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Abstract

In this paper, we prove that a Frobenius group (except for those which are dihedral
groups) can only be the automorphism group of an orientably-regular chiral map. The
necessary and sufficient conditions for a Frobenius group to be the automorphism group
of an orientably-regular chiral map are given. Furthermore, these orientably-regular chiral
maps with Frobenius automorphisms are proved to be normal Cayley maps. Frobenius
groups conforming to these conditions are also constructed.
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1 Introduction
Maps are 2-cell embeddings of graphs in compact, connected surfaces. A flag of a map
is a topological triangle whose corners are a vertex, the midpoint of an edge incident with
the vertex, and the midpoint of a face incident to both the vertex and the edge. Thus, the
supporting surface of any map can be decomposed into flags (considered as closed discs
bounded by the triangles).
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It is well known that the automorphism group of a map acts semi-regularly on its flags.
If the automorphism group of a map is regular on the flags, then the map is called regular.
Regular maps have the largest automorphism groups, acting regularly on flags of the map.
Similarly, orientably-regular maps are maps in orientable surfaces that have the largest ori-
entation preserving automorphism groups acting regularly on darts (edges with direction).

Regular and orientably-regular maps constitute the most meaningful generalization of
the Platonic solids. Early recognition of the importance of regular maps in modern math-
ematics goes back to Kepler [12]; more recent development of the theory of maps was
closely related to the theory of map colorings, with the topic of highly symmetric maps al-
ways at the center of interest. The study of regular maps is nowadays considered one of the
‘classical’ areas of mathematics (e.g., Heffter [7], Klein [13], Dyck [5], or Burnside [3]).

A groupG acting on a setX is said to act regularly, if for any pair of elements x, y ∈ X
there exists a unique element g ∈ G mapping x to y, xg = y. In such a case, X can
be identified with the elements of G, and consequently, any mathematical structure with
an automorphism group acting regularly on its base set can be identified with the group
itself, the building blocks of the structure being identified with cosets of stabilizers of some
blocks. This identification has been used in the theory of regular and orientably-regular
maps as well and we just sum up the basics, referring for details to [11] and [2] for the
theory of maps on orientable and on general surfaces, and to [16] for a recent survey of the
theory of regular and orientably-regular maps. In all the forthcoming group presentations
we will assume that the listed exponents are the true orders of the corresponding elements.

A finite regular map M can in this way be identified with a (partial) three-generator
presentation of a finite group G, isomorphic to the automorphism group Aut(M) ofM,
of the form

G = 〈x, y, z | x2, y2, z2, (xy)2, (yz)`, (zx)m, . . .〉 (1.1)

where the dots indicate possible presence of additional relators (at least one if the carrier
surface of the map is not simply connected). In particular, all vertices ofM have degree
` and all the face boundary walks in M have length m; we will often refer just to face
length m. The pair (`,m) is the type of the regular mapM. In such a representation of
M, its flags are elements of G, the darts are (say) right cosets of the subgroup 〈x〉, while
edges, vertices and faces are right cosets of the dihedral subgroups 〈x, y〉, 〈y, z〉 and 〈z, x〉
of order 4, 2` and 2m, respectively. The three generators x, y, z correspond to involutory
automorphisms of M taking a fixed flag onto its three neighboring flags, and the three
dihedral subgroups correspond to the edge-, vertex- and face-stabilizers ofM.

We will write M = Map(G;x, y, z) to formally identify a regular map M with a
group presentation as in (1.1). The algebraic situation with finite orientably-regular maps
is similar. Each such mapM can be identified with a partial two-generator presentation of
a group H , isomorphic to the group Aut+(M) of orientation-preserving automorphisms
ofM, of the form

H = 〈ρ, λ | ρ`, λ2, (ρλ)m, . . .〉 . (1.2)

