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Abstract 

 In this paper we study the different methods for estimation of the 
parameters of the Weibull distribution. These methods are compared in 
terms of their fits using the mean square error (MSE) and the Kolmogorov-
Smirnov (KS) criteria to select the best method. Goodness-of-fit tests show 
that the Weibull distribution is a good fit to the squared returns series of 
weekly stock prices of Cornerstone Insurance PLC. Results show that the 
mean rank (MR) is the best method among the methods in the graphical 
and analytical procedures. Numerical simulation studies carried out show 
that the maximum likelihood estimation method (MLE) significantly 
outperformed other methods.   

 

1 Introduction 

The Weibull Distribution has been widely studied since its introduction in 1951 
by Professor Wallodi Weibull (Weibull, 1951). These studies range from parameter 
estimation; see for example, Mann et al. (1974), Johnson et al. (1994) and Al-
Fawzan (2000) to diverse applications in reliability engineering especially in Tang 
(2004) and lifetime analysis in Lawless (1982, 2003). The popularity of the 
distribution is attributable to the fact that it provides a useful description for many 
different kinds of data, especially in emerging areas such as wind speed and finance 
(stock prices and actuarial data) in addition to its traditional engineering 
applications. 
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Engineers and statisticians relied mainly on probability plots, referred to as 
graphical procedure, to analyze life data prior to the advent of desktop computers 
and reliability analysis software became available. We discuss the three methods; 
the mean rank (MR), the median rank (MDR) and the symmetric cumulative 
distribution function (SCDF) in Section 2. Also in Section 2 we review three 
methods in the objective analytical procedure; the maximum likelihood estimation 
(MLE), the method of moments (MOM) and the least squares method (LSM). These 
methods are compared in Section 3, using the mean square error (MSE) and the 
maximum likelihood (LLH) criteria. 
 

2  Methods for parameter estimation 

Let 1 2, ,..., Ns s s  be a random sample of size N from a population. Define 

( )1ln ,t t tr s s−=  ( ),tr ∈ −∞ ∞  as returns of the stock prices (say), { }0:t ts s> . Let  

�� = ��
�
∈ �

� be hereinafter referred to as the squared returns.   
 

2.1 The Weibull distribution  

The general form of a three-parameter Weibull probability density function (pdf) 
is given by 

 ( )
1

exp , , 0; , 0t tx x
f x x

β βυ υβ υ α β
α α α

−  − −    = − ≥ >    
     

 (2.1) 

where; tx  is the data vector at time t; β  is the shape parameter; α is the scale 

parameter that indicates the spread of the distribution of sampled data and υ  is the 
location parameter. The Weibull probability density function satisfies the following 
properties: 

a) If  0 1, fβ< < is decreasing with ( ) as 0 .f x x +→ ∞ →    

b) If 1, fβ =  is decreasing with ( ) 1 as 0 .f x x +→ →  

c) If 1, fβ > at first increases and then decreases, with a maximum 

value at the mode ( )1
1 1 .x

βα β= −   

d) For all  0β > , ( ) 0 as .f x x→ → ∞  

The cumulative distribution function (cdf) of the Weibull distribution is 
mathematically given as: 

 ( ) 1 exp .t
t

x
F x

υ
α

 −  = − −  
  

 (2.2) 
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In case of 0υ = , the pdf in (2.1) reduces to (2.3)  
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 (2.3) 

with a corresponding cdf  as 

 ( ) 1 exp
, 0

0,

t

t

x

F x x

otherwise

β

α
    − −   = ≥    



 (2.4) 

Cheng and Chen (1988) observed that the distribution interpolates between the 

exponential distribution ( )1β = and Raleigh distribution( )2β = . The mean and variance 

of the Weibull distribution are ( ) ( )1 1E X α β= Γ +  and 

( ) ( ) ( )2 21 2 1 1V X α β β = Γ + − Γ +   respectively, where ( )nΓ  is a gamma function 

evaluated at n.  
 

