
DATA FLOW BASED PARALLEL INFERENCE MACHINE INFORMATICA 4/87

U D K 681.3.001:519.6
Jurij Silc and Borut Robic

Jozef Stefan Institute, Ljubljana

Abstraot. Execution models of the data flow based parallel inference
machine for OR-parallel and AND-parallel Prolog and the experimental
machine architecture are presented. It is shown that two types of
logic programming languages with different aims can be supported on
this machine. The programs are compiled into data flow program graphs
corresponding to machine language codes. Thus, parallelism in the
program can be exploited naturally. The machine is constructed from
processing elements and structure memories interconnected through a
hierarchical network. The processing elements interpret the procedu-
res represented by the data flow program graphs in parallel. Structu-
red data is distributed to structure memories and shared among these
procedures.

Keywords. Fifth generation computer systems, parallel inference mac-
hine, OR-parallel Prolog, AND-parallel Prolog, data flow mechanism,
machine architecture.

1 Introduction

The Fifth Generation Computer Systems
(F6CS) research and development aim is to build
a prototype of knowledge information processing
system capable of efficiently performing know-
ledge-based problem solving and inference. To-
ward this end, a ten-year period has been
assigned to the FGCS Project, and this period
has been further devided into three stages.
The goal of the initial three-year stage is to
conduct basic research on individual system
components in order to establish basic configu-
ration technology for subsystems which are to
be realized in the intermediate four-year sta-
ge.

Fig. 1 shows what has become known as the
"basic configuration image" of the fifth gene-
ration computer C13. Looked at vertically, it
has a hardware layer, a software layer, and an
external interface to applications systems, as
might be expected. Looked at horizontally, it
becomes clear that each aspect of the functio-
nality of a fifth generation computer - problem
solving and inference, knowledge base manage-
ment and intelligent interfacing - requires its
own hardware and software support mechanises.

The parallel inference machine and know-
ledge base machine are the most important
hardware components of the F6CS. In the FGCS
prototype to be completed as the final product
of the project, the two machines will be
integrated through a close link. In the initi-
al stage, however, research and development are
proceeding separately for each machine with
research themes separately determined, since
the initial stage mainly aims to conduct rese-
arch and development of individual component
technologies to establish the basic technology

for the hardware, called the inference subsy-
stem and knowledge base subsystem to be build
in the intermediate stage C83.

2 Knowledge base and inf«r*no» subsystems

Development of the F6CS hardware and arc-
hitecture will include the implementation of
mechanisms for processing and controlling a
knowledge base and efficient execution of pro-
blem-solving and inference techniques with the-
se mechanisms. The. system will depend on
multiprocessing and parallel processing techni-
ques for which two objectives are critical:

(1) Provide machines with the power to
handle the natural parallelism found in pro-
blems tackled by humans. The structure of a
problem and the neccessary processing for sol-
ving it can be shown by rules controlled by an
inference mechanism. Thus a major goal of the
FGCS project is to devise an execution model
for the inference mechanism and to determine a
way to configure it.

(2) Achieve high-speed parallel proces-
sing capable of supporting intelligent human
activities. For this requirement, the princi-
pal research must be concentrated on knowledge
base processing algorithm to handle a large
number of facts as well as a mechanism suppor-
ting the algorithm.

The inference subsystems, together with
the knowledge base subsystem, forms the kernel
of the FGCS hardware C83. The ultimate aim of
the FGCS research and development project is a
machine enabling the execution of parallel
inferences C3,7,93. In the following we shall
describe some FGCS project "data flow directed"
efforts in designing such a machine.

28

High Level
Enquiry Language Core Language

Natural Language
Speech Picture

Knowledge Base
Managnent Systen

Problen Solving &
Inference Systen

Intelligent
Interface Systen

Knowledge Base
Managnent Systen

Problem Solving 8.
Inference Systen

Intelligent
Interface Systen

Knowledge Base
Machine

Problen Solving &

Inference Machine

1>

External
interface
of the Basic
Software
Systen

Basic
Software
Systen

i Intelligent
Interface Machine

T>

Hardware
Systen

VLSI Architecture

Fig. 1 The overall structure of a fifth generation computer.

