PE10, PE11) (Fig. 6). SIMPER analysis was used to identify the most representative species for each cluster of the dendro- gram (Tab. 2). Crambe crambe was the first Porifera species recorded on the AR and was found every year and on all types of AR modules, except PE in 2008. In the second year, Ulosa digitata was detected on TR and EM and was observed on all types of AR modules in all subsequent years. Dysidea fragilis and Haliclo- na (Reniera) mediterranea were among characteristic species from 2009 onwards. SIMPER identified two more species of Porifera only on TR (group D) (Tab. 2). Considering phylum Annelida, the taxon Serpuli- dae was constantly found in every year and all types of AR modules. The phylum Mollusca was mainly represented by bivalves and had the highest number of characteristic species in 2007. Flexopecten glaber and Pinna nobilis were recorded only during the first year, whereas the gastropod Hexaplex trunculus and the oyster Ostrea edulis characterized all groups of dendrogram, except the group C (PE in 2008) where no molluscs were identified by SIMPER analysis. Mytilus galloprovincialis was included in the group F (PE 2009-11) and Mimachlamys varia in those D and E (TR and EM 2009-11). The phylum Cnidaria was represented mainly by Cereus pedunculatus, being characteristic of group C on PE in 2008 and in all types of AR modules from 2009 to 2011. The Chordata As- cidiacea were characteristic in all cluster groups. It is interesting to note the exclusive presence of Botryllus schlosseri in 2007 and the particular abundance of Phallusia mammillata in 2007 and 2008 on all types of AR. Didemnum lahillei was among characteristic species from 2008 onwards (Tab. 2). DISCUSSION AND CONCLUSIONS The Gulf of Trieste is characterized by various environmental and anthropogenic pressures that affect benthic communities, such as periodic “mare sporco” phenomena (mucilage aggregations), episodes of hy- poxia and anoxia, significant riverine inflow, intense maritime traffic, intensive fishery, mariculture and others (Stachowitsch & Fuchs, 1995; Solis-Weiss et al., 2004). These pressures could lead to changes in the soft- and hard-bottom benthic communities, at least in terms of succession (Mavrič et al., 2010). A recent census of ARs in the Adriatic Sea recorded a total of 47 sites along the Italian coast, 8 of which are located in the Gulf of Trieste (Minelli et al., 2021). The oldest AR of the gulf was built in 1978 inside the Miramare Marine Protected Area in Trieste, while the last one was established near mussel farms on the maritime border Italy-Slovenia (Project EcoSea, 2016). The site for the present work, near the sewage outfall off Lignano Sabbiadoro was selected to avoid damage to the AR and sewage pipeline from anchoring and fishing, and because this area is characterized by the presence of pelitic sand or very sandy pelite. In fact, this sediment texture is suitable to prevent the sinking Fig. 7: Tecnoreef pyramid (TR) in 2015 (photo: G. Pessa). Sl. 7: Tecnoreef piramida (TR) leta 2015 (foto: G. Pessa). 107 ANNALES · Ser. hist. nat. · 33 · 2023 · 1 Nicola BETTOSO et al.: EPIBENTHIC MACROFAUNA ON AN ARTIFICIAL REEF OF THE NORTHERN ADRIATIC SEA: A FIVE-YEARS PHOTOGRAPHIC ..., 99–112 of AR modules into the seafloor and the accumulation of muddy sediment on the AR, which could inhibit the development and diversification of epibenthic organisms. In addition, the proximity of natural rocky outcrops (locally knows as Trezze) very rich in term of epibenthic fauna (Lipej et al., 2016; Bettoso et al., 2023), could represent a good larval source for the set- tlement of species common in coralligenous biotopes. According to Ponti et al. (2015) the environmental conditions are the main drivers of the recruitment processes on ARs. In particular, the sedimentation rate seemed the most important in the establishment of different benthic assemblages and therefore in the ecological