Here, elements of H represent darts ofM; right cosets of the cyclic groups 〈λ〉, 〈ρ〉 and
〈ρλ〉 represent edges, vertices and faces ofM. The generators λ and ρ, stabilizing an edge e
and a vertex v incident to e, represent a half-turn ofM about the center of e and a 2π/` turn
ofM about v in accord with a chosen orientation of the carrier surface of the map. Again,
the pair (`,m) is the type of the map, and we will use the notationM = Map(H; ρ, λ) in
this case.
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If a regular mapM = Map(G;x, y, z) is orientable (meaning that its carrier surface is
orientable),M is also orientably-regular, with Aut+(M) = 〈ρ, λ〉 for λ = xy and ρ = yz.
In fact, a regular map Map(G;x, y, z) is orientable if and only if the subgroup 〈xy, yz〉 has
index 2 inG. Reversing this line of thought, an orientably-regular mapM = Map(H; ρ, λ)
may also be regular. It happens if and only if the map admits an orientation-reversing
automorphism, which (see e.g. [16]) is equivalent to the existence of an automorphism of
H that fixes λ and inverts ρ. In such a case we call the orientably-regular mapM reflexible;
otherwise, that is, when H ∼= Aut+(M) = Aut(M), the map is called chiral.

A Cayley graph Cay(G,X) is a graph whose vertex set can be identified with the ele-
ments of a groupG generated by a setX closed under taking inverses and not containing the
identity 1G, with the pairs of adjacent vertices consisting of all pairs g, gx with g ∈ G and
x ∈ X . A graph Γ is isomorphic to a Cayley graph Cay(G,X) if and only if Aut Γ con-
tains a subgroupG acting regularly on the vertices of Γ [15]. A Cayley map is an orientable
map M that admits a group of orientation preserving automorphisms G acting regularly
on its set of vertices. Therefore, the underlying graphs of Cayley maps are Cayley graphs.
It turns out that many of the orientably-regular maps obtained in the forthcoming sections
fall in the class of Cayley maps the theory of which (without regularity assumptions) was
initiated in [14] and further developed e.g. in [8] and [4].

An orientably-regular Cayley map can therefore be distinguished by M = Map(H;
ρ, λ), where H = J〈ρ〉 for some subgroup J ≤ H such that J ∩ 〈ρ〉 = 1, vertices ofM
are right cosets of 〈ρ〉 inH , and the underlying graph ofM is a Cayley graph Cay(J, S) for
some unit-free inverse-closed generating set S of J . In the even more special instance when
J is normal in H , i.e., when H is a semi-direct product J o 〈ρ〉, we speak about a normal
(orientably-regular) Cayley map. In this case, conjugation by ρ induces an automorphism
ρ̂ of J and its restriction π = πρ̂ to S is a cyclic permutation of S. It turns out that either
all elements in S are involutions, or none of them is and then s−1 = sρ̂`/2 = ρ−`/2sρ`/2

for every s ∈ S, where ` is the order of ρ (necessarily even in this case). Moreover, since
we also know that J〈ρ〉 = 〈λ, ρ〉, the involution λ can be taken to be equal to an arbitrary
element of S in the all-involutions case, or to sρ`/2 for an arbitrary s ∈ S if no element in
S is involutory.

In our paper we address the natural question whether for a given finite Frobenius group
G there exists some orientably-regular or even regular map whose automorphism group is
G. In Section 2, we list some properties of Frobenius groups which we will refer to in
Section 3. In Section 3, necessary and sufficient conditions (Theorems 3.3, 3.5 and 3.6) for
a Frobenius group to be the automorphism group of an orientably-regular chiral map are
given. The Frobenius groups conforming to these conditions are also constructed.

2 Frobenius groups

A Frobenius group is a transitive permutation group G on a set Ω which is not regular
on Ω, but has the property that the only element of G which fixes more than one point is
the identity element. It was shown by Thompson [17, 18] that a finite Frobenius group G
has a nilpotent normal subgroup K, called the Frobenius kernel, which acts regularly on
Ω. Thus, K is the direct product of its Sylow subgroups and G is the semidirect product
K oH , where H is the stabilizer of a point of Ω. Because of the vertex transitivity of the
action, any two point stabilizers are conjugate. As a result, every point stabilizer has the
form (hk)−1H(hk) = k−1Hk = Hk for some h ∈ H and k ∈ K. Each point stabilizer is
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called a Frobenius complement of K in G, so the choice of Frobenius complement is not
unique. Because of the regularity of K acting on Ω, one may identify Ω with K such that
K acts on itself by multiplication. Moreover, Gorenstein [6, pp. 38, 339] showed that every
element of H \ {1} induces an automorphism of K by conjugation which fixes only the
identity element of K. Combining all these results we give a lemma to express the relation
between a Frobenius group and its Frobenius kernel as well as its Frobenius complements.

