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Abstract

Relative Heffter arrays, denoted by Ht(m,n; s, k), have been introduced as a general-
ization of the classical concept of Heffter array. A Ht(m,n; s, k) is anm×n partially filled
array with elements in Zv , where v = 2nk+ t, whose rows contain s filled cells and whose
columns contain k filled cells, such that the elements in every row and column sum to zero
and, for every x ∈ Zv not belonging to the subgroup of order t, either x or −x appears
in the array. In this paper we show how relative Heffter arrays can be used to construct
biembeddings of cyclic cycle decompositions of the complete multipartite graphK 2nk+t

t ×t
into an orientable surface. In particular, we construct such biembeddings providing integer
globally simple square relative Heffter arrays for t = k = 3, 5, 7, 9 and n ≡ 3 (mod 4)
and for k = 3 with t = n, 2n, any odd n.
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1 Introduction
An m × n partially filled (p.f., for short) array on a set Ω is an m × n matrix whose
elements belong to Ω and where we also allow some cells to be empty. The following class
of p.f. arrays was introduced in [15], generalizing the ideas of [2]:
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Definition 1.1. Let v = 2nk + t be a positive integer and let J be the subgroup of Zv of
order t. A Ht(m,n; s, k) Heffter array over Zv relative to J is an m × n p.f. array with
elements in Zv such that:

(a) each row contains s filled cells and each column contains k filled cells;

(b) for every x ∈ Z2nk+t \ J , either x or −x appears in the array;

(c) the elements in every row and column sum to zero.

Trivial necessary conditions for the existence of a Ht(m,n; s, k) are that t divides 2nk,
nk = ms, 3 ≤ s ≤ n and 3 ≤ k ≤ m. If Ht(m,n; s, k) is a square array, it will be denoted
by Ht(n; k). A relative Heffter array is called integer if Condition (c) in Definition 1.1 is
strengthened so that the elements in every row and in every column, viewed as integers in
±
{

1, . . . ,
⌊
2nk+t

2

⌋}
, sum to zero in Z. We remark that, if t = 1, namely if J is the trivial

subgroup of Z2nk+1, we find again the classical concept of a (integer) Heffter array, see
[2, 3, 4, 9, 10, 13, 16, 17]. In particular, in [10] it was proved that Heffter arrays H1(n; k)
exist for all n ≥ k ≥ 3, while by [4, 17] integer Heffter arrays H1(n; k) exist if and only if
the additional condition nk ≡ 0, 3 (mod 4) holds. At the moment, the only known results
concerning relative Heffter arrays are described in [15, 22]. Some necessary conditions for
the existence of an integer Ht(n; k) are given by the following.

Proposition 1.2 ([15]). Suppose that there exists an integer Ht(n; k) for some n ≥ k ≥ 3
and some divisor t of 2nk.

(1) If t divides nk, then nk ≡ 0 (mod 4) or nk ≡ −t ≡ ±1 (mod 4).

(2) If t = 2nk, then k must be even.

(3) If t 6= 2nk does not divide nk, then t+ 2nk ≡ 0 (mod 8).

We point out that these conditions are not sufficient, in fact in the same paper the authors
show that there is no integer H3n(n; 3) and no integer H8(4; 3).

The support of an integer Heffter array A, denoted by supp(A), is defined to be the
set of the absolute values of the elements contained in A. It is immediate to see that
an integer H2(n; k) is nothing but an integer H1(n; k), since in both cases the support
is {1, 2, . . . , nk}.

In this paper we study the connection between relative Heffter arrays and biembed-
dings. In particular, in Section 2 we recall well known definitions and results about simple
orderings and cycle decompositions. Then, in Section 3 we explain how relative Heffter
arrays Ht(n; k) can be used to construct biembeddings of cyclic k-cycle decompositions of
the complete multipartite graph K 2nk+t

t ×t into an orientable surface. Direct constructions
of globally simple integer Ht(n; 3) with t = n, 2n for any odd n and of globally simple
integer Hk(n; k) for k = 7, 9 and n ≡ 3 (mod 4) are described in Section 4. Combining
the results of these sections we prove the following.

Theorem 1.3. There exists a cellular biembedding of a pair of cyclic k-cycle decomposi-
tions of K 2nk+t

t ×t into an orientable surface in each of the following cases:

(1) k = 3, t ∈ {n, 2n} and n is odd;

(2) k ∈ {3, 5, 7, 9}, t = k and n ≡ 3 (mod 4).

Finally, in Section 5 we introduce a further generalization, called Archdeacon array,
of the classical concept of Heffter array. We show some examples and how both cycle
decompositions and biembeddings can be obtained also using these arrays.
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2 Simple orderings and cycle decompositions
Given two integers a ≤ b, we denote by [a, b] the interval containing the integers a, a+ 1,
. . . , b. If a > b, then [a, b] is empty.

IfA is anm×n p.f. array, the rows and the columns ofAwill be denoted byR1, . . . , Rm
and byC1, . . . , Cn, respectively. We will denote by E(A) the unordered list of the elements
of the filled cells of A. Analogously, by E(Ri) and E(Cj) we mean the unordered lists of
elements of the i-th row and of the j-th column, respectively, of A. Also, we define the
skeleton of A, denoted by skel(A), to be the set of the filled positions of A.

Given a finite subset T of an abelian group G and an ordering ω = (t1, t2, . . . , tk)

of the elements in T , let si =
∑i
j=1 tj , for any i ∈ [1, k], be the i-th partial sum of

ω and set S(ω) = (s1, . . . , sk). The ordering ω is said to be simple if sb 6= sc for all
1 ≤ b < c ≤ k or, equivalently, if there is no proper subsequence of ω that sums to 0. Note
that if ω is a simple ordering so is ω−1 = (tk, tk−1, . . . , t1). We point out that there are
several interesting problems and conjectures about distinct partial sums: see, for instance,
[1, 5, 14, 19, 23]. Given anm×n p.f. arrayA, by ωRi

and ωCj
we will denote, respectively,

an ordering of E(Ri) and of E(Cj). If for any i ∈ [1,m] and for any j ∈ [1, n], the
orderings ωRi

and ωCj
are simple, we define by ωr = ωR1

◦ · · · ◦ωRm
the simple ordering

for the rows and by ωc = ωC1
◦ · · · ◦ ωCn

the simple ordering for the columns. Moreover,
by natural ordering of a row (column) of A we mean the ordering from left to right (from
top to bottom). A p.f. array A on an abelian group G is said to be

• simple if each row and each column of A admits a simple ordering;

• globally simple if the natural ordering of each row and each column of A is simple.

Clearly if k ≤ 5, then every square relative Heffter array is (globally) simple.
We recall some basic definitions about graphs and graph decompositions. Given a graph

Γ, by V (Γ) and E(Γ) we mean the vertex set and the edge set of Γ, respectively. We will
denote by Kv the complete graph of order v and by Kq×r the complete multipartite graph
with q parts each of size r. Obviously Kq×1 is nothing but the complete graph Kq . Let G
be an additive group (not necessarily abelian) and let Λ ⊆ G\{0} such that Λ = −Λ, which
means that for every λ ∈ Λ we have also−λ ∈ Λ. The Cayley graph on G with connection
set Λ, denoted by Cay[G : Λ], is the simple graph having G as vertex set and such that two
vertices x and y are adjacent if and only if x−y ∈ Λ. Note that, if Λ = G\{0}, the Cayley
graph is the complete graph whose vertex set is G and, if Λ = G \ J for some subgroup
J of G, the Cayley graph is the complete multipartite graph Kq×r where q = |G : J | and
r = |J |.

The following are well known definitions and results which can be found, for instance,
in [8]. Let Γ be a subgraph of a graph K. A Γ-decomposition of K is a set D of subgraphs
of K isomorphic to Γ whose edges partition E(K). If the vertices of K belong to a group
G, given g ∈ G, by Γ+g one means the graph whose vertex set is V (Γ)+g and whose edge
set is {{x + g, y + g} | {x, y} ∈ E(Γ)}. An automorphism group of a Γ-decomposition
D of K is a group of bijections on V (K) leaving D invariant. A Γ-decomposition of K
is said to be regular under a group G or G-regular if it admits G as an automorphism
group acting sharply transitively on V (K). Here we consider cyclic cycle decompositions,
namely decompositions which are regular under a cyclic group and with Γ a cycle. Finally,
two graph decompositions D and D′ of a simple graph K are said orthogonal if and only
if for any B of D and any B′ of D′, B intersects B′ in at most one edge.
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The relationship between simple relative Heffter arrays and cyclic cycle decompositions
of the complete multipartite graph is explained in [15]. Here we briefly recall the following
result.

Proposition 2.1 ([15, Proposition 2.9]). Let A be a Ht(m,n; s, k) simple with respect to
the orderings ωr and ωc. Then:

(1) there exists a cyclic s-cycle decomposition Dωr of K 2ms+t
t ×t;

(2) there exists a cyclic k-cycle decomposition Dωc of K 2nk+t
t ×t;

(3) the cycle decompositions Dωr and Dωc are orthogonal.

The arrays we are going to construct are square with a diagonal structure, so it is con-
venient to introduce the following notation. If A is an n× n array, for i ∈ [1, n] we define
the i-th diagonal

Di = {(i, 1), (i+ 1, 2), . . . , (i− 1, n)}.

Here all the arithmetic on the row and the column indices is performed modulo n, where
the set of reduced residues is {1, 2, . . . , n}. We say that the diagonals Di, Di+1, . . . , Di+r

are consecutive diagonals.

Definition 2.2. Let k ≥ 1 be an integer. We will say that a square p.f. array A of size
n ≥ k is

• k-diagonal if the non empty cells of A are exactly those of k diagonals;

• cyclically k-diagonal if the nonempty cells of A are exactly those of k consecutive
diagonals.

Let A be a k-diagonal array of size n > k. A set S = {Dr+1, Dr+2, . . . , Dr+`} is said
to be an empty strip of width ` if Dr+1, Dr+2, . . . , Dr+` are empty diagonals, while Dr

and Dr+`+1 are filled diagonals.