2.2 Estimation procedures  

2.2.1   Graphical procedure 

 
If both sides of the cdf in (2.4) are transformed by ln(1/ (1 ))x− , we get 

 ( )
1

ln
1

i

i

x

F x

β

α
   =    −     

so that 

 ( )
1

ln ln ln ln .
1 i

i

x
F x

β β α
  

= −   −   
 (2.5)                                 

Here, ix  actually represents the order statistics (1) (2) ( )... .nx x x< < <     

If we let ( )( )( )ln ln 1 1 iY F x = −  , ln iX x=  and lnc β α= − , then (2.5) represents a 

simple linear regression function corresponding to 

 .Y X cβ= +  (2.6) 

The unbiased estimate of α , the scale parameter, is calculated as 

 ˆ exp
cα
β

  = −  
  

 (2.7) 
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where c is the intercept of the linear regression (2.6). 

Thus, we perform the estimation of α and β  using the following methods of 

estimation in Table 1.   

Table 1: Methods of estimation by graphical procedure 
 

 

 

 

 

We plot iY , which is a function of ( ),iF x  versus ( ln( ))i iX x= , using the following  

procedure: 

a) Rank the data { }ix in ascending order of magnitude; 

b) Estimate ( )iF x of the i th rank order; and 

c) Plot iY versus iX . 

This plot produces a straight line from which we obtain ˆ ˆ and β α  (see (2.6) and (2.7)). 

 

 2.2.2   Analytical procedure 

 
 Maximum Likelihood Estimation (MLE) 

The method of maximum likelihood estimation is a commonly used procedure for 

estimating parameters, see, e.g., Cohen (1965) and Harter and Moore (1965). Let 

1 2, ,..., nx x x  be a random sample of size n drawn from a population with probability 

density function ( ),f x λ  where ( ),λ β α= is an unknown vector of parameters, so that 

the likelihood function is defined by 

 ( ) ( )
1

, ,
n

t
i

L f f xα β λ
=

= = ∏  (2.8) 

The maximum likelihood of ( ),λ β α= , maximizes L  or equivalently, the 

logarithm of L when 

 
ln

0,
L

λ
∂ =

∂
 (2.9) 

Method ( )iF x                      

Mean Rank ( )1i n +  

Median Rank ( ) ( )0.3 0.4i n− +  

Symmetric CDF ( )0.5i n−  
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see, for example, Mood et al (1974). Consider the Weibull pdf given in equation (2.3), 

its likelihood function is given as: 

       ( )
1
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n
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−
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Taking the natural logarithm of both sides yields 

 ( ) ( )1

1 1

ln ln 1 ln
n n

t
t

t t

x
L n x

β
ββ β α

α α
−

= =

  = + − − −   
   

∑ ∑  (2.11) 

and differentiating (2.11) partially w.r.t β  and α  in turn and equating to zero, we 

obtain the estimating equations as follows 

 
1 1

1
ln ln ln 0

n n

t t t
t t

n
L x x xβ

β β α= =

∂ = + − =
∂ ∑ ∑  (2.12) 

and 

 
2

1

1
ln 0.

n

t
t

n
L xβ

α α α =

∂ = − + =
∂ ∑  (2.13) 

From (2.13) we obtain an estimator of α  as     

 
ˆ

1

1
ˆ

n

mle t
t

x
n

βα
=

= ∑  (2.14) 

and on substitution of (2.14) in (2.12) we obtain  

 1

1
1

ln1 1
ln 0

n
n

tt
t n

t tt
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β

ββ
=

=
=

+ − =∑
∑

∑
 (2.15) 

which may be solved to obtain the estimate of β  using Newton-Raphson method or 

any other numerical procedure because (2.15) does not have a closed form solution. 

When ˆ
mleβ  is obtained, the value of α̂  follows from (2.14). 