Lemma 2.1. Let G = K oH be a Frobenius group, where K is the Frobenius kernel and
H is a Frobenius complement. Then, G can be divided in the following two ways.

(1) G = ∪k∈KHk, where Hk1 ∩Hk2 = ∅ for any two different elements k1, k2 ∈ K;

(2) G = (∪k∈KHk) ∪K, where Hk = k−1Hk denotes the conjugation of H by k, and
Hk1 ∩Hk2 = Hk ∩K = {1} for any elements k1, k2, k in K and k1 6= k2.

Given a(several) Frobenius group(s), one can get new Frobenius groups. In the follow-
ing Lemmas 2.3 and 2.4, we give two methods to get new Frobenius groups from original
ones.

Lemma 2.2 ([19, Lemma 3.8, p. 13]). Assume A,B are two groups and B acts on A. If A
has a subgroup P which is invariant under the action ofB, (|B|, |P |) = 1 and (Pa)b = Pa
for some a ∈ A and each b ∈ B, then there is an element x ∈ Pa such that xb = x for
every b ∈ B.

Lemma 2.3. Assume G = K o H , 1 < N < K and N E G. Then G is a Frobenius
group with H as a Frobenius complement if and only if both N o H and K/N o H are
Frobenius groups with H as a Frobenius complement.

Proof. Assume G = K oH is a Frobenius group with H as a Frobenius complement. It
is obvious that N oH is a Frobenius group with H a Frobenius complement. So we only
need to show that K/N o H is a Frobenius group. If not, then there is an h ∈ H such
that h fixes some non-identity element of K/N . That is, there is an element k ∈ K but
k /∈ N such thatNk is fixed by h. ConsiderKo〈h〉. From Lemma 2.2, there is an element
x ∈ Nk which is fixed by h. It is obvious that x 6= 1, and so h fixes at least two elements
in K. This contradicts the assumption of G being a Frobenius group.

Conversely, assume both N o H and K/N o H are Frobenius groups with H as a
Frobenius complement. If G is not a Frobenius group, then there exists 1 6= k ∈ K and
1 6= h ∈ H such that kh = k. Since N oH is a Frobenius group, k /∈ N . Thus Nk 6= 1̄
in K/N . Clearly, (Nk)h = Nkh = Nk. This contradicts the assumption of K/N o H
being a Frobenius group.

Lemma 2.4. Let K1 oH and K2 oH be two Frobenius groups. Then, (K1 ×K2) oH
is a Frobenius group, where H acts on K1 × K2 by (k1k2)h = kh1k

h
2 , for any elements

k1 ∈ K1, k2 ∈ K2 and h ∈ H .

Proof. Note that each non-identity element h ∈ H fixes exactly the identity element of
K1 ×K2.

Lemma 2.5. Let G = K oH be a Frobenius group. For each g ∈ G \K, it satisfies the
following two relations:

(1) 〈g〉 ∩K = {1};
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(2) As an element in the quotient group G/K, Kg has order o(g), where o(g) denotes
the order of g in group G.

Proof. According to Lemma 2.1, there is an element k ∈ K such that g ∈ Hk. So 〈g〉 ∩
K ≤ Hk ∩ K = {1}. As a result, o(Kg) = |K〈g〉/K| = |〈g〉|/〈g〉 ∩ K| = |〈g〉| =
o(g).

Corollary 2.6. Let G = K o H be a Frobenius group. For each h ∈ H,h 6= 1 and for
each k ∈ K, the orders of h, kh and hk are equal, that is o(h) = o(kh) = o(hk).

Proof. Note that Kh = K(kh) = K(hk), so o(h) = o(kh) = o(hk) according to
Lemma 2.5(2).

Remark 2.7. If a group G = N o P is not a Frobenius group, then it may not satisfy the
results in Lemma 2.5. For example, take G = SL2(3) ∼= Q8 oZ3. Let x =

(
0 1
−1 1

)
. There

x ∈ G \Q8, o(x) = 6. But 〈x〉 ∩Q8 = 〈x3〉 6= 1 and o(Q8x) = 3 6= o(x).