effectiveness of the ARs (Ponti et al., 2015). In the present study the area off Lignano Sabbiadoro shows a heterogeneous sediment texture: AR modules are located on prevailing sandy sediment close to the rocky outcrops, but just 1 Nm toward the coast the sediment becomes muddy due to the pelitic belt originated by the Tagliamento river mouth. Thus, this zone can be considered a transitional habitat between areas with high sedimentation rate and coralligenous biotopes. A total of 88 taxa belonging to 8 phyla, identified for the present work on the AR by photographic monitoring only, is a high number when compared to the 196 taxa of epibenthic invertebrates recorded by Bettoso et al. (2023) using the same method on 45 natural rocky outcrops not far from the study area. Porifera, Mollusca and Ascidiacea predominated on the AR, as well as on those natural rocky outcrops (Bettoso et al., 2023). The faunal component on the AR dominated over macroflora, because the site was at 16 m depth with recurring events of water turbidity. The same was observed for the natural rocky outcrops (Bettoso et al., 2023). So, the proximity of the sewage pipeline did not seem to have a negative impact on the epibenthic fauna settled on the AR. Consistently, no negative impact had been observed on the soft bottom macrofauna near the same sewage outfall by Solis-Weiss et al. (2007). According to Ponti et al. (2015) the shape and ma- terials of ARs were of little importance in determining the structure of the benthic assemblage. Conversely, in the present work, some differences between the types of AR modules deployed were observed. In particular, TR showed overall higher richness values compared to EM and PE (Fig. 4). The cluster showed that those differences are not evident immediately after the deployment of the AR (in 2007 all AR modules are clustered together), but from 2009 on, when benthic communities are clustered by type of modules rather than by years. On TR and EM total taxa richness increased from 2007 to 2008, mainly due to Porifera and Ascidiacea. From the third year (2009) the number of taxa did not increase on any AR module (Tab. 1). Dominance decreased for 2007 to 2009, and did not changed in the subsequent years on both TR and EM. Unfortunately the photographic mon- itoring on epibenthic fauna lasted only 5 years and further observations on the variability and/or stability on this community was not possible. Nevertheless, some pictures taken in 2015 on TR modules showed an assemblage with oysters, sponges and tunicates clearly observable (Fig. 7). In the first year of monitoring the richness of bi- valves was much higher on polyethylene panel nets (PE) than on concrete pyramids (TR) and PVC pyramids (EM). However, the permanent immersion of PE did not allow similar settlement of scallops and other bivalve Fig. 8: Smooth scallops (Flexopecten glaber) and Spirobranchus triqueter settled on polyethylene nets (PE) (photo: Arpa FVG). Sl. 8: Gladka pokrovača (Flexopecten glaber) in Spirobranchus triqueter sta se naselila na polietilensko mrežo (PE) (foto: Arpa FVG). Fig. 9: Smooth scallops (F. glaber) on sea floor nearby polyethylene nets (photo: Arpa FVG). Sl. 9: Gladka pokrovača (F. glaber) na morskem dnu v bližini polietilenskih mrež (foto: Arpa FVG). ANNALES · Ser. hist. nat. · 33 · 2023 · 1 108 Nicola BETTOSO et al.: EPIBENTHIC MACROFAUNA ON AN ARTIFICIAL REEF OF THE NORTHERN ADRIATIC SEA: A FIVE-YEARS PHOTOGRAPHIC ..., 99–112 in subsequent years as in 2007. On PE a decrease in richness was observed from 2007 to 2008 (Tab. 1), and at the same time dominance increased (Fig. 5c). Polyethylene panel nets (PE) were specifically deployed to test the settlement of scallops, particularly for the smooth scallop Flexopecten glaber. This species is a very appreciated fisheries resource in the northern Adriatic Sea. It is usually caught together with Pecten jacobaeus by rapido, a type of beam trawl, used only