   

Method of Moments (MOM) 

The second procedure we consider here is the MOM which is also commonly 

used in parameter estimation. Let 1 2, ,..., nx x x  represent a set of data for which we 

seek an unbiased estimator for the kth moment. Such an estimator is generally given 

by  
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1

1
ˆ

n
k

k t
t

m x
n =

= ∑  (2.16) 

where ˆ km is the estimate of kth moment. For the Weibull distribution given in 

(2.3), the kth moment is given by 

 
1

1

k

k k

kβ
µ

α β

−
  = Γ +   

   
 (2.17) 

where Γ  is as defined in subsection 2.1. From (2.17), we can find the 1st and 2nd 
moments about zero as follows 

 

1

1 1

1 1
ˆ ˆ 1m

β
µ

α β
  = = Γ +   

   
 (2.18) 

and 

 

2 2

2 2
2

1 2 1
ˆ ˆ ˆ 1 1m

β
µ σ

α β β
     = + = Γ + − Γ +      

       
 (2.19) 

When we divide the square of 1m̂ by 2m̂ , we get an expression which is a function 

of only β , 

 
2
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1 1
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ˆ
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β
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where ( ) ( ) ( )( )22 2

1

1
ˆ ˆ,  and letting 1

n

t t t t
t

E X x E X E X Z
n

µ σ β
=

= = = − =∑  (2.19) is 

easily transformed in order to estimate β  so that the scale parameter                                                                        

momα  can be estimated with the following relation 

 
1ˆ ˆ 1momα µ
β

 = Γ + 
 

. (2.21) 

The Least Squares Method (LSM) 

 The Least Squares method is commonly applied in engineering and 

mathematics problems that are often not thought of as an estimation problem. We 

assume that there is a linear relationship between two variables. Assume a dataset 

that constitute a pair ( ),t tx y ( ) ( ) ( )1 1 2 2, , , ,..., ,n nx y x y x y=  were obtained and plotted. 

The least squares principle minimizes the vertical distance between the data points 



Methods for Estimation of Weibull Distribution Parameters 71 

 

 

and the straight line fitted to the data, the best fitting line to this data is the straight 

line: t ty xα β= +  such that 

 ( ) ( )2

1

; ,
n

t t
t

Q x y xα β α β
=

= − −∑  

To obtain the estimators of  and α β  we differentiate Q w.r.t  and α β . Equating 

to zero subsequently yields the following system of equations: 

 ( )2

1

2
n

t t
t

Q
y xα β

α =

∂ = − − −
∂ ∑   (2.22) 

and 

 ( )2

1

2 0
n

t t t
t

Q
y x xα β

β =

∂ = − − − =
∂ ∑  (2.23) 

Expanding and solving equations (2.21) and (2.22) simultaneously, we have 

 
( )22

ˆ n xy x y

n x x
β

−
=

−
∑ ∑ ∑
∑ ∑

 (2.24) 

and 

 ˆ ˆ ;     exp
ˆ
c

c y xβ α
β

 
= − = − 

 
 (2.25) 

where ˆˆ  and α β are the unbiased estimators of  and α β respectively. 

  

3    Method assessment and selection 

3.1      Comparison of estimation methods 

   The Mean Squared Error (MSE) criterion is given by 

        ( ) ( )
2

1

1 ˆ
n

i i
i

MSE F x F x
n =

 = − ∑     (3.1) 

where ( )ˆ
iF x  is obtained by substituting the estimates of  and α β  (for each 

method) in (2.4) while ( ) /iF x i n=  is the empirical distribution function. The 

method with the minimum mean squared error ( )minMSE  becomes the best method 

for the estimation of Weibull parameters among the candidate methods.  
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3.2    Goodness-of-fit tests  

 Goodness-of-fit test procedures are intended to detect the existence of a 
significant difference between the observed (empirical) frequency of occurrence of an 
item and the theoretical (hypothesized) pattern of occurrence of that item. Here, we 
assume that the Weibull distribution is a good fit to the given dataset; otherwise, this 
assumption is nullified if, for this test, the computed statistic is greater or equal to a 
defined critical value. 

  
Kolmogorov–Smirnov test 

The Kolmogorov-Smirnov test is used to decide if a sample comes from a 
population with specific distribution. It is based upon a comparison between the 
empirical distribution function (ECDF) and the theoretical one defined as 

( ) ( ),
x

F x f y dyθ
∞

= ∫  where ( ),f x θ  is the pdf of the Weibull distribution. Given n 

ordered data points 1 2, ,..., ,nX X X  the ECDF is defined as ( ) ( )iF X N i n=  where 

( )N i  is the number of points less the iX  ( iX  are ordered from smallest to highest value). 