3 Maps having Frobenius groups as automorphism groups
The following Lemma 3.1 will be referred to several times in this paper. The result is
known and one can prove it very quickly. But for easy reference, we give a short proof.

Lemma 3.1. Let G be a finite group. If there is an involution τ ∈ Aut(G) such that τ only
fixes the identity element of G, then τ maps each element in G to its inverse and G is an
abelian group of odd order.

Proof. According to the property of τ , one can check that G = {g−1gτ | g ∈ G}. Clearly
(g−1gτ )τ = (g−1gτ )−1. It follows that τ maps each element in G to its inverse. So, for
any two elements a, b ∈ G, one can get (ab)τ = b−1a−1 = aτ bτ = a−1b−1. That is to
say, G is an abelian group. Since τ only fixes the identity element of G, the group G does
not have involutions. Thus, G is of odd order.

If a ∈ L, then we use 〈a〉L to denote the group generated by the elements x−1ax for
x ∈ L.

Theorem 3.2. Other than dihedral groups of order 2n for any odd integer n, Frobenius
groups cannot be the automorphism groups of regular maps.

Proof. Let G = K oH be a Frobenius group. If G can be the automorphism group of a
regular map, then G has the following generating relations:

G = 〈x, y, z | x2, y2, z2, (xy)2, (yz)k, (zx)m, . . .〉,

where 2, k,m are the true orders of xy, yz and zx, respectively. As G/K = 〈Kx,Ky,
Kz〉 ∼= H , |H| is even. By Lemma 3.1, K is an abelian group of odd order and H has a
unique involution. Consequently, H ∼= Z2. Moreover, H is a Sylow-2 subgroup of G.

It is easy to see that 〈x, y〉 is a 2-group. So |〈x, y〉| ≤ |H| = 2. Thus 〈x, y〉 = 〈xy〉.
It follows that x = 1 or y = 1. In either case, G is a dihedral group of order 2n for some
odd integer n. In this situation, the map is an embedding of a semi-star of valency n in
the sphere or the disc, or the dual of the latter, an embedding of a circuit of length n in the
boundary of the disc. It is obvious that these two infinite families of maps are reflexible with
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their full automorphism groups being the dihedral groups of order 2n. Apart from these two
infinite families of maps, the only other possibilities for Frobenius automorphism groups
are orientably-regular chiral maps.

According to Theorem 3.2, we only need to concentrate on Frobenius groups which can
be automorphism groups of orientably-regular chiral maps. There are several well-known
infinite families of examples of these, such as the embeddings of complete graphs Kn [9],
Paley graphs, and generalized Paley graphs [10]. In the following Theorem 3.3, we will
give the necessary conditions that a Frobenius group G = K oH should satisfy to be the
automorphism group of an orientably-regular chiral map.

Theorem 3.3. Let G = K oH be a Frobenius group. If G = 〈ρ, λ | ρk, λ2, (ρλ)m, . . .〉,
k,m ≥ 3, is the automorphism group of an orientably-regular chiral mapM = Map(G;
ρ, λ), then one of the following two cases will happen.

(1) H is a cyclic group of even order and K is an abelian group of odd order. There are
two subcases corresponding to the parity of k.

(1.1) If k is even, then H ∼= Zk and

m =

{
k
2 , if k ≡ 2 (mod 4),

k, if k ≡ 0 (mod 4).

Moreover, the mapM is an orientably-regular normal Cayley map ofK. When
k ≡ 2 (mod 4), M has |G|k vertices, |G|2 edges, 2|G|

k faces and the genus of
the corresponding orientable surface is 1 − |G|(6−k)4k ; when k ≡ 0 (mod 4),
M has |G|k vertices, |G|2 edges, |G|k faces and the genus of the corresponding
orientable surface is 1− |G|(4−k)4k .

(1.2) If k is odd, then H ∼= Z2k and m = 2k. The mapM is an orientably-regular
normal Cayley map of a group isomorphic to K oZ2. In this situation,M has
|G|
k vertices, |G|2 edges, |G|2k faces, so the genus of the corresponding orientable

surface is 1− |G|(3−k)4k .

(2) H is a cyclic group of odd order and H ∼= Zk, K is a 2-group and m = k. In this
situation,M is an orientably-regular normal Cayley map ofK. The mapM has |G|k
vertices, |G|2 edges, |G|k faces and the genus of the corresponding orientable surface
is 1− |G|(4−k)4k .

Proof. (1): If |H| is even, then there is an involution in Aut(K) which only fixes the
identity element. So, K is an abelian group of odd order by Lemma 3.1. In this case,
λ /∈ K and so o(Kλ) = 2 in the quotient group G/K. Note that ρ /∈ K. Otherwise, by
Corollary 2.6 one can get o(ρλ) = o(λ) = 2, that is m = 2. So, o(Kρ) = o(ρ) = k
by Lemma 2.5. According to Lemma 3.1, there is only one involution in H ∼= G/K =
〈Kρ,Kλ〉, so Kλ belongs to the center of G/K which is therefore abelian.

(1.1): If k is even, then Kλ ∈ 〈Kρ〉. So, 〈Kρ,Kλ〉 = 〈Kρ〉 and H ∼= Zk. According
to Lemma 2.1, one can assume H = 〈ρ〉 and λ = aρ

k
2 for some non-identity element

a ∈ K without loss of generality. The vertices of M can be looked as the cosets of H .
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Therefore, K acts regularly on the vertices ofM which implies thatM is an orientably-
regular Cayley map of K. Now, we know that Aut(M) = K o 〈ρ〉. So,M is normal and
from the construction method ofM from G, one can get the corresponding Cayley subset
{a, aρ, aρ2 , . . . , aρk−1}. In this case, K = 〈a〉H .

Since Kλ = Kρ
k
2 , KρKλ = Kρ

k
2+1. If k ≡ 2 (mod 4), then m = o(ρλ) =

o(KρKλ) = o(Kρ
k
2+1) = k

2 . The type ofM is (k, k2 ). Moreover,M has |G|k vertices,
|G|
2 edges, 2|G|

k faces and the genus of the corresponding orientable surface is 1− |G|(6−k)4k .
If k ≡ 0 (mod 4), then m = k and consequently the type of M is (k, k). And M has
|G|
k vertices, |G|2 edges, |G|k faces and the genus of the corresponding orientable surface is

1− |G|(4−k)4k .
(1.2): If k is odd, thenKλ belongs to the center ofG/K which is therefore abelian. So,

〈Kρ,Kλ〉 = 〈KρKλ〉 and as a resultH ∼= Z2k. Because ρ /∈ K, according to Lemma 2.1,
we may assume ρ ∈ H and H = 〈ρ̃〉 with ρ = ρ̃2. As a result, λ = aρ̃k for some non-
identity element a ∈ K. Because λρ = aρ̃k+2, it follows thatm = o(λρ) = o(ρ̃k+2) = 2k
according to Lemma 2.6. The type ofM in this subcase is therefore (k, 2k).

Let H̃ = 〈ρ〉 be the index two subgroup of H and K̃ = Ko 〈ρ̃k〉 ∼= KoZ2. It is clear
that G = K̃ o H̃ . Now, λ ∈ K̃ and so we have the relations G = 〈ρ, λ〉 ≤ 〈λ〉〈ρ〉〈ρ〉 ≤
K̃H̃ = G. Therefore, K̃ = 〈λ〉H̃ .

The vertices ofM can be looked as the cosets of H̃ . Therefore, K̃ acts regularly on the
vertices ofMwhich implies thatM is an orientably-regular normal Cayley map of K̃ with
corresponding Cayley subset {λ, λρ, λρ2 , . . . , λρk−1}. In this case,M has |G|k vertices, |G|2
edges, |G|2k faces, so the genus of the corresponding orientable surface is 1− |G|(3−k)4k .

(2): If |H| is odd, then λ ∈ K and so H ∼= G/K = 〈Kρ〉 is cyclic. Similar to (1.1),
we can assume H = 〈ρ〉 andM is an orientalby-regular normal Cayley map of K with the
corresponding Cayley subset {λ, λρ, . . . , λρk−1}. Also in this case K = 〈λ〉H . It is known
that K is nilpotent, so the Sylow-2 subgroup P of K is a characteristic subgroup of G.
Note that G = 〈λ, ρ〉 = 〈λ〉G〈ρ〉 ≤ P o 〈ρ〉 ≤ K o 〈ρ〉. So, K = 〈λ〉G = P is a 2-group.
According to Corollary 2.6, o(ρλ) = o(ρ) = k and so the type ofM is (k, k). The mapM
has |G|k vertices, |G|2 edges, |G|k faces and the genus of the corresponding orientable surface
is 1− |G|(4−k)4k .

In the proof of Theorem 3.3, for a Frobenius group G = K o H that can be the
automorphism group of an orientably-regular chiral map, we have described the relations
between K and H . To be more clear, we rewrite these relations in Corollary 3.4.

Corollary 3.4. Let G = K oH be a Frobenius group. If G = 〈ρ, λ | ρk, λ2, (ρλ)m, . . .〉
is the automorphism group of an orientably-regular chiral map Map(G; ρ, λ), then one of
the following three cases will happen:

(1) k is even, H = 〈ρ〉 ∼= Zk, K is an abelian group and K = 〈λρ k
2 〉H ;

(2) k is odd, H ∼= Z2k, K is abelian and G = K̃ o H̃ , where K̃ ∼= K o Z2, H̃ = 〈ρ〉
is the index two subgroup of H and K̃ = 〈λ〉H̃ ;

(3) k is odd, H = 〈ρ〉 ∼= Zk and K = 〈λ〉H is a 2-group.

In the following Theorems 3.5 and 3.6, we will show that a Frobenius group whose
Frobenius kernel and Frobenius complement conforming to the conditions in Corollary 3.4
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can be the automorphism group of an orientably-regular normal Cayley map which implies
that the conditions are also sufficient.

Theorem 3.5. Let G = K oH be a Frobenius group, where K is abelian and K = 〈x〉H
for some x ∈ K,H = 〈y〉 is cyclic of order 2n, n ≥ 2. Then, there is an orientably-regular
normal Cayley mapM such that G = Aut(M) and the type ofM is

(k,m) =

{
(2n, n) or (n, 2n), if n is odd,
(2n, 2n), if n is even.

Proof. Let ρ = y, λ = xyn. Then G = 〈ρ, λ〉. It is clear that o(ρ) = 2n, o(λ) = 2,
o(ρλ) = n if n is odd and o(ρλ) = 2n if n is even. So, G is the automorphism group of an
orientably-regular mapM of type (2n, n) or (2n, 2n) depending on whether n is odd or
even. Because H = 〈y〉 = 〈ρ〉, it follows that the vertex set consists of the cosets of H in
G. So, K acts regularly on the vertex set ofM and as a resultM is an orientably-regular
normal Cayley map of K.

When n is odd, if we set ρ = y2, λ = xyn, then o(ρ) = n, o(λ) = 2 and o(ρλ) = 2n.
We claim that G = 〈ρ, λ〉. Set Q = 〈ρ, λ〉, then Q = 〈y2, xy〉 because n is odd. From
the requirement of n ≥ 2, we have y2 6= 1 and so CK(y2) = 1 in the Frobenius group G.
A calculation shows that the commutator [y2, x−1] = (xy)y

2

(xy)−1 ∈ Q. Also, [y2, x−1]
belongs to K. Note that K is abelian. We have

Q ≥ [y2, x−1]〈xy〉 = [y2, x−1]K〈xy〉 = [y2, x−1]K〈y〉

= [y2, x−1]〈y〉 = 〈[y2, (x−1)g] | g ∈ 〈y〉〉.

Define a function σ : K → K such that bσ = [y2, b] for each b ∈ K. Now,

(b1b2)σ = [y2, b1b2] = [y2, b2][y2, b1]b2 = [y2, b1][y2, b2] = bσ1 b
σ
2 .

From CK(y2) = 1, one can get σ ∈ Aut(K). Therefore,

〈[y2, (x−1)g] | g ∈ 〈y〉〉 = 〈((x−1)g)σ | g ∈ 〈y〉〉 = (〈x−1〉〈y〉)σ = Kσ = K.

So, K ≤ Q and 〈xy〉K ≤ Q. Consequently, Q = G. Let K̃ = K o 〈yn〉 and H̃ = 〈ρ〉.
Then, K̃ ∼= K o Z2, H̃ is the index two subgroup of H and G = K̃ o H̃ . Therefore,
G is the automorphism group of an orientably-regular normal Cayley map of K̃ of type
(n, 2n).

Theorem 3.6. LetG = KoH be a Frobenius group, whereK is a 2-group andK = 〈x〉H
for some involution x ∈ K, H = 〈y〉 is cyclic of order n for some odd integer n. Then,
there is an orientably-regular normal Cayley mapM such that G = Aut(M) and the type
ofM is (n, n).

Proof. Let ρ = y, λ = x. Then G = 〈ρ, λ〉. It is clear that o(ρ) = n, o(λ) = 2, o(ρλ) = n.
So, G is the automorphism group of an orientably-regular mapM of type (n, n). Because
H = 〈y〉 = 〈ρ〉, it follows that the vertex set consists of the cosets of H in G. So, K acts
regularly on the vertex set ofM and as a resultM is an orientably-regular normal Cayley
map of K.



H.-P. Qu, Y. Wang and K. Yuan: Frobenius groups which are the automorphism groups of . . . 371

Corollary 3.7. Let K1 o H and K2 o H be Frobenius groups, where K1 = 〈x1〉H ,
K2 = 〈x2〉H are both abelian groups whose orders are coprime with each other, H ∼= 〈y〉
and o(y) = 2n for some integer n ≥ 2. Then, the following two results follow from
Lemma 2.4 and Theorem 3.5.

• (K1 × K2) o H is a Frobenius group, K1 × K2 = 〈x1x2〉H and for each a1 ∈
K1, a2 ∈ K2, b ∈ H the element b acts on a1a2 in the way (a1a2)b = ab1a

b
2,

• (K1 ×K2) oH is the automorphism group of an orientably-regular normal Cayley
map.

According to Theorem 3.5 and Corollary 3.7, one may concentrate on Frobenius groups
whose Frobenius kernels are p-groups and satisfy the conditions in Theorem 3.5. Now, we
want to give an example of Frobenius groups satisfying the conditions in Theorem 3.5.

In a finite group G, for each element g ∈ G we use CG(g) to denote the centralizer of
g in G, that is CG(g) = {h ∈ G | hg = gh}.

Example 3.8. Let K = 〈a1〉 × 〈a2〉 × · · · × 〈ad〉, where o(ai) = pei , p is an odd prime
number and these positive integers ei, 1 ≤ i ≤ d, satisfy e1 ≥ e2 ≥ · · · ≥ ed. Let
H ∼= Zk = 〈b〉 for some positive even integer k satisfying k | p − 1. Assume d ≤ φ(k),
where φ is the Euler’s totient function, ti is a positive integer such that ti + peiZ is an
element in Z∗pei of order k and ti + pZ 6= tj + pZ for any 1 ≤ i 6= j ≤ d. Set G = KoH ,
where abi = atii , then G is a Frobenius group. Take a =

∏d
i=1 ai, then

K = 〈a〉H = 〈a, ab, . . . , ab
d−1

〉.

Proof. To show that G is a Frobenius group, we only need to show that for each element
y ∈ H \ {1}, the equality CK(y) = 1 holds. Suppose x =

∏d
i=1 xi ∈ CK(y), where

xi ∈ 〈ai〉. It is obvious that
∏d
i=1 xi =

∏d
i=1 x

y
i . From the defining relation abi = atii ,

then 〈ai〉 is an H-invariant subgroup, and so xi = xyi for each i. That is xi ∈ C〈ai〉(y).
While y is a power of b and the action of b on 〈ai〉 has only one fixed point, that is the
identity of 〈ai〉, so C〈ai〉(y) = 1.

For each 1 ≤ ` ≤ d− 1, ab
`

=
∏d
i=1 a

t`i
i . If we look at the determinant∣∣∣∣∣∣∣∣∣

1 1 · · · 1
t1 t2 · · · td
...

...
...

...
td−11 td−12 · · · td−1d

∣∣∣∣∣∣∣∣∣
in the finite field Fp, then from the choices of ti this is a non-zero Vandermonde determi-
nant. As a result,

a+ Φ(K), ab + Φ(K), . . . , ab
d−1

+ Φ(K)

is a basis of the linear space K/Φ(K), where Φ(K) is the Frattini subgroup of K. From
the Burnside basis theorem, the result K = 〈a, ab, . . . , abd−1〉 follows.

Corollary 3.9. Let K and H be groups in Example 3.8. Then, the Frobenius group G =
K oH is the automorphism group of an orientably-regular normal Cayley map described
in Theorem 3.5.
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Lemma 3.10. LetA be a group,B be a subgroup ofA of index 3, and each a ∈ A\B, a3 =
1. Then, [b, ba] = 1 for any b ∈ B, a ∈ A \B.

Proof. Note that if b ∈ B and a ∈ A \ B, then ba ∈ A \ B. So, (ba)3 = 1 and
bab = a−1b−1a−1. The commutator [b, ba] = b−1a−1b−1aba−1ba = b−1(a−1b−1a−1) ·
(a−1ba−1)ba = b−1(bab)(b−1ab−1)ba = a3 = 1.

Corollary 3.11. Let G = K o H be a Frobenius group. If G satisfies the following two
conditions:

(1) G can be generated by two elements,

(2) H ∼= Z3,

then K is abelian. Moreover, if G is the automorphism group of an orientably-regular
map, then K is isomorphic to the Klein group K4 and G is isomorphic to the alternating
group A4.

Proof. Assume G = 〈a, b〉 and a /∈ K. By Lemma 2.1 and Corollary 2.6, a3 = 1 and so
G = K∪Ka∪Ka2. As a result, one of the three elements b, ba−1, ba−2 must belong toK.
Suppose b ∈ K, thenG = 〈a, b〉 = 〈a〉〈b〉G ≤ 〈a〉K = G. Because 〈a〉∩K = 1, it follows
that K = 〈b〉G. While 〈b〉G = 〈b, ba, ba2〉, so K is abelian according to Lemma 3.10.

If G is the automorphism group of an orientably-regular map, then without loss of
generality we can assume H ∼= 〈a〉. So, K = 〈b, ba, ba2〉 is a 2-group according to Theo-
rem 3.3. The fact of K being abelian implies that the rank d(K) of K satisfies d(K) ≤ 3.
Therefore, K ∼= Zd(K)

2 . Moreover, from 3 | |K| − 1, one can get d(K) = 2 and K is
isomorphic to K4 and G ∼= A4.

Remark 3.12. In Corollary 3.11, the condition K = 〈b〉H for some element b ∈ K is
necessary. In fact, one may check the list of small groups to find SmallGroup(192, 1023)
in MAGMA [1] to get a Frobenius group satisfying K = 〈a, b〉H for two different elements
a and b of K, H ∼= Z3, but K is not abelian.

According to Theorem 3.3, if the Frobenius group G = K o H is the automorphism
group of an orientably-regular map and |H| is odd, thenK is a 2-group. By Corollary 3.11,
in order to find a non-abelian 2-group as the Frobenius kernel, the smallest order of the
Frobenius complement is 5.

Theorem 3.13. Let G = K oH be a Frobenius group. If K is a non-abelian 2-group, H
is a cyclic group of odd order and G is the automorphism group of an orientably-regular
map, then the group G of the smallest order is SmallGroup(1280, 1116310) in MAGMA.

Proof. Since K is a non-abelian 2-group, its commutator subgroup K ′ is non-trivial and is
a proper subgroup ofK. Set |H| = n. BecauseK/K ′oH andK ′oH are both Frobenius
groups, n | (|K/K ′| − 1) = 2n1 − 1 and n | (|K ′| − 1) = 2n2 − 1 for some integers n1
and n2. According to Corollary 3.11, n is an odd integer but n 6= 3.

If n = 5, then the smallest choices of n1, n2 are 4 and in this case |G| = 28 × 5. The
Frobenius group satisfying these conditions really exists. It is SmallGroup(1280, 1116310)
in the list of groups in MAGMA.

We claim that no Frobenius groups of order less than 28× 5 with non-abelian 2-groups
as Frobenius kernels, cyclic groups of odd orders as Frobenius complements, exist that can
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be automorphism groups of orientably-regular maps. Otherwise, suppose a group G =
〈ρ, λ | ρn, λ2, . . .〉 satisfies these conditions. Then, n = 7, n1 = n2 = 3 and |G| =
26 × 7 = 448. It is SmallGroup(448, 1394) in the list of groups of MAGMA. But, its
Frobenius kernel is abelian which is a contradiction.
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