in Adriatic Sea, with a very severe impact on benthic communities and whose use should be better regulated (Giovanardi et al., 1998). The effectiveness of panel nets or collector bags as substratum for the settlement of F. glaber pediveligers has been successfully tested in other areas of the Gulf of Trieste (Orel & Zamboni, 2003). A massive production of this resource was found on PE also in the present study (Fig. 8). After 10 months from the immersion of 400 m of these panel nets, the smooth scallops reached a commercial size with an average density on the seafloor of 17 ind. m-2 and an estimated total biomass of 6,597 kg (Fig. 9) (Arpa FVG, 2007). Nevertheless, the effectiveness of panel nets for larval settlement of the smooth scallops, the queen scallop Aequipecten opercularis and other bivalves requires a clean substrate and a correct period of immersion for each species in order to detect the massive swarming of larvae (Orel & Zamboni, 2003). For instance, the period between June and September was considered the best for the captation of the variegated scallop Mimachlamys varia in the central Adriatic (Marguš et al., 1993). PE proved to be efficient also for the settlement of the critically endangered species Pinna nobilis, but almost all individuals were observed in 2007. So even if the species settles successfully, it probably does not survive in such types of structures. ARs made of plastic nets are recommented as larval captators by IUCN (Kersting & Hendriks, 2019) and have been extensively studied and used in different areas of the Mediterra- nean since the first mass mortality event of P. nobilis in 2016 (Kersting et al., 2020). According to IUCN guidelines the main reproduction period of P. nobilis is from May to August and the main settlement period is between July and September (in the western Mediter- ranean), so collectors are usually deployed in June and Fig. 10: Macrofauna assemblage on concrete plates (TR) in 2009 with the presence of the sponge Haliclona (Reniera) mediterranea (photo: Arpa FVG). Sl. 10: Združba makrofavne na betonskih ploščah (TR) v letu 2009 s spužvo Haliclona (Reniera) mediterranea (foto: Arpa FVG). 109 ANNALES · Ser. hist. nat. · 33 · 2023 · 1 Nicola BETTOSO et al.: EPIBENTHIC MACROFAUNA ON AN ARTIFICIAL REEF OF THE NORTHERN ADRIATIC SEA: A FIVE-YEARS PHOTOGRAPHIC ..., 99–112 removed in October-November (Kersting & Hendriks, 2019). These periods could change depending on environmental conditions (e.g., water temperature) in different years and Mediterranean regions (Kersting & García-March, 2017). Based on the present work it is not possible to de- fine a clear species succession, although, as the results show, some taxa such as Serpulidae, Ostrea edulis and Crambe crambe characterized the community every year; other like Botryllus schlosseri and F. glaber characterized only the first year, while some Porifera species (e. g. Dysidea fragilis and Haliclona (Reniera) mediterranea) characterized the community from 2009 onward (Fig. 10; SIMPER analysis). Serpulids, like Spirobranchus triqueter, are considered among pi- oneer species (Maggiore & Keppel, 2006; Nicoletti et al., 2007) able to drive the early stages of settlement, because of encroaching on clear surfaces (D’Anna et al., 2000; Moura et al., 2004) such ARs or molluscan shells (Fig. 8). Their dominance at the early stage of succession seems dependent on the timing of immer- sion of the AR. In fact, according to a recent research serpulids were dominant on plates placed in summer and autumn, while they were overweighed by bryozo- ans on plates placed in winter and spring (Fortič et al., 2021). About bivalves the settlement of F. glaber was above discussed, whereas the employment of artificial substrates can drive the production of the oyster O. edulis and the blue mussel Mytilus galloprovincialis (Fabi et al., 1989; Ardizzone at al., 1989). Oysters re- sulted very abundant on the Lignano