Definition 2.3. Let A be a k-diagonal array of size n > k. We will say that A is a k-
diagonal array with width ` if all the empty strips of A have width `.

An array of this kind will be given in Example 4.9.

3 Relation with biembeddings
In [2], Archdeacon introduced Heffter arrays also in view of their applications and, in par-
ticular, since they are useful for finding biembeddings of cycle decompositions, as shown,
for instance, in [11, 13, 16]. In this section, generalizing some of Archdeacon’s results we
show how starting from a relative Heffter array it is possible to obtain suitable biembed-
dings.

We recall the following definition, see [20].

Definition 3.1. An embedding of a graph Γ in a surface Σ is a continuous injective map-
ping ψ : Γ → Σ, where Γ is viewed with the usual topology as 1-dimensional simplicial
complex.

The connected components of Σ \ ψ(Γ) are called ψ-faces. If each ψ-face is homeo-
morphic to an open disc, then the embedding ψ is said to be cellular.
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Definition 3.2. A biembedding of two cycle decompositions D and D′ of a simple graph
Γ is a face 2-colorable embedding of Γ in which one color class is comprised of the cycles
in D and the other class contains the cycles in D′.

Following the notation given in [2], for every edge e of a graph Γ, let e+ and e− denote
its two possible directions and let τ be the involution swapping e+ and e− for every e. Let
D(Γ) be the set of all directed edges of Γ and, for any v ∈ V (Γ), call Dv the set of edges
directed out of v. A local rotation ρv is a cyclic permutation of Dv . If we select a local
rotation for each vertex of Γ, then all together they form a rotation of D(Γ). We recall the
following result, see [2, 18, 21].

Theorem 3.3. A rotation ρ on Γ is equivalent to a cellular embedding of Γ in an orientable
surface. The face boundaries of the embedding corresponding to ρ are the orbits of ρ ◦ τ .

Given a relative Heffter array A = Ht(m,n; s, k), the orderings ωr and ωc are said to
be compatible if ωc ◦ ωr is a cycle of length |E(A)|.

Theorem 3.4. LetA be a relative Heffter array Ht(m,n; s, k) that is simple with respect to
the compatible orderings ωr and ωc. Then there exists a cellular biembedding of the cyclic
cycle decompositions Dω−1

r
and Dωc

of K 2nk+t
t ×t into an orientable surface of genus

g = 1 +
(nk − n−m− 1)(2nk + t)

2
.

Proof. Since the orderings ωr and ωc are compatible, we have that ωc ◦ ωr is a cycle of
length |E(A)|. Let us consider the permutation ρ̄0 on ±E(A) = Z2nk+t \ 2nk+t

t Z2nk+t,
where 2nk+t

t Z2nk+t denotes the subgroup of Z2nk+t of order t, defined by:

ρ̄0(a) =

{
−ωr(a) if a ∈ E(A);

ωc(−a) if a ∈ −E(A).

Note that, if a ∈ E(A), then ρ̄20(a) = ωc ◦ ωr(a) and hence ρ̄20 acts cyclically on E(A).
Also ρ̄0 exchanges E(A) with −E(A). Thus it acts cyclically on ±E(A).

We note that the graph K 2nk+t
t ×t is nothing but Cay[Z2nk+t : Z2nk+t \ 2nk+t

t Z2nk+t]

that is Cay[Z2nk+t : ±E(A)]. Now, we define the map ρ on the set of the oriented edges of
the Cayley graph Cay[Z2nk+t : ±E(A)] so that:

ρ((x, x+ a)) = (x, x+ ρ̄0(a)).

Since ρ̄0 acts cyclically on ±E(A) the map ρ is a rotation of Cay[Z2nk+t : ±E(A)].
Hence, by Theorem 3.3, there exists a cellular embedding σ of Cay[Z2nk+t : ±E(A)]
in an orientable surface so that the face boundaries correspond to the orbits of ρ ◦ τ where
τ((x, x + a)) = (x + a, x). Let us consider the oriented edge (x, x + a) with a ∈ E(A),
and let C be the column containing a. Since a ∈ E(A), −a ∈ −E(A) and we have that:

ρ ◦ τ((x, x+ a)) = ρ((x+ a, (x+ a)− a)) = (x+ a, x+ a+ ωc(a)).

Thus (x, x+ a) belongs to the boundary of the face F1 delimited by the oriented edges:

(x, x+ a),(x+ a, x+ a+ ωc(a)),

(x+ a+ ωc(a), x+ a+ ωc(a) + ω2
c (a)), . . . ,

x+

|E(C)|−2∑
i=0

ωic(a), x

.
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We note that the cycle associated to the face F1 is:x, x+ a, x+ a+ ωc(a), . . . , x+

|E(C)|−2∑
i=0

ωic(a)

.
Let us now consider the oriented edge (x, x + a) with a 6∈ E(A). Hence −a ∈ E(A), and
we name by R the row containing the element −a. Since −a ∈ E(A) we have that:

ρ ◦ τ((x, x+ a)) = ρ((x+ a, (x+ a)− a)) = (x+ a, x+ a− ωr(−a)).

Thus (x, x+ a) belongs to the boundary of the face F2 delimited by the oriented edges:

(x, x+ a), (x− (−a), x− (−a)− ωr(−a)),

(x− (−a)− ωr(−a), x− (−a)− ωr(−a)− ω2
r(−a)), . . . ,

x− |E(R)|−2∑
i=0

ωir(−a), x

.
Since A is a Heffter array and ωr acts cyclically on E(R), for any j ∈ [1, |E(R)|] we have
that:

−
j−1∑
i=0

ωir(−a) =

|E(R)|−1∑
i=j

ωir(−a) =

|E(R)|−j∑
i=1

ω|E(R)|−i
r (−a) =

|E(R)|−j∑
i=1

ω−ir (−a).

It follows that the cycle associated to the face F2 can be written also as:x, x+

|E(R)|−1∑
i=1

ω−ir (−a), x+

|E(R)|−2∑
i=1

ω−ir (−a), . . . , x+ ω−1r (−a)

.
Therefore any nonoriented edge {x, x+ a} belongs to the boundaries of exactly two faces:
one of type F1 and one of type F2. Hence the embedding is 2-colorable.

Moreover, it is easy to see that those face boundaries are the cycles obtained from the
relative Heffter array A following the orderings ωc and ω−1r .

To calculate the genus g it suffices to recall that V −S+F = 2−2g, where V , S and F
denote the number of vertices, edges and faces determined by the embedding on the surface,
respectively. We have V = 2nk + t, S = nk(2nk + t) and F = (2nk + t)(n+m).

Looking for compatible orderings in the case of a globally simple Heffter array led us to
investigate the following problem introduced in [12]. Let A be an m×n toroidal p.f. array.
By ri we denote the orientation of the i-th row, precisely ri = 1 if it is from left to right
and ri = −1 if it is from right to left. Analogously, for the j-th column, if its orientation
cj is from top to bottom then cj = 1 otherwise cj = −1. Assume that an orientation
R = (r1, . . . , rm) and C = (c1, . . . , cn) is fixed. Given an initial filled cell (i1, j1) consider
the sequence LR,C(i1, j1) = ((i1, j1), (i2, j2), . . . , (i`, j`), (i`+1, j`+1), . . .) where j`+1 is
the column index of the filled cell (i`, j`+1) of the rowRi` next to (i`, j`) in the orientation
ri` , and where i`+1 is the row index of the filled cell of the column Cj`+1

next to (i`, j`+1)
in the orientation cj`+1

. The problem is the following:
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Crazy Knight’s Tour Problem. Given a toroidal p.f. array A, do there existR and C such
that the list LR,C covers all the filled cells of A?

By P (A) we will denote the Crazy Knight’s Tour Problem for a given array A. Also,
given a filled cell (i, j), if LR,C(i, j) covers all the filled positions of A we will say that
(R, C) is a solution of P (A). For known results about this problem see [12]. The relation-
ship between the Crazy Knight’s Tour Problem and globally simple relative Heffter arrays
is explained in the following result which is an easy consequence of Theorem 3.4.

Corollary 3.5. Let A be a globally simple relative Heffter array Ht(m,n; s, k) such that
P (A) admits a solution (R, C). Then there exists a biembedding of the cyclic cycle decom-
positions Dω−1

r
and Dωc

of K 2nk+t
t ×t into an orientable surface.

Extending [11, Theorem 1.1] to the relative case, we have the following result (see also
[12, Theorem 2.7]).

Proposition 3.6. If there exist compatible simple orderings ωr and ωc for a Ht(m,n; s, k),
then one of the following cases occurs:

(1) m,n, s, k are all odd;

(2) m is odd and n, k are even;

(3) n is odd and m, t are even.

Given a positive integer n, let 0 < `1 < `2 < · · · < `k < n be integers. We denote
by An = An(`1, `2, . . . , `k) a k-diagonal p.f. array of size n whose filled diagonals are
D`1 , D`2 , . . . , D`k . LetM = lcm(`2−`1, `3−`2, . . . , `k−`k−1, `k−`1) and setAn+M =
An+M (`1, `2, . . . , `k). We now study the Crazy Knight’s Tour Problem for such arraysAn.
As a consequence, we will obtain new biembeddings of cycle decompositions of complete
graphs on orientable surfaces.

Theorem 3.7. Suppose that the problem P (An) admits a solution (R, C) whereR = (1, 1,
. . . , 1) and C = (c1, c2, . . . , cn−`k+1, 1, 1, . . . , 1). Then P (An+M ) admits the solution
(R′, C′) whereR′ = (1, 1, . . . , 1) and C′ = (c1, c2, . . . , cn−`k+1, 1, 1, . . . , 1).

Proof. We denote by E the set of indices i such that ci = −1 and by Bn the p.f. array
of size n obtained from An by replacing each column Cj , when j 6∈ E, with an empty
column. Also, we denote by Bn+M the p.f. array of size n + M obtained from An+M in
the same way using the same set E. As E ⊆ [1, n− `k + 1], the nonempty cells of Bn are
of the form ((e − 1) + `i, e) for e ∈ E and i ∈ [1, k]. Since (e − 1) + `i ≤ n, we have
skel(Bn) = skel(Bn+M ). So we can set B = skel(Bn) = skel(Bn+M ).