3 Parallel infcrane* subsystem

Machine language of parallel inference machine

In FGCS project, logic programming was
selected as a bridge to fill the gap between a
highly parallel computer architecture and know-
ledge information processing. Several logic
programming languages, named kernel languages,
which define an abstract interface between the
hardware and the software, are beeing develo-
ped. The kernal language KLO is the machine
language of sequential inference machine tram
which a parallel version KL1 is beeing develo-
ped. KL1 is the the machine language of
parallel inference machine C23 including two
types of basic languages: AND-parallel Prolog
and OR-parallel Prolog CA3.

In the execution of logic programs, a high
degree of parallelism can be implemented with
use of AND-parallel and OR-parallel executions.
When OR-parallelism is applied alternative clo-
uses of the same goal are executed in parallel.
The alternative clauses have identical initial
states and do not interfere with each other,
except far possible concurrent initialization
attempts of a goal variable by multiple clau-
ses. On the other hand, in AND-parallei ism the
conjunctive goals of a clause body are executed
in parallel. In general, the goals nay share
variables and thus interfere with each other
when the shared variables are accessed concu-
rrently. AND-parallelism in logic programming
involves the simultaneuos execution of subgoals

in a clause. Whereas OR-parallei ism attempts
to achieve increased speed by investigating
many possible solutions in parallel, AND-paral-
lel ism attempts to achieve increased speed by
investigating the subparts of a particular
solution in parallel.

In conventional sequential Prolog the se-
arch and test operations (called unifications)
are executed one by one, but parallel search
and test operations can be implemented through
parallel machine architecture to obtain a high-
speed machine. A few sources of parallelism
which can be distinguished for parallel execu-
tion of Prolog are AND parallelism, and OR
parallelism.

<1) OR-parallel Prolog. When a goal li-
teral G is given, the definition of 6 is
invoked. A clause C is then selected fro« the
definition, and unification of G and the head H
of the clause C is attempted. Generally, when
multiple clauses C1, C2, ... Cn exist in the
definition, unification of G and each H1, H2,
... Hn can be executed in parallel. A unit
clause Ci that is successfully unified with G
returns the solution(s). A nonunit clause Cj
initiates the next unification, treating its
body as a new goal statement, and waits for the
solutions. The resulting solutions of the goal
G are merged into streams by stream merging
primitives (in the order in which they are
obtained) and then returned to the goal. Thus,
OR-parallel Prolog is suitable for the clas of
"search-for-all-solutions" problems.

An example of OR-parallel Prolog is Paral-
lel Prolog C43.

29.

(2) AND-parallel Prolog. When a goal is
expressed as 61 AND 62 AND ... AND 6B,
ANO-parallei ism can be used to search for
conditions for all literals Gi in parallel.
The goal statement is satisfied only when
solutions are found for all the literals Gi and
there is no inconsistency between these soluti-
ons. The consistency checking is easy or even
unnecessary in cases when the goal literals 6i
have no unbound variables shared among AND
processes, or where shared variables are bound
to the ground instances before invocations of
these literals.

Several languages have been proposed to
realize AND-parallei ism. They include PARLOG,
Concurrent Prolog, and 6HC (Guarded Horn Clau-
ses) [4,53.

Mechanisms of parallel inference

Various mechanisms of parallel inference
and architectures based on those mechanisms are
beeing studied: data flow mechanism, reduction
mechanism, complete-copying mechanism and, cla-
use unit processing mechanism. In what follows
we shall briefly describe these four mechanisms
C81:

(1) Data flow mechanism. In the data
flow concept, execution starts when data neces-
sary far the execution arrived. This concept
can result in parallelism regardless of whether
it is explicitly indicated in the program.
This mechanism executes kernel language pro-
grams in parallel based on the data flow
concept.