AR and reached a commercial size (>70 gr) after 14 months from the deployment of structures (Arpa FVG, 2007), a shorter time compared to other areas in the Gulf of Trieste where about 23 months are needed (Orel & Zamboni, 2003). The following project Ecosea used the same sets of AR modules for further experiment on oyster culture. The blue mussel did not show any dominance stage on modules as observed by Nicoletti et al. (2007) on the Fregene AR (Tyrrhenian Sea), although it was among characterizing species in 2007 and on PE nets in 2009-2011. Mytilus pediveligers are more abundant in the surface layer (Dobretsov & Miron, 2001) and the settlement on the AR could be induced by mussels attached on the ropes, used to link the signal buoys floating on the sea surface. Considering the sponge C. crambe, this species is normally settled on shells of bivalves, e.g. Arca noae, A. opercularis, M. varia, and gastropods such Hexaplex trunculus (Corriero et al., 1991) and it seems possible to farm this species for sponge culture purposes by means of artificial substrates (Padiglia et al., 2018). The colonial ascidian B. schlosseri can be an im- portant driver of benthic community composition, but it strictly depends on local environmental conditions (Sams & Keough, 2012). In the present study it was very frequent in 2007 on all AR modules, whereas it was almost absent in the following years. The sponges D. fragilis and H. mediterranea, which were constantly recorded since 2009, are considered respectively as common and characteristic in coralligenous habitat (sensu Ballesteros, 2006) and were constantly found in assemblages on the rocky outcrops in the Gulf of Trieste (Bettoso et al., 2023). Based on this 5-year non-destructive monitoring on the AR realized thank to Project ADRI.BLU (2006) it is possible to conclude that the selected site was suitable for epibenthic settlement and in particular for bivalves captation. Nevertheless, according to Taormina et al. (2020) a 5-year monitoring is too short to speculate about stability or homeostasis of the AR in term of ecological succession. On regard the modules, polyethylene panel nets (PE) were functional only if employed during bivalve settlement, after this period they should be removed and cleaned for future employment. Considering long term settlement and evolution of epibenthic assemblage, TR seemed to give the best performance in term of species richness if compared to PE and EM, but a longer survey is needed to discriminate between long-term ecological successions and shorter-term variability. Anyway, on our opinion the use of EM and PE should be limited, being made by plastic material. ACKNOWLEDGEMENTS The Artificial Reef in Lignano Sabbiadoro was real- ized thank to the Project ADRI.BLU Interreg IIIA North Adriatic and the monitoring was funded by Regione Autonoma Friuli Venezia Giulia – Direzione centrale risorse agricole, naturali, forestali e montagna. Partic- ular thanks are due to Giorgio Mattassi, Pietro Rossin and Walter de Walderstein. The present work was possible also thanks to the financial support from the Slovenian Research Agency (research core funding No. P1-0237). ANNALES · Ser. hist. nat. · 33 · 2023 · 1 110 Nicola BETTOSO et al.: EPIBENTHIC MACROFAUNA ON AN ARTIFICIAL REEF OF THE NORTHERN ADRIATIC SEA: A FIVE-YEARS PHOTOGRAPHIC ..., 99–112 EPIBENTOŠKA MAKROFAVNA NA UMETNEM PODVODNEM GREBENU V SEVERNEM JADRANU: PET LETNI FOTOGRAFSKI MONITORING Nicola BETTOSO, Lisa FARESI & Ida Floriana ALEFFI Agenzia Regionale per la Protezione dell’Ambiente del Friuli Venezia Giulia (ARPA FVG), via Cairoli 14 – 33053 Palmanova (UD), Italy e-mail: nicola.bettoso@arpa.fvg.it Valentina PITACCO Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia POVZETEK Umetni podvodni grebeni (UPG) so umetne strukture, ki jih uporabljajo z namenom izboljšanja ribištva in povečanje naravne produkcije bioloških virov. Leta 2006 so potopili tri tipe UPG blizu