For any x = (i1, j1) ∈ B, consider the sequence X = LR,C(i1, j1) defined on
skel(An) and let y be the second element of X that belongs to B if |X ∩ B| ≥ 2, y = x
otherwise. Define ϑn : B → B by setting ϑn(x) = y. Take (R′, C′) as in the statement
and define the map ϑn+M : B → B as before considering the sequence LR′,C′(x) defined
on skel(An+M ).

In order to prove that ϑn(x) = ϑn+M (x), for any h ∈ [1, k], we set:

σ(h) =


`1 − `k−1 if h = 1;

`2 − `k if h = 2;

`h − `h−2 otherwise
and δ(h) =

{
`1 − `k if h = 1;

`h − `h−1 otherwise.
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Set x = (i1, j1) ∈ B, hence x ∈ D`h for some h ∈ [1, k]. We have that

ϑn(x) = (i1 + δ(h)λ− σ(h), j1 + δ(h)λ) (mod n)

where λ is the minimum positive integer such that (j1 + δ(h)λ) (mod n) ∈ E. Similarly

ϑn+M (x) = (i1 + δ(h)λ′ − σ(h), j1 + δ(h)λ′) (mod n+M)

where λ′ is the minimum positive integer such that (j1 + δ(h)λ′) (mod n + M) ∈ E.
Write j1 + δ(h)λ = qn+ r where 1 ≤ r ≤ n, which means r ∈ E.

If q = 0, we clearly have λ′ = λ and hence ϑn+M (x) = ϑn(x). Otherwise, since the
last M elements of C′ are equal to 1, we have that λ′ = λ+ qM

δ(h) . Hence:

ϑn+M (x) =

(
i1 + δ(h)

(
λ+

qM

δ(h)

)
− σ(h), j1 + δ(h)

(
λ+

qM

δ(h)

))
(mod n+M)

= (i1 + δ(h)λ+ qM − σ(h), j1 + δ(h)λ+ qM) (mod n+M)

= ((i1 − j1) + q(n+M) + r − σ(h), q(n+M) + r) (mod n+M)

= ((i1 − j1) + r − σ(h), r) (mod n+M).

It is not hard to see that 1 ≤ (i1 − j1) + r − σ(h) ≤ n; also recall that 1 ≤ r ≤ n.
Hence

ϑn+M (x) = ((i1 − j1) + r − σ(h), r).

On the other hand, by j1 + δ(h)λ = qn+ r, we obtain:

((i1 − j1) + r − σ(h), r) = (i1 + δ(h)λ− σ(h), j1 + δ(h)λ) (mod n) = ϑn(x).

So we have proved that ϑn+M (x) = ϑn(x) for any x ∈ B.
For any (i, j) ∈ skel(An), since (R, C) is a solution of P (An), we have LR,C(i, j) ∩

B = B. Moreover, since ϑn(x) = ϑn+M (x) for any x ∈ B, it follows that for any
(i′, j′) ∈ skel(An+M ) we have LR′,C′(i′, j′) ∩ B is either B or ∅. If there exists (̄ı, ̄) ∈
skel(An+M ) such that LR′,C′ (̄ı, ̄) ∩ B = ∅ then for any λ′ ∈ N, the cell (̄ı + δ(h̄)λ′, ̄ +
δ(h̄)λ′) (mod n + M) is not in B. On the other hand there exists λ ∈ N, such that
(̄ı + δ(h̄)λ, ̄ + δ(h̄)λ) (mod n) ∈ B, since (R, C) is a solution of P (An). Also, since
δ(h̄) divides M there exists q̄ ∈ N such that (̄ı + δ(h̄)λ̄, ̄ + δ(h̄)λ̄) (mod n + M) ∈ B,
where λ̄ = λ + q̄M/δ(h̄). Hence LR′,C′ (̄ı, ̄) ∩ B 6= ∅, which is a contradiction. Thus it
follows that (R′, C′) is a solution of P (An+M ).

Corollary 3.8. Let k ≡ 3 (mod 4) and n ≡ 1 (mod 4) be such that n ≥ k and 3 ≤ k ≤
119. Let An be a k-diagonal array whose filled diagonals are D1, D2, . . . , Dk−3, Dk−1,
Dk and Dk+1. Then P (An) admits a solution.

Proof. Let k = 4h + 3 and M = lcm(2, 4h + 3), that is M = 2(4h + 3). For any
1 ≤ h ≤ 29, with the help of a computer, we have checked the existence of a solution of
P (An) for any n ∈ [4h+5, 4h+5+M ] = [4h+5, 12h+11], that satisfies the hypothesis
of Theorem 3.7. Hence the claim follows by this theorem.

Corollary 3.9. Let k ≡ 3 (mod 4) and n ≡ 1 (mod 4) such that n ≥ k and 3 ≤ k ≤ 119.
Then there exists a globally simple H1(n; k) with orderings ωr and ωc which are both
simple and compatible. As a consequence, there exists a biembedding of cyclic k-cycle
decompositions of the complete graph K2nk+1 into an orientable surface.
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Proof. The existence of a globally simple H1(n; k), whose filled diagonals areD1, D2, . . . ,
Dk−3, Dk−1, Dk, Dk+1, was proven in [9]. The result follows from Corollaries 3.5 and 3.8.

4 Direct constructions of globally simple Ht(n; k)

Many of the constructions we will present are based on filling in the cells of a set of di-
agonals. In order to describe these constructions we use the same procedure introduced in
[17]. In an n× n array A the procedure diag(r, c, s,∆1,∆2, `) installs the entries

A[r + i∆1, c+ i∆1] = s+ i∆2 for i ∈ [0, `− 1],

where by A[i, j] we mean the element of A in position (i, j). The parameters used in the
diag procedure have the following meaning:

• r denotes the starting row,

• c denotes the starting column,

• s denotes the entry A[r, c],

• ∆1 denotes the increasing value of the row and column at each step,

• ∆2 denotes how much the entry is changed at each step,

• ` is the length of the chain.

We will write [a, b](W ) to mean supp(W ) = [a, b].

Proposition 4.1. For every odd n ≥ 3 there exists an integer cyclically 3-diagonal Heffter
array Hn(n; 3).

Proof. We construct an n× n array A using the following procedures labeled A to E:

A : diag
(
1, 1,− 7n−9

2 , 1, 7, n
)
; B : diag

(
1, 2, 7n−32 , 2,−7, n+1

2

)
;

C : diag
(
2, 3,−5, 2,−7, n−12

)
; D : diag

(
2, 1, 7n−132 , 2,−7, n+1

2

)
;

E : diag
(
3, 2,−10, 2,−7, n−12

)
.

We prove that the array constructed above is an integer cyclically 3-diagonal Hn(n; 3).
To aid in the proof we give a schematic picture of where each of the diagonal procedures
fills cells (see Figure 1). Note that each row and each column contain exactly 3 elements.
We now check that the elements in every row sum to zero (in Z).

Row 1. There is the first value of the A diagonal and of the B diagonal and the last of the
D diagonal. The sum is

−7n− 9

2
+

7n− 3

2
− 3 = 0.

Row 2 to n. There are two cases depending on whether the row r is even or odd. If r is
even, then write r = 2i + 2 where i ∈

[
0, n−32

]
. Notice that from the D, A and C

diagonal cells we get the following sum:(
7n− 13

2
− 7i

)
+

(
−7n− 23

2
+ 14i

)
+ (−5− 7i) = 0.
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A B D
D A C

E A B
D A C

E A B
D A C

E A B
D A C

B E A

Figure 1: Scheme of construction with n = 9.

If r is odd, then write r = 2i+ 3 where i ∈
[
0, n−32

]
. From the E, A and B diagonal

cells we get the following sum:

(−10− 7i) +

(
−7n− 37

2
+ 14i

)
+

(
7n− 17

2
− 7i

)
= 0.

So we have shown that all row sums are zero. Next we check that the columns all add to
zero.

Column 1. There is the first value of the A diagonal and of the D diagonal and the last of
the B diagonal. The sum is

−7n− 9

2
+

7n− 13

2
+ 2 = 0.

Column 2 to n. There are two cases depending on whether the column c is even or odd.
If c is even, then write c = 2i+ 2 where i ∈

[
0, n−32

]
. Notice that from the B, A and

E diagonal cells we get the following sum:(
7n− 3

2
− 7i

)
+

(
−7n− 23

2
+ 14i

)
+ (−10− 7i) = 0.

If c is odd, then write c = 2i+ 3 where i ∈
[
0, n−32

]
. From the C, A and D diagonal

cells we get the following sum:

(−5− 7i) +

(
−7n− 37

2
+ 14i

)
+

(
7n− 27

2
− 7i

)
= 0.

So we have shown that each column sums to zero. Also, it is not hard to see that:

supp(A) =
{

1, 8, 15, . . . , 7n−52

}
∪
{

6, 13, 20, . . . , 7n−92

}
,

supp(B) =
{

2, 9, 16, . . . , 7n−32

}
,

supp(C) =
{

5, 12, 19, . . . , 7n−112

}
,

supp(D) = {3} ∪
{

4, 11, 18, . . . , 7n−132

}
,

supp(E) =
{

10, 17, 24, . . . , 7n−12

}
,

hence supp(A) =
[
1, 7n−12

]
\
{

7, 14, 21, . . . , 7n−72

}
. This concludes the proof.
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Example 4.2. Following the proof of Proposition 4.1 we obtain the integer H9(9; 3) below.

−27 30 −3

25 −20 −5

−10 −13 23

18 −6 −12

−17 1 16

11 8 −19

−24 15 9

4 22 −26

2 −31 29

We can use this example to briefly explain how the construction has been obtained (a
similar idea will be used also in Proposition 4.3 below). First of all, we have to avoid the
multiples of 2nk

t + 1 = 7, so we work modulo 7. The diagonal D1 consists of elements,
all congruent to 1 modulo 7, arranged in arithmetic progression where, for instance, the
central cell is filled with 1. The other two filled diagonals are obtained in such a way that
the elements ofD9 are all congruent to 2 modulo 7 and the elements ofD2 are all congruent
to −3 modulo 7. This can be achieved filling the cell (9, 1) with the integer 2: it is now
easy to obtain the elements in the remaining cells, remembering that the row/column sums
are 0.

Proposition 4.3. For every odd n ≥ 3 there exists an integer cyclically 3-diagonal Heffter
array H2n(n; 3).

Proof. We construct an n× n array A using the following procedures labeled A to E:

A : diag(1, 1,−(4n− 5), 1, 8, n); B : diag
(
1, 2, 4n− 2, 2,−8, n+1

2

)
;

C : diag
(
2, 3,−6, 2,−8, n−12

)
; D : diag

(
2, 1, 4n− 7, 2,−8, n+1

2

)
;

E : diag
(
3, 2,−11, 2,−8, n−12

)
.

We prove that the array constructed above is an integer cyclically 3-diagonal H2n(n; 3).
To aid in the proof we give a schematic picture of where each of the diagonal procedures
fills cells (see Figure 1). Note that each row and each column contain exactly 3 elements.
We now check that the elements in every row sum to zero (in Z).

Row 1. There is the first value of the A diagonal and of the B diagonal and the last of the
D diagonal. The sum is

−(4n− 5) + (4n− 2)− 3 = 0.

Row 2 to n. There are two cases depending on whether the row r is even or odd. If r is
even, then write r = 2i + 2 where i ∈

[
0, n−32

]
. Notice that from the D, A and C

diagonal cells we get the following sum:

(4n− 7− 8i) + (−4n+ 13 + 16i) + (−6− 8i) = 0.

If r is odd, then write r = 2i+ 3 where i ∈
[
0, n−32

]
. From the E, A and B diagonal

cells we get the following sum:

(−11− 8i) + (−4n+ 21 + 16i) + (4n− 10− 8i) = 0.
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So we have shown that all row sums are zero. Next we check that the columns all add to
zero.

Column 1. There is the first value of the A diagonal and of the D diagonal and the last of
the B diagonal. The sum is

−(4n− 5) + (4n− 7) + 2 = 0.

Column 2 to n. There are two cases depending on whether the column c is even or odd.
If c is even, then write c = 2i+ 2 where i ∈

[
0, n−32

]
. Notice that from the B, A and

E diagonal cells we get the following sum:

(4n− 2− 8i) + (−4n+ 13 + 16i) + (−11− 8i) = 0.

If c is odd, then write c = 2i+ 3 where i ∈
[
0, n−32

]
. From the C, A and D diagonal

cells we get the following sum:

(−6− 8i) + (−4n+ 21 + 16i) + (4n− 15− 8i) = 0.

So we have shown that each column sums to zero. Also, it is not hard to see that:

supp(A) = {1, 9, 17, . . . , 4n− 3} ∪ {7, 15, 23, . . . , 4n− 5},
supp(B) = {2, 10, 18, . . . , 4n− 2},
supp(C) = {6, 14, 22, . . . , 4n− 6},
supp(D) = {3} ∪ {5, 13, 21, . . . , 4n− 7},
supp(E) = {11, 19, 27, . . . , 4n− 1},

hence supp(A) = [1, 4n− 1] \ {4, 8, 12, . . . , 4n− 4}. This concludes the proof.

Example 4.4. Following the proof of Proposition 4.3 we obtain the integer H18(9; 3) be-
low.

−31 34 −3

29 −23 −6

−11 −15 26

21 −7 −14

−19 1 18

13 9 −22

−27 17 10

5 25 −30

2 −35 33

In the following propositions, since k > 5, in order to prove that the relative Heffter
array Hk(n; k) constructed is globally simple we have to show that the partial sums of each
row and of each column are distinct modulo 2nk + k. From now on, the sets E(Ri) and
E(Ci) are considered ordered with respect to the natural ordering. Also, by S(Ri) and
S(Ci) we will denote the sequence of the partial sums of E(Ri) and E(Ci), respectively.
In order to check that the partial sums are distinct the following remark allows to reduce
the computations.
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Remark 4.5. Let A be a Ht(n; k). By the definition of a (relative) Heffter array it easily
follows that the i-th partial sum si of a row (or a column) is different from the partial sums
si−2, si−1, si+1 and si+2 of the same row (column).

Proposition 4.6. For every n ≥ 7 with n ≡ 3 (mod 4) there exists an integer cyclically
7-diagonal globally simple H7(n; 7).

Proof. We construct an n× n array A using the following procedures labeled A to N:

A : diag
(
3, 3,−n+1

2 , 2,−1, n−12

)
; B : diag

(
4, 4, 1, 2, 1, n−32

)
;

C : diag(n− 2, n− 1,−(5n+ 3), 2,−1, n); D : diag(2, 1,−(4n+ 3), 2,−1, n);

E : diag
(
1, 3, 7n+3

4 , 4, 1, n+1
4

)
; F : diag

(
2, 4, 3n+1

2 , 4,−1, n+1
4

)
;

G : diag
(
3, 5, 11n+7

4 , 4, 1, n+1
4

)
; H : diag

(
4, 6, 5n+1

2 , 4,−1, n−34

)
;

I : diag
(
3, 1,− 9n+5

4 , 4, 1, n+1
4

)
; J : diag

(
4, 2,− 5n+3

2 , 4,−1, n+1
4

)
;

K : diag
(
5, 3,− 5n+1

4 , 4, 1, n+1
4

)
; L : diag

(
6, 4,− 3n+3

2 , 4,−1, n−34

)
;

M : diag(n− 2, 1, 6n+ 4, 2, 1, n); N : diag(2, n− 1, 3n+ 2, 2, 1, n).

We also fill the following cells in an ad hoc manner:

A[1, 1] = n, A[2, 2] = −n−12 .

We prove that the array constructed above is an integer cyclically 7-diagonal globally
simple H7(n; 7). To aid in the proof we give a schematic picture of where each of the
diagonal procedures fills cells (see Figure 2). We have placed an X in the ad hoc cells.
Note that each row and each column contains exactly 7 elements. We now list the elements
and the partial sums of each row. We leave to the reader the direct check that the partial
sums are distinct modulo 14n+ 7; for a quicker check keep in mind Remark 4.5.

X C E M N J D
D X C F M N K
I D A C G M N
N J D B C H M

N K D A C E M
N L D B C F M

N I D A C G M
N J D B C H M

M N K D A C E
F M N L D B C
C G M N I D A

Figure 2: Scheme of construction with n = 11.

Row 1. There is an ad hoc element, the (n+5
2 )th value of the C diagonal, the first one of the

E diagonal, the (n+5
2 )th value of the M diagonal, the (n+1

2 )th value of the N diagonal,
the last value of the J diagonal and the (n+1

2 )th value of the D diagonal. Namely,

E(R1) =

(
n,−11n+ 9

2
,

7n+ 3

4
,

13n+ 11

2
,

7n+ 3

2
,−11n+ 3

4
,−9n+ 5

2

)
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and

S(R1) =

(
n,−9n+ 9

2
,−11n+ 15

4
,

15n+ 7

4
,

29n+ 13

4
,

9n+ 5

2
, 0

)
.

Row 2. There is the first value of the D diagonal, an ad hoc element, the third value of the
C diagonal, the first value of the F diagonal, the third value of the M diagonal, the
first value of the N diagonal and the last value of the K diagonal. Hence

E(R2) =

(
−(4n+ 3),−n− 1

2
,−(5n+ 5),

3n+ 1

2
, 6n+ 6, 3n+ 2,−(n+ 1)

)
and

S(R2) =

(
−(4n+ 3),−9n+ 5

2
,−19n+ 15

2
,−(8n+ 7),−(2n+ 1), n+ 1, 0

)
.

Row 3 to n. There are four cases depending on the congruence class of r modulo 4. If
r ≡ 3 (mod 4), then write r = 4i+ 3 where i ∈

[
0, n−34

]
. It is not hard to see that

from the N, I, D, A, C, G and M diagonal cells we get:

E(R4i+3) =

(
7n+ 5

2
+ 2i,−9n+ 5

4
+ i,−9n+ 7

2
− 2i,−n+ 1

2
− 2i,

− 11n+ 11

2
− 2i+ ε,

11n+ 7

4
+ i,

13n+ 13

2
+ 2i− ε

)
,

where ε = 0 for i ∈
[
0, n−74

]
while ε = n for i = n−3

4 , and

S(R4i+3) =

(
7n+ 5

2
+ 2i,

5n+ 5

4
+ 3i,−13n+ 9

4
+ i,

− 15n+ 11

4
− i,−37n+ 33

4
− 3i+ ε,−13n+ 13

2
− 2i+ ε, 0

)
.

If r ≡ 0 (mod 4), then write r = 4i + 4 where i ∈
[
0, n−74

]
. It is not hard to see

that from the N, J, D, B, C, H and M diagonal cells we get:

E(R4i+4) =

(
3n+ 3 + 2i,−5n+ 3

2
− i,−(4n+ 4 + 2i),

1 + 2i,−(5n+ 6 + 2i),
5n+ 1

2
− i, 6n+ 7 + 2i

)
and

S(R4i+4) =

(
3n+ 3 + 2i,

n+ 3

2
+ i,−7n+ 5

2
− i,

− 7n+ 3

2
+ i,−17n+ 15

2
− i,−(6n+ 7 + 2i), 0

)
.
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If r ≡ 1 (mod 4), then write r = 4i + 5 where i ∈
[
0, n−74

]
. It is not hard to see

that from the N, K, D, A, C, E and M diagonal cells we get:

E(R4i+5) =

(
7n+ 7

2
+ 2i,−5n+ 1

4
+ i,−9n+ 9

2
− 2i,−n+ 3

2
− 2i,

− 11n+ 13

2
− 2i+ ε,

7n+ 7

4
+ i,

13n+ 15

2
+ 2i− ε

)
,

where ε = 0 for i ∈
[
0, n−114

]
while ε = n for i = n−7

4 , and

S(R4i+5) =

(
7n+ 7

2
+ 2i,

9n+ 13

4
+ 3i,−9n+ 5

4
+ i,

− 11n+ 11

4
− i,−33n+ 37

4
− 3i+ ε,−13n+ 15

2
− 2i+ ε, 0

)
.

If r ≡ 2 (mod 4), then write r = 4i + 6 where i ∈
[
0, n−74

]
. It is not hard to see

that from the N, L, D, B, C, F and M diagonal cells we get:

E(R4i+6) =

(
3n+ 4 + 2i,−3n+ 3

2
− i,−(4n+ 5 + 2i),

2 + 2i,−(5n+ 7 + 2i),
3n− 1

2
− i, 6n+ 8 + 2i

)
and

S(R4i+6) =

(
3n+ 4 + 2i,

3n+ 5

2
+ i,−5n+ 5

2
− i,

− 5n+ 1

2
+ i,−15n+ 15

2
− i,−(6n+ 8 + 2i), 0

)
.

Now we list the elements and the partial sums of the columns.

Column 1. There is an ad hoc element, the first value of the D diagonal and of the I
diagonal, the second value of the N diagonal, the first value of the M diagonal, the last
value of the F diagonal and the second value of the C diagonal. Namely,

E(C1) =

(
n,−(4n+ 3),−9n+ 5

4
, 3n+ 3, 6n+ 4,

5n+ 5

4
,−(5n+ 4)

)
and

S(C1) =

(
n,−(3n+ 3),−21n+ 17

4
,−9n+ 5

4
,

15n+ 11

4
, 5n+ 4, 0

)
.

Column 2. There is the (n+5
2 )th value of the C diagonal, an ad hoc element, the (n+3

2 )th

value of the D diagonal, the first value of the J diagonal, the (n+5
2 )th value of the N

diagonal and of the M diagonal and the last value of the G diagonal. Namely,

E(C2) =

(
−11n+ 9

2
,−n− 1

2
,−9n+ 7

2
,−5n+ 3

2
,

7n+ 7

2
,

13n+ 9

2
, 3n+ 1

)
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and

S(C2) =

(
− 11n+ 9

2
,−(6n+ 4),−21n+ 15

2
,

− (13n+ 9),−19n+ 11

2
,−(3n+ 1), 0

)
.

Column 3 to n. There are four cases depending on the congruence class of c modulo 4.
If c ≡ 3 (mod 4), then write c = 4i + 3 where i ∈

[
0, n−34

]
. It is not hard to see

that from the M, E, C, A, D, K and N diagonal cells we get:

E(C4i+3) =

(
6n+ 5 + 2i,

7n+ 3

4
+ i,−(5n+ 5 + 2i),

− n+ 1

2
− 2i,−(4n+ 4 + 2i),−5n+ 1

4
+ i, 3n+ 4 + 2i

)
and

S(C4i+3) =

(
6n+ 5 + 2i,

31n+ 23

4
+ 3i,

11n+ 3

4
+ i,

9n+ 1

4
− i,−7n+ 15

4
− 3i,−(3n+ 4 + 2i), 0

)
.

If c ≡ 0 (mod 4), then write c = 4i + 4 where i ∈
[
0, n−74

]
. It is not hard to see

that from the M, F, C, B, D, L and N diagonal cells we get:

E(C4i+4) =

(
13n+ 11

2
+ 2i,

3n+ 1

2
− i,−11n+ 11

2
− 2i,

1 + 2i,−9n+ 9

2
− 2i,−3n+ 3

2
− i, 7n+ 9

2
+ 2i

)
and

S(C4i+4) =

(
13n+ 11

2
+ 2i, 8n+ 6 + i,

5n+ 1

2
− i,

5n+ 3

2
+ i,−(2n+ 3 + i),−7n+ 9

2
− 2i, 0

)
.

If c ≡ 1 (mod 4), then write c = 4i + 5 where i ∈
[
0, n−74

]
. It is not hard to see

that from the M, G, C, A, D, I and N diagonal cells we get:

E(C4i+5) =

(
6n+ 6 + 2i,

11n+ 7

4
+ i,−(5n+ 6 + 2i),

− n+ 3

2
− 2i,−(4n+ 5 + 2i),−9n+ 1

4
+ i, 3n+ 5 + 2i

)
and

S(C4i+5) =

(
6n+ 6 + 2i,

35n+ 31

4
+ 3i,

15n+ 7

4
+ i,

13n+ 1

4
− i,−3n+ 19

4
− 3i,−(3n+ 5 + 2i), 0

)
.
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If c ≡ 2 (mod 4), then write c = 4i + 6 where i ∈
[
0, n−74

]
. It is not hard to see

that from the M, H, C, B, D, J and N diagonal cells we get:

E(C4i+6) =

(
13n+ 13

2
+ 2i,

5n+ 1

2
− i,−11n+ 13

2
− 2i+ ε,

2 + 2i,−9n+ 11

2
− 2i,−5n+ 5

2
− i, 7n+ 11

2
+ 2i− ε

)
,

where ε = 0 for i ∈
[
0, n−114

]
while ε = n for i = n−7

4 , and

S(C4i+6) =

(
13n+ 13

2
+ 2i, 9n+ 7 + i,

7n+ 1

2
− i+ ε,

7n+ 5

2
+ i+ ε,−(n+ 3 + i) + ε,−7n+ 11

2
− 2i+ ε, 0

)
.

Finally we consider the support of A:

supp(A) =
[
1, n−32

]
(B)
∪ {n−12 } ∪

[
n+1
2 , n− 1

]
(A)
∪ {n}

∪
[
n+ 1, 5n+1

4

]
(K)
∪
[
5n+5

4 , 3n+1
2

]
(F)
∪
[
3n+3

2 , 7n−14

]
(L)

∪
[
7n+3

4 , 2n
]
(E)
∪
[
2n+ 2, 9n+5

4

]
(I)
∪
[
9n+9

4 , 5n+1
2

]
(H)

∪
[
5n+3

2 , 11n+3
4

]
(J)
∪
[
11n+7

4 , 3n+ 1
]
(G)
∪ [3n+ 2, 4n+ 1](N)

∪ [4n+ 3, 5n+ 2](D) ∪ [5n+ 3, 6n+ 2](C) ∪ [6n+ 4, 7n+ 3](M)

= [1, 7n+ 3] \ {2n+ 1, 4n+ 2, 6n+ 3}.

This concludes the proof.

Example 4.7. Following the proof of Proposition 4.6 we obtain the integer globally simple
H7(11; 7) below.

11 −65 20 77 40 −31 −52

−47 −5 −60 17 72 35 −12

−26 −53 −6 −66 32 78 41

36 −29 −48 1 −61 28 73

42 −14 −54 −7 −67 21 79

37 −18 −49 2 −62 16 74

43 −25 −55 −8 −68 33 80

38 −30 −50 3 −63 27 75

70 44 −13 −56 −9 −58 22

15 76 39 −19 −51 4 −64

−59 34 71 45 −24 −57 −10

Proposition 4.8. For every n ≥ 11 with n ≡ 3 (mod 4) there exists an integer 9-diagonal
globally simple H9(n; 9) with width n−9

2 .
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Proof. We construct an n× n array A using the following procedures labeled A to R:

A : diag(3, 1, 5n+ 3, 1, 1, n); B : diag(4, 1,−(6n+ 4), 1,−1, n);

C : diag(3, 6,−(7n+ 4), 1,−1, n); D : diag(4, 6, 8n+ 5, 1, 1, n);

E : diag
(
1, n+3

2 ,−(2n), 1, 2, n−12

)
; F : diag

(
n+3
2 , 1, 2n+ 2, 1, 2, n−12

)
;

G : diag
(
2, 2,−(n− 2), 1, 1, n−32

)
; H : diag

(
n+3
2 , 2,−(2n+ 3), 1,−2, n−32

)
;

I : diag
(
2, n+3

2 , 2n− 1, 1,−2, n−32

)
; J : diag

(
n+3
2 , n+3

2 , n−32 , 1,−1, n−52

)
;

K : diag
(
2, 1,−(3n+ 4), 2,−1, n+1

4

)
; L : diag

(
1, 2, 5n, 2,−1, n+1

4

)
;

M : diag
(
3, 2,−(4n+ 3), 2,−1, n−34

)
; N : diag

(
2, 3, 4n+ 1, 2,−1, n−34

)
;

O : diag
(
n+1
2 , n+3

2 , 17n+9
4 , 2, 1, n−34

)
; P : diag

(
n+3
2 , n+1

2 ,− 15n+7
4 , 2, 1, n−34

)
;

Q : diag
(
n+3
2 , n+5

2 , 13n+17
4 , 2, 1, n−34

)
; R : diag

(
n+5
2 , n+3

2 ,− 19n−1
4 , 2, 1, n−34

)
.

We also fill the following cells in an ad hoc manner:

A[1, 1] = n− 1, A[1, n+1
2 ] = n+ 2, A[1, n] = −(5n+ 1),

A[n+1
2 , 1] = −(3n), A[n+1

2 , n+1
2 ] = n, A[n+1

2 , n] = n+ 1,

A[n− 1, n− 1] = −n−12 , A[n− 1, n] = 5n+ 2, A[n, 1] = 3n+ 3,

A[n, n+1
2 ] = −(3n+ 1), A[n, n− 1] = −(3n+ 2), A[n, n] = 1.

We prove that the array constructed above is an integer 9-diagonal globally simple
H9(n; 9) with width n−9

2 . To aid in the proof we give a schematic picture of where each of
the diagonal procedures fills cells (see Figure 3). We have placed an X in the ad hoc cells.
Note that each row and each column contains exactly 9 elements. Since the filled diagonals
are D1, D2, D3, D4, Dn+1

2
, Dn+3

2
, Dn−2, Dn−1 and Dn, A has two empty strips of size

n−9
2 . We now list the elements and the partial sums of every row. We leave to the reader

the direct check that the partial sums are distinct modulo 18n+ 9; for a quicker check keep
in mind Remark 4.5.