(2) Reduction mechanism. When executed,
an OR-parallel and AND-parallel Prolog program
generates resolvents from a goal and clause.
This can be regarded as a process in which a
goal modifies itself using a clause as a rule.
The reduction mechanism can also be viewed as a
kind of self-modification. Thus, there is a
close similarity between the execution of OR-
parallel and AND-parallel Prolog programs and
the reduction mechanism. Accordingly, the re-
duction mechanism was selected for a machine
architecture that executes OR-parallel and AND-
parallel Prolog programs.

(3) Complete-copying mechanism. Comple-
te-copying is type of reduction mechanism.
Even if a process includes several literals
(subgoals) and only one literal (subgoal) is
reducible, the whole process is copied and
transferred to a unit that executes the unifi-
cation process. This increases the number of
copies and the length of a packet in the
network, while enhancing the independence of
each process.

(A) Clause unit processing mechanism. In
response to a request from an idle processing
unit, a busy processing unit sends a process.
Thus, this mechanism can avoid an explosion of
resource requests. However, it takes time for
all processing units to become busy.

4 Data flow based inference •acttlmi

The parallel inference machine based on
data flow mechanism (PII1-D) is naturally well
suited to parallel procesing becouse the data
flow mechanism is closely related to functional
languages.

Data flow computation ...

Programs in the data flow.model are repre-
sented by data flow graphs, nodes correspond to
operators and directed arcs correspond to data
paths along which operands are sent. An opera-
tor is driven by operand arrivals from its
input arcs, and it outputs the result operands
to its output arcs without affecting the other

operators' execution. This functionality of
operators has close similarity to the functio-
nal languages.

... and loQic programming

Execution of logic programs is performed
in a goal-driven manner: a clause in the
programs is initiated when a goal is given and
returns the solutions to the goal. Logic
programming languages make use of the unifica-
tion operation, which is one of their basic
functions. Nondeterrainism is another basic
feature of these languages; in particular,
"don't-knaw nondeterminism" is required for
OR-parallel Prolog, while "don't-care nondeter-
minism" is required for AND-parallel Prolog.
The data flow model is also similar to logic
programming languages such as OR-parallel and
AND-parallel Prolog. The pograms written in
OR-parallel or AND-parallel Prolog are compiled
into data flow graphs.

Implementation of 6HC

GHC was selected as a basic language of
KL1 becouse it has clearer semantics and provi-
des more efficient implementation than Concu-
rrent Prolog, and it has more powerful descrip-
tive power than PARLOG. GHC programs consist
of guarded clauses such as:

H :- G1 , G2, Gm I B1, B2, Bn.

where, H, Gi, and Bj are head, guard and body
literals, respectively and "I" is called a
commit operator. When a goal literal is given
each definition clause is invoked and a semap-
hore flag shared among these clauses is crea-
ted. Unification is attempted between the head
literal and the given goal literal and if it
succeeds then the guard literals are invoked as
the new goal literals. Only the clause whose
guard literals succed first can execute its
body; i.e. the clause whose guard succeeds
performs a test-and-set operation to the shared
semaphore flag. If the result of this operati-
on is also successful, the clause can execute
its bodyj processing of the other clauses is
terminated. Thus, one clause is exclusively
selected for a given goal from all the clauses
whose guards succeeded. There are several
implementation schemes to support the guard
mechanism in GHC C63:

<1) Complete compilation scheme. All the
unification directions are analysed in compila-
tion time and codes are generated using unidi-
rectional unification primitives. In this
scheme the compiler is complicated.

(2) System number scheme. All the envi-
ronments are managed by guard system numbers.
A new guard system number is allocated, when a
new definition is invoked and is restored to
its parent number when the commit operator is
executed. The guard numbers are associated with
all the variables included in the invoked
clauses and the invironment to which each
variable belongs is compared with the current
environment when unification to the variable is
attempted.

<3) Pointer coloring scheme. The pointer
coloring scheme distinguishes variables belon-
ging to the goal literals from those belonging
to the current guard by coloring.If unification
is attempted between a goal variable and a
variable in the invoked clause, the callee's
variable is changed to a colored variable,
which points to the original variables. If a
colored variable is unified with a term, the
instance bound to the variable is read before
unification. The commit operator restores the
colored variables to their original variables.