podvodnega iztoka kanalizacije. Cilji projekta so bili: (a) uporaba UPG za repopulacijo nekaterih komercialnih tarčnih vrst in (b) za promocijo biodiverzitete na izbranem območju. V petletnem obdobju (2007-2011) so z nedestruktivnimi fotografskimi metodami letno spremljali epibentoško makrofavno. Določili so 88 taksonov iz 8 debel, med katerimi so prevladovale spužve, mehkužci in kozolnjaki. Med različnimi tipi UPG so bile polietilenske panelne mreže funkcionalne za naseljevanje školjk v prvem letu, medtem ko so se betonske strukture izkazale za najboljše v smislu vrstne pestrosti biodiverzitete v dolgoročnem obdobju. Kakorkoli že, petletno obdobje je bilo prekratko za razumevanje stabilnosti oziroma homeostaze združb, ki so se v smislu ekološke sukcesije naselile na UPG. Ključne besede: umetni podvodni grebeni, makrozoobentos, Jadransko morje, fotografski monitoring 111 ANNALES · Ser. hist. nat. · 33 · 2023 · 1 Nicola BETTOSO et al.: EPIBENTHIC MACROFAUNA ON AN ARTIFICIAL REEF OF THE NORTHERN ADRIATIC SEA: A FIVE-YEARS PHOTOGRAPHIC ..., 99–112 REFERENCES Ardizzone, G.D., M.F. Gravina & A. Belluscio (1989): Temporal development of epibenthic commu- nities on artificial reefs in the Central Mediterranean Sea. Bull. Mar. Sci., 44(2), 592-608. Arpa FVG (2007): Supporto tecnico-scientifico in materia di gestione sostenibile delle risorse marine e lagunari, con particolare riferimento all’aggiorna- mento, implementazione, mantenimento del sistema georeferenziato di gestione delle attività economiche del settore ittico Alto Adriatico e di monitoraggio delle barriere artificiali sommerse, realizzati nell’ambito del Progetto “ADRI.BLU” (PIC INTERREG IIIA Transfron- taliero Adriatico) Rapporto 2007, 44 pp. Ballesteros, E. (2006): Mediterranean corallige- nous assemblages: a synthesis of present knowledge. Oceanogr. Mar. Biol. Ann. Rev., 44, 123-195. Bettoso, N., L. Faresi, V. Pitacco, M. Orlando-Bo- naca, I.F. Aleffi & L. Lipej (2023): Species Richness of Benthic Macrofauna on Rocky Outcrops in the Adriatic Sea by Using Species-Area Relationship (SAR) Tools. Water, 15(2), 318. Bohnsack, J.A. & D.L. Sutherland (1985): Artificial reef research: a review with recommendations for future priorities. Bull. Mar. Sci., 37(1), 11-39. Boicourt, W.C., M. Kuzmić & T.S. Hopkins (1999): The Inland Sea: circulation of Chesapeake Bay and the Northern Adriatic. In: T.C. Malone et al. (eds.): Ecosystems at the Land-Sea Margin: Drainage Basin to Coastal Sea. Am. Geophysical Union, pp. 81-129. Bombace, G. (1989): Artificial reefs in the Mediter- ranean Sea. Bull. Mar. Sci., 44(2), 1023-1042. Bombace, G., G. Fabi, L. Fiorentini & S. Speranza (1994): Analysis of the efficacy of artificial reefs locat- ed in five different areas of the Adriatic Sea. Bull. Mar. Sci., 55, 559-580. Bombace, G., L. Castriota & A. Spagnolo (1997): Benthic communities on concrete and coal-ash blocks submerged in an artificial reef in the central Adriatic Sea. In: Proceedings of the 30th European Marine Biological Symposium, Southampton, UK, September 1995, pp. 281-290. Clarke, K. & R. Warwick (2001): Change in marine communities: an approach to statistical analysis and interpretation, PRIMER-E Ltd: Plymouth, United King- dom, 256 pp. Corriero, G., R. Pronzato & M. Sarà (1991): The sponge fauna associated with Arca noae L (Mollusca, Bivalvia). In: Reitner J. & H. Keupp (eds): Fossil and recent sponges. Berlin, Springer, pp. 395-403. D’Anna, G., F. Badalamenti & S. Riggio (2000): Artificial reefs in North-West Sicily: comparisons and conclusions. In: Jensen, A.C., K.J. Collins & A.P.M. Lockwood (eds.): Artificial reefs in European seas. Kluwer Academics Publishers, London, pp. 97-112. Dobretsov, S.V. & G. Miron (2001): Larval and post-larval vertical distribution of the mussel Mytilus edulis in the White Sea. Mar. Ecol. Prog. Ser., 218, 179-187. Fabi, G., L. Fiorentini & S. Giannini (1989): Ex- perimental shellfish culture on an artificial