The test statistic used is  

( ) ( )
1

ˆSupn i i
i n

D F x F x
≤ ≤

= − .                                                  (3.2) 

The statistic nD  converges to zero almost surely as n → ∞ . 

4 Implementation  

4.1 Data 

  The data used for this study is the weekly stock prices (N = 100 weeks) collected 
from Cornerstone Insurance Company PLC, a public liability company listed in the 
Nigerian Stock Exchange (Appendix I). The squared returns, r2, earlier defined in 
Section 2 are a measure of volatility in the stock prices and are multiplied by 100 
without loss of generality. In Figure 1 we present a graphic relationship between the 
weekly stock prices and its squared returns. We perform the estimation of the parameters 
using the R software for the graphical and analytical procedures with 100r2 as the 
dataset and r is now of length n. R is a language and environment for statistical 
computing and graphics (from the R Foundation for Statistical Computing (2013)) ran 
on the Platform: i386-w64-mingw32/i386 (32-bit). 
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   Figure 1: Plot showing relationship between Weekly Stock Prices and its Squared 
Returns*100      

4.2 Simulation study 

We carry out a numerical simulation study in order to investigate the behavior of 
the shape and scale parameters of the Weibull distribution. In the simulation experiment 
we set the Weibull distribution on the random variable X with shape parameter 

0.54β =  with the aim of mimicking the squared returns ( )2100 .r  For the Weibull 

distribution on X , generate independently and identically distributed random sample 

( )1 2, ,..., nx x x  of size n  (= 25, 50, 75, 100, 125, 150, 175, 200). Compute the mean of 

this sample and replicate this process N times to obtain a series. For each series of size 
n , estimate  and β α  using the methods described in Section 2, the MSE and the 

Kolmogorov-Smirnov (KS) statistic. This sequence is of the form 

( ) ( ) ( )1,..., 1 1 11 2
mean ,..., ,mean ,..., ,...,mean ,...,N n n n N

X x x x x x x∗ ∗ ∗ ∗ ∗ ∗ ∗= , 10000N =  times; and is 

accomplished in R for Windows 2013 by the replicate function: 

( )( )( )replicate , mean rweibull , shape 0.54N n = .  

We remark here that the least squares method (LSM) is related to the graphical 
procedure in the estimation of Weibull parameters through (2.6), where 

( )( )( )ln ln 1 1 iY F x = −   is dependent upon the particular graphical method (e.g., 

( ) ( )1iF x i n= +  for the mean rank) and ln iX x= ; see also equations (2.7) and (2.25). 
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4.3   Results and Discussion 

All computations and simulations in this investigation were done in R version 3.0.0. 
We relied on the functions fitdist() and fitdistr() respectively from R packages 
fitdistrplus and MASS (see, e.g., Delignette-Muller et al (2013) and Ripley (2013) 
respectively) for maximum likelihood estimation of the parameters and plots while 
codes were developed for the other methods. Results for the graphical procedure (MR, 
MDR and SCDF) were verified using the approach in Dorner (1999) on Microsoft Excel 
2013. The R code used for this study is available from the first author on request.  

Estimates of the parameters based upon both the graphical and theoretical 
procedures described in Section 2.2 are presented in Table 2. The shape parameter β  
lies within the interval (0, 1) which implies, as indicated in Section 2.1, that the function 
(irrespective of the method) decreases exponentially. We ranked the performance of the 
methods based on the least MSE criterion. In comparison, the Mean Rank (MR) method 
has the least MSE (3.88x10-03) and at the same time has the least Dn (0.0563) making it 
the best among the five methods under study (graphical and analytical procedures) for 
this particular dataset. The Maximum Likelihood Estimation (MLE) method is, however, 
superior to Method of Moments in the analytical procedure. From these results the best 
estimate for the shape and scale parameters are respectively ( ) ( )ˆ ˆ, 0.5325,0.4539β α =  

based on our dataset. 
 

  The visual assessments of fit are shown in the histogram (Figure 2(a)) overlaid with 
the Weibull densities generated from the different methods and in the empirical 
cumulative distribution function plot of Figure 2(b). The MOM is clearly different from 
other methods given their MSEs but this difference is not very clear in Figure 2.   
However, simulation results show (Table 3) that the MLE performed best 86% of the 
time when the ni simulations are run 10,000 times. Similar result was obtained when the KS 
goodness-of-fit test was conducted to test the adequacy of the Weibull distribution in fitting the 
simulation data. 

 
 
 
 
 
 
 
Table 2: Summary of results and comparison of methods for Weibull parameter estimation 

 

Procedure  Method                                         α̂        β̂    MSE        KS 

Graphical 
   MR 0.4539 0.5325 3.88x10-03 0.0563 

MDR 0.4494 0.5452 4.21x10-03 0.0615 
SCDF 0.4461 0.5553 4.49x10-03 0.0656 

Analytical 
MLE 0.4563 0.5421 6.59x10-03      0.0617 
MOM 0.5244 0.6026 1.18x10-01 0.1055 
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Table 3 Simulation results (based on 10,000 iterations) 
  Method 
n Measure MR MDR SCDF MLE MOM 

25 
MSE 3.5726 3.5815 3.5837 1.2557 1.6770 
KS 0.0600 0.0600 0.0601 0.0501 0.9821 

50 
MSE 4.6281 4.6323 4.6282 1.4930 3.5122 

KS 0.0681 0.0682 0.0683 0.0540 0.9596 

75 
MSE 4.9234 4.9502 4.9407 1.5438 4.2108 

KS 0.0683 0.0684 0.0684 0.0563 0.9741 

100 
MSE 4.8839 4.9119 4.8985 1.3216 4.4869 

KS 0.0653 0.0654 0.0654 0.0587 0.0964 

125 
MSE 5.2496 5.2389 5.2598 1.4261 4.9398 
KS 0.0750 0.0750 0.0751 0.0590 0.9600 

150 
MSE 5.4266 5.4118 5.4341 1.4671 5.2043 
KS 0.0672 0.0671 0.0673 0.0604 0.9665 

175 
MSE 6.4067 6.3872 6.4096 1.7235 6.0586 
KS 0.0726 0.0726 0.0726 0.0657 0.9720 

200 
MSE 5.1548 5.1831 1.3525 1.4170 5.0833 

KS 0.0674 0.0675 0.0818 0.0614 0.9816 
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Figure 2: Fit of different methods (a) Density and Histogram (b) ECDF 
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 5     Conclusion  

The performances of five methods in the estimation of the parameters of the 
Weibull distribution were compared in this study. The MR was selected as the best 
method that gives the best estimates of the two-parameter model for square returns 
dataset, while the MLE is preferred over the MOM for the analytical procedure. 
These decisions were based on the minimum MSE criterion. When these methods 
were compared based upon simulation results, the maximum likelihood estimate 
method showed superiority over other methods. The least squares method (LSM), 
we remark, is also known as the rank regression method (RRM) because the 
estimation of the parameters of the Weibull distribution is dependent upon 
regressing some form of log and rank transformations of a given dataset according 
to the rank plotting position.  
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Appendix  

 
 

Table A1: Weekly stock prices (read row-wise) 
  1.03 1.06 0.99 1.03 0.99 0.95 0.96 0.98 0.93 1.05 

0.92 0.99 0.97 0.96 0.91 0.94 0.97 0.99 1.15 1.27 
1.46 1.83 2.31 2.49 2.73 2.70 2.52 2.49 2.76 3.00 
3.18 3.88 3.84 3.79 3.76 3.75 3.89 4.04 4.70 4.34 
4.55 4.20 4.19 4.12 4.13 3.77 3.25 3.14 3.12 2.82 
3.24 3.44 3.50 3.64 3.72 3.68 3.41 3.24 3.26 3.42 
3.38 4.02 4.21 4.23 4.04 4.11 4.28 4.84 4.46 4.87 
5.00 5.91 7.36 7.34 7.23 7.19 6.79 6.03 5.97 5.69 
6.42 6.23 5.86 5.46 4.71 4.32 4.79 4.62 4.54 4.22 
4.28 4.08 3.95 4.16 3.50 3.65 3.22 3.50 3.97 2.96 

 