30

<4) Read-only tagging scheme. This sche-
me is an extension of the pointer coloring
scheme, in which every variable has a tag
specifying its read-only level. The read-only
levels of the goal variables are increnented by
one before the definitions are invoked, and
decremented by one when the commit operator of
each invoked clause succeeds.

Translation from GHC program into the
data flow orach

We shall illustate the translation from a
given GHC program into the corresponding data
flow graph. Let us have a sample program
written in GHC (Fig. 2). It is a list-append
program which appends a list specified by the
second argument of the head literal to the end
of the list specified by the first argument.

the right side of the "=" operator. The "<<="
operator specifies a procedure "app" invocation
macro. The "wait.instance" instruction reads
the instance of the first goal argument which
is passed along the input path "arg1". If the
goal argument is an unbound variable, it is
suspended until the variable is instantiated
("uargi"). This operation will need reaote
access if the variable cells are distributed
over the memory units in the system. Then, the
"switch_by_type" instructions switch all the
goal arguments according to the first argument
"uargi". If the first argument is nil, they
put their left operands on their first destina-
tions, otherwise (if "uargi" is a list) they
put their left operands on the second destina-
tions. Thus, one of the subsequent segments is
invoked exclusively. The "write_instance" in-
struction tries to unify its two operands and

(IBS •9IDBGX PRSOKfltt)

»pnd([],T,Z):-true:ZsY.

Fig. 2 GHC source program.

r e t < < = a p p (a r g l , a r g 2 , a r g 3) .
begin.

(CLAUSE INDEXING)
u a r g l : « a l t i m t t n c t j a r g l) ,

_R) = ««Ucl)_by_typ«(uargl,uargl).
_R) = «w»tcl)_by_type(arg2,uargi).
_R) = ««HtcD_by_typ«(arg3, uargi).

(ret _l,ret_2) = i«ltch_by_typ« (ret, uargi).
I COMPILED CODE OF THE FIRST CLAUSE)
res l = «rlte_li»«tance(arg3_L,arg2_L).
r « t u r i » (r e s l , r e t _ l) .
(COMPILED CODE OF THE SECOHD CLAUSE 1
(p l , p S) : 4 t c o a p » i e l i t t (a r g l _ R) .
p 3 : c r « « t « fl Io b a I va r (a r g1_R).
p 4 = c o n i I l i t (p l , p 3) .
pS:* tr i t« l n i t t f l c i (a r | 3 _ K , p 4) .
p6<< = a p p (p 2 , a r g 2 _ R , p 3) .
res2:c l)«cH c o n s l s t « n c y (p 5 , p 6) .
r e t u r n (r e s 2 , r e t _ 2) .

end.

Fig. 3 Compiled code.

The resulting list is unified with the third
argument. The compiled code is depicted in
Fig. 3. The first statement of the compiled
code specifies the procedure name "app" and its
arguments "arg1", "arg2", and "arg3". The
pocedure body is enclosed by "begin" and "end"
statements and consists of three segments. The
second and the third segment are compiled codes
of the first and second source clause, respec-
tively. The role of the first segment is to
decide which of the subsequent segments should
be invoked. Each body statement corresponds to
a node in the data flow graph. The left side
of the "=" operator specifies destination paths
for the results of the instuction specified by

if one of them is a variable, it will instanti-
ate the variable to another operand. In the
second clause of the source program, there is a
variable "Z1" in the body which does not appear
in the guard. For such a variable, the "crea-
te_global_var" instruction creates a new varia-
ble cell and initializes it. Two body literals
in the body of the second source clause will be
executed in parallel. The first is the "write-
_instance" instruction and the other is the
recursive invocation of the predicate. The
"check.consistenoy" instruction tests their re-
sults whether they terminated successfully.
The data flow program graph representation of
the compiled code is shown in Fig. A.

31

argl

(waitjnstance)

uargl

switch \ ^
by_type J^

&rg2

(switch
by_type

arg3

arg3_R

I create
I global_var

(const_list

I consistency I

res2

re t 2

ret_l

return

Invoke *app*

r e t

Fig. 4 Data flow graph representation of the compiled code.

Machine architecture

Abstract aaohinc arohitaotwra. The machi-
ne can exploit OR and AND-parallelism as well
as parallelism in unification. In head unifi-
cation, if both literals consist of multiple
arguments, or if both arguments are structured
data, the unification of these arguments or
their substructures can be executed in paral-
lel. The machine is constructed from multiple

processing elements and multiple structure Me-
mories interconnected by networks. The ab-
stract machine architecture is shown by Fig. 5
CO.

Experimental aachina. The experimental
machine is constructed from multiple processing
element modules (PEs) and multiple structure'
memory (nodules (SMs) interconnected through a
hierarchial network as shown in Fig. 6 CS,&3.
There are several hierarchy levels in the

32

processing

element

processing

element

NETWORK

structure

nenory

structure

nemory

Fig. 5 The abstract machine architecture.

interconnection network. Each PE has its local
bus. Four PEs and four SMs are interconnected
by an inter-module network bus. A set of these
modules is called a cluster. Several clusters
are futher interconnected by an inter-cluster
network bus. The hardware specification for
these interconnection busses are the sane, and
they are called T-busses (token busses).

Actual implenentation of the experimental
machine includes two clusters and is currently
being expanded to four clusters. Of these
clusters, one is specialized, having one SM
repleced by a host processor (VAX-11/730)
which is used to initialize or monitor the
system.

Packet foraats. Each PE has several sta-
ges in order to implement pipelined or parallel
execution. Packets transferred between these
stages include result packets and executable
instruction packets.

A resul packet (a token which is sent
along the directed arc in the progran graph) ,
consists of three fields:

(1) The activity identifier (16 bits)
specifies the invoked procedure instance name
to which the result packet belong.

(2) The destination field (24 bits) spe-
cifies the address of the destination instruc-
tion (a node in the data flow graph) of the
result packets. It also includes two bits for
additional information} one specifies whether
the destined instruction receives one or two
operands, and the other specifies whether the
operand is a left or right operand.

(3) The data field (32 bits) contains the
operand data to be send to the instruction.
The machine uses a tagging schene, in which
each operand has a value field (25 bits) and
tag field (7 bits), which specifies the data
type of the operand. If the operand is a
structured data, the value field has a pointer
to the structure aeraory (5-bit module nuaber
and a 20-bit local address in iseaory), and tag
field is further divided into two subfieldi a
data type subfield, which specifies the data
type of structure (i.e., list, vector, ...) and
a attribute subfield. The attribute subfield
contains a non-ground flag, which indicates
whether the structure has any siaple variables.
The attribute subfield also contains a shared
flag, which indicates whether the structure has
any shared-type variables (i.e., shared varia-
bles, global variables, or read-only varia-
bles). The machine recognizes the tag field of
the operand and transfers control to the appro-
priate firmware routine.

An executable instruction packet consists
of five fields:

(1) The current instruction address (20
bits) indicates the instruction address to be
executed and is used to obtain the destination

PE...processing element
SM...structure nenory
NN...network node

CLUSTER 8

Fig. 6 Configuration of the experimental machine.

33

address from the destination specifier field as
described below.

<2> The operation code field (8 bits)
specifies the operation to be executed.

(3) The left operand (32 bits).
<*> The right operand (32 bits).
(S) The destination specifier field (48

bits) specifies the destination addresses of
the results. There are two modes to specify
the destination addresses in the destination
specifier field; in the full destination node
the specifier field contains up to two destina-
tions (each of then is 24-bit length), and in
the short destination mode the specifier field
contains up to four destinations, where each
destination is of 12-bit length and contains
the relative addresses from the current in-
struction. The relative addresses are added to
the current instruction address to obtain the
absolute addresses.

Processing eleaent nodule. Fig. 7 depicts
the configuration of each PE. The stages in a
PE include a packed queue unit (PQU) , an
instruction control unit (ICU), several atonic
processing units (APUs), and a network node
(NN). These functional units have their own
controllers and are operative in a pipelined
manner. Packet transmission via T-bus is con-
trolled by a NN, which has nine-to-one arbiter
to arbitrate the requests from its lower level
units and from its higher level bus. The PE
has a local memory unit (LMU), which is used to
store local data such as activity manegenent
information, and is shared and accessible from
APUs. PQU is a FIFO queue memory to store the
result packets from the T-bus. ICU receives
the result packets from PQU and checks if the
destination instructions are executable or not.
An instruction is executable if it receives a

<(

<(

4,
T-BUS

A
P
u

1

A
P
u

2

PQU

ICU

|

I-BUS

L
M
U

>

y

APU,..atonic processing unit
PQU,..packet queue unit
ICU,..instruction control unit
LMU...IOCO.I nenory unit
T-BUS...token bus
I-BUS...instruction bus

Fig. 7 Configuration of a processing element.

single operand, or if the partner operand is
already in the operand memory (OM) in the ICLJ
when it receives two operands. In the later'
case, the ICU searches in its Oil whether the
partner operand exists or not. If it does, the
partner is removed from the memory; otherwise,
the result packet is stored in the OH. This
searching is performed associatively by hardwa-

re hash using the identifier and the destinati-
on address as the key field. If the instructi-
on is executable, the ICU fetches the instruc-
tion code in its instruction memory (III) and
constructs an executable instruction packet and
sends the packet to the next stage, one of APUs
via the instruction bus (I-bus). The APU
interprets the instruction packets and sends
result packets to the PQU in its PE or other
PEs, or sends structure access comand packets
to SMs via the token bus.

Structure aeaory Module. The SMs are
responsible for the structure access conmands,
perform structure manipulation operations, and
return resul.ts to the destination specified by
the commands. Each SM consists of an structure
processing unit (SPU) and structure'memory unit
(SMU) for storing the structured data (Fig. 8).
The SPUs receive the structure manipulation
commands from the APUs and interpret them. If
the commands need the responses, new result
packets are created and sent back to the PEs.
Such commands include read commands,' memory
allocation commands, and so on.

s
p
u

T-BUS

1

S
M
U

y

SPU...structure processing unit
SMU,..structure nenory unit
T-BUS...token bus

Fig. 8 Configuration of a structure memory.

The specification and typical processing
times of the various units are given in Table 1
and Table 2, respectively.

Table 1 Specification of the units.

FIFO size: 16Kw x 86b (16K tokens)
IM size: 96Kw x 59b (96K instr.)
OM size: 32Kw x 64b (32K tokens)
micro store: 1Kw x 32b ROM

7Kw x 32b RAM
memory size: 512Kw x 32b

! unit I
+—+ +
I IPQUI
I IICUI
IPEI I
I I APUI
I I I
I ILMUI
+—+ +
I ISPUI
I SMI I
I ISMUI
I I I
+—+ +
I NN I
+ +
* w

specification* I

micro store: 1Kw x 32b ROM
7Kw x 32b RAM

memory size: 1Mw x 34b (data, tags)
512Kw x 10b (ref. count)

FIFO size: 64w x 86b

word b .. bit

(64 tokens) I
+

34

Table 2 Typical processing tines of the units.

1 unit I item

IPQUI packet receive
I I delay in queue
IICUI single operand instruction
I I two operand instruction

PEI I (on arrival of 1st operand)
I I two operand instruction
I 1 (on arrival of 2nd operand)
IAPUI "copy" instruction
I I packet creation

SM I SM-read operation
I SM-write operation

NN I packet receive
I packet send

time* I
+

2
8
2

5
3
2

2
8

* in machine cycles

5 Concluding paints

Striking progress in computer technology
has given us single-chip computers whose pro-
cessing power far exceeds that of the first-ge-
neration computers. There are also various
high-level languages, operating systems, and
data-base systems. As a result, programs lor
almost any kind of application can be written,
provided that their algorithms can explicitly
be described. This means that computers can
replace people in many areas because of their
high-speed processing and large memory capabi-
lity. However, there remain many application
fields with hard-to-solve problems. One such
is the knowledge-information processing field,
where FGCS are expected to play an important
role.

A machine to cope with knowledge-informa-
tion processing should support extensive stora-
ge of data and high-speed inference using the
data. Up to now, inference procesing has
involved implementing functional and logic pro-
gramming languages an conventional sequential
computers. However, the need for processing
power of new applications in knowledge-informa-
tion processing may exceed the capabilities of
sequential computers.

The architecture of parallel inference
mechine makes it a possible candidate for
coping with such processing requirements. Com-
puter architectures proposed for parallel infe-
rence machines include the high-level language
machine C103 as well as the data flow machine.

Literature

C13 P. Bishop, Fifth generation coapu-
ters: concepts, implementations and uses, (El-
lis Horwood, 1986).

C23 K. Furukawa, T. Yokoi, Basic soft-
ware system, in: ICOT, ed., Proc. Int'1 Conf.
Fifth Gener. Camp. Systems 1984, (North-Hol-
land, 1984) 37-57.

C33 L. 0. Hertzberger, R. P. Wan Oe
Riet, Progress in the fifth generation inferen-
ce architectures, Future Generation Computer
Systems 1 (2) (1984) 93-102.

C O N. Ito, H. Shimizu, II. Kishi, E.
Kuno, K. Rokusawa, Data-flow based execution
mechanisms of Parallel and Concurrent Prolog,
New Generation Computing 3 (3) (1985) 15-41.

C53 N. Ito, M. Kishi, E. Kuno, K.
Rokusawa, The dataflow-based parallel inference
machine to support two basic languages in KL1,
in: J.V. Woods, ed., Fifth Gener. Co«p.
Architectures, (North-Holland, 1986) 123-145.

C63 N. Ito, M. Sato, E. Kuno, K.
Rokusawa, The architecture and preliminary eva-
luation results of the experimental parallel
inference machine PIM-D, Proc. 13th Int'l
Symp. Comp. Arch., (IEEE, 1986) 149-156.

C73 T. Moto-oka, H. Tanaka, H. Aida,
K. Hirata, T. Murayama, The architecture of a
parallel inference engine - PIE, in: ICOT, ed.,
Proc. Int'l Conf. Fifth Gener. Comp. Syst-
heos 1984, (North-Holland, 1984) 479-488.

C83 K. Murakami, T. Kakuta, R. Onai,
Architectures and hardware systems: parallel
inference machine and knowledge base machine,
in: ICOT, ed., Proc. Int'l Conf. Fifth Gener.
Comp. Systems 1984, (North-Holland, 1984)
18-36.

C90 K. Murakami, T. Kakuta, R. Onai,
N. Ito, Research on parallel machine architec-
ture for fifth-generation computer systems,
Computer 18 (6) (1985) 76-92.

C103 H. Tanaka, A parallel inference aac-
hine, Computer 19 (5) (1986) 48-54.

P0DATK0VN0 PRETOKOVNI PARALELNI 8TR0J ZA
SKLEPAMJE. V Clanku je predstavljen paralelni
stroj za sklepanje, ki temeljl na podatkovno
pretokovnem izvrsevanju logicnih prograaov.
Stroj podpira izvrsevanje logicnih prograaov,
zapisanih v OR ali AND-paralelnen Prologu (Pa-
rallel Prolog, PARLOG, Concurrent Prolog, GHC).
Taksnl programi se prevedejo v podatkovno pre-
tokovne programske grafe, ki ustrezajo strojne-
mu jeziku. Podan je primer transformaciJe
programa, zapisanega v jeziku GHC, v ustrezni
podatkovno pretokovni programski graf. Arhi-
tektura stroja obsega procesne elemente ter
strukturne pomnilnike, ki jlh povezuje hierar-
hicna aireza. Procesni element! izvrSujejo dele
programskega grata socasno, pri Center si delijo
podatke, zapisane v strukturnih pomnilnikih.
Podan so tudi prostorske in Casovne zahteve
posameznih komponent arhitekture.