reef in the Adriatic Sea. Bull. Mar. Sci., 44(2), 923-933. Fabi, G., A. Spagnolo, D. Bellan-Santini, E. Charbonnel, B. Ali Çiçek, J.J. Goutayer García, A.C. Jensen, A. Kallianiotis & M. Neves dos Santos (2011): Overview on artificial reefs in Europe. Braz. J. Oceanogr., 59, 155-166. Fortič, A., B. Mavrič, V. Pitacco & L. Lipej (2021): Temporal changes of a fouling community: Colonization patterns of the benthic epifauna in the shallow northern Adriatic Sea. Reg. Stud. Mar. Sci., 45101818. Giovanardi, O., F. Pranovi & G. Franceschini (1998): “Rapido” trawl fishing in the northern Adriat- ic: preliminary observations of the effects on macro- benthic communities. Acta Adriat., 39(1), 37-52. Gonzalez-Correa, J.M., J.T. Bayle, J.L. San- chez-Lizasa, C. Valle, P. Sanchez-Jerez & J.M. Ruiz (2005): Recovery of deep Posidonia oceanica mead- ows degraded by trawling. J. Exp. Mar. Biol. Ecol., 320, 65-76. Herbert, R.J.H., K. Collins, J. Mallinson, A.E. Hall, J. Pegg, K. Ross, L. Clarke & T. Clements (2017): Epibenthic and mobile species colonization of a geotextile artificial surf reef on the South coast of England. PLoS One, 12(9), 1-28. Kersting, D.K. & J.R. García-March (2017): Long- term assessment of recruitment, early stages and pop- ulation dynamics of the endangered Mediterranean fan mussel Pinna nobilis in the Columbretes Islands (NW Mediterranean). Mar. Environ. Res., 130, 282- 292 Kersting, D.K. & I.E. Hendriks (2019): Short guid- ance for the construction, installation and removal of Pinna nobilis larval collectors. IUCN, 6 pp. Kersting, D.K., M. Vázquez-Luis, B. Mourre, F.Z. Belkhamssa, E. Álvarez, T. Bakran-Petricioli, C. Barberá, A. Barrajón, E. Cortés, S. Deudero, J. García-March, S. Giacobbe, F. Giménez-Casalduero, L. González, S. Jiménez-Gutiérrez, S. Kipson, J. Llorente, D. Moreno, P. Prado, J. Pujol, J. Sánchez, A. Spinelli, J. Valencia, N. Vicente & I. Hendriks (2020): Recruitment disruption and the role of un- affected populations for potential recovery after the Pinna nobilis mass mortality event. Front. Mar. Sci., 7, 594378. doi: 10.3389/fmars.2020.594378. Lipej, L., M. Orlando-Bonaca & B. Mavrič (2016): Biogenic formations in the Slovenian Sea. National Institute of Biology, Marine Biology Station Piran, UNEP, RAC/SPA Tunis, 206 pp. ANNALES · Ser. hist. nat. · 33 · 2023 · 1 112 Nicola BETTOSO et al.: EPIBENTHIC MACROFAUNA ON AN ARTIFICIAL REEF OF THE NORTHERN ADRIATIC SEA: A FIVE-YEARS PHOTOGRAPHIC ..., 99–112 Maggiore, F. & E. Keppel E (2006): Colonizzazione su substrato duro nell’area a barriere artificiali del campo speri- mentale: un anno di studio. In: Campo sperimentale in mare: prime esperienze nel Veneto relative a elevazioni del fondale con materiale inerte. Regione Veneto, ARPAV, 109-122. Marguš, D., E. Teskeredžić, Z. Teskeredžić & M. Tomec (1993): Reproduktivni ciklus male kapice (Chlamys varia L.) i monitoring ličinki češljaša (Pectinidae) u planktonu ušća rijeke Krke. Ribarstvo, 48(4), 115-124. Mavrič, B., M. Orlando-Bonaca, N. Bettoso & L. Lipej (2010): Soft-bottom macrozoobenthos of the southern part of the Gulf of Trieste: faunistic, biocoenotic and ecological survey. Acta Adriat., 51(2), 203-216. Minelli, A., C. Ferrà, A. Spagnolo, M. Scanu, A.N. Tassetti, C.R. Ferrari, C. Mazziotti, S., Pigozzi, Z. Jakl, T. Šarčević, M. Šimac, C. Kruschel, D. Pejdo, E. Barbone, M. De Gioia, D. Borme, E. Gordini, R. Auriemma, I. Benzon, Ð. Vuković-Stanišić, S. Orlić, V. Frančić, D. Zec, I. Orlić Kapović, M. Soldati, S. Ulazzi & G. Fabi (2021): The ADRIREEF database: a comprehensive collection of natural/artificial reefs and wrecks in the Adriatic Sea. Earth Syst. Sci. Data, 13, 1905-1923. Moura, A., D. Boaventura, J. Cúrdia, S. Carvalho, P. Pereira, L. Cancela da Fonseca, F.M. Leitão, M.N. Santos & C.C. Montero (2004): Benthic succession on an artificial reef in the South of Portugal – preliminary results. Revista. Biol. (Lisboa), 22, 169-181. Nicoletti, L., S. Marzialetti, D. Paganelli & G.D. Ardiz- zone (2007): Long-term changes in a benthic assemblage associated with artificial reefs. Hydrobiologia, 580, 233-240. Orel, G. & R. Zamboni (2003): Proposte per un piano pluriennale di gestione della fascia costiera del golfo di Tri- este, II ed., Azienda Speciale ARIES, Camera di Commercio I.A.A. di Trieste, Progetto pilota sulla gestione delle zone di pesca, Iniziativa Comunitaria PESCA L. R. 11/98, Progetto ARIES-PESCA 2000/2003 SFOP 2000-2006, 272 pp. Padiglia, A., F.D. Ledda, B.M. Padedda, R. Pronzato & R. Manconi (2018): Long-term experimental in situ farm- ing of Crambe crambe (Demospongiae: Poecilosclerida). PeerJ, 6, e4964. DOI 10.7717/peerj.4964 Parenzan, P. (1957): Conseguenze biocenotiche dei relitti sottomarini. Banchi sperimentali e pescosi artificiali. Boll. Soc. Nat. Napoli, 56, 91-96. Parenzan, P. (1986): Vita agitata. Congedo Editore, 160 pp. Pérès, J.M. & J. Picard (1964): Noveau manuel de bionomie bentique de la Mer Méditerranée (New manual on benthic bionomy of the Mediterranean Sea). Réc. Trav. Stat. Mar. Endoume, 31, 5-137. Ponti, M., F. Fava, R.A. Perlini, O. Giovanardi & M. Abbiati (2015): Benthic assemblages on artificial reefs in the northwestern Adriatic Sea: does structure type and age matter? Mar. Environ. Res., 104, 10-19. Project ADRI.BLU (2006): Activity report of the proj- ect available online in the following website: https://www. regione.fvg.it/rafvg/export/sites/default/RAFVG/econo- mia-imprese/pesca-acquacoltura/FOGLIA24/FOGLIA5/ allegati/ADRI.BLU_rid.pdf Project EcoSea (2016): Activity report of the project available online in the following website: https://www. regione.fvg.it/rafvg/export/sites/default/RAFVG/econo- mia-imprese/pesca-acquacoltura/FOGLIA24/FOGLIA9/ allegati/04102016_503_brochure_LGG_.pdf Relini, G. & L. Orsi Relini (1989): Artificial reefs in the Ligurian Sea (Northwestern Mediterranean Sea): aims and results. Bull. Mar. Sci., 44(2), 743-751. Relini, G., N. Zamboni, F. Tixi & G. Torchia (1994): Patterns of sessile macrobenthos community development on an artificial reef in the Gulf of Genoa (North-western Mediterranean). Bull., Mar. Sci., 55, 745-771. Sams, M.A. & M.J. Keough (2012): Contrasting effects of variable species recruitment on marine sessile commu- nities. Ecology, 93(5), 1153-1163. Solis-Weiss, V., P. Rossin, F. Aleffi, N. Bettoso, G. Orel & B. Vrišer (2001): Gulf of Trieste sensitivity areas using Benthos and GIS techniques. Proc. 5th International Conference on the Mediterranean coastal Environment Medcoast 2001, Hammamet Tunisia, 3, 1567-1578. Solis-Weiss, V., P. Rossin, F. Aleffi, N. Bettoso & S. Fonda Umani (2004): A regional GIS for benthic diversity and environmental impact studies in the Gulf of Trieste, Italy. In: E. Vanden Berghe et al. (Editors). Proceedings of “The Colour of Ocean Data” Symposium, Brussels, 25-27 November, 2002. IOC Workshop Report 188 (UNESCO, Paris), pp. 245-255. Solis-Weiss, V., I.F. Aleffi, N. Bettoso, P. Rossin & G. Orel (2007): The benthic macrofauna at the outfalls of the underwater sewage discharges in the Gulf of Trieste (north- ern Adriatic Sea). Annales, Ser. Hist. Nat., 17(1), 1-16. Stachowitsch, M. & A. Fuchs (1995): Long-term chang- es in the benthos of the northern Adriatic Sea. Annales, Ser. Hist. Nat., 7, 7-16. Stravisi, F. (1983): The vertical structure annual cycle of the mass field parameters in the Gulf of Trieste. Boll. Oceanol. Teor. Applic., 1(3), 239-250. Taormina, B., A. Percheron, M.P. Marzloff, X. Caisey, N. Quillien, M. Lejart, N. Desroy, O. Dugornay, A. Tancray & A. Carlier (2020): Succession in epibenthic communi- ties on artificial reefs associated with marine renewable energy facilities within a tide-swept environment. ICES J. Mar. Sci., 77(7-8), 2656-2668. Toledo, M.I., P. Torres, C. Díaz, V. Zamora, J. López & G. Olivares (2020): Ecological succession of benthic organisms on niche-type artificial reefs. Ecol. Process., 9, 38.