X L D C X E B A X
K G N D C I E B A
A M G L D C I E B
B A K G N D C I E

B A M G L D C I E
B A K G N D C I E

B A M G L D C I E
X B A K X O D C X
F H B A P J Q D C

F H B A R J O D C
F H B A P J Q D C

F H B A R J O D C
C F H B A P J Q D
D C F H B A R X X
X D C F X B A X X

Figure 3: Scheme of construction with n = 15.
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Row 1. There are three ad hoc values plus the elements of the L, D, C, E, B and A diago-
nals. Namely:

E(R1) = (n−1, 5n, 9n+ 2,−(8n+ 2), n+ 2,−2n,−(7n+ 1), 6n+ 1,−(5n+ 1))

and

S(R1) = (n− 1, 6n− 1, 15n+ 1, 7n− 1, 8n+ 1, 6n+ 1,−n, 5n+ 1, 0).

Row 2. It is not hard to see that from the K, G, N, D, C, I, E, B and A diagonal cells we
get:

E(R2) = (− (3n+ 4),−(n− 2), 4n+ 1, 9n+ 3,

− (8n+ 3), 2n− 1,−(2n− 2),−(7n+ 2), 6n+ 2)

and

S(R2) = (−(3n+ 4),−(4n+ 2),−1, 9n+ 2, n− 1, 3n− 2, n,−(6n+ 2), 0).

Row 3. It is not hard to see that from the A, M, G, L, D, C, I, E and B diagonal cells we
get:

E(R3) = (5n+ 3,−(4n+ 3),−(n− 3), 5n− 1,

9n+ 4,−(7n+ 4), 2n− 3,−(2n− 4),−(7n+ 3))

and

S(R3) = (5n+ 3, n, 3, 5n+ 2, 14n+ 6, 7n+ 2, 9n− 1, 7n+ 3, 0).

Row 4 to n−1
2

. We have to distinguish two cases, depending on the parity of the row r. If
r is even, then write r = 4 + 2i where i ∈

[
0, n−114

]
. It is not hard to see that from

the B, A, K, G, N, D, C, I and E diagonal cells we get:

E(R4+2i) = (− (6n+ 4 + 2i), 5n+ 4 + 2i,−(3n+ 5 + i),−(n− 4− 2i),

4n− i, 8n+ 5 + 2i,−(7n+ 5 + 2i), 2n− 5− 4i,−(2n− 6− 4i))

and

S(R4+2i) = (− (6n+ 4 + 2i),−n,−(4n+ 5 + i),

− (5n+ 1− i),−(n+ 1), 7n+ 4 + 2i,−1, 2n− 6− 4i, 0).

If r is odd, then write r = 5 + 2i, where i ∈
[
0, n−114

]
. It is not hard to see that from

the B, A, M, G, L, D, C, I and E diagonal cells we get:

E(R5+2i) = (−(6n+ 5 + 2i), 5n+ 5 + 2i,−(4n+ 4 + i),−(n− 5− 2i),

5n− 2− i, 8n+ 6 + 2i,−(7n+ 6 + 2i), 2n− 7− 4i,−(2n− 8− 4i))

and

S(R5+2i) = (− (6n+ 5 + 2i),−n,−(5n+ 4 + i),

− (6n− 1− i),−(n+ 1), 7n+ 5 + 2i,−1, 2n− 8− 4i, 0).
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Row n+1
2

. There are three ad hoc values plus the elements of the B, A, K, O, D and C
diagonals. Namely:

E
(
Rn+1

2

)
=

(
− 3n,−13n+ 1

2
,

11n+ 1

2
,

− 13n+ 13

4
, n,

17n+ 9

4
,

17n+ 3

2
,−15n+ 3

2
, n+ 1

)
and

S
(
Rn+1

2

)
=

(
− 3n,−19n+ 1

2
,−4n,−29n+ 13

4
,

− 25n+ 13

4
,−(2n+ 1),

13n+ 1

2
,−(n+ 1), 0

)
.

Row n+3
2

to n − 2. We have to distinguish two cases, depending on the parity of the row
r. If r is odd, then write r = n+3

2 + 2i where i ∈
[
0, n−74

]
. It is not hard to see that

from the F, H, B, A, P, J, Q, D and C diagonal cells we get:

E
(
Rn+3

2 +2i

)
=

(
2n+ 2 + 4i,−(2n+ 3 + 4i),−13n+ 3

2
− 2i,

11n+ 3

2
+ 2i,

− 15n+ 7

4
+ i,

n− 3

2
− 2i,

13n+ 17

4
+ i,

17n+ 5

2
+ 2i,−15n+ 5

2
− 2i

)
and

S
(
Rn+3

2 +2i

)
=

(
2n+ 2 + 4i,−1,−13n+ 5

2
− 2i,−(n+ 1),

− 19n+ 11

4
+ i,−17n+ 17

4
− i,−n, 15n+ 5

2
+ 2i, 0

)
.

If r is even, then write r = n+5
2 + 2i where i ∈

[
0, n−114

]
. It is not hard to see that

from the F, H, B, A, R, J, O, D and C diagonal cells we get:

E
(
Rn+5

2 +2i

)
=

(
2n+ 4 + 4i,−(2n+ 5 + 4i),−13n+ 5

2
− 2i,

11n+ 5

2
+ 2i,

− 19n− 1

4
+ i,

n− 5

2
− 2i,

17n+ 13

4
+ i,

17n+ 7

2
+ 2i,−15n+ 7

2
− 2i

)
and

S
(
Rn+5

2 +2i

)
=

(
2n+ 4 + 4i,−1,−13n+ 7

2
− 2i,−(n+ 1),

− 23n+ 3

4
+ i,−21n+ 13

4
− i,−n, 15n+ 7

2
+ 2i, 0

)
.
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Row n − 1. There are two ad hoc values plus the elements of the D, C, F, H, B, A and R
diagonals. Namely:

E(Rn−1) =

(
9n,−8n, 3n− 3,−(3n− 2),

− (7n− 1), 6n− 1,−9n+ 3

2
,−n− 1

2
, 5n+ 2

)
and

S(Rn−1) =

(
9n, n, 4n− 3, n− 1,−6n,−1,−9n+ 5

2
,−(5n+ 2), 0

)
.

Row n. There are four ad hoc values plus the elements of the D, C, F, B and A diagonals.
Namely:

E(Rn) = (3n+ 3, 9n+ 1,−(8n+ 1), 3n− 1,−(3n+ 1),−7n, 6n,−(3n+ 2), 1)

and

S(Rn) = (3n+ 3, 12n+ 4, 4n+ 3, 7n+ 2, 4n+ 1,−(3n− 1), 3n+ 1,−1, 0).

Now we list the elements and the partial sums of the columns.

Column 1. There are three ad hoc values plus the elements of the K, A, B, F, C and D
diagonals. Namely:

E(C1) = (n−1,−(3n+4), 5n+3,−(6n+4),−3n, 2n+2,−(8n−1), 9n, 3n+3)

and

S(C1) = (n− 1,−(2n+ 5), 3n− 2,−(3n+ 6),

− (6n+ 6),−(4n+ 4),−(12n+ 3),−(3n+ 3), 0).

Column 2. It is not hard to see that from the L, G, M, A, B, H, F, C and D diagonal cells we
get:

E(C2) = (5n,−(n−2),−(4n+3), 5n+4,−(6n+5),−(2n+3), 2n+4,−8n, 9n+1)

and

S(C2) = (5n, 4n+ 2,−1, 5n+ 3,−(n+ 2),−(3n+ 5),−(n+ 1),−(9n+ 1), 0).

Column 3. It is not hard to see that from the D, N, G, K, A, B, H, F and C diagonal cells we
get:

E(C3) = (9n+ 2, 4n+ 1,−(n− 3),−(3n+ 5),

5n+ 5,−(6n+ 6),−(2n+ 5), 2n+ 6,−(8n+ 1))

and

S(C3) = (9n+ 2, 13n+ 3, 12n+ 6, 9n+ 1, 14n+ 6, 8n, 6n− 5, 8n+ 1, 0).
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Column 4. It is not hard to see that from the C, D, L, G, M, A, B, H and F diagonal cells we
get:

E(C4) = (− (8n+ 2), 9n+ 3, 5n− 1,−(n− 4),

− (4n+ 4), 5n+ 6,−(6n+ 7),−(2n+ 7), 2n+ 8)

and

S(C4) = (−(8n+ 2), n+ 1, 6n, 5n+ 4, n, 6n+ 6,−1,−(2n+ 8), 0).

Column 5. It is not hard to see that from the C, D, N, G, K, A, B, H and F diagonal cells we
get:

E(C5) = (− (8n+ 3), 9n+ 4, 4n,−(n− 5),

− (3n+ 6), 5n+ 7,−(6n+ 8),−(2n+ 9), 2n+ 10)

and

S(C5) = (−(8n+ 3), n+ 1, 5n+ 1, 4n+ 6, n, 6n+ 7,−1,−(2n+ 10), 0).

Column 6 to n−1
2

. We have to distinguish two cases, depending on the parity of the col-
umn c. If c is even, then write c = 6 + 2i where i ∈ [0, n−154 ]. It is not hard to see
that from the C, D, L, G, M, A, B, H and F diagonal cells we get:

E(C6+2i) = (−(7n+ 4 + 2i), 8n+ 5 + 2i, 5n− 2− i,−(n− 6− 2i),

− (4n+ 5 + i), 5n+ 8 + 2i,−(6n+ 9 + 2i),−(2n+ 11 + 4i), 2n+ 12 + 4i)

and

S(C6+2i) = (− (7n+ 4 + 2i), n+ 1, 6n− 1− i,
5n+ 5 + i, n, 6n+ 8 + 2i,−1,−(2n+ 12 + 4i), 0).

If c is odd, then write c = 7 + 2i where i ∈ [0, n−154 ]. It is not hard to see that from
the C, D, N, G, K, A, B, H and F diagonal cells we get:

E(C7+2i) = (−(7n+ 5 + 2i), 8n+ 6 + 2i, 4n− 1− i,−(n− 7− 2i),

− (3n+ 7 + i), 5n+ 9 + 2i,−(6n+ 10 + 2i),−(2n+ 13 + 4i), 2n+ 14 + 4i)

and

S(C7+2i) = (− (7n+ 5 + 2i), n+ 1, 5n− i,
4n+ 7 + i, n, 6n+ 9 + 2i,−1,−(2n+ 14 + 4i), 0).

Column n+1
2

. The are three ad hoc values plus the elements of the C, D, L, P, A and B
diagonals. Namely:

E
(
C n+1

2

)
=

(
n+ 2,−15n− 3

2
,

17n− 1

2
,

19n+ 3

4
,

n,−15n+ 7

4
,

11n+ 5

2
,−13n+ 7

4
,−(3n+ 1)

)
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and

S
(
C n+1

2

)
=

(
n+ 2,−13n− 7

2
, 2n+ 3,

27n+ 15

4
,

31n+ 1

4
, 4n+ 2,

19n+ 9

2
, 3n+ 1, 0

)
.

Column n+3
2

to n − 2. We have to distinguish two cases, depending on the parity of the
column c. If c is odd, then write c = n+3

2 + 2i where i ∈ [0, n−74 ]. It is not hard to
see that from the E, I, C, D, O, J, R, A and B diagonal cells we get:

E
(
C n+3

2 +2i

)
=

(
− (2n− 4i), 2n− 1− 4i,−15n− 1

2
− 2i,

17n+ 1

2
+ 2i,

17n+ 9

4
+ i,

n− 3

2
− 2i,−19n− 1

4
+ i,

11n+ 7

2
+ 2i,−13n+ 9

2
− 2i,

)
and

S
(
C n+3

2 +2i

)
=

(
− (2n− 4i),−1,−15n+ 1

2
− 2i,

n,
21n+ 9

4
+ i,

23n+ 3

4
− i, n+ 1,

13n+ 9

2
+ 2i, 0

)
.

If c is even, then write c = n+5
2 + 2i where i ∈ [0, n−114 ]. It is not hard to see that

from the E, I, C, D, Q, J, P, A and B diagonal cells we get:

E
(
C n+5

2 +2i

)
=

(
−(2n− 2− 4i), 2n− 3− 4i,−15n+ 1

2
− 2i,

17n+ 3

2
+ 2i,

13n+ 17

4
+ i,

n− 5

2
− 2i,−15n+ 3

4
+ i,

11n+ 9

2
+ 2i,−13n+ 11

2
− 2i

)
and

S
(
C n+5

2 +2i

)
=

(
−(2n− 2− 4i),−1,−15n+ 3

2
, n,

17n+ 17

4
+ i,

19n+ 7

4
− i, n+ 1,

13n+ 11

2
+ 2i, 0

)
.

Column n − 1. There are two ad hoc values plus the elements of the A, B, E, I, C, D and
Q diagonals. Namely:

E(Cn−1) =

(
6n+ 1,−(7n+ 2),−(n+ 5), n+ 4,

− (8n− 3), 9n− 2,
7n+ 5

2
,−n− 1

2
,−(3n+ 2)

)
and

S(Cn−1) =

(
6n+ 1,−(n+ 1),−(2n+ 6),

− (n+ 2),−(9n− 1),−1,
7n+ 3

2
, 3n+ 2, 0

)
.
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Column n. There are four ad hoc values plus the elements of the A, B, E, C and D diago-
nals. Namely:

E(Cn) = (−(5n+1), 6n+2,−(7n+3),−(n+3), n+1,−(8n−2), 9n−1, 5n+2, 1)

and

S(Cn) = (− (5n+ 1), n+ 1,−(6n+ 2),−(7n+ 5),

− (6n+ 4),−(14n+ 2),−(5n+ 3),−1, 0).

Finally, we consider the support of A:

supp(A) = {1} ∪
[
2, n−32

]
(J)
∪ {n−12 } ∪

[
n+1
2 , n− 2

]
(G)

∪ {n− 1, n, n+ 1, n+ 2} ∪ [n+ 3, 2n](E∪I) ∪ [2n+ 2, 3n− 1](F∪H)

∪ {3n, 3n+ 1, 3n+ 2, 3n+ 3} ∪
[
3n+ 4, 13n+13

4

]
(K)

∪
[
13n+17

4 , 7n+5
2

]
(Q)
∪
[
7n+7

2 , 15n+7
4

]
(P)
∪
[
15n+11

4 , 4n+ 1
]
(N)

∪
[
4n+ 3, 17n+5

4

]
(M)
∪
[
17n+9

4 , 9n+1
2

]
(O)
∪
[
9n+3

2 , 19n−14

]
(R)

∪
[
19n+3

4 , 5n
]
(L)
∪ {5n+ 1, 5n+ 2} ∪ [5n+ 3, 6n+ 2](A)

∪ [6n+ 4, 7n+ 3](B) ∪ [7n+ 4, 8n+ 3](C) ∪ [8n+ 5, 9n+ 4](D)

= [1, 9n+ 4] \ {2n+ 1, 4n+ 2, 6n+ 3, 8n+ 4}.

This concludes the proof.

Example 4.9. Following the proof of Proposition 4.8 we obtain the integer globally simple
H9(15; 9) given in Figure 4.

Lemma 4.10. For any n ≡ 7 (mod 14) such that n ≥ 21, write r = n−7
2 . Let An be a 9-

diagonal array whose filled diagonals are D1, D2, . . . , D7, Dr+7 and Dr+8. Then (R, C),
whereR = (1, 1, . . . , 1) and C = (−1, . . . ,−1︸ ︷︷ ︸

8

, 1, 1, . . . , 1), is a solution of P (An).

Proof. For any i ∈ [1, 7]∪ {r+ 7, r+ 8} set Di = (di,1, di,2, di,3, . . . , di,n), where di,1 is
the position [i, 1] of An. Also, we set

Ai = di,8, di,9, di,10, . . . , di,n;

Bi = d1,i, d1,i+r, d1,i+2r, . . . , d1,i+ 2r
7 r

;

Ci = dr+7,i, dr+7,i+r, dr+7,i+2r, . . . , dr+7,i+ 2r
7 r

;

D1 = d1,1, d1,1+r, d1,1+2r, . . . , d1,1+( 2r
7 −2)r

;

D2 = d1,8, d1,8+r;

E1 = dr+7,1, dr+7,1+r, dr+7,1+2r, . . . , dr+7,1+( 2r
7 −2)r

;

E2 = dr+7,8, dr+7,8+r.
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Figure 4: An integer globally simple H9(15; 9).
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To aid in the proof, at the webpage

http://anita-pasotti.unibs.it/Publications.html,

we give a schematic picture of where each of these sequences fills cells. By a direct check,
one can verify that

LR,C(d6,8) = (A6, d4,1, d2,2, dr+8,3, d7,4, d5,5, d3,6,B7,C7, d6,7,

A4, d2,1, dr+8,2, d7,3, d5,4, d3,5,B6,C6, d6,6, d4,7,

A2, dr+8,1, d7,2, d5,3, d3,4,B5,C5, d6,5, d4,6, d2,7,

Ar+8, d7,1, d5,2, d3,3,B4,C4, d6,4, d4,5, d2,6, dr+8,7,

A7, d5,1, d3,2,B3,C3, d6,3, d4,4, d2,5, dr+8,6, d7,7,

A5, d3,1,B2,C2, d6,2, d4,3, d2,4, dr+8,5, d7,6, d5,7,

A3,D1,E2, d6,1, d4,2, d2,3, dr+8,4, d7,5, d5,6, d3,7,D2,E1).

Hence, it is easy to see that LR,C(d6,8) covers all the filled cells of An.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. The result follows from Theorem 3.4, once we have proved the
existence of a relative Heffter array with compatible simple orderings ωr and ωc.

(1): For any n odd, a Hn(n; 3) and a H2n(n; 3) are constructed in Propositions 4.1
and 4.3, respectively. Clearly these are globally simple Heffter arrays. Since they are
cyclically 3-diagonal their compatibility follows from [13, Proposition 3.4].

(2): Let n ≡ 3 (mod 4). A H3(n; 3) and a H5(n; 5) are constructed in [15, Proposi-
tions 5.1 and 5.5], respectively. As before these are globally simple Heffter arrays and since
they are cyclically 3-diagonal and 5-diagonal, respectively, their compatibility follows from
[13, Proposition 3.4]. A globally simple H7(n; 7) is given in Proposition 4.6. Since this
is cyclically 7-diagonal its compatibility follows from [13, Propositions 3.4 and 3.6]. Fi-
nally, a globally simple H9(n; 9) is given in Proposition 4.8. Since this is 9-diagonal with
width n−9

2 , if gcd
(
n, n−72

)
= gcd(n, 7) = 1 its compatibility follows from [12, Proposi-

tion 4.19]. If gcd(n, 7) 6= 1 the result follows from Lemma 4.10.

5 Archdeacon arrays
In this section we introduce a further generalization of the concept of Heffter array. In
particular we will consider p.f. arrays where the number of filled cells in each row and in
each column is not fixed.

Definition 5.1. An Archdeacon arrayA over an abelian group (G,+) is anm×n p.f. array
with elements in G, such that:

(a) E(A) is a set;

(b) for every g ∈ G, g ∈ E(A) implies −g 6∈ E(A);

(c) the elements in every row and column sum to 0.

An example of this kind of arrays will be given in Figure 5. We note that, in the special
case G = Zv , ±E(A) = Zv \ J where J is a subgroup of Zv and all the rows (resp.
columns) have the same number of filled cells, we meet again the definition of a relative

http://anita-pasotti.unibs.it/Publications.html
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Heffter array. The purpose of this section is to show how Archdeacon arrays can be used
in order to obtain biembeddings and orthogonal cycle decompositions. First of all we need
a generalization of [7, Proposition 2.6], stated by Buratti in [6, Theorem 3.3]. All the well
known concepts about the differences method can be found in [6, 15].

Theorem 5.2. Let G be an additive group and B be a set of cycles with vertices in G. If
the list of differences of B is a set, say Λ, then B is a set of base cycles of a G-regular cycle
decomposition of Cay[G : Λ].

Generalizing Proposition 2.1, an Archdeacon array can be used to obtain regular cycle
decompositions of Cayley graphs as follows.

Proposition 5.3. Let A be an m×n Archdeacon array on an abelian group G with simple
orderings ωr = ωR1

◦ · · · ◦ ωRm
for the rows and ωc = ωC1

◦ · · · ◦ ωCn
for the columns.

Then:

(1) Bωr
= {S(ωRi

) | i ∈ [1,m]} is a set of base cycles of a G-regular cycle decompo-
sition Dωr

of Cay[G : ±E(A)];

(2) Bωc
= {S(ωCj

) | j ∈ [1, n]} is a set of base cycles of a G-regular cycle decomposi-
tion Dωc

of Cay[G : ±E(A)];

(3) the cycle decompositions Dωr
and Dωc

are orthogonal.

Proof. (1): Since the ordering ωr is simple the elements of Bωr
are cycles of lengths

|E(R1)|, . . . , |E(Rm)| and by definition of partial sums the list of differences of S(ωRi
)

is ±E(Ri), for any i ∈ [1,m]. Hence, the list of differences of Bωr
is ±E(A) and so the

thesis follows from Theorem 5.2. Obviously, (2) can be proved in the same way. Note that,
in general, the cycles of Bωr and those of Bωc have different lengths. (3) follows from the
requirement that the elements of ±E(A) are pairwise distinct.

Moreover the pair of cycles decompositions obtained from an Archdeacon array can be
biembedded under the same hypothesis of Theorem 3.4. In fact, within the same proof, we
have that:

Theorem 5.4. Let A be an Archdeacon array on an abelian group G that is simple with
respect to two compatible orderings ωr and ωc. Then there exists a biembedding of the
G-regular cycle decompositions Dω−1

r
and Dωc

of Cay[G : ±E(A)] into an orientable
surface.

We observe that if an Archdeacon array has no empty rows/columns, then a necessary
condition for the existence of compatible orderings is | skel(A)| ≡ m + n − 1 (mod 2).
This can be proved with the same proof of [11, Theorem 1.1] and of [12, Theorem 2.7].

Finally, as an easy consequence of Theorem 5.4, we obtain the relationship between the
Crazy Knight’s Tour Problem and globally simple Archdeacon arrays.

Corollary 5.5. Let A be a globally simple Archdeacon array on an abelian group G such
that P (A) admits a solution (R, C). Then there exists a biembedding of theG-regular cycle
decompositions Dω−1

r
and Dωc

of Cay[G : ±E(A)] into an orientable surface.
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Given twom×n p.f. arraysA andB defined on abelian groupsG1 andG2, respectively,
we define their direct sum A ⊕ B as the m × n p.f. array E whose skeleton is skel(A) ∪
skel(B) and whose entries in G1 ⊕G2 are so defined:

E[i, j] =


(A[i, j], B[i, j]) if (i, j) ∈ skel(A) ∩ skel(B),

(A[i, j], 0G2) if (i, j) ∈ skel(A) \ skel(B),

(0G1 , B[i, j]) if (i, j) ∈ skel(B) \ skel(A).

In the following we will denote by Ri(A) and Cj(A) the i-th row and the j-th column
of A, respectively.

Lemma 5.6. Let A and B be m × n globally simple p.f. arrays over abelian groups G1

and G2, respectively, such that:

(1) for any i ∈ [1,m] for which the i-th rows of A and B are both nonempty, we have
skel(Ri(A)) ∩ skel(Ri(B)) 6= ∅;

(2) for any j ∈ [1, n] for which the j-th columns ofA andB are both nonempty, we have
skel(Cj(A)) ∩ skel(Cj(B)) 6= ∅;

(3) the elements in every nonempty row/column of both A and B sum to zero.

Then A⊕B is a globally simple p.f. array, whose nonempty rows and columns sum to zero.

Proof. Since the elements in every nonempty row and column of both A and B sum to
zero, the same holds for A⊕B.

Let us suppose, by contradiction, that there exists a row (resp. a column) Ri of A⊕ B
that is not simple with respect to the natural ordering. Then there would be a subsequence
L of consecutive elements of Ri that sum to zero. Denoted by L1 the subsequence of the
first coordinates of L (ignoring the zeros) and by L2 the one of the second coordinates,
we have that both L1 and L2 sums to zero. Since both Ri(A) and Ri(B) are simple with
respect to the natural ordering, it follows that either L1 = ∅ (we are ignoring zeros) or
L1 = E(A). Similarly, for Ri(B). If L1 = ∅, then L2 = E(Ri(B)) and hence L is E(Ri).
Similarly, if L2 = ∅. Finally, if L1 and L2 are both nonempty, the only possibility is that
L = E(Ri) since skel(Ri(A)) ∩ skel(Ri(B)) 6= ∅.

Proposition 5.7. Let A be an Archdeacon array over an abelian group G1 and let B be a
p.f. array of the same size defined over an abelian group G2. Suppose that the hypotheses
of Lemma 5.6 are satisfied, that E(A ⊕ B) is a set and that if (0G1

, x) ∈ E(A ⊕ B), then
(0G1

,−x) 6∈ E(A⊕B). Then A⊕B is a globally simple Archdeacon array over G1⊕G2.

Proof. By Lemma 5.6, E = A⊕B is a globally simple p.f. array whose rows and columns
sum to zero. We now show that condition (b) of Definition 5.1 holds. Suppose that g =
(g1, g2) ∈ G1⊕G2 belongs to E(E). Then, either g1 ∈ E(A) or g1 = 0G1 . In the first case,
−g1 6∈ E(A) and so −g = (−g1,−g2) 6∈ E(E). If g1 = 0G1 , then (0G1 ,−g2) 6∈ E(E) by
hypothesis, proving the statement.

Now we consider the m × n p.f. array Bm,n,d(i1, i2; j1, j2) over Zd which has only
four nonempty cells: those in positions (i1, j1), (i2, j2) that we fill with +1 and those in
positions (i2, j1), (i1, j2) that we fill with −1. The following result is a consequence of
Proposition 5.7.
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Corollary 5.8. Let k < n and let us suppose there exists a globally simple cyclically k-
diagonal Ht(n; k), say A, whose filled diagonals are D1, . . . , Dk. Then considering the
array B = Bn,n,d(1, 2; 1, 2), where d > 2, we have that E = A ⊕ B is a globally simple
Archdeacon array over the group Z2nk+t ⊕ Zd.

We know that there exists a (globally simple) cyclically 3-diagonal Ht(n; 3) in each of
the following cases:

(1) t ∈ {1, 2} and n ≡ 0, 1 (mod 4), see [4, Theorems 3.4 and 3.9];

(2) t = 3 and n ≡ 0, 3 (mod 4), see [15, Propositions 5.1 and 5.3];

(3) t = n and n is odd, see Proposition 4.1;

(4) t = 2n and n is odd, see Proposition 4.3.

Therefore in these cases, we can apply Corollary 5.8: for any d ≥ 3 there exists a globally
simple Archdeacon array E of size n ≥ 4 defined over Z6n+t ⊕ Zd whose skeleton is
D1 ∪D2 ∪D3 ∪ {(1, 2)}.

Moreover, because of [12, Proposition 5.9], there exists a solution of P (E) whenever
n is also even. In those cases we have a biembedding of Cay[Z6n+t ⊕ Zd : ±E(E)] in an
orientable surface whose faces classes contain triangles and exactly one quadrangle.

As example of such construction, in Figure 5 we give a globally simple Archdeacon
array over Z51 ⊕ Zd, where d ≥ 3.

(−9, 1) (0,−1) (16, 0) (−7, 0)

(−3,−1) (−22, 1) (25, 0)

(12, 0) (1, 0) (−13, 0)

(21, 0) (2, 0) (−23, 0)

(11, 0) (8, 0) (−19, 0)

(15, 0) (5, 0) (−20, 0)

(14, 0) (−4, 0) (−10, 0)

(24, 0) (−6, 0) (−18, 0)

Figure 5: An Archdeacon array over Z51 ⊕ Zd.

We recall that the existence of a (globally simple) cyclically 4-diagonal Ht(n; 4) for any
n and t ∈ {1, 2, 4} has been proved in [17, Theorem 2.2] and [15, Proposition 4.9]. There-
fore, for any d ≥ 3, because of Corollary 5.8 there exists a globally simple Archdeacon
array E of size n ≥ 4 over Z8n+t ⊕ Zd whose skeleton is D1 ∪D2 ∪D3 ∪D4 ∪ {(1, 2)}.

Moreover, because of [12, Proposition 5.13], there exists a solution of P (E) whenever
n 6≡ 0 (mod 3). In these cases we have a biembedding of Cay[Z8n+t ⊕ Zd : ±E(E)] in
an orientable surface whose faces classes contain quadrangles and exactly one pentagon.

An example of such construction is given in Figure 6 where we provide a globally
simple Archdeacon array over Z60 ⊕ Zd, where d ≥ 3.

ORCID iDs
Simone Costa https://orcid.org/0000-0003-3880-6299
Anita Pasotti https://orcid.org/0000-0002-3569-2954
Marco Antonio Pellegrini https://orcid.org/0000-0003-1742-1314

https://orcid.org/0000-0003-3880-6299
https://orcid.org/0000-0002-3569-2954
https://orcid.org/0000-0003-1742-1314


270 Ars Math. Contemp. 18 (2020) 241–271

(25, 1) (0,−1) (1, 0) (−8, 0) (−18, 0)

(−19,−1) (26, 1) (2, 0) (−9, 0)

(−10, 0) (−20, 0) (27, 0) (3, 0)

(4, 0) (−11, 0) (−21, 0) (28, 0)

(5, 0) (−12, 0) (−22, 0) (29, 0)

(6, 0) (−13, 0) (−16, 0) (23, 0)

(7, 0) (−14, 0) (−17, 0) (24, 0)

Figure 6: An Archdeacon array over Z60 ⊕